1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alchemy PCI host mode support. 4 * 5 * Copyright 2001-2003, 2007-2008 MontaVista Software Inc. 6 * Author: MontaVista Software, Inc. <source@mvista.com> 7 * 8 * Support for all devices (greater than 16) added by David Gathright. 9 */ 10 11 #include <linux/clk.h> 12 #include <linux/export.h> 13 #include <linux/types.h> 14 #include <linux/pci.h> 15 #include <linux/platform_device.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/syscore_ops.h> 19 #include <linux/vmalloc.h> 20 21 #include <asm/dma-coherence.h> 22 #include <asm/mach-au1x00/au1000.h> 23 #include <asm/tlbmisc.h> 24 25 #ifdef CONFIG_PCI_DEBUG 26 #define DBG(x...) printk(KERN_DEBUG x) 27 #else 28 #define DBG(x...) do {} while (0) 29 #endif 30 31 #define PCI_ACCESS_READ 0 32 #define PCI_ACCESS_WRITE 1 33 34 struct alchemy_pci_context { 35 struct pci_controller alchemy_pci_ctrl; /* leave as first member! */ 36 void __iomem *regs; /* ctrl base */ 37 /* tools for wired entry for config space access */ 38 unsigned long last_elo0; 39 unsigned long last_elo1; 40 int wired_entry; 41 struct vm_struct *pci_cfg_vm; 42 43 unsigned long pm[12]; 44 45 int (*board_map_irq)(const struct pci_dev *d, u8 slot, u8 pin); 46 int (*board_pci_idsel)(unsigned int devsel, int assert); 47 }; 48 49 /* for syscore_ops. There's only one PCI controller on Alchemy chips, so this 50 * should suffice for now. 51 */ 52 static struct alchemy_pci_context *__alchemy_pci_ctx; 53 54 55 /* IO/MEM resources for PCI. Keep the memres in sync with fixup_bigphys_addr 56 * in arch/mips/alchemy/common/setup.c 57 */ 58 static struct resource alchemy_pci_def_memres = { 59 .start = ALCHEMY_PCI_MEMWIN_START, 60 .end = ALCHEMY_PCI_MEMWIN_END, 61 .name = "PCI memory space", 62 .flags = IORESOURCE_MEM 63 }; 64 65 static struct resource alchemy_pci_def_iores = { 66 .start = ALCHEMY_PCI_IOWIN_START, 67 .end = ALCHEMY_PCI_IOWIN_END, 68 .name = "PCI IO space", 69 .flags = IORESOURCE_IO 70 }; 71 72 static void mod_wired_entry(int entry, unsigned long entrylo0, 73 unsigned long entrylo1, unsigned long entryhi, 74 unsigned long pagemask) 75 { 76 unsigned long old_pagemask; 77 unsigned long old_ctx; 78 79 /* Save old context and create impossible VPN2 value */ 80 old_ctx = read_c0_entryhi() & MIPS_ENTRYHI_ASID; 81 old_pagemask = read_c0_pagemask(); 82 write_c0_index(entry); 83 write_c0_pagemask(pagemask); 84 write_c0_entryhi(entryhi); 85 write_c0_entrylo0(entrylo0); 86 write_c0_entrylo1(entrylo1); 87 tlb_write_indexed(); 88 write_c0_entryhi(old_ctx); 89 write_c0_pagemask(old_pagemask); 90 } 91 92 static void alchemy_pci_wired_entry(struct alchemy_pci_context *ctx) 93 { 94 ctx->wired_entry = read_c0_wired(); 95 add_wired_entry(0, 0, (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); 96 ctx->last_elo0 = ctx->last_elo1 = ~0; 97 } 98 99 static int config_access(unsigned char access_type, struct pci_bus *bus, 100 unsigned int dev_fn, unsigned char where, u32 *data) 101 { 102 struct alchemy_pci_context *ctx = bus->sysdata; 103 unsigned int device = PCI_SLOT(dev_fn); 104 unsigned int function = PCI_FUNC(dev_fn); 105 unsigned long offset, status, cfg_base, flags, entryLo0, entryLo1, r; 106 int error = PCIBIOS_SUCCESSFUL; 107 108 if (device > 19) { 109 *data = 0xffffffff; 110 return -1; 111 } 112 113 local_irq_save(flags); 114 r = __raw_readl(ctx->regs + PCI_REG_STATCMD) & 0x0000ffff; 115 r |= PCI_STATCMD_STATUS(0x2000); 116 __raw_writel(r, ctx->regs + PCI_REG_STATCMD); 117 wmb(); 118 119 /* Allow board vendors to implement their own off-chip IDSEL. 