xref: /linux/arch/mips/pci/pci-octeon.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/swiotlb.h>
15 
16 #include <asm/time.h>
17 
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-npi-defs.h>
20 #include <asm/octeon/cvmx-pci-defs.h>
21 #include <asm/octeon/pci-octeon.h>
22 
23 #include <dma-coherence.h>
24 
25 #define USE_OCTEON_INTERNAL_ARBITER
26 
27 /*
28  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
29  * addresses. Use PCI endian swapping 1 so no address swapping is
30  * necessary. The Linux io routines will endian swap the data.
31  */
32 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
33 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
34 
35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
36 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
37 
38 u64 octeon_bar1_pci_phys;
39 
40 /**
41  * This is the bit decoding used for the Octeon PCI controller addresses
42  */
43 union octeon_pci_address {
44 	uint64_t u64;
45 	struct {
46 		uint64_t upper:2;
47 		uint64_t reserved:13;
48 		uint64_t io:1;
49 		uint64_t did:5;
50 		uint64_t subdid:3;
51 		uint64_t reserved2:4;
52 		uint64_t endian_swap:2;
53 		uint64_t reserved3:10;
54 		uint64_t bus:8;
55 		uint64_t dev:5;
56 		uint64_t func:3;
57 		uint64_t reg:8;
58 	} s;
59 };
60 
61 int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
62 					 u8 slot, u8 pin);
63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
64 
65 /**
66  * Map a PCI device to the appropriate interrupt line
67  *
68  * @dev:    The Linux PCI device structure for the device to map
69  * @slot:   The slot number for this device on __BUS 0__. Linux
70  *               enumerates through all the bridges and figures out the
71  *               slot on Bus 0 where this device eventually hooks to.
72  * @pin:    The PCI interrupt pin read from the device, then swizzled
73  *               as it goes through each bridge.
74  * Returns Interrupt number for the device
75  */
76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
77 {
78 	if (octeon_pcibios_map_irq)
79 		return octeon_pcibios_map_irq(dev, slot, pin);
80 	else
81 		panic("octeon_pcibios_map_irq not set.");
82 }
83 
84 
85 /*
86  * Called to perform platform specific PCI setup
87  */
88 int pcibios_plat_dev_init(struct pci_dev *dev)
89 {
90 	uint16_t config;
91 	uint32_t dconfig;
92 	int pos;
93 	/*
94 	 * Force the Cache line setting to 64 bytes. The standard
95 	 * Linux bus scan doesn't seem to set it. Octeon really has
96 	 * 128 byte lines, but Intel bridges get really upset if you
97 	 * try and set values above 64 bytes. Value is specified in
98 	 * 32bit words.
99 	 */
100 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
101 	/* Set latency timers for all devices */
102 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
103 
104 	/* Enable reporting System errors and parity errors on all devices */
105 	/* Enable parity checking and error reporting */
106 	pci_read_config_word(dev, PCI_COMMAND, &config);
107 	config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
108 	pci_write_config_word(dev, PCI_COMMAND, config);
109 
110 	if (dev->subordinate) {
111 		/* Set latency timers on sub bridges */
112 		pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
113 		/* More bridge error detection */
114 		pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
115 		config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
116 		pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
117 	}
118 
119 	/* Enable the PCIe normal error reporting */
120 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
121 	if (pos) {
122 		/* Update Device Control */
123 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config);
124 		config |= PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
125 		config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
126 		config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
127 		config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
128 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config);
129 	}
130 
131 	/* Find the Advanced Error Reporting capability */
132 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
133 	if (pos) {
134 		/* Clear Uncorrectable Error Status */
135 		pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
136 				      &dconfig);
137 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
138 				       dconfig);
139 		/* Enable reporting of all uncorrectable errors */
140 		/* Uncorrectable Error Mask - turned on bits disable errors */
141 		pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
142 		/*
143 		 * Leave severity at HW default. This only controls if
144 		 * errors are reported as uncorrectable or
145 		 * correctable, not if the error is reported.
