1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2005-2009 Cavium Networks 7 */ 8 #include <linux/kernel.h> 9 #include <linux/init.h> 10 #include <linux/pci.h> 11 #include <linux/interrupt.h> 12 #include <linux/time.h> 13 #include <linux/delay.h> 14 #include <linux/platform_device.h> 15 #include <linux/swiotlb.h> 16 17 #include <asm/time.h> 18 19 #include <asm/octeon/octeon.h> 20 #include <asm/octeon/cvmx-npi-defs.h> 21 #include <asm/octeon/cvmx-pci-defs.h> 22 #include <asm/octeon/pci-octeon.h> 23 24 #define USE_OCTEON_INTERNAL_ARBITER 25 26 /* 27 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO 28 * addresses. Use PCI endian swapping 1 so no address swapping is 29 * necessary. The Linux io routines will endian swap the data. 30 */ 31 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull 32 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32) 33 34 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */ 35 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull) 36 37 u64 octeon_bar1_pci_phys; 38 39 /** 40 * This is the bit decoding used for the Octeon PCI controller addresses 41 */ 42 union octeon_pci_address { 43 uint64_t u64; 44 struct { 45 uint64_t upper:2; 46 uint64_t reserved:13; 47 uint64_t io:1; 48 uint64_t did:5; 49 uint64_t subdid:3; 50 uint64_t reserved2:4; 51 uint64_t endian_swap:2; 52 uint64_t reserved3:10; 53 uint64_t bus:8; 54 uint64_t dev:5; 55 uint64_t func:3; 56 uint64_t reg:8; 57 } s; 58 }; 59 60 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin); 61 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID; 62 63 /** 64 * Map a PCI device to the appropriate interrupt line 65 * 66 * @dev: The Linux PCI device structure for the device to map 67 * @slot: The slot number for this device on __BUS 0__. Linux 68 * enumerates through all the bridges and figures out the 69 * slot on Bus 0 where this device eventually hooks to. 70 * @pin: The PCI interrupt pin read from the device, then swizzled 71 * as it goes through each bridge. 72 * Returns Interrupt number for the device 73 */ 74 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 75 { 76 if (octeon_pcibios_map_irq) 77 return octeon_pcibios_map_irq(dev, slot, pin); 78 else 79 panic("octeon_pcibios_map_irq not set."); 80 } 81 82 83 /* 84 * Called to perform platform specific PCI setup 85 */ 86 int pcibios_plat_dev_init(struct pci_dev *dev) 87 { 88 uint16_t config; 89 uint32_t dconfig; 90 int pos; 91 /* 92 * Force the Cache line setting to 64 bytes. The standard 93 * Linux bus scan doesn't seem to set it. Octeon really has 94 * 128 byte lines, but Intel bridges get really upset if you 95 * try and set values above 64 bytes. Value is specified in 96 * 32bit words. 97 */ 98 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4); 99 /* Set latency timers for all devices */ 100 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64); 101 102 /* Enable reporting System errors and parity errors on all devices */ 103 /* Enable parity checking and error reporting */ 104 pci_read_config_word(dev, PCI_COMMAND, &config); 105 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR; 106 pci_write_config_word(dev, PCI_COMMAND, config); 107 108 if (dev->subordinate) { 109 /* Set latency timers on sub bridges */ 110 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64); 111 /* More bridge error detection */ 112 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config); 113 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR; 114 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config); 115 } 116 117 /* Enable the PCIe normal error reporting */ 118 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */ 119 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */ 120 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */ 121 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */ 122 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config); 123 124 /* Find the Advanced Error Reporting capability */ 125 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR); 126 if (pos) { 127 /* Clear Uncorrectable Error Status */ 128 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 129 &dconfig); 130 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, 131 dconfig); 132 /* Enable reporting of all uncorrectable errors */ 133 /* Uncorrectable Error Mask - turned on bits disable errors */ 134 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0); 135 /* 136 * Leave severity at HW default. This only controls if 137 * errors are reported as uncorrectable or 138 * correctable, not if the error is reported. 