1 /* 2 * Alchemy PCI host mode support. 3 * 4 * Copyright 2001-2003, 2007-2008 MontaVista Software Inc. 5 * Author: MontaVista Software, Inc. <source@mvista.com> 6 * 7 * Support for all devices (greater than 16) added by David Gathright. 8 */ 9 10 #include <linux/export.h> 11 #include <linux/types.h> 12 #include <linux/pci.h> 13 #include <linux/platform_device.h> 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/vmalloc.h> 18 19 #include <asm/mach-au1x00/au1000.h> 20 #include <asm/tlbmisc.h> 21 22 #ifdef CONFIG_DEBUG_PCI 23 #define DBG(x...) printk(KERN_DEBUG x) 24 #else 25 #define DBG(x...) do {} while (0) 26 #endif 27 28 #define PCI_ACCESS_READ 0 29 #define PCI_ACCESS_WRITE 1 30 31 struct alchemy_pci_context { 32 struct pci_controller alchemy_pci_ctrl; /* leave as first member! */ 33 void __iomem *regs; /* ctrl base */ 34 /* tools for wired entry for config space access */ 35 unsigned long last_elo0; 36 unsigned long last_elo1; 37 int wired_entry; 38 struct vm_struct *pci_cfg_vm; 39 40 unsigned long pm[12]; 41 42 int (*board_map_irq)(const struct pci_dev *d, u8 slot, u8 pin); 43 int (*board_pci_idsel)(unsigned int devsel, int assert); 44 }; 45 46 /* for syscore_ops. There's only one PCI controller on Alchemy chips, so this 47 * should suffice for now. 48 */ 49 static struct alchemy_pci_context *__alchemy_pci_ctx; 50 51 52 /* IO/MEM resources for PCI. Keep the memres in sync with __fixup_bigphys_addr 53 * in arch/mips/alchemy/common/setup.c 54 */ 55 static struct resource alchemy_pci_def_memres = { 56 .start = ALCHEMY_PCI_MEMWIN_START, 57 .end = ALCHEMY_PCI_MEMWIN_END, 58 .name = "PCI memory space", 59 .flags = IORESOURCE_MEM 60 }; 61 62 static struct resource alchemy_pci_def_iores = { 63 .start = ALCHEMY_PCI_IOWIN_START, 64 .end = ALCHEMY_PCI_IOWIN_END, 65 .name = "PCI IO space", 66 .flags = IORESOURCE_IO 67 }; 68 69 static void mod_wired_entry(int entry, unsigned long entrylo0, 70 unsigned long entrylo1, unsigned long entryhi, 71 unsigned long pagemask) 72 { 73 unsigned long old_pagemask; 74 unsigned long old_ctx; 75 76 /* Save old context and create impossible VPN2 value */ 77 old_ctx = read_c0_entryhi() & 0xff; 78 old_pagemask = read_c0_pagemask(); 79 write_c0_index(entry); 80 write_c0_pagemask(pagemask); 81 write_c0_entryhi(entryhi); 82 write_c0_entrylo0(entrylo0); 83 write_c0_entrylo1(entrylo1); 84 tlb_write_indexed(); 85 write_c0_entryhi(old_ctx); 86 write_c0_pagemask(old_pagemask); 87 } 88 89 static void alchemy_pci_wired_entry(struct alchemy_pci_context *ctx) 90 { 91 ctx->wired_entry = read_c0_wired(); 92 add_wired_entry(0, 0, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); 93 ctx->last_elo0 = ctx->last_elo1 = ~0; 94 } 95 96 static int config_access(unsigned char access_type, struct pci_bus *bus, 97 unsigned int dev_fn, unsigned char where, u32 *data) 98 { 99 struct alchemy_pci_context *ctx = bus->sysdata; 100 unsigned int device = PCI_SLOT(dev_fn); 101 unsigned int function = PCI_FUNC(dev_fn); 102 unsigned long offset, status, cfg_base, flags, entryLo0, entryLo1, r; 103 int error = PCIBIOS_SUCCESSFUL; 104 105 if (device > 19) { 106 *data = 0xffffffff; 107 return -1; 108 } 109 110 local_irq_save(flags); 111 r = __raw_readl(ctx->regs + PCI_REG_STATCMD) & 0x0000ffff; 112 r |= PCI_STATCMD_STATUS(0x2000); 113 __raw_writel(r, ctx->regs + PCI_REG_STATCMD); 114 wmb(); 115 116 /* Allow board vendors to implement their own off-chip IDSEL. 