146 		 */
147 		/* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
148 		/* Clear Correctable Error Status */
149 		pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
150 		pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
151 		/* Enable reporting of all correctable errors */
152 		/* Correctable Error Mask - turned on bits disable errors */
153 		pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
154 		/* Advanced Error Capabilities */
155 		pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
156 		/* ECRC Generation Enable */
157 		if (config & PCI_ERR_CAP_ECRC_GENC)
158 			config |= PCI_ERR_CAP_ECRC_GENE;
159 		/* ECRC Check Enable */
160 		if (config & PCI_ERR_CAP_ECRC_CHKC)
161 			config |= PCI_ERR_CAP_ECRC_CHKE;
162 		pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
163 		/* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
164 		/* Report all errors to the root complex */
165 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
166 				       PCI_ERR_ROOT_CMD_COR_EN |
167 				       PCI_ERR_ROOT_CMD_NONFATAL_EN |
168 				       PCI_ERR_ROOT_CMD_FATAL_EN);
169 		/* Clear the Root status register */
170 		pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
171 		pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
172 	}
173 
174 	dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
175 
176 	return 0;
177 }
178 
179 /**
180  * Return the mapping of PCI device number to IRQ line. Each
181  * character in the return string represents the interrupt
182  * line for the device at that position. Device 1 maps to the
183  * first character, etc. The characters A-D are used for PCI
184  * interrupts.
185  *
186  * Returns PCI interrupt mapping
187  */
188 const char *octeon_get_pci_interrupts(void)
189 {
190 	/*
191 	 * Returning an empty string causes the interrupts to be
192 	 * routed based on the PCI specification. From the PCI spec:
193 	 *
194 	 * INTA# of Device Number 0 is connected to IRQW on the system
195 	 * board.  (Device Number has no significance regarding being
196 	 * located on the system board or in a connector.) INTA# of
197 	 * Device Number 1 is connected to IRQX on the system
198 	 * board. INTA# of Device Number 2 is connected to IRQY on the
199 	 * system board. INTA# of Device Number 3 is connected to IRQZ
200 	 * on the system board. The table below describes how each
201 	 * agent's INTx# lines are connected to the system board
202 	 * interrupt lines. The following equation can be used to
203 	 * determine to which INTx# signal on the system board a given
204 	 * device's INTx# line(s) is connected.
205 	 *
206 	 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
207 	 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
208 	 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
209 	 * INTD# = 3)
210 	 */
211 	switch (octeon_bootinfo->board_type) {
212 	case CVMX_BOARD_TYPE_NAO38:
213 		/* This is really the NAC38 */
214 		return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
215 	case CVMX_BOARD_TYPE_EBH3100:
216 	case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
217 	case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
218 		return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
219 	case CVMX_BOARD_TYPE_BBGW_REF:
220 		return "AABCD";
221 	case CVMX_BOARD_TYPE_THUNDER:
222 	case CVMX_BOARD_TYPE_EBH3000:
223 	default:
224 		return "";
225 	}
226 }
227 
228 /**
229  * Map a PCI device to the appropriate interrupt line
230  *
231  * @dev:    The Linux PCI device structure for the device to map
232  * @slot:   The slot number for this device on __BUS 0__. Linux
233  *               enumerates through all the bridges and figures out the
234  *               slot on Bus 0 where this device eventually hooks to.
235  * @pin:    The PCI interrupt pin read from the device, then swizzled
236  *               as it goes through each bridge.