139 */ 140 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */ 141 /* Clear Correctable Error Status */ 142 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig); 143 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig); 144 /* Enable reporting of all correctable errors */ 145 /* Correctable Error Mask - turned on bits disable errors */ 146 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0); 147 /* Advanced Error Capabilities */ 148 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig); 149 /* ECRC Generation Enable */ 150 if (config & PCI_ERR_CAP_ECRC_GENC) 151 config |= PCI_ERR_CAP_ECRC_GENE; 152 /* ECRC Check Enable */ 153 if (config & PCI_ERR_CAP_ECRC_CHKC) 154 config |= PCI_ERR_CAP_ECRC_CHKE; 155 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig); 156 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */ 157 /* Report all errors to the root complex */ 158 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND, 159 PCI_ERR_ROOT_CMD_COR_EN | 160 PCI_ERR_ROOT_CMD_NONFATAL_EN | 161 PCI_ERR_ROOT_CMD_FATAL_EN); 162 /* Clear the Root status register */ 163 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig); 164 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig); 165 } 166 167 return 0; 168 } 169 170 /** 171 * Return the mapping of PCI device number to IRQ line. Each 172 * character in the return string represents the interrupt 173 * line for the device at that position. Device 1 maps to the 174 * first character, etc. The characters A-D are used for PCI 175 * interrupts. 176 * 177 * Returns PCI interrupt mapping 178 */ 179 const char *octeon_get_pci_interrupts(void) 180 { 181 /* 182 * Returning an empty string causes the interrupts to be 183 * routed based on the PCI specification. From the PCI spec: 184 * 185 * INTA# of Device Number 0 is connected to IRQW on the system 186 * board. (Device Number has no significance regarding being 187 * located on the system board or in a connector.) INTA# of 188 * Device Number 1 is connected to IRQX on the system 189 * board. INTA# of Device Number 2 is connected to IRQY on the 190 * system board. INTA# of Device Number 3 is connected to IRQZ 191 * on the system board. The table below describes how each 192 * agent's INTx# lines are connected to the system board 193 * interrupt lines. The following equation can be used to 194 * determine to which INTx# signal on the system board a given 195 * device's INTx# line(s) is connected. 196 * 197 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0, 198 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I = 199 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and 200 * INTD# = 3) 201 */ 202 if (of_machine_is_compatible("dlink,dsr-500n")) 203 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; 204 switch (octeon_bootinfo->board_type) { 205 case CVMX_BOARD_TYPE_NAO38: 206 /* This is really the NAC38 */ 207 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA"; 208 case CVMX_BOARD_TYPE_EBH3100: 209 case CVMX_BOARD_TYPE_CN3010_EVB_HS5: 210 case CVMX_BOARD_TYPE_CN3005_EVB_HS5: 211 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA"; 212 case CVMX_BOARD_TYPE_BBGW_REF: 213 return "AABCD"; 214 case CVMX_BOARD_TYPE_CUST_DSR1000N: 215 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"; 216 case CVMX_BOARD_TYPE_THUNDER: 217 case CVMX_BOARD_TYPE_EBH3000: 218 default: 219 return ""; 220 } 221 } 222 223 /** 224 * Map a PCI device to the appropriate interrupt line 225 * 226 * @dev: The Linux PCI device structure for the device to map 227 * @slot: The slot number for this device on __BUS 0__. Linux 228 * enumerates through all the bridges and figures out the 229 * slot on Bus 0 where this device eventually hooks to. 230 * @pin: The PCI interrupt pin read from the device, then swizzled 231 * as it goes through each bridge. 