1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23
24 #define USE_OCTEON_INTERNAL_ARBITER
25
26 /*
27 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
28 * addresses. Use PCI endian swapping 1 so no address swapping is
29 * necessary. The Linux io routines will endian swap the data.
30 */
31 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
32 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
33
34 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
35 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
36
37 u64 octeon_bar1_pci_phys;
38
39 /**
40 * This is the bit decoding used for the Octeon PCI controller addresses
41 */
42 union octeon_pci_address {
43 uint64_t u64;
44 struct {
45 uint64_t upper:2;
46 uint64_t reserved:13;
47 uint64_t io:1;
48 uint64_t did:5;
49 uint64_t subdid:3;
50 uint64_t reserved2:4;
51 uint64_t endian_swap:2;
52 uint64_t reserved3:10;
53 uint64_t bus:8;
54 uint64_t dev:5;
55 uint64_t func:3;
56 uint64_t reg:8;
57 } s;
58 };
59
60 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
61 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
62
63 /**
64 * Map a PCI device to the appropriate interrupt line
65 *
66 * @dev: The Linux PCI device structure for the device to map
67 * @slot: The slot number for this device on __BUS 0__. Linux
68 * enumerates through all the bridges and figures out the
69 * slot on Bus 0 where this device eventually hooks to.
70 * @pin: The PCI interrupt pin read from the device, then swizzled
71 * as it goes through each bridge.
72 * Returns Interrupt number for the device
73 */
pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)74 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
75 {
76 if (octeon_pcibios_map_irq)
77 return octeon_pcibios_map_irq(dev, slot, pin);
78 else
79 panic("octeon_pcibios_map_irq not set.");
80 }
81
82
83 /*
84 * Called to perform platform specific PCI setup
85 */
pcibios_plat_dev_init(struct pci_dev * dev)86 int pcibios_plat_dev_init(struct pci_dev *dev)
87 {
88 uint16_t config;
89 uint32_t dconfig;
90 int pos;
91 /*
92 * Force the Cache line setting to 64 bytes. The standard
93 * Linux bus scan doesn't seem to set it. Octeon really has
94 * 128 byte lines, but Intel bridges get really upset if you
95 * try and set values above 64 bytes. Value is specified in
96 * 32bit words.
97 */
98 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
99 /* Set latency timers for all devices */
100 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
101
102 /* Enable reporting System errors and parity errors on all devices */
103 /* Enable parity checking and error reporting */
104 pci_read_config_word(dev, PCI_COMMAND, &config);
105 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
106 pci_write_config_word(dev, PCI_COMMAND, config);
107
108 if (dev->subordinate) {
109 /* Set latency timers on sub bridges */
110 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
111 /* More bridge error detection */
112 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
113 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
114 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
115 }
116
117 /* Enable the PCIe normal error reporting */
118 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
119 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
120 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
121 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
122 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
123
124 /* Find the Advanced Error Reporting capability */
125 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
126 if (pos) {
127 /* Clear Uncorrectable Error Status */
128 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
129 &dconfig);
130 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131 dconfig);
132 /* Enable reporting of all uncorrectable errors */
133 /* Uncorrectable Error Mask - turned on bits disable errors */
134 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
135 /*
136 * Leave severity at HW default. This only controls if
137 * errors are reported as uncorrectable or
138 * correctable, not if the error is reported.
139 */
140 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
141 /* Clear Correctable Error Status */
142 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
143 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
144 /* Enable reporting of all correctable errors */
145 /* Correctable Error Mask - turned on bits disable errors */
146 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
147 /* Advanced Error Capabilities */
148 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
149 /* ECRC Generation Enable */
150 if (config & PCI_ERR_CAP_ECRC_GENC)
151 config |= PCI_ERR_CAP_ECRC_GENE;
152 /* ECRC Check Enable */
153 if (config & PCI_ERR_CAP_ECRC_CHKC)
154 config |= PCI_ERR_CAP_ECRC_CHKE;
155 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
156 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
157 /* Report all errors to the root complex */
158 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
159 PCI_ERR_ROOT_CMD_COR_EN |
160 PCI_ERR_ROOT_CMD_NONFATAL_EN |
161 PCI_ERR_ROOT_CMD_FATAL_EN);
162 /* Clear the Root status register */
163 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
164 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
165 }
166
167 return 0;
168 }
169
170 /**
171 * Return the mapping of PCI device number to IRQ line. Each
172 * character in the return string represents the interrupt
173 * line for the device at that position. Device 1 maps to the
174 * first character, etc. The characters A-D are used for PCI
175 * interrupts.