237  * Returns Interrupt number for the device
238  */
239 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
240 				      u8 slot, u8 pin)
241 {
242 	int irq_num;
243 	const char *interrupts;
244 	int dev_num;
245 
246 	/* Get the board specific interrupt mapping */
247 	interrupts = octeon_get_pci_interrupts();
248 
249 	dev_num = dev->devfn >> 3;
250 	if (dev_num < strlen(interrupts))
251 		irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
252 			OCTEON_IRQ_PCI_INT0;
253 	else
254 		irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
255 	return irq_num;
256 }
257 
258 
259 /*
260  * Read a value from configuration space
261  */
262 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
263 			      int reg, int size, u32 *val)
264 {
265 	union octeon_pci_address pci_addr;
266 
267 	pci_addr.u64 = 0;
268 	pci_addr.s.upper = 2;
269 	pci_addr.s.io = 1;
270 	pci_addr.s.did = 3;
271 	pci_addr.s.subdid = 1;
272 	pci_addr.s.endian_swap = 1;
273 	pci_addr.s.bus = bus->number;
274 	pci_addr.s.dev = devfn >> 3;
275 	pci_addr.s.func = devfn & 0x7;
276 	pci_addr.s.reg = reg;
277 
278 #if PCI_CONFIG_SPACE_DELAY
279 	udelay(PCI_CONFIG_SPACE_DELAY);
280 #endif
281 	switch (size) {
282 	case 4:
283 		*val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
284 		return PCIBIOS_SUCCESSFUL;
285 	case 2:
286 		*val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
287 		return PCIBIOS_SUCCESSFUL;
288 	case 1:
289 		*val = cvmx_read64_uint8(pci_addr.u64);
290 		return PCIBIOS_SUCCESSFUL;
291 	}
292 	return PCIBIOS_FUNC_NOT_SUPPORTED;
293 }
294 
295 
296 /*
297  * Write a value to PCI configuration space
298  */
299 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
300 			       int reg, int size, u32 val)
301 {
302 	union octeon_pci_address pci_addr;
303 
304 	pci_addr.u64 = 0;
305 	pci_addr.s.upper = 2;
306 	pci_addr.s.io = 1;
307 	pci_addr.s.did = 3;
308 	pci_addr.s.subdid = 1;
309 	pci_addr.s.endian_swap = 1;
310 	pci_addr.s.bus = bus->number;
311 	pci_addr.s.dev = devfn >> 3;
312 	pci_addr.s.func = devfn & 0x7;
313 	pci_addr.s.reg = reg;
314 
315 #if PCI_CONFIG_SPACE_DELAY
316 	udelay(PCI_CONFIG_SPACE_DELAY);
317 #endif
318 	switch (size) {
319 	case 4:
320 		cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
321 		return PCIBIOS_SUCCESSFUL;
322 	case 2:
323 		cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
324 		return PCIBIOS_SUCCESSFUL;
325 	case 1:
326 		cvmx_write64_uint8(pci_addr.u64, val);
327 		return PCIBIOS_SUCCESSFUL;
328 	}
329 	return PCIBIOS_FUNC_NOT_SUPPORTED;
330 }
331 
332 
333 static struct pci_ops octeon_pci_ops = {
334 	octeon_read_config,
335 	octeon_write_config,
336 };
337 
338 static struct resource octeon_pci_mem_resource = {
339 	.start = 0,
340 	.end = 0,
341 	.name = "Octeon PCI MEM",
342 	.flags = IORESOURCE_MEM,
343 };
344 
345 /*
346  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
347  * bridge
348  */
349 static struct resource octeon_pci_io_resource = {
350 	.start = 0x4000,
351 	.end = OCTEON_PCI_IOSPACE_SIZE - 1,
352 	.name = "Octeon PCI IO",
353 	.flags = IORESOURCE_IO,
354 };
355 
356 static struct pci_controller octeon_pci_controller = {
357 	.pci_ops = &octeon_pci_ops,
358 	.mem_resource = &octeon_pci_mem_resource,
359 	.mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
360 	.io_resource = &octeon_pci_io_resource,
361 	.io_offset = 0,
362 	.io_map_base = OCTEON_PCI_IOSPACE_BASE,
363 };
364 
365 
366 /*
367  * Low level initialize the Octeon PCI controller
368  */
369 static void octeon_pci_initialize(void)
370 {
371 	union cvmx_pci_cfg01 cfg01;
372 	union cvmx_npi_ctl_status ctl_status;
373 	union cvmx_pci_ctl_status_2 ctl_status_2;
374 	union cvmx_pci_cfg19 cfg19;
375 	union cvmx_pci_cfg16 cfg16;
376 	union cvmx_pci_cfg22 cfg22;
377 	union cvmx_pci_cfg56 cfg56;
378 
379 	/* Reset the PCI Bus */
380 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
381 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
382 
383 	udelay(2000);		/* Hold PCI reset for 2 ms */
384 
385 	ctl_status.u64 = 0;	/* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
386 	ctl_status.s.max_word = 1;