232 * Returns Interrupt number for the device 233 */ 234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev, 235 u8 slot, u8 pin) 236 { 237 int irq_num; 238 const char *interrupts; 239 int dev_num; 240 241 /* Get the board specific interrupt mapping */ 242 interrupts = octeon_get_pci_interrupts(); 243 244 dev_num = dev->devfn >> 3; 245 if (dev_num < strlen(interrupts)) 246 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) + 247 OCTEON_IRQ_PCI_INT0; 248 else 249 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0; 250 return irq_num; 251 } 252 253 254 /* 255 * Read a value from configuration space 256 */ 257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn, 258 int reg, int size, u32 *val) 259 { 260 union octeon_pci_address pci_addr; 261 262 pci_addr.u64 = 0; 263 pci_addr.s.upper = 2; 264 pci_addr.s.io = 1; 265 pci_addr.s.did = 3; 266 pci_addr.s.subdid = 1; 267 pci_addr.s.endian_swap = 1; 268 pci_addr.s.bus = bus->number; 269 pci_addr.s.dev = devfn >> 3; 270 pci_addr.s.func = devfn & 0x7; 271 pci_addr.s.reg = reg; 272 273 switch (size) { 274 case 4: 275 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64)); 276 return PCIBIOS_SUCCESSFUL; 277 case 2: 278 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64)); 279 return PCIBIOS_SUCCESSFUL; 280 case 1: 281 *val = cvmx_read64_uint8(pci_addr.u64); 282 return PCIBIOS_SUCCESSFUL; 283 } 284 return PCIBIOS_FUNC_NOT_SUPPORTED; 285 } 286 287 288 /* 289 * Write a value to PCI configuration space 290 */ 291 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn, 292 int reg, int size, u32 val) 293 { 294 union octeon_pci_address pci_addr; 295 296 pci_addr.u64 = 0; 297 pci_addr.s.upper = 2; 298 pci_addr.s.io = 1; 299 pci_addr.s.did = 3; 300 pci_addr.s.subdid = 1; 301 pci_addr.s.endian_swap = 1; 302 pci_addr.s.bus = bus->number; 303 pci_addr.s.dev = devfn >> 3; 304 pci_addr.s.func = devfn & 0x7; 305 pci_addr.s.reg = reg; 306 307 switch (size) { 308 case 4: 309 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val)); 310 return PCIBIOS_SUCCESSFUL; 311 case 2: 312 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val)); 313 return PCIBIOS_SUCCESSFUL; 314 case 1: 315 cvmx_write64_uint8(pci_addr.u64, val); 316 return PCIBIOS_SUCCESSFUL; 317 } 318 return PCIBIOS_FUNC_NOT_SUPPORTED; 319 } 320 321 322 static struct pci_ops octeon_pci_ops = { 323 .read = octeon_read_config, 324 .write = octeon_write_config, 325 }; 326 327 static struct resource octeon_pci_mem_resource = { 328 .start = 0, 329 .end = 0, 330 .name = "Octeon PCI MEM", 331 .flags = IORESOURCE_MEM, 332 }; 333 334 /* 335 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI 336 * bridge 337 */ 338 static struct resource octeon_pci_io_resource = { 339 .start = 0x4000, 340 .end = OCTEON_PCI_IOSPACE_SIZE - 1, 341 .name = "Octeon PCI IO", 342 .flags = IORESOURCE_IO, 343 }; 344 345 static struct pci_controller octeon_pci_controller = { 346 .pci_ops = &octeon_pci_ops, 347 .mem_resource = &octeon_pci_mem_resource, 348 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET, 349 .io_resource = &octeon_pci_io_resource, 350 .io_offset = 0, 351 .io_map_base = OCTEON_PCI_IOSPACE_BASE, 352 }; 353 354 355 /* 356 * Low level initialize the Octeon PCI controller 357 */ 358 static void octeon_pci_initialize(void) 359 { 360 union cvmx_pci_cfg01 cfg01; 361 union cvmx_npi_ctl_status ctl_status; 362 union cvmx_pci_ctl_status_2 ctl_status_2; 363 union cvmx_pci_cfg19 cfg19; 364 union cvmx_pci_cfg16 cfg16; 365 union cvmx_pci_cfg22 cfg22; 366 union cvmx_pci_cfg56 cfg56; 367 368 /* Reset the PCI Bus */ 369 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1); 370 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 371 372 udelay(2000); /* Hold PCI reset for 2 ms */ 373 374 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */ 375 ctl_status.s.max_word = 1; 376 ctl_status.s.timer = 1; 377 