176 *
177 * Returns PCI interrupt mapping
178 */
octeon_get_pci_interrupts(void)179 const char *octeon_get_pci_interrupts(void)
180 {
181 /*
182 * Returning an empty string causes the interrupts to be
183 * routed based on the PCI specification. From the PCI spec:
184 *
185 * INTA# of Device Number 0 is connected to IRQW on the system
186 * board. (Device Number has no significance regarding being
187 * located on the system board or in a connector.) INTA# of
188 * Device Number 1 is connected to IRQX on the system
189 * board. INTA# of Device Number 2 is connected to IRQY on the
190 * system board. INTA# of Device Number 3 is connected to IRQZ
191 * on the system board. The table below describes how each
192 * agent's INTx# lines are connected to the system board
193 * interrupt lines. The following equation can be used to
194 * determine to which INTx# signal on the system board a given
195 * device's INTx# line(s) is connected.
196 *
197 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
198 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
199 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
200 * INTD# = 3)
201 */
202 if (of_machine_is_compatible("dlink,dsr-500n"))
203 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
204 switch (octeon_bootinfo->board_type) {
205 case CVMX_BOARD_TYPE_NAO38:
206 /* This is really the NAC38 */
207 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
208 case CVMX_BOARD_TYPE_EBH3100:
209 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
210 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
211 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
212 case CVMX_BOARD_TYPE_BBGW_REF:
213 return "AABCD";
214 case CVMX_BOARD_TYPE_CUST_DSR1000N:
215 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
216 case CVMX_BOARD_TYPE_THUNDER:
217 case CVMX_BOARD_TYPE_EBH3000:
218 default:
219 return "";
220 }
221 }
222
223 /**
224 * Map a PCI device to the appropriate interrupt line
225 *
226 * @dev: The Linux PCI device structure for the device to map
227 * @slot: The slot number for this device on __BUS 0__. Linux
228 * enumerates through all the bridges and figures out the
229 * slot on Bus 0 where this device eventually hooks to.
230 * @pin: The PCI interrupt pin read from the device, then swizzled
231 * as it goes through each bridge.
232 * Returns Interrupt number for the device
233 */
octeon_pci_pcibios_map_irq(const struct pci_dev * dev,u8 slot,u8 pin)234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
235 u8 slot, u8 pin)
236 {
237 int irq_num;
238 const char *interrupts;
239 int dev_num;
240
241 /* Get the board specific interrupt mapping */
242 interrupts = octeon_get_pci_interrupts();
243
244 dev_num = dev->devfn >> 3;
245 if (dev_num < strlen(interrupts))
246 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
247 OCTEON_IRQ_PCI_INT0;
248 else
249 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250 return irq_num;
251 }
252
253
254 /*
255 * Read a value from configuration space
256 */
octeon_read_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 * val)257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258 int reg, int size, u32 *val)
259 {
260 union octeon_pci_address pci_addr;
261
262 pci_addr.u64 = 0;
263 pci_addr.s.upper = 2;
264 pci_addr.s.io = 1;
265 pci_addr.s.did = 3;
266 pci_addr.s.subdid = 1;
267 pci_addr.s.endian_swap = 1;
268 pci_addr.s.bus = bus->number;
269 pci_addr.s.dev = devfn >> 3;
270 pci_addr.s.func = devfn & 0x7;
271 pci_addr.s.reg = reg;
272
273 switch (size) {
274 case 4:
275 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
276 return PCIBIOS_SUCCESSFUL;
277 case 2:
278 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
279 return PCIBIOS_SUCCESSFUL;
280 case 1:
281 *val = cvmx_read64_uint8(pci_addr.u64);
282 return PCIBIOS_SUCCESSFUL;
283 }
284 return PCIBIOS_FUNC_NOT_SUPPORTED;
285 }
286
287
288 /*
289 * Write a value to PCI configuration space
290 */
octeon_write_config(struct pci_bus * bus,unsigned int devfn,int reg,int size,u32 val)291 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
292 int reg, int size, u32 val)
293 {
294 union octeon_pci_address pci_addr;
295
296 pci_addr.u64 = 0;
297 pci_addr.s.upper = 2;
298 pci_addr.s.io = 1;
299 pci_addr.s.did = 3;
300 pci_addr.s.subdid = 1;
301 pci_addr.s.endian_swap = 1;
302 pci_addr.s.bus = bus->number;
303 pci_addr.s.dev = devfn >> 3;