387 	ctl_status.s.timer = 1;
388 	cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
389 
390 	/* Deassert PCI reset and advertize PCX Host Mode Device Capability
391 	   (64b) */
392 	cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
393 	cvmx_read_csr(CVMX_CIU_SOFT_PRST);
394 
395 	udelay(2000);		/* Wait 2 ms after deasserting PCI reset */
396 
397 	ctl_status_2.u32 = 0;
398 	ctl_status_2.s.tsr_hwm = 1;	/* Initializes to 0.  Must be set
399 					   before any PCI reads. */
400 	ctl_status_2.s.bar2pres = 1;	/* Enable BAR2 */
401 	ctl_status_2.s.bar2_enb = 1;
402 	ctl_status_2.s.bar2_cax = 1;	/* Don't use L2 */
403 	ctl_status_2.s.bar2_esx = 1;
404 	ctl_status_2.s.pmo_amod = 1;	/* Round robin priority */
405 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
406 		/* BAR1 hole */
407 		ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
408 		ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
409 		ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
410 		ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
411 		ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
412 		ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
413 	}
414 
415 	octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
416 	udelay(2000);		/* Wait 2 ms before doing PCI reads */
417 
418 	ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
419 	pr_notice("PCI Status: %s %s-bit\n",
420 		  ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
421 		  ctl_status_2.s.ap_64ad ? "64" : "32");
422 
423 	if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
424 		union cvmx_pci_cnt_reg cnt_reg_start;
425 		union cvmx_pci_cnt_reg cnt_reg_end;
426 		unsigned long cycles, pci_clock;
427 
428 		cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
429 		cycles = read_c0_cvmcount();
430 		udelay(1000);
431 		cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
432 		cycles = read_c0_cvmcount() - cycles;
433 		pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
434 			    (cycles / (mips_hpt_frequency / 1000000));
435 		pr_notice("PCI Clock: %lu MHz\n", pci_clock);
436 	}
437 
438 	/*
439 	 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
440 	 * in PCI-X mode to allow four outstanding splits. Otherwise,
441 	 * should not change from its reset value. Don't write PCI_CFG19
442 	 * in PCI mode (0x82000001 reset value), write it to 0x82000004
443 	 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
444 	 * MRBCM -> must be one.
445 	 */
446 	if (ctl_status_2.s.ap_pcix) {
447 		cfg19.u32 = 0;
448 		/*
449 		 * Target Delayed/Split request outstanding maximum
450 		 * count. [1..31] and 0=32.  NOTE: If the user
451 		 * programs these bits beyond the Designed Maximum
452 		 * outstanding count, then the designed maximum table
453 		 * depth will be used instead.  No additional
454 		 * Deferred/Split transactions will be accepted if
455 		 * this outstanding maximum count is
456 		 * reached. Furthermore, no additional deferred/split
457 		 * transactions will be accepted if the I/O delay/ I/O
458 		 * Split Request outstanding maximum is reached.
459 		 */
460 		cfg19.s.tdomc = 4;
461 		/*
462 		 * Master Deferred Read Request Outstanding Max Count
463 		 * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
464 		 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
465 		 * 5 2 110 6 3 111 7 3 For example, if these bits are
466 		 * programmed to 100, the core can support 2 DAC
467 		 * cycles, 4 SAC cycles or a combination of 1 DAC and
468 		 * 2 SAC cycles. NOTE: For the PCI-X maximum
469 		 * outstanding split transactions, refer to
470 		 * CRE0[22:20].
471 		 */
472 		cfg19.s.mdrrmc = 2;
473 		/*
474 		 * Master Request (Memory Read) Byte Count/Byte Enable
475 		 * select. 0 = Byte Enables valid. In PCI mode, a
476 		 * burst transaction cannot be performed using Memory
477 		 * Read command=4?h6. 1 = DWORD Byte Count valid
478 		 * (default). In PCI Mode, the memory read byte
479 		 * enables are automatically generated by the
480 		 * core. Note: N3 Master Request transaction sizes are
481 		 * always determined through the
482 		 * am_attr[<35:32>|<7:0>] field.
