1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2005-2009 Cavium Networks 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/interrupt.h> 12 #include <linux/time.h> 13 #include <linux/delay.h> 14 #include <linux/swiotlb.h> 15 16 #include <asm/time.h> 17 18 #include <asm/octeon/octeon.h> 19 #include <asm/octeon/cvmx-npi-defs.h> 20 #include <asm/octeon/cvmx-pci-defs.h> 21 #include <asm/octeon/pci-octeon.h> 22 23 #include <dma-coherence.h> 24 25 #define USE_OCTEON_INTERNAL_ARBITER 26 27 /* 28 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO 29 * addresses. Use PCI endian swapping 1 so no address swapping is 30 * necessary. The Linux io routines will endian swap the data. 31 */ 32 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull 33 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) 34 35 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ 36 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) 37 38 u64 octeon_bar1_pci_phys; 39 40 /** 41 * This is the bit decoding used for the Octeon PCI controller addresses 42 */ 43 union octeon_pci_address { 44 uint64_t u64; 45 struct { 46 uint64_t upper:2; 47 uint64_t reserved:13; 48 uint64_t io:1; 49 uint64_t did:5; 50 uint64_t subdid:3; 51 uint64_t reserved2:4; 52 uint64_t endian_swap:2; 53 uint64_t reserved3:10; 54 uint64_t bus:8; 55 uint64_t dev:5; 56 uint64_t func:3; 57 uint64_t reg:8; 58 } s; 59 }; 60 61 int __initdata (*octeon_pcibios_map_irq)(const struct pci_dev *dev, 62 u8 slot, u8 pin); 63 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; 64 65 /** 66 * Map a PCI device to the appropriate interrupt line 67 * 68 * @dev: The Linux PCI device structure for the device to map 69 * @slot: The slot number for this device on __BUS 0__. Linux 70 * enumerates through all the bridges and figures out the 71 * slot on Bus 0 where this device eventually hooks to. 72 * @pin: The PCI interrupt pin read from the device, then swizzled 73 * as it goes through each bridge. 74 * Returns Interrupt number for the device 75 */ 76 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 77 { 78 if (octeon_pcibios_map_irq) 79 return octeon_pcibios_map_irq(dev, slot, pin); 80 else 81 panic("octeon_pcibios_map_irq not set."); 82 } 83 84 85 /* 86 * Called to perform platform specific PCI setup 87 */ 88 int pcibios_plat_dev_init(struct pci_dev *dev) 89 { 90 uint16_t config; 91 uint32_t dconfig; 92 int pos; 93 /* 94 * Force the Cache line setting to 64 bytes. The standard 95 * Linux bus scan doesn't seem to set it. Octeon really has 96 * 128 byte lines, but Intel bridges get really upset if you 97 * try and set values above 64 bytes. Value is specified in 98 * 32bit words. 99 */ 100 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); 101 /* Set latency timers for all devices */ 102 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); 103 104 /* Enable reporting System errors and parity errors on all devices */ 105 /* Enable parity checking and error reporting */ 106 pci_read_config_word(dev, PCI_COMMAND, &config); 107 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; 108 pci_write_config_word(dev, PCI_COMMAND, config); 109 110 if (dev->subordinate) { 111 /* Set latency timers on sub bridges */ 112 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); 113 /* More bridge error detection */ 114 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); 115 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; 116 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); 117 } 118 119 /* Enable the PCIe normal error reporting */ 120 pos = pci_find_capability(dev, PCI_CAP_ID_EXP); 121 if (pos) { 122 /* Update Device Control */ 123 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &config); 124 config |= PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ 125 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ 126 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ 127 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ 128 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, config); 129 } 130 131 /* Find the Advanced Error Reporting capability */ 132 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 133 if (pos) { 134 /* Clear Uncorrectable Error Status */ 135 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 136 &dconfig); 137 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 138 dconfig); 139 /* Enable reporting of all uncorrectable errors */ 140 /* Uncorrectable Error Mask - turned on bits disable errors */ 141 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); 142 /* 143 * Leave severity at HW default. This only controls if 144 * errors are reported as uncorrectable or 145 * correctable, not if the error is reported. 