117 * If it doesn't succeed, may as well bail out at this point. 118 */ 119 if (ctx->board_pci_idsel(device, 1) == 0) { 120 *data = 0xffffffff; 121 local_irq_restore(flags); 122 return -1; 123 } 124 125 /* Setup the config window */ 126 if (bus->number == 0) 127 cfg_base = (1 << device) << 11; 128 else 129 cfg_base = 0x80000000 | (bus->number << 16) | (device << 11); 130 131 /* Setup the lower bits of the 36-bit address */ 132 offset = (function << 8) | (where & ~0x3); 133 /* Pick up any address that falls below the page mask */ 134 offset |= cfg_base & ~PAGE_MASK; 135 136 /* Page boundary */ 137 cfg_base = cfg_base & PAGE_MASK; 138 139 /* To improve performance, if the current device is the same as 140 * the last device accessed, we don't touch the TLB. 141 */ 142 entryLo0 = (6 << 26) | (cfg_base >> 6) | (2 << 3) | 7; 143 entryLo1 = (6 << 26) | (cfg_base >> 6) | (0x1000 >> 6) | (2 << 3) | 7; 144 if ((entryLo0 != ctx->last_elo0) || (entryLo1 != ctx->last_elo1)) { 145 mod_wired_entry(ctx->wired_entry, entryLo0, entryLo1, 146 (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); 147 ctx->last_elo0 = entryLo0; 148 ctx->last_elo1 = entryLo1; 149 } 150 151 if (access_type == PCI_ACCESS_WRITE) 152 __raw_writel(*data, ctx->pci_cfg_vm->addr + offset); 153 else 154 *data = __raw_readl(ctx->pci_cfg_vm->addr + offset); 155 wmb(); 156 157 DBG("alchemy-pci: cfg access %d bus %u dev %u at %x dat %x conf %lx\n", 158 access_type, bus->number, device, where, *data, offset); 159 160 /* check for errors, master abort */ 161 status = __raw_readl(ctx->regs + PCI_REG_STATCMD); 162 if (status & (1 << 29)) { 163 *data = 0xffffffff; 164 error = -1; 165 DBG("alchemy-pci: master abort on cfg access %d bus %d dev %d", 166 access_type, bus->number, device); 167 } else if ((status >> 28) & 0xf) { 168 DBG("alchemy-pci: PCI ERR detected: dev %d, status %lx\n", 169 device, (status >> 28) & 0xf); 170 171 /* clear errors */ 172 __raw_writel(status & 0xf000ffff, ctx->regs + PCI_REG_STATCMD); 173 174 *data = 0xffffffff; 175 error = -1; 176 } 177 178 /* Take away the IDSEL. */ 179 (void)ctx->board_pci_idsel(device, 0); 180 181 local_irq_restore(flags); 182 return error; 183 } 184 185 static int read_config_byte(struct pci_bus *bus, unsigned int devfn, 186 int where, u8 *val) 187 { 188 u32 data; 189 int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); 190 191 if (where & 1) 192 data >>= 8; 193 if (where & 2) 194 data >>= 16; 195 *val = data & 0xff; 196 return ret; 197 } 198 199 static int read_config_word(struct pci_bus *bus, unsigned int devfn, 200 int where, u16 *val) 201 { 202 u32 data; 203 int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); 204 205 if (where & 2) 206 data >>= 16; 207 *val = data & 0xffff; 208 return ret; 209 } 210 211 static int read_config_dword(struct pci_bus *bus, unsigned int devfn, 212 int where, u32 *val) 213 { 214 return config_access(PCI_ACCESS_READ, bus, devfn, where, val); 215 } 216 217 static int write_config_byte(struct pci_bus *bus, unsigned int devfn, 218 int where, u8 val) 219 { 220 u32 data = 0; 221 222 if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) 223 return -1; 224 225 data = (data & ~(0xff << ((where & 3) << 3))) | 226 (val << ((where & 3) << 3)); 227 228 if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) 229 return -1; 230 231 return PCIBIOS_SUCCESSFUL; 232 } 233 234 static int write_config_word(struct pci_bus *bus, unsigned int devfn, 235 int where, u16 val) 236 { 237 u32 data = 0; 238 239 if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) 240 return -1; 241 242 data = (data & ~(0xffff << ((where & 3) << 3))) | 243 (val << ((where & 3) << 3)); 244 245 if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) 246 return -1; 247 248 return PCIBIOS_SUCCESSFUL; 249 } 250 251 static int write_config_dword(struct pci_bus *bus, unsigned int devfn, 252 int where, u32 val) 253 { 254 return config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val); 255 } 256 257 static int alchemy_pci_read(struct pci_bus *bus, unsigned int devfn, 258 int where, int size, u32 *val) 259 { 260 switch (size) { 261 case 1: { 262 u8 _val; 263 int rc = read_config_byte(bus, devfn, where, &_val); 264 265 *val = _val; 266 return rc; 267 } 268 case 2: { 269 u16 _val; 270 int rc = read_config_word(bus, devfn, where, &_val); 271 272 *val = _val; 273 return rc; 274 } 275 default: 276 return read_config_dword(bus, devfn, where, val); 277 } 278 } 279 280 static int alchemy_pci_write(struct pci_bus *bus, unsigned int devfn, 281 int where, int size, u32 val) 282 { 283 switch (size) { 284 case 1: 285 return write_config_byte(bus, devfn, where, (u8) val); 286 case 2: 287 return write_config_word(bus, devfn, where, (u16) val); 288 default: 289 return write_config_dword(bus, devfn, where, val); 290 } 291 } 292 293 static struct pci_ops alchemy_pci_ops = { 294 .read = alchemy_pci_read, 295 .write = alchemy_pci_write, 296 }; 297 298 static int alchemy_pci_def_idsel(unsigned int devsel, int assert) 299 { 300 return 1; /* success */ 301 } 302 303 /* save PCI controller register contents. */ 304 static int alchemy_pci_suspend(void) 305 { 306 struct alchemy_pci_context *ctx = __alchemy_pci_ctx; 307 if (!ctx) 308 return 0; 309 310 ctx->pm[0] = __raw_readl(ctx->regs + PCI_REG_CMEM); 311 ctx->pm[1] = __raw_readl(ctx->regs + PCI_REG_CONFIG) & 0x0009ffff; 312 ctx->pm[2] = __raw_readl(ctx->regs + PCI_REG_B2BMASK_CCH); 313 ctx->pm[3] = __raw_readl(ctx->regs + PCI_REG_B2BBASE0_VID); 314 ctx->pm[4] = __raw_readl(ctx->regs + PCI_REG_B2BBASE1_SID); 315 ctx->pm[5] = __raw_readl(ctx->regs + PCI_REG_MWMASK_DEV); 316 ctx->pm[6] = __raw_readl(ctx->regs + PCI_REG_MWBASE_REV_CCL); 317 ctx->pm[7] = __raw_readl(ctx->regs + PCI_REG_ID); 318 