483 		 */
484 		cfg19.s.mrbcm = 1;
485 		octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
486 	}
487 
488 
489 	cfg01.u32 = 0;
490 	cfg01.s.msae = 1;	/* Memory Space Access Enable */
491 	cfg01.s.me = 1;		/* Master Enable */
492 	cfg01.s.pee = 1;	/* PERR# Enable */
493 	cfg01.s.see = 1;	/* System Error Enable */
494 	cfg01.s.fbbe = 1;	/* Fast Back to Back Transaction Enable */
495 
496 	octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
497 
498 #ifdef USE_OCTEON_INTERNAL_ARBITER
499 	/*
500 	 * When OCTEON is a PCI host, most systems will use OCTEON's
501 	 * internal arbiter, so must enable it before any PCI/PCI-X
502 	 * traffic can occur.
503 	 */
504 	{
505 		union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
506 
507 		pci_int_arb_cfg.u64 = 0;
508 		pci_int_arb_cfg.s.en = 1;	/* Internal arbiter enable */
509 		cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
510 	}
511 #endif	/* USE_OCTEON_INTERNAL_ARBITER */
512 
513 	/*
514 	 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
515 	 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
516 	 * 1..7.
517 	 */
518 	cfg16.u32 = 0;
519 	cfg16.s.mltd = 1;	/* Master Latency Timer Disable */
520 	octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
521 
522 	/*
523 	 * Should be written to 0x4ff00. MTTV -> must be zero.
524 	 * FLUSH -> must be 1. MRV -> should be 0xFF.
525 	 */
526 	cfg22.u32 = 0;
527 	/* Master Retry Value [1..255] and 0=infinite */
528 	cfg22.s.mrv = 0xff;
529 	/*
530 	 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
531 	 * N3K operation.
532 	 */
533 	cfg22.s.flush = 1;
534 	octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
535 
536 	/*
537 	 * MOST Indicates the maximum number of outstanding splits (in -1
538 	 * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
539 	 * affected by the MOST selection.  Should generally be written
540 	 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
541 	 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
542 	 */
543 	cfg56.u32 = 0;
544 	cfg56.s.pxcid = 7;	/* RO - PCI-X Capability ID */
545 	cfg56.s.ncp = 0xe8;	/* RO - Next Capability Pointer */
546 	cfg56.s.dpere = 1;	/* Data Parity Error Recovery Enable */
547 	cfg56.s.roe = 1;	/* Relaxed Ordering Enable */
548 	cfg56.s.mmbc = 1;	/* Maximum Memory Byte Count
549 				   [0=512B,1=1024B,2=2048B,3=4096B] */
550 	cfg56.s.most = 3;	/* Maximum outstanding Split transactions [0=1
551 				   .. 7=32] */
552 
553 	octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
554 
555 	/*
556 	 * Affects PCI performance when OCTEON services reads to its
557 	 * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
558 	 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
559 	 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
560 	 * these values need to be changed so they won't possibly prefetch off
561 	 * of the end of memory if PCI is DMAing a buffer at the end of
562 	 * memory. Note that these values differ from their reset values.
563 	 */
564 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
565 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
566 	octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
567 }
568 
569 
570 /*
571  * Initialize the Octeon PCI controller
572  */
573 static int __init octeon_pci_setup(void)
574 {
575 	union cvmx_npi_mem_access_subidx mem_access;
576 	int index;
577 
578 	/* Only these chips have PCI */
579 	if (octeon_has_feature(OCTEON_FEATURE_PCIE))
580 		return 0;
581 
582 	/* Point pcibios_map_irq() to the PCI version of it */
583 	octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
584 
585 	/* Only use the big bars on chips that support it */
586 	if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
587 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
588 	    OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
589 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
590 	else
591 		octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
592 
593 	/* PCI I/O and PCI MEM values */
594 	set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
595 	ioport_resource.start = 0;
596 	ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
597 	if (!octeon_is_pci_host()) {
598 		pr_notice("Not in host mode, PCI Controller not initialized\n");
599 		return 0;
600 	}
601 
602 	pr_notice("%s Octeon big bar support\n",
603 		  (octeon_dma_bar_type ==
604 		  OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
605 
606 	octeon_pci_initialize();
607 
608 	mem_access.u64 = 0;
609 	mem_access.s.esr = 1;	/* Endian-Swap on read. */
610 	mem_access.s.esw = 1;	/* Endian-Swap on write. */
611 	mem_access.s.nsr = 0;	/* No-Snoop on read. */
612 	mem_access.s.nsw = 0;	/* No-Snoop on write. */
613 	mem_access.s.ror = 0;	/* Relax Read on read. */
614 	mem_access.s.row = 0;	/* Relax Order on write. */
615 	mem_access.s.ba = 0;	/* PCI Address bits [63:36]. */
616 	cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
617 
618 	/*
619 	 * Remap the Octeon BAR 2 above all 32 bit devices
620 	 * (0x8000000000ul).  This is done here so it is remapped
621 	 * before the readl()'s below. We don't want BAR2 overlapping
622 	 * with BAR0/BAR1 during these reads.