304 pci_addr.s.func = devfn & 0x7;
305 pci_addr.s.reg = reg;
306
307 switch (size) {
308 case 4:
309 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
310 return PCIBIOS_SUCCESSFUL;
311 case 2:
312 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
313 return PCIBIOS_SUCCESSFUL;
314 case 1:
315 cvmx_write64_uint8(pci_addr.u64, val);
316 return PCIBIOS_SUCCESSFUL;
317 }
318 return PCIBIOS_FUNC_NOT_SUPPORTED;
319 }
320
321
322 static struct pci_ops octeon_pci_ops = {
323 .read = octeon_read_config,
324 .write = octeon_write_config,
325 };
326
327 static struct resource octeon_pci_mem_resource = {
328 .start = 0,
329 .end = 0,
330 .name = "Octeon PCI MEM",
331 .flags = IORESOURCE_MEM,
332 };
333
334 /*
335 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
336 * bridge
337 */
338 static struct resource octeon_pci_io_resource = {
339 .start = 0x4000,
340 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
341 .name = "Octeon PCI IO",
342 .flags = IORESOURCE_IO,
343 };
344
345 static struct pci_controller octeon_pci_controller = {
346 .pci_ops = &octeon_pci_ops,
347 .mem_resource = &octeon_pci_mem_resource,
348 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
349 .io_resource = &octeon_pci_io_resource,
350 .io_offset = 0,
351 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
352 };
353
354
355 /*
356 * Low level initialize the Octeon PCI controller
357 */
octeon_pci_initialize(void)358 static void octeon_pci_initialize(void)
359 {
360 union cvmx_pci_cfg01 cfg01;
361 union cvmx_npi_ctl_status ctl_status;
362 union cvmx_pci_ctl_status_2 ctl_status_2;
363 union cvmx_pci_cfg19 cfg19;
364 union cvmx_pci_cfg16 cfg16;
365 union cvmx_pci_cfg22 cfg22;
366 union cvmx_pci_cfg56 cfg56;
367
368 /* Reset the PCI Bus */
369 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
370 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
371
372 udelay(2000); /* Hold PCI reset for 2 ms */
373
374 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
375 ctl_status.s.max_word = 1;
376 ctl_status.s.timer = 1;
377 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
378
379 /* Deassert PCI reset and advertise PCX Host Mode Device Capability
380 (64b) */
381 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
382 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
383
384 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
385
386 ctl_status_2.u32 = 0;
387 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
388 before any PCI reads. */
389 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
390 ctl_status_2.s.bar2_enb = 1;
391 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
392 ctl_status_2.s.bar2_esx = 1;
393 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
394 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
395 /* BAR1 hole */
396 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
397 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
398 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
399 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
400 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
401 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
402 }
403
404 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
405 udelay(2000); /* Wait 2 ms before doing PCI reads */
406
407 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
408 pr_notice("PCI Status: %s %s-bit\n",
409 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
410 ctl_status_2.s.ap_64ad ? "64" : "32");
411
412 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
413 union cvmx_pci_cnt_reg cnt_reg_start;
414 union cvmx_pci_cnt_reg cnt_reg_end;
415 unsigned long cycles, pci_clock;
416
417 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
418 cycles = read_c0_cvmcount();
419 udelay(1000);
420 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421 cycles = read_c0_cvmcount() - cycles;
422 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
423 (cycles / (mips_hpt_frequency / 1000000));
424 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
425 }
426
427 /*
428 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
429 * in PCI-X mode to allow four outstanding splits. Otherwise,
430 * should not change from its reset value. Don't write PCI_CFG19
431 * in PCI mode (0x82000001 reset value), write it to 0x82000004
432 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
433 * MRBCM -> must be one.