146 */ 147 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ 148 /* Clear Correctable Error Status */ 149 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); 150 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); 151 /* Enable reporting of all correctable errors */ 152 /* Correctable Error Mask - turned on bits disable errors */ 153 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); 154 /* Advanced Error Capabilities */ 155 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); 156 /* ECRC Generation Enable */ 157 if (config & PCI_ERR_CAP_ECRC_GENC) 158 config |= PCI_ERR_CAP_ECRC_GENE; 159 /* ECRC Check Enable */ 160 if (config & PCI_ERR_CAP_ECRC_CHKC) 161 config |= PCI_ERR_CAP_ECRC_CHKE; 162 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); 163 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ 164 /* Report all errors to the root complex */ 165 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, 166 PCI_ERR_ROOT_CMD_COR_EN | 167 PCI_ERR_ROOT_CMD_NONFATAL_EN | 168 PCI_ERR_ROOT_CMD_FATAL_EN); 169 /* Clear the Root status register */ 170 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); 171 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); 172 } 173 174 dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops; 175 176 return 0; 177 } 178 179 /** 180 * Return the mapping of PCI device number to IRQ line. Each 181 * character in the return string represents the interrupt 182 * line for the device at that position. Device 1 maps to the 183 * first character, etc. The characters A-D are used for PCI 184 * interrupts. 185 * 186 * Returns PCI interrupt mapping 187 */ 188 const char *octeon_get_pci_interrupts(void) 189 { 190 /* 191 * Returning an empty string causes the interrupts to be 192 * routed based on the PCI specification. From the PCI spec: 193 * 194 * INTA# of Device Number 0 is connected to IRQW on the system 195 * board. (Device Number has no significance regarding being 196 * located on the system board or in a connector.) INTA# of 197 * Device Number 1 is connected to IRQX on the system 198 * board. INTA# of Device Number 2 is connected to IRQY on the 199 * system board. INTA# of Device Number 3 is connected to IRQZ 200 * on the system board. The table below describes how each 201 * agent's INTx# lines are connected to the system board 202 * interrupt lines. The following equation can be used to 203 * determine to which INTx# signal on the system board a given 204 * device's INTx# line(s) is connected. 205 * 206 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, 207 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = 208 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and 209 * INTD# = 3) 210 */ 211 switch (octeon_bootinfo->board_type) { 212 case CVMX_BOARD_TYPE_NAO38: 213 /* This is really the NAC38 */ 214 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; 215 case CVMX_BOARD_TYPE_EBH3100: 216 case CVMX_BOARD_TYPE_CN3010_EVB_HS5: 217 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 218 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; 219 case CVMX_BOARD_TYPE_BBGW_REF: 220 return "AABCD"; 221 case CVMX_BOARD_TYPE_THUNDER: 222 case CVMX_BOARD_TYPE_EBH3000: 223 default: 224 return ""; 225 } 226 } 227 228 /** 229 * Map a PCI device to the appropriate interrupt line 230 * 231 * @dev: The Linux PCI device structure for the device to map 232 * @slot: The slot number for this device on __BUS 0__. Linux 233 * enumerates through all the bridges and figures out the 234 * slot on Bus 0 where this device eventually hooks to. 235 * @pin: The PCI interrupt pin read from the device, then swizzled 236 * as it goes through each bridge. 237 * Returns Interrupt number for the device 238 */ 239 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, 240 u8 slot, u8 pin) 241 { 242 int irq_num; 243 const char *interrupts; 244 int dev_num; 245 246 /* Get the board specific interrupt mapping */ 247 interrupts = octeon_get_pci_interrupts(); 248 249 dev_num = dev->devfn >> 3; 250 if (dev_num < strlen(interrupts)) 251 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + 252 OCTEON_IRQ_PCI_INT0; 253 else 254 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; 255 return irq_num; 256 } 257 258 259 /* 260 * Read a value from configuration space 261 */ 262 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, 263 int reg, int size, u32 *val) 264 { 265 union octeon_pci_address pci_addr; 266 267 pci_addr.u64 = 0; 268 pci_addr.s.upper = 2; 269 pci_addr.s.io = 1; 270 pci_addr.s.did = 3; 271 pci_addr.s.subdid = 1; 272 pci_addr.s.endian_swap = 1; 273 pci_addr.s.bus = bus->number; 274 pci_addr.s.dev = devfn >> 3; 275 pci_addr.s.func = devfn & 0x7; 276 pci_addr.s.reg = reg; 277 278 #if PCI_CONFIG_SPACE_DELAY 279 udelay(PCI_CONFIG_SPACE_DELAY); 280 #endif 281 switch (size) { 282 case 4: 283 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); 284 return PCIBIOS_SUCCESSFUL; 285 case 2: 286 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); 287 return PCIBIOS_SUCCESSFUL; 288 case 1: 289 *val = cvmx_read64_uint8(pci_addr.u64); 