623 	 */
624 	octeon_npi_write32(CVMX_NPI_PCI_CFG08,
625 			   (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
626 	octeon_npi_write32(CVMX_NPI_PCI_CFG09,
627 			   (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
628 
629 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
630 		/* Remap the Octeon BAR 0 to 0-2GB */
631 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
632 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
633 
634 		/*
635 		 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
636 		 * BAR 1 hole).
637 		 */
638 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
639 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
640 
641 		/* BAR1 movable mappings set for identity mapping */
642 		octeon_bar1_pci_phys = 0x80000000ull;
643 		for (index = 0; index < 32; index++) {
644 			union cvmx_pci_bar1_indexx bar1_index;
645 
646 			bar1_index.u32 = 0;
647 			/* Address bits[35:22] sent to L2C */
648 			bar1_index.s.addr_idx =
649 				(octeon_bar1_pci_phys >> 22) + index;
650 			/* Don't put PCI accesses in L2. */
651 			bar1_index.s.ca = 1;
652 			/* Endian Swap Mode */
653 			bar1_index.s.end_swp = 1;
654 			/* Set '1' when the selected address range is valid. */
655 			bar1_index.s.addr_v = 1;
656 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
657 					   bar1_index.u32);
658 		}
659 
660 		/* Devices go after BAR1 */
661 		octeon_pci_mem_resource.start =
662 			OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
663 			(OCTEON_PCI_BAR1_HOLE_SIZE << 20);
664 		octeon_pci_mem_resource.end =
665 			octeon_pci_mem_resource.start + (1ul << 30);
666 	} else {
667 		/* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
668 		octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
669 		octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
670 
671 		/* Remap the Octeon BAR 1 to map 0-128MB */
672 		octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
673 		octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
674 
675 		/* BAR1 movable regions contiguous to cover the swiotlb */
676 		octeon_bar1_pci_phys =
677 			virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
678 
679 		for (index = 0; index < 32; index++) {
680 			union cvmx_pci_bar1_indexx bar1_index;
681 
682 			bar1_index.u32 = 0;
683 			/* Address bits[35:22] sent to L2C */
684 			bar1_index.s.addr_idx =
685 				(octeon_bar1_pci_phys >> 22) + index;
686 			/* Don't put PCI accesses in L2. */
687 			bar1_index.s.ca = 1;
688 			/* Endian Swap Mode */
689 			bar1_index.s.end_swp = 1;
690 			/* Set '1' when the selected address range is valid. */
691 			bar1_index.s.addr_v = 1;
692 			octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
693 					   bar1_index.u32);
694 		}
695 
696 		/* Devices go after BAR0 */
697 		octeon_pci_mem_resource.start =
698 			OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
699 			(4ul << 10);
700 		octeon_pci_mem_resource.end =
701 			octeon_pci_mem_resource.start + (1ul << 30);
702 	}
703 
704 	register_pci_controller(&octeon_pci_controller);
705 
706 	/*
707 	 * Clear any errors that might be pending from before the bus
708 	 * was setup properly.
709 	 */
710 	cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
711 
712 	octeon_pci_dma_init();
713 
714 	return 0;
715 }
716 
717 arch_initcall(octeon_pci_setup);
718