120 * If it doesn't succeed, may as well bail out at this point. 121 */ 122 if (ctx->board_pci_idsel(device, 1) == 0) { 123 *data = 0xffffffff; 124 local_irq_restore(flags); 125 return -1; 126 } 127 128 /* Setup the config window */ 129 if (bus->number == 0) 130 cfg_base = (1 << device) << 11; 131 else 132 cfg_base = 0x80000000 | (bus->number << 16) | (device << 11); 133 134 /* Setup the lower bits of the 36-bit address */ 135 offset = (function << 8) | (where & ~0x3); 136 /* Pick up any address that falls below the page mask */ 137 offset |= cfg_base & ~PAGE_MASK; 138 139 /* Page boundary */ 140 cfg_base = cfg_base & PAGE_MASK; 141 142 /* To improve performance, if the current device is the same as 143 * the last device accessed, we don't touch the TLB. 144 */ 145 entryLo0 = (6 << 26) | (cfg_base >> 6) | (2 << 3) | 7; 146 entryLo1 = (6 << 26) | (cfg_base >> 6) | (0x1000 >> 6) | (2 << 3) | 7; 147 if ((entryLo0 != ctx->last_elo0) || (entryLo1 != ctx->last_elo1)) { 148 mod_wired_entry(ctx->wired_entry, entryLo0, entryLo1, 149 (unsigned long)ctx->pci_cfg_vm->addr, PM_4K); 150 ctx->last_elo0 = entryLo0; 151 ctx->last_elo1 = entryLo1; 152 } 153 154 if (access_type == PCI_ACCESS_WRITE) 155 __raw_writel(*data, ctx->pci_cfg_vm->addr + offset); 156 else 157 *data = __raw_readl(ctx->pci_cfg_vm->addr + offset); 158 wmb(); 159 160 DBG("alchemy-pci: cfg access %d bus %u dev %u at %x dat %x conf %lx\n", 161 access_type, bus->number, device, where, *data, offset); 162 163 /* check for errors, master abort */ 164 status = __raw_readl(ctx->regs + PCI_REG_STATCMD); 165 if (status & (1 << 29)) { 166 *data = 0xffffffff; 167 error = -1; 168 DBG("alchemy-pci: master abort on cfg access %d bus %d dev %d\n", 169 access_type, bus->number, device); 170 } else if ((status >> 28) & 0xf) { 171 DBG("alchemy-pci: PCI ERR detected: dev %d, status %lx\n", 172 device, (status >> 28) & 0xf); 173 174 /* clear errors */ 175 __raw_writel(status & 0xf000ffff, ctx->regs + PCI_REG_STATCMD); 176 177 *data = 0xffffffff; 178 error = -1; 179 } 180 181 /* Take away the IDSEL. */ 182 (void)ctx->board_pci_idsel(device, 0); 183 184 local_irq_restore(flags); 185 return error; 186 } 187 188 static int read_config_byte(struct pci_bus *bus, unsigned int devfn, 189 int where, u8 *val) 190 { 191 u32 data; 192 int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); 193 194 if (where & 1) 195 data >>= 8; 196 if (where & 2) 197 data >>= 16; 198 *val = data & 0xff; 199 return ret; 200 } 201 202 static int read_config_word(struct pci_bus *bus, unsigned int devfn, 203 int where, u16 *val) 204 { 205 u32 data; 206 int ret = config_access(PCI_ACCESS_READ, bus, devfn, where, &data); 207 208 if (where & 2) 209 data >>= 16; 210 *val = data & 0xffff; 211 return ret; 212 } 213 214 