ctx->pm[8] = __raw_readl(ctx->regs + PCI_REG_CLASSREV); 319 ctx->pm[9] = __raw_readl(ctx->regs + PCI_REG_PARAM); 320 ctx->pm[10] = __raw_readl(ctx->regs + PCI_REG_MBAR); 321 ctx->pm[11] = __raw_readl(ctx->regs + PCI_REG_TIMEOUT); 322 323 return 0; 324 } 325 326 static void alchemy_pci_resume(void) 327 { 328 struct alchemy_pci_context *ctx = __alchemy_pci_ctx; 329 if (!ctx) 330 return; 331 332 __raw_writel(ctx->pm[0], ctx->regs + PCI_REG_CMEM); 333 __raw_writel(ctx->pm[2], ctx->regs + PCI_REG_B2BMASK_CCH); 334 __raw_writel(ctx->pm[3], ctx->regs + PCI_REG_B2BBASE0_VID); 335 __raw_writel(ctx->pm[4], ctx->regs + PCI_REG_B2BBASE1_SID); 336 __raw_writel(ctx->pm[5], ctx->regs + PCI_REG_MWMASK_DEV); 337 __raw_writel(ctx->pm[6], ctx->regs + PCI_REG_MWBASE_REV_CCL); 338 __raw_writel(ctx->pm[7], ctx->regs + PCI_REG_ID); 339 __raw_writel(ctx->pm[8], ctx->regs + PCI_REG_CLASSREV); 340 __raw_writel(ctx->pm[9], ctx->regs + PCI_REG_PARAM); 341 __raw_writel(ctx->pm[10], ctx->regs + PCI_REG_MBAR); 342 __raw_writel(ctx->pm[11], ctx->regs + PCI_REG_TIMEOUT); 343 wmb(); 344 __raw_writel(ctx->pm[1], ctx->regs + PCI_REG_CONFIG); 345 wmb(); 346 347 /* YAMON on all db1xxx boards wipes the TLB and writes zero to C0_wired 348 * on resume, making it necessary to recreate it as soon as possible. 349 */ 350 ctx->wired_entry = 8191; /* impossibly high value */ 351 alchemy_pci_wired_entry(ctx); /* install it */ 352 } 353 354 static struct syscore_ops alchemy_pci_pmops = { 355 .suspend = alchemy_pci_suspend, 356 .resume = alchemy_pci_resume, 357 }; 358 359 static int __devinit alchemy_pci_probe(struct platform_device *pdev) 360 { 361 struct alchemy_pci_platdata *pd = pdev->dev.platform_data; 362 struct alchemy_pci_context *ctx; 363 void __iomem *virt_io; 364 unsigned long val; 365 struct resource *r; 366 int ret; 367 368 /* need at least PCI IRQ mapping table */ 369 if (!pd) { 370 dev_err(&pdev->dev, "need platform data for PCI setup\n"); 371 ret = -ENODEV; 372 goto out; 373 } 374 375 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 376 if (!ctx) { 377 dev_err(&pdev->dev, "no memory for pcictl context\n"); 378 ret = -ENOMEM; 379 goto out; 380 } 381 382 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 383 if (!r) { 384 dev_err(&pdev->dev, "no pcictl ctrl regs resource\n"); 385 ret = -ENODEV; 386 goto out1; 387 } 388 389 if (!request_mem_region(r->start, resource_size(r), pdev->name)) { 390 dev_err(&pdev->dev, "cannot claim pci regs\n"); 391 ret = -ENODEV; 392 goto out1; 393 } 394 395 ctx->regs = ioremap_nocache(r->start, resource_size(r)); 396 if (!ctx->regs) { 397 dev_err(&pdev->dev, "cannot map pci regs\n"); 398 ret = -ENODEV; 399 goto out2; 400 } 401 402 /* map parts of the PCI IO area */ 403 /* REVISIT: if this changes with a newer variant (doubt it) make this 404 * a platform resource. 