434 */
435 if (ctl_status_2.s.ap_pcix) {
436 cfg19.u32 = 0;
437 /*
438 * Target Delayed/Split request outstanding maximum
439 * count. [1..31] and 0=32. NOTE: If the user
440 * programs these bits beyond the Designed Maximum
441 * outstanding count, then the designed maximum table
442 * depth will be used instead. No additional
443 * Deferred/Split transactions will be accepted if
444 * this outstanding maximum count is
445 * reached. Furthermore, no additional deferred/split
446 * transactions will be accepted if the I/O delay/ I/O
447 * Split Request outstanding maximum is reached.
448 */
449 cfg19.s.tdomc = 4;
450 /*
451 * Master Deferred Read Request Outstanding Max Count
452 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
453 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
454 * 5 2 110 6 3 111 7 3 For example, if these bits are
455 * programmed to 100, the core can support 2 DAC
456 * cycles, 4 SAC cycles or a combination of 1 DAC and
457 * 2 SAC cycles. NOTE: For the PCI-X maximum
458 * outstanding split transactions, refer to
459 * CRE0[22:20].
460 */
461 cfg19.s.mdrrmc = 2;
462 /*
463 * Master Request (Memory Read) Byte Count/Byte Enable
464 * select. 0 = Byte Enables valid. In PCI mode, a
465 * burst transaction cannot be performed using Memory
466 * Read command=4?h6. 1 = DWORD Byte Count valid
467 * (default). In PCI Mode, the memory read byte
468 * enables are automatically generated by the
469 * core. Note: N3 Master Request transaction sizes are
470 * always determined through the
471 * am_attr[<35:32>|<7:0>] field.
472 */
473 cfg19.s.mrbcm = 1;
474 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
475 }
476
477
478 cfg01.u32 = 0;
479 cfg01.s.msae = 1; /* Memory Space Access Enable */
480 cfg01.s.me = 1; /* Master Enable */
481 cfg01.s.pee = 1; /* PERR# Enable */
482 cfg01.s.see = 1; /* System Error Enable */
483 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
484
485 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
486
487 #ifdef USE_OCTEON_INTERNAL_ARBITER
488 /*
489 * When OCTEON is a PCI host, most systems will use OCTEON's
490 * internal arbiter, so must enable it before any PCI/PCI-X
491 * traffic can occur.
492 */
493 {
494 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
495
496 pci_int_arb_cfg.u64 = 0;
497 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
498 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
499 }
500 #endif /* USE_OCTEON_INTERNAL_ARBITER */
501
502 /*
503 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
504 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
505 * 1..7.
506 */
507 cfg16.u32 = 0;
508 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
509 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
510
511 /*
512 * Should be written to 0x4ff00. MTTV -> must be zero.
513 * FLUSH -> must be 1. MRV -> should be 0xFF.
514 */
515 cfg22.u32 = 0;
516 /* Master Retry Value [1..255] and 0=infinite */
517 cfg22.s.mrv = 0xff;
518 /*
519 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
520 * N3K operation.
521 */
522 cfg22.s.flush = 1;
523 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
524
525 /*
526 * MOST Indicates the maximum number of outstanding splits (in -1
527 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
528 * affected by the MOST selection. Should generally be written
529 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
530 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
531 */
532 cfg56.u32 = 0;
533 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
534 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
535 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
536 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
537 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
538 [0=512B,1=1024B,2=2048B,3=4096B] */
539 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
540 .. 7=32] */
541
542 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
543
544 /*
545 * Affects PCI performance when OCTEON services reads to its
546 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
547 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
548 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
549 * these values need to be changed so they won't possibly prefetch off
550 * of the end of memory if PCI is DMAing a buffer at the end of
551 * memory. Note that these values differ from their reset values.