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64); 378 379 /* Deassert PCI reset and advertise PCX Host Mode Device Capability 380 (64b) */ 381 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4); 382 cvmx_read_csr(CVMX_CIU_SOFT_PRST); 383 384 udelay(2000); /* Wait 2 ms after deasserting PCI reset */ 385 386 ctl_status_2.u32 = 0; 387 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set 388 before any PCI reads. */ 389 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */ 390 ctl_status_2.s.bar2_enb = 1; 391 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */ 392 ctl_status_2.s.bar2_esx = 1; 393 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */ 394 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 395 /* BAR1 hole */ 396 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS; 397 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */ 398 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */ 399 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */ 400 ctl_status_2.s.bb1 = 1; /* BAR1 is big */ 401 ctl_status_2.s.bb0 = 1; /* BAR0 is big */ 402 } 403 404 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32); 405 udelay(2000); /* Wait 2 ms before doing PCI reads */ 406 407 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2); 408 pr_notice("PCI Status: %s %s-bit\n", 409 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI", 410 ctl_status_2.s.ap_64ad ? "64" : "32"); 411 412 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) { 413 union cvmx_pci_cnt_reg cnt_reg_start; 414 union cvmx_pci_cnt_reg cnt_reg_end; 415 unsigned long cycles, pci_clock; 416 417 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 418 cycles = read_c0_cvmcount(); 419 udelay(1000); 420 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG); 421 cycles = read_c0_cvmcount() - cycles; 422 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) / 423 (cycles / (mips_hpt_frequency / 1000000)); 424 pr_notice("PCI Clock: %lu MHz\n", pci_clock); 425 } 426 427 /* 428 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4 429 * in PCI-X mode to allow four outstanding splits. Otherwise, 430 * should not change from its reset value. Don't write PCI_CFG19 431 * in PCI mode (0x82000001 reset value), write it to 0x82000004 432 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero. 433 * MRBCM -> must be one. 434 */ 435 if (ctl_status_2.s.ap_pcix) { 436 cfg19.u32 = 0; 437 /* 438 * Target Delayed/Split request outstanding maximum 439 * count. [1..31] and 0=32. NOTE: If the user 440 * programs these bits beyond the Designed Maximum 441 * outstanding count, then the designed maximum table 442 * depth will be used instead. No additional 443 * Deferred/Split transactions will be accepted if 444 * this outstanding maximum count is 445 * reached. Furthermore, no additional deferred/split 446 * transactions will be accepted if the I/O delay/ I/O 447 * Split Request outstanding maximum is reached. 448 */ 449 cfg19.s.tdomc = 4; 450 /* 451 * Master Deferred Read Request Outstanding Max Count 452 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC 453 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101 454 * 5 2 110 6 3 111 7 3 For example, if these bits are 455 * programmed to 100, the core can support 2 DAC 456 * cycles, 4 SAC cycles or a combination of 1 DAC and 457 * 2 SAC cycles. NOTE: For the PCI-X maximum 458 * outstanding split transactions, refer to 459 * CRE0[22:20]. 460 */ 461 cfg19.s.mdrrmc = 2; 462 /* 463 * Master Request (Memory Read) Byte Count/Byte Enable 464 * select. 0 = Byte Enables valid. In PCI mode, a 465 * burst transaction cannot be performed using Memory 466 * Read command=4?h6. 1 = DWORD Byte Count valid 467 * (default). In PCI Mode, the memory read byte 468 * enables are automatically generated by the 469 * core. Note: N3 Master Request transaction sizes are 470 * always determined through the 471 * am_attr[<35:32>|<7:0>] field. 