static int read_config_dword(struct pci_bus *bus, unsigned int devfn, 215 int where, u32 *val) 216 { 217 return config_access(PCI_ACCESS_READ, bus, devfn, where, val); 218 } 219 220 static int write_config_byte(struct pci_bus *bus, unsigned int devfn, 221 int where, u8 val) 222 { 223 u32 data = 0; 224 225 if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) 226 return -1; 227 228 data = (data & ~(0xff << ((where & 3) << 3))) | 229 (val << ((where & 3) << 3)); 230 231 if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) 232 return -1; 233 234 return PCIBIOS_SUCCESSFUL; 235 } 236 237 static int write_config_word(struct pci_bus *bus, unsigned int devfn, 238 int where, u16 val) 239 { 240 u32 data = 0; 241 242 if (config_access(PCI_ACCESS_READ, bus, devfn, where, &data)) 243 return -1; 244 245 data = (data & ~(0xffff << ((where & 3) << 3))) | 246 (val << ((where & 3) << 3)); 247 248 if (config_access(PCI_ACCESS_WRITE, bus, devfn, where, &data)) 249 return -1; 250 251 return PCIBIOS_SUCCESSFUL; 252 } 253 254 static int write_config_dword(struct pci_bus *bus, unsigned int devfn, 255 int where, u32 val) 256 { 257 return config_access(PCI_ACCESS_WRITE, bus, devfn, where, &val); 258 } 259 260 static int alchemy_pci_read(struct pci_bus *bus, unsigned int devfn, 261 int where, int size, u32 *val) 262 { 263 switch (size) { 264 case 1: { 265 u8 _val; 266 int rc = read_config_byte(bus, devfn, where, &_val); 267 268 *val = _val; 269 return rc; 270 } 271 case 2: { 272 u16 _val; 273 int rc = read_config_word(bus, devfn, where, &_val); 274 275 *val = _val; 276 return rc; 277 } 278 default: 279 return read_config_dword(bus, devfn, where, val); 280 } 281 } 282 283 static int alchemy_pci_write(struct pci_bus *bus, unsigned int devfn, 284 int where, int size, u32 val) 285 { 286 switch (size) { 287 case 1: 288 return write_config_byte(bus, devfn, where, (u8) val); 289 case 2: 290 return write_config_word(bus, devfn, where, (u16) val); 291 default: 292 return write_config_dword(bus, devfn, where, val); 293 } 294 } 295 296 static struct pci_ops alchemy_pci_ops = { 297 .read = alchemy_pci_read, 298 .write = alchemy_pci_write, 299 }; 300 301 static int alchemy_pci_def_idsel(unsigned int devsel, int assert) 302 { 303 return 1; /* success */ 304 } 305 306 /* save PCI controller register contents. */ 307 static int alchemy_pci_suspend(void) 308 { 309 struct alchemy_pci_context *ctx = __alchemy_pci_ctx; 310 if (!ctx) 311 return 0; 312 313 ctx->pm[0] = __raw_readl(ctx->regs + PCI_REG_CMEM); 314 ctx->pm[1] = __raw_readl(ctx->regs + PCI_REG_CONFIG) & 0x0009ffff; 315 ctx->pm[2] = __raw_readl(ctx->regs + PCI_REG_B2BMASK_CCH); 316 ctx->pm[3] = __raw_readl(ctx->regs + PCI_REG_B2BBASE0_VID); 317 ctx->pm[4] = __raw_readl(ctx->regs + PCI_REG_B2BBASE1_SID); 318 ctx->pm[5] = __raw_readl(ctx->regs + PCI_REG_MWMASK_DEV); 319 ctx->pm[6] = __raw_readl(ctx->regs + PCI_REG_MWBASE_REV_CCL); 320 ctx->pm[7] = __raw_readl(ctx->regs + PCI_REG_ID); 321 ctx->pm[8] = __raw_readl(ctx->regs + PCI_REG_CLASSREV); 322 ctx->pm[9] = __raw_readl(ctx->regs + PCI_REG_PARAM); 323 ctx->pm[10] = __raw_readl(ctx->regs + PCI_REG_MBAR); 324 ctx->pm[11] = __raw_readl(ctx->regs + PCI_REG_TIMEOUT); 325 326 return 0; 327 } 328 329 static void alchemy_pci_resume(void) 330 { 331 struct alchemy_pci_context *ctx = __alchemy_pci_ctx; 332 if (!ctx) 333 return; 334 335 __raw_writel(ctx->pm[0], ctx->regs + PCI_REG_CMEM); 336 __raw_writel(ctx->pm[2], ctx->regs + PCI_REG_B2BMASK_CCH); 337 __raw_writel(ctx->pm[3], ctx->regs + PCI_REG_B2BBASE0_VID); 338 __raw_writel(ctx->pm[4], ctx->regs + PCI_REG_B2BBASE1_SID); 339 __raw_writel(ctx->pm[5], ctx->regs + PCI_REG_MWMASK_DEV); 340 __raw_writel(ctx->pm[6], ctx->regs + PCI_REG_MWBASE_REV_CCL); 341 __raw_writel(ctx->pm[7], ctx->regs + PCI_REG_ID); 342 __raw_writel(ctx->pm[8], ctx->regs + PCI_REG_CLASSREV); 343 __raw_writel(ctx->pm[9], ctx->regs + PCI_REG_PARAM); 344 __raw_writel(ctx->pm[10], ctx->regs + PCI_REG_MBAR); 345 __raw_writel(ctx->pm[11], ctx->regs + PCI_REG_TIMEOUT); 346 wmb(); 347 __raw_writel(ctx->pm[1], ctx->regs + PCI_REG_CONFIG); 348 wmb(); 349 350 /* YAMON on all db1xxx boards wipes the TLB and writes zero to C0_wired 351 * on resume, making it necessary to recreate it as soon as possible. 352 */ 353 ctx->wired_entry = 8191; /* impossibly high value */ 354 alchemy_pci_wired_entry(ctx); /* install it */ 355 } 356 357 static struct syscore_ops alchemy_pci_pmops = { 358 .suspend = alchemy_pci_suspend, 359 .resume = alchemy_pci_resume, 360 }; 361 362 static int alchemy_pci_probe(struct platform_device *pdev) 363 { 364 struct alchemy_pci_platdata *pd = pdev->dev.platform_data; 365 struct alchemy_pci_context *ctx; 366 void __iomem *virt_io; 367 unsigned long val; 368 struct resource *r; 369 struct clk *c; 370 int ret; 371 372 /* need at least PCI IRQ mapping table */ 373 if (!pd) { 374 dev_err(&pdev->dev, "need platform data for PCI setup\n"); 375 ret = -ENODEV; 376 goto out; 377 } 378 379 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 380 if (!ctx) { 381 dev_err(&pdev->dev, "no memory for pcictl context\n"); 382 ret = -ENOMEM; 383 goto out; 384 } 385 386 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 387 if (!r) { 388 dev_err(&pdev->dev, "no pcictl ctrl regs resource\n"); 389 ret = -ENODEV; 390 goto out1; 391 } 392 393 if (!request_mem_region(r->start, resource_size(r), pdev->name)) { 394 dev_err(&pdev->dev, "cannot claim pci regs\n"); 395 ret = -ENODEV; 396 goto out1; 397 } 398 399 c = clk_get(&pdev->dev, "pci_clko"); 400 if (IS_ERR(c)) { 401 dev_err(&pdev->dev, "unable to find PCI clock\n"); 402 ret = PTR_ERR(c); 403 goto out2; 404 } 405 406 ret = clk_prepare_enable(c); 407 if (ret) { 408 dev_err(&pdev->dev, "cannot enable PCI clock\n"); 409 goto out6; 410 } 411 412 ctx->regs = ioremap(r->start, resource_size(r)); 413 if (!ctx->regs) { 414 dev_err(&pdev->dev, "cannot map pci regs\n"); 415 ret = -ENODEV; 416 goto out5; 417 } 418 419 /* map parts of the PCI IO area */ 420 /* REVISIT: if this changes with a newer variant (doubt it) make this 421 * a platform resource. 