290 return PCIBIOS_SUCCESSFUL; 291 } 292 return PCIBIOS_FUNC_NOT_SUPPORTED; 293 } 294 295 296 /* 297 * Write a value to PCI configuration space 298 */ 299 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, 300 int reg, int size, u32 val) 301 { 302 union octeon_pci_address pci_addr; 303 304 pci_addr.u64 = 0; 305 pci_addr.s.upper = 2; 306 pci_addr.s.io = 1; 307 pci_addr.s.did = 3; 308 pci_addr.s.subdid = 1; 309 pci_addr.s.endian_swap = 1; 310 pci_addr.s.bus = bus->number; 311 pci_addr.s.dev = devfn >> 3; 312 pci_addr.s.func = devfn & 0x7; 313 pci_addr.s.reg = reg; 314 315 #if PCI_CONFIG_SPACE_DELAY 316 udelay(PCI_CONFIG_SPACE_DELAY); 317 #endif 318 switch (size) { 319 case 4: 320 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); 321 return PCIBIOS_SUCCESSFUL; 322 case 2: 323 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); 324 return PCIBIOS_SUCCESSFUL; 325 case 1: 326 cvmx_write64_uint8(pci_addr.u64, val); 327 return PCIBIOS_SUCCESSFUL; 328 } 329 return PCIBIOS_FUNC_NOT_SUPPORTED; 330 } 331 332 333 static struct pci_ops octeon_pci_ops = { 334 octeon_read_config, 335 octeon_write_config, 336 }; 337 338 static struct resource octeon_pci_mem_resource = { 339 .start = 0, 340 .end = 0, 341 .name = "Octeon PCI MEM", 342 .flags = IORESOURCE_MEM, 343 }; 344 345 /* 346 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI 347 * bridge 348 */ 349 static struct resource octeon_pci_io_resource = { 350 .start = 0x4000, 351 .end = OCTEON_PCI_IOSPACE_SIZE - 1, 352 .name = "Octeon PCI IO", 353 .flags = IORESOURCE_IO, 354 }; 355 356 static struct pci_controller octeon_pci_controller = { 357 .pci_ops = &octeon_pci_ops, 358 .mem_resource = &octeon_pci_mem_resource, 359 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, 360 .io_resource = &octeon_pci_io_resource, 361 .io_offset = 0, 362 .io_map_base = OCTEON_PCI_IOSPACE_BASE, 363 }; 364 365 366 /* 367 * Low level initialize the Octeon PCI controller 368 */ 369 static void octeon_pci_initialize(void) 370 { 371 union cvmx_pci_cfg01 cfg01; 372 union cvmx_npi_ctl_status ctl_status; 373 union cvmx_pci_ctl_status_2 ctl_status_2; 374 union cvmx_pci_cfg19 cfg19; 375 union cvmx_pci_cfg16 cfg16; 376 union cvmx_pci_cfg22 cfg22; 377 union cvmx_pci_cfg56 cfg56; 378 379 /* Reset the PCI Bus */ 380 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); 381 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 382 383 udelay(2000); /* Hold PCI reset for 2 ms */ 384 385 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ 386 ctl_status.s.max_word = 1; 387 ctl_status.s.timer = 1; 388 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); 389 390 /* Deassert PCI reset and advertize PCX Host Mode Device Capability 391 (64b) */ 392 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); 393 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 394 395 udelay(2000); /* Wait 2 ms after deasserting PCI reset */ 396 397 ctl_status_2.u32 = 0; 398 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set 399 before any PCI reads. */ 400 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ 401 ctl_status_2.s.bar2_enb = 1; 402 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ 403 ctl_status_2.s.bar2_esx = 1; 404 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ 405 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 406 /* BAR1 hole */ 407 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; 408 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ 409 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ 410 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ 411 ctl_status_2.s.bb1 = 1; /* BAR1 is big */ 412 ctl_status_2.s.bb0 = 1; /* BAR0 is big */ 413 } 414 415 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); 416 udelay(2000); /* Wait 2 ms before doing PCI reads */ 417 418 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); 419 pr_notice("PCI Status: %s %s-bit\n", 420 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", 421 ctl_status_2.s.ap_64ad ? "64" : "32"); 422 423 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { 424 union cvmx_pci_cnt_reg cnt_reg_start; 425 union cvmx_pci_cnt_reg cnt_reg_end; 426 unsigned long cycles, pci_clock; 427 428 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 429 cycles = read_c0_cvmcount(); 430 udelay(1000); 431 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 432 cycles = read_c0_cvmcount() - cycles; 433 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / 434 (cycles / (mips_hpt_frequency / 1000000)); 435 pr_notice("PCI Clock: %lu MHz\n", pci_clock); 436 } 437 438 /* 439 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 440 * in PCI-X mode to allow four outstanding splits. Otherwise, 441 * should not change from its reset value. Don't write PCI_CFG19 442 * in PCI mode (0x82000001 reset value), write it to 0x82000004 443 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. 