472 */ 473 cfg19.s.mrbcm = 1; 474 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32); 475 } 476 477 478 cfg01.u32 = 0; 479 cfg01.s.msae = 1; /* Memory Space Access Enable */ 480 cfg01.s.me = 1; /* Master Enable */ 481 cfg01.s.pee = 1; /* PERR# Enable */ 482 cfg01.s.see = 1; /* System Error Enable */ 483 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */ 484 485 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32); 486 487 #ifdef USE_OCTEON_INTERNAL_ARBITER 488 /* 489 * When OCTEON is a PCI host, most systems will use OCTEON's 490 * internal arbiter, so must enable it before any PCI/PCI-X 491 * traffic can occur. 492 */ 493 { 494 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg; 495 496 pci_int_arb_cfg.u64 = 0; 497 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */ 498 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64); 499 } 500 #endif /* USE_OCTEON_INTERNAL_ARBITER */ 501 502 /* 503 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE, 504 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to 505 * 1..7. 506 */ 507 cfg16.u32 = 0; 508 cfg16.s.mltd = 1; /* Master Latency Timer Disable */ 509 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32); 510 511 /* 512 * Should be written to 0x4ff00. MTTV -> must be zero. 513 * FLUSH -> must be 1. MRV -> should be 0xFF. 514 */ 515 cfg22.u32 = 0; 516 /* Master Retry Value [1..255] and 0=infinite */ 517 cfg22.s.mrv = 0xff; 518 /* 519 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper 520 * N3K operation. 521 */ 522 cfg22.s.flush = 1; 523 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32); 524 525 /* 526 * MOST Indicates the maximum number of outstanding splits (in -1 527 * notation) when OCTEON is in PCI-X mode. PCI-X performance is 528 * affected by the MOST selection. Should generally be written 529 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807, 530 * depending on the desired MOST of 3, 2, 1, or 0, respectively. 531 */ 532 cfg56.u32 = 0; 533 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */ 534 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */ 535 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */ 536 cfg56.s.roe = 1; /* Relaxed Ordering Enable */ 537 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count 538 [0=512B,1=1024B,2=2048B,3=4096B] */ 539 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1 540 .. 7=32] */ 541 542 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32); 543 544 /* 545 * Affects PCI performance when OCTEON services reads to its 546 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are 547 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and 548 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700, 549 * these values need to be changed so they won't possibly prefetch off 550 * of the end of memory if PCI is DMAing a buffer at the end of 551 * memory. Note that these values differ from their reset values. 552 */ 553 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21); 554 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31); 555 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31); 556 } 557 558 559 /* 560 * Initialize the Octeon PCI controller 561 */ 562 static int __init octeon_pci_setup(void) 563 { 564 union cvmx_npi_mem_access_subidx mem_access; 565 int index; 566 567 /* Only these chips have PCI */ 568 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) 569 return 0; 570 571 if (!octeon_is_pci_host()) { 572 pr_notice("Not in host mode, PCI Controller not initialized\n"); 573 return 0; 574 } 575 576 /* Point pcibios_map_irq() to the PCI version of it */ 577 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq; 578 579 /* Only use the big bars on chips that support it */ 580 if (OCTEON_IS_MODEL(OCTEON_CN31XX) || 581 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) || 582 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1)) 583 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL; 584 else 585 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG; 586 587 /* PCI I/O and PCI MEM values */ 588 set_io_port_base(OCTEON_PCI_IOSPACE_BASE); 589 ioport_resource.start = 0; 590 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1; 591 592 pr_notice("%s Octeon big bar support\n", 593 (octeon_dma_bar_type == 594 