405 */ 406 virt_io = ioremap(AU1500_PCI_IO_PHYS_ADDR, 0x00100000); 407 if (!virt_io) { 408 dev_err(&pdev->dev, "cannot remap pci io space\n"); 409 ret = -ENODEV; 410 goto out3; 411 } 412 ctx->alchemy_pci_ctrl.io_map_base = (unsigned long)virt_io; 413 414 #ifdef CONFIG_DMA_NONCOHERENT 415 /* Au1500 revisions older than AD have borked coherent PCI */ 416 if ((alchemy_get_cputype() == ALCHEMY_CPU_AU1500) && 417 (read_c0_prid() < 0x01030202)) { 418 val = __raw_readl(ctx->regs + PCI_REG_CONFIG); 419 val |= PCI_CONFIG_NC; 420 __raw_writel(val, ctx->regs + PCI_REG_CONFIG); 421 wmb(); 422 dev_info(&pdev->dev, "non-coherent PCI on Au1500 AA/AB/AC\n"); 423 } 424 #endif 425 426 if (pd->board_map_irq) 427 ctx->board_map_irq = pd->board_map_irq; 428 429 if (pd->board_pci_idsel) 430 ctx->board_pci_idsel = pd->board_pci_idsel; 431 else 432 ctx->board_pci_idsel = alchemy_pci_def_idsel; 433 434 /* fill in relevant pci_controller members */ 435 ctx->alchemy_pci_ctrl.pci_ops = &alchemy_pci_ops; 436 ctx->alchemy_pci_ctrl.mem_resource = &alchemy_pci_def_memres; 437 ctx->alchemy_pci_ctrl.io_resource = &alchemy_pci_def_iores; 438 439 /* we can't ioremap the entire pci config space because it's too large, 440 * nor can we dynamically ioremap it because some drivers use the 441 * PCI config routines from within atomic contex and that becomes a 442 * problem in get_vm_area(). Instead we use one wired TLB entry to 443 * handle all config accesses for all busses. 444 */ 445 ctx->pci_cfg_vm = get_vm_area(0x2000, VM_IOREMAP); 446 if (!ctx->pci_cfg_vm) { 447 dev_err(&pdev->dev, "unable to get vm area\n"); 448 ret = -ENOMEM; 449 goto out4; 450 } 451 ctx->wired_entry = 8191; /* impossibly high value */ 452 alchemy_pci_wired_entry(ctx); /* install it */ 453 454 set_io_port_base((unsigned long)ctx->alchemy_pci_ctrl.io_map_base); 455 456 /* board may want to modify bits in the config register, do it now */ 457 val = __raw_readl(ctx->regs + PCI_REG_CONFIG); 458 val &= ~pd->pci_cfg_clr; 459 val |= pd->pci_cfg_set; 460 val &= ~PCI_CONFIG_PD; /* clear disable bit */ 461 __raw_writel(val, ctx->regs + PCI_REG_CONFIG); 462 wmb(); 463 464 __alchemy_pci_ctx = ctx; 465 platform_set_drvdata(pdev, ctx); 466 register_syscore_ops(&alchemy_pci_pmops); 467 register_pci_controller(&ctx->alchemy_pci_ctrl); 468 469 return 0; 470 471 out4: 472 iounmap(virt_io); 473 out3: 474 iounmap(ctx->regs); 475 out2: 476 release_mem_region(r->start, resource_size(r)); 477 out1: 478 kfree(ctx); 479 out: 480 return ret; 481 } 482 483 static struct platform_driver alchemy_pcictl_driver = { 484 .probe = alchemy_pci_probe, 485 .driver = { 486 .name = "alchemy-pci", 487 .owner = THIS_MODULE, 488 }, 489 }; 490 491 static int __init alchemy_pci_init(void) 492 { 493 /* Au1500/Au1550 have PCI */ 494 switch (alchemy_get_cputype()) { 495 case ALCHEMY_CPU_AU1500: 496 case ALCHEMY_CPU_AU1550: 497 return platform_driver_register(&alchemy_pcictl_driver); 498 } 499 return 0; 500 } 501 arch_initcall(alchemy_pci_init); 502 503 504 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 505 { 506 struct alchemy_pci_context *ctx = dev->sysdata; 507 if (ctx && ctx->board_map_irq) 508 return ctx->board_map_irq(dev, slot, pin); 509 return -1; 510 } 511 512 int pcibios_plat_dev_init(struct pci_dev *dev) 513 { 514 return 0; 515 } 516