444 * MRBCM -> must be one. 445 */ 446 if (ctl_status_2.s.ap_pcix) { 447 cfg19.u32 = 0; 448 /* 449 * Target Delayed/Split request outstanding maximum 450 * count. [1..31] and 0=32. NOTE: If the user 451 * programs these bits beyond the Designed Maximum 452 * outstanding count, then the designed maximum table 453 * depth will be used instead. No additional 454 * Deferred/Split transactions will be accepted if 455 * this outstanding maximum count is 456 * reached. Furthermore, no additional deferred/split 457 * transactions will be accepted if the I/O delay/ I/O 458 * Split Request outstanding maximum is reached. 459 */ 460 cfg19.s.tdomc = 4; 461 /* 462 * Master Deferred Read Request Outstanding Max Count 463 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC 464 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 465 * 5 2 110 6 3 111 7 3 For example, if these bits are 466 * programmed to 100, the core can support 2 DAC 467 * cycles, 4 SAC cycles or a combination of 1 DAC and 468 * 2 SAC cycles. NOTE: For the PCI-X maximum 469 * outstanding split transactions, refer to 470 * CRE0[22:20]. 471 */ 472 cfg19.s.mdrrmc = 2; 473 /* 474 * Master Request (Memory Read) Byte Count/Byte Enable 475 * select. 0 = Byte Enables valid. In PCI mode, a 476 * burst transaction cannot be performed using Memory 477 * Read command=4?h6. 1 = DWORD Byte Count valid 478 * (default). In PCI Mode, the memory read byte 479 * enables are automatically generated by the 480 * core. Note: N3 Master Request transaction sizes are 481 * always determined through the 482 * am_attr[<35:32>|<7:0>] field. 483 */ 484 cfg19.s.mrbcm = 1; 485 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); 486 } 487 488 489 cfg01.u32 = 0; 490 cfg01.s.msae = 1; /* Memory Space Access Enable */ 491 cfg01.s.me = 1; /* Master Enable */ 492 cfg01.s.pee = 1; /* PERR# Enable */ 493 cfg01.s.see = 1; /* System Error Enable */ 494 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ 495 496 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); 497 498 #ifdef USE_OCTEON_INTERNAL_ARBITER 499 /* 500 * When OCTEON is a PCI host, most systems will use OCTEON's 501 * internal arbiter, so must enable it before any PCI/PCI-X 502 * traffic can occur. 503 */ 504 { 505 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; 506 507 pci_int_arb_cfg.u64 = 0; 508 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ 509 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); 510 } 511 #endif /* USE_OCTEON_INTERNAL_ARBITER */ 512 513 /* 514 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, 515 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to 516 * 1..7. 517 */ 518 cfg16.u32 = 0; 519 cfg16.s.mltd = 1; /* Master Latency Timer Disable */ 520 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); 521 522 /* 523 * Should be written to 0x4ff00. MTTV -> must be zero. 524 * FLUSH -> must be 1. MRV -> should be 0xFF. 525 */ 526 cfg22.u32 = 0; 527 /* Master Retry Value [1..255] and 0=infinite */ 528 cfg22.s.mrv = 0xff; 529 /* 530 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper 531 * N3K operation. 532 */ 533 cfg22.s.flush = 1; 534 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); 535 536 /* 537 * MOST Indicates the maximum number of outstanding splits (in -1 538 * notation) when OCTEON is in PCI-X mode. PCI-X performance is 539 * affected by the MOST selection. Should generally be written 540 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, 541 * depending on the desired MOST of 3, 2, 1, or 0, respectively. 542 */ 543 cfg56.u32 = 0; 544 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ 545 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ 546 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ 547 cfg56.s.roe = 1; /* Relaxed Ordering Enable */ 548 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count 549 [0=512B,1=1024B,2=2048B,3=4096B] */ 550 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 551 .. 7=32] */ 552 553 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); 554 555 /* 556 * Affects PCI performance when OCTEON services reads to its 557 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are 558 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and 559 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, 560 * these values need to be changed so they won't possibly prefetch off 561 * of the end of memory if PCI is DMAing a buffer at the end of 562 * memory. Note that these values differ from their reset values. 