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling"); 595 596 octeon_pci_initialize(); 597 598 mem_access.u64 = 0; 599 mem_access.s.esr = 1; /* Endian-Swap on read. */ 600 mem_access.s.esw = 1; /* Endian-Swap on write. */ 601 mem_access.s.nsr = 0; /* No-Snoop on read. */ 602 mem_access.s.nsw = 0; /* No-Snoop on write. */ 603 mem_access.s.ror = 0; /* Relax Read on read. */ 604 mem_access.s.row = 0; /* Relax Order on write. */ 605 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */ 606 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64); 607 608 /* 609 * Remap the Octeon BAR 2 above all 32 bit devices 610 * (0x8000000000ul). This is done here so it is remapped 611 * before the readl()'s below. We don't want BAR2 overlapping 612 * with BAR0/BAR1 during these reads. 613 */ 614 octeon_npi_write32(CVMX_NPI_PCI_CFG08, 615 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull)); 616 octeon_npi_write32(CVMX_NPI_PCI_CFG09, 617 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32)); 618 619 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) { 620 /* Remap the Octeon BAR 0 to 0-2GB */ 621 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0); 622 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 623 624 /* 625 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the 626 * BAR 1 hole). 627 */ 628 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30); 629 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 630 631 /* BAR1 movable mappings set for identity mapping */ 632 octeon_bar1_pci_phys = 0x80000000ull; 633 for (index = 0; index < 32; index++) { 634 union cvmx_pci_bar1_indexx bar1_index; 635 636 bar1_index.u32 = 0; 637 /* Address bits[35:22] sent to L2C */ 638 bar1_index.s.addr_idx = 639 (octeon_bar1_pci_phys >> 22) + index; 640 /* Don't put PCI accesses in L2. */ 641 bar1_index.s.ca = 1; 642 /* Endian Swap Mode */ 643 bar1_index.s.end_swp = 1; 644 /* Set '1' when the selected address range is valid. */ 645 bar1_index.s.addr_v = 1; 646 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 647 bar1_index.u32); 648 } 649 650 /* Devices go after BAR1 */ 651 octeon_pci_mem_resource.start = 652 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) - 653 (OCTEON_PCI_BAR1_HOLE_SIZE << 20); 654 octeon_pci_mem_resource.end = 655 octeon_pci_mem_resource.start + (1ul << 30); 656 } else { 657 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */ 658 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20); 659 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0); 660 661 /* Remap the Octeon BAR 1 to map 0-128MB */ 662 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0); 663 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0); 664 665 /* BAR1 movable regions contiguous to cover the swiotlb */ 666 octeon_bar1_pci_phys = 667 default_swiotlb_base() & ~((1ull << 22) - 1); 668 669 for (index = 0; index < 32; index++) { 670 union cvmx_pci_bar1_indexx bar1_index; 671 672 bar1_index.u32 = 0; 673 /* Address bits[35:22] sent to L2C */ 674 bar1_index.s.addr_idx = 675 (octeon_bar1_pci_phys >> 22) + index; 676 /* Don't put PCI accesses in L2. */ 677 bar1_index.s.ca = 1; 678 /* Endian Swap Mode */ 679 bar1_index.s.end_swp = 1; 680 /* Set '1' when the selected address range is valid. */ 681 bar1_index.s.addr_v = 1; 682 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index), 683 bar1_index.u32); 684 } 685 686 /* Devices go after BAR0 */ 687 octeon_pci_mem_resource.start = 688 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) + 689 (4ul << 10); 690 octeon_pci_mem_resource.end = 691 octeon_pci_mem_resource.start + (1ul << 30); 692 } 693 694 register_pci_controller(&octeon_pci_controller); 695 696 /* 697 * Clear any errors that might be pending from before the bus 698 * was setup properly. 699 */ 700 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1); 701 702 if (IS_ERR(platform_device_register_simple("octeon_pci_edac", 703 -1, NULL, 0))) 704 pr_err("Registration of co_pci_edac failed!\n"); 705 706 octeon_pci_dma_init(); 707 708 return 0; 709 } 710 711 arch_initcall(octeon_pci_setup); 712