422 */ 423 virt_io = ioremap(AU1500_PCI_IO_PHYS_ADDR, 0x00100000); 424 if (!virt_io) { 425 dev_err(&pdev->dev, "cannot remap pci io space\n"); 426 ret = -ENODEV; 427 goto out3; 428 } 429 ctx->alchemy_pci_ctrl.io_map_base = (unsigned long)virt_io; 430 431 /* Au1500 revisions older than AD have borked coherent PCI */ 432 if ((alchemy_get_cputype() == ALCHEMY_CPU_AU1500) && 433 (read_c0_prid() < 0x01030202) && 434 (coherentio == IO_COHERENCE_DISABLED)) { 435 val = __raw_readl(ctx->regs + PCI_REG_CONFIG); 436 val |= PCI_CONFIG_NC; 437 __raw_writel(val, ctx->regs + PCI_REG_CONFIG); 438 wmb(); 439 dev_info(&pdev->dev, "non-coherent PCI on Au1500 AA/AB/AC\n"); 440 } 441 442 if (pd->board_map_irq) 443 ctx->board_map_irq = pd->board_map_irq; 444 445 if (pd->board_pci_idsel) 446 ctx->board_pci_idsel = pd->board_pci_idsel; 447 else 448 ctx->board_pci_idsel = alchemy_pci_def_idsel; 449 450 /* fill in relevant pci_controller members */ 451 ctx->alchemy_pci_ctrl.pci_ops = &alchemy_pci_ops; 452 ctx->alchemy_pci_ctrl.mem_resource = &alchemy_pci_def_memres; 453 ctx->alchemy_pci_ctrl.io_resource = &alchemy_pci_def_iores; 454 455 /* we can't ioremap the entire pci config space because it's too large, 456 * nor can we dynamically ioremap it because some drivers use the 457 * PCI config routines from within atomic contex and that becomes a 458 * problem in get_vm_area(). Instead we use one wired TLB entry to 459 * handle all config accesses for all busses. 460 */ 461 ctx->pci_cfg_vm = get_vm_area(0x2000, VM_IOREMAP); 462 if (!ctx->pci_cfg_vm) { 463 dev_err(&pdev->dev, "unable to get vm area\n"); 464 ret = -ENOMEM; 465 goto out4; 466 } 467 ctx->wired_entry = 8191; /* impossibly high value */ 468 alchemy_pci_wired_entry(ctx); /* install it */ 469 470 set_io_port_base((unsigned long)ctx->alchemy_pci_ctrl.io_map_base); 471 472 /* board may want to modify bits in the config register, do it now */ 473 val = __raw_readl(ctx->regs + PCI_REG_CONFIG); 474 val &= ~pd->pci_cfg_clr; 475 val |= pd->pci_cfg_set; 476 val &= ~PCI_CONFIG_PD; /* clear disable bit */ 477 __raw_writel(val, ctx->regs + PCI_REG_CONFIG); 478 wmb(); 479 480 __alchemy_pci_ctx = ctx; 481 platform_set_drvdata(pdev, ctx); 482 register_syscore_ops(&alchemy_pci_pmops); 483 register_pci_controller(&ctx->alchemy_pci_ctrl); 484 485 dev_info(&pdev->dev, "PCI controller at %ld MHz\n", 486 clk_get_rate(c) / 1000000); 487 488 return 0; 489 490 out4: 491 iounmap(virt_io); 492 out3: 493 iounmap(ctx->regs); 494 out5: 495 clk_disable_unprepare(c); 496 out6: 497 clk_put(c); 498 out2: 499 release_mem_region(r->start, resource_size(r)); 500 out1: 501 kfree(ctx); 502 out: 503 return ret; 504 } 505 506 static struct platform_driver alchemy_pcictl_driver = { 507 .probe = alchemy_pci_probe, 508 .driver = { 509 .name = "alchemy-pci", 510 }, 511 }; 512 513 static int __init alchemy_pci_init(void) 514 { 515 /* Au1500/Au1550 have PCI */ 516 switch (alchemy_get_cputype()) { 517 case ALCHEMY_CPU_AU1500: 518 case ALCHEMY_CPU_AU1550: 519 return platform_driver_register(&alchemy_pcictl_driver); 520 } 521 return 0; 522 } 523 arch_initcall(alchemy_pci_init); 524 525 526 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) 527 { 528 struct alchemy_pci_context *ctx = dev->sysdata; 529 if (ctx && ctx->board_map_irq) 530 return ctx->board_map_irq(dev, slot, pin); 531 return -1; 532 } 533 534 int pcibios_plat_dev_init(struct pci_dev *dev) 535 { 536 return 0; 537 } 538