552 */
553 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
554 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
555 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
556 }
557
558
559 /*
560 * Initialize the Octeon PCI controller
561 */
octeon_pci_setup(void)562 static int __init octeon_pci_setup(void)
563 {
564 union cvmx_npi_mem_access_subidx mem_access;
565 int index;
566
567 /* Only these chips have PCI */
568 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
569 return 0;
570
571 if (!octeon_is_pci_host()) {
572 pr_notice("Not in host mode, PCI Controller not initialized\n");
573 return 0;
574 }
575
576 /* Point pcibios_map_irq() to the PCI version of it */
577 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
578
579 /* Only use the big bars on chips that support it */
580 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
581 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
582 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
583 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
584 else
585 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
586
587 /* PCI I/O and PCI MEM values */
588 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
589 ioport_resource.start = 0;
590 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
591
592 pr_notice("%s Octeon big bar support\n",
593 (octeon_dma_bar_type ==
594 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
595
596 octeon_pci_initialize();
597
598 mem_access.u64 = 0;
599 mem_access.s.esr = 1; /* Endian-Swap on read. */
600 mem_access.s.esw = 1; /* Endian-Swap on write. */
601 mem_access.s.nsr = 0; /* No-Snoop on read. */
602 mem_access.s.nsw = 0; /* No-Snoop on write. */
603 mem_access.s.ror = 0; /* Relax Read on read. */
604 mem_access.s.row = 0; /* Relax Order on write. */
605 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
606 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
607
608 /*
609 * Remap the Octeon BAR 2 above all 32 bit devices
610 * (0x8000000000ul). This is done here so it is remapped
611 * before the readl()'s below. We don't want BAR2 overlapping
612 * with BAR0/BAR1 during these reads.
613 */
614 octeon_npi_write32(CVMX_NPI_PCI_CFG08,
615 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
616 octeon_npi_write32(CVMX_NPI_PCI_CFG09,
617 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
618
619 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
620 /* Remap the Octeon BAR 0 to 0-2GB */
621 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
622 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
623
624 /*
625 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
626 * BAR 1 hole).
627 */
628 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
629 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
630
631 /* BAR1 movable mappings set for identity mapping */
632 octeon_bar1_pci_phys = 0x80000000ull;
633 for (index = 0; index < 32; index++) {
634 union cvmx_pci_bar1_indexx bar1_index;
635
636 bar1_index.u32 = 0;
637 /* Address bits[35:22] sent to L2C */
638 bar1_index.s.addr_idx =
639 (octeon_bar1_pci_phys >> 22) + index;
640 /* Don't put PCI accesses in L2. */
641 bar1_index.s.ca = 1;
642 /* Endian Swap Mode */
643 bar1_index.s.end_swp = 1;
644 /* Set '1' when the selected address range is valid. */
645 bar1_index.s.addr_v = 1;
646 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
647 bar1_index.u32);
648 }
649
650 /* Devices go after BAR1 */
651 octeon_pci_mem_resource.start =
652 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
653 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
654 octeon_pci_mem_resource.end =
655 octeon_pci_mem_resource.start + (1ul << 30);
656 } else {
657 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
658 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
659 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
660
661 /* Remap the Octeon BAR 1 to map 0-128MB */
662 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
663 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
664
665 /* BAR1 movable regions contiguous to cover the swiotlb */
666 octeon_bar1_pci_phys =
667 default_swiotlb_base() & ~((1ull << 22) - 1);
668
669 for (index = 0; index < 32; index++) {
670 union cvmx_pci_bar1_indexx bar1_index;
671
672 bar1_index.u32 = 0;
673 /* Address bits[35:22] sent to L2C */
674 bar1_index.s.addr_idx =
675 (octeon_bar1_pci_phys >> 22) + index;
676 /* Don't put PCI accesses in L2. */
677 bar1_index.s.ca = 1;
678 /* Endian Swap Mode */
679 bar1_index.s.end_swp = 1;
680 /* Set '1' when the selected address range is valid. */
681 bar1_index.s.addr_v = 1;
682 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
683 bar1_index.u32);
684 }
685
686 /* Devices go after BAR0 */
687 octeon_pci_mem_resource.start =
688 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
689 (4ul << 10);
690 octeon_pci_mem_resource.end =
691 octeon_pci_mem_resource.start + (1ul << 30);
692 }
693
694 register_pci_controller(&octeon_pci_controller);
695
696 /*
697 * Clear any errors that might be pending from before the bus
698 * was setup properly.
699 */
700 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
701
702 if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
703 -1, NULL, 0)))
704 pr_err("Registration of co_pci_edac failed!\n");
705
706 octeon_pci_dma_init();
707
708 return 0;
709 }
710
711 arch_initcall(octeon_pci_setup);
712