563 */ 564 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); 565 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); 566 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); 567 } 568 569 570 /* 571 * Initialize the Octeon PCI controller 572 */ 573 static int __init octeon_pci_setup(void) 574 { 575 union cvmx_npi_mem_access_subidx mem_access; 576 int index; 577 578 /* Only these chips have PCI */ 579 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) 580 return 0; 581 582 /* Point pcibios_map_irq() to the PCI version of it */ 583 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; 584 585 /* Only use the big bars on chips that support it */ 586 if (OCTEON_IS_MODEL(OCTEON_CN31XX) || 587 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 588 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) 589 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; 590 else 591 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; 592 593 /* PCI I/O and PCI MEM values */ 594 set_io_port_base(OCTEON_PCI_IOSPACE_BASE); 595 ioport_resource.start = 0; 596 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; 597 if (!octeon_is_pci_host()) { 598 pr_notice("Not in host mode, PCI Controller not initialized\n"); 599 return 0; 600 } 601 602 pr_notice("%s Octeon big bar support\n", 603 (octeon_dma_bar_type == 604 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); 605 606 octeon_pci_initialize(); 607 608 mem_access.u64 = 0; 609 mem_access.s.esr = 1; /* Endian-Swap on read. */ 610 mem_access.s.esw = 1; /* Endian-Swap on write. */ 611 mem_access.s.nsr = 0; /* No-Snoop on read. */ 612 mem_access.s.nsw = 0; /* No-Snoop on write. */ 613 mem_access.s.ror = 0; /* Relax Read on read. */ 614 mem_access.s.row = 0; /* Relax Order on write. */ 615 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ 616 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); 617 618 /* 619 * Remap the Octeon BAR 2 above all 32 bit devices 620 * (0x8000000000ul). This is done here so it is remapped 621 * before the readl()'s below. We don't want BAR2 overlapping 622 * with BAR0/BAR1 during these reads. 623 */ 624 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 625 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); 626 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 627 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); 628 629 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 630 /* Remap the Octeon BAR 0 to 0-2GB */ 631 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); 632 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 633 634 /* 635 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the 636 * BAR 1 hole). 637 */ 638 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); 639 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 640 641 /* BAR1 movable mappings set for identity mapping */ 642 octeon_bar1_pci_phys = 0x80000000ull; 643 for (index = 0; index < 32; index++) { 644 union cvmx_pci_bar1_indexx bar1_index; 645 646 bar1_index.u32 = 0; 647 /* Address bits[35:22] sent to L2C */ 648 bar1_index.s.addr_idx = 649 (octeon_bar1_pci_phys >> 22) + index; 650 /* Don't put PCI accesses in L2. */ 651 bar1_index.s.ca = 1; 652 /* Endian Swap Mode */ 653 bar1_index.s.end_swp = 1; 654 /* Set '1' when the selected address range is valid. */ 655 bar1_index.s.addr_v = 1; 656 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 657 bar1_index.u32); 658 } 659 660 /* Devices go after BAR1 */ 661 octeon_pci_mem_resource.start = 662 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - 663 (OCTEON_PCI_BAR1_HOLE_SIZE << 20); 664 octeon_pci_mem_resource.end = 665 octeon_pci_mem_resource.start + (1ul << 30); 666 } else { 667 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ 668 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); 669 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 670 671 /* Remap the Octeon BAR 1 to map 0-128MB */ 672 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); 673 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 674 675 /* BAR1 movable regions contiguous to cover the swiotlb */ 676 octeon_bar1_pci_phys = 677 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1); 678 679 for (index = 0; index < 32; index++) { 680 union cvmx_pci_bar1_indexx bar1_index; 681 682 bar1_index.u32 = 0; 683 /* Address bits[35:22] sent to L2C */ 684 bar1_index.s.addr_idx = 685 (octeon_bar1_pci_phys >> 22) + index; 686 /* Don't put PCI accesses in L2. */ 687 bar1_index.s.ca = 1; 688 /* Endian Swap Mode */ 689 bar1_index.s.end_swp = 1; 690 /* Set '1' when the selected address range is valid. */ 691 bar1_index.s.addr_v = 1; 692 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 693 bar1_index.u32); 694 } 695 696 /* Devices go after BAR0 */ 697 octeon_pci_mem_resource.start = 698 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + 699 (4ul << 10); 700 octeon_pci_mem_resource.end = 701 octeon_pci_mem_resource.start + (1ul << 30); 702 } 703 704 register_pci_controller(&octeon_pci_controller); 705 706 /* 707 * Clear any errors that might be pending from before the bus 708 * was setup properly. 709 */ 710 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); 711 712 octeon_pci_dma_init(); 713 714 return 0; 715 } 716 717 arch_initcall(octeon_pci_setup); 718