xref: /linux/arch/mips/pci/msi-octeon.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009, 2010 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
13 
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-pexp-defs.h>
19 #include <asm/octeon/pci-octeon.h>
20 
21 /*
22  * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
23  * in use.
24  */
25 static u64 msi_free_irq_bitmask[4];
26 
27 /*
28  * Each bit in msi_multiple_irq_bitmask tells that the device using
29  * this bit in msi_free_irq_bitmask is also using the next bit. This
30  * is used so we can disable all of the MSI interrupts when a device
31  * uses multiple.
32  */
33 static u64 msi_multiple_irq_bitmask[4];
34 
35 /*
36  * This lock controls updates to msi_free_irq_bitmask and
37  * msi_multiple_irq_bitmask.
38  */
39 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
40 
41 /*
42  * Number of MSI IRQs used. This variable is set up in
43  * the module init time.
44  */
45 static int msi_irq_size;
46 
47 /**
48  * Called when a driver request MSI interrupts instead of the
49  * legacy INT A-D. This routine will allocate multiple interrupts
50  * for MSI devices that support them. A device can override this by
51  * programming the MSI control bits [6:4] before calling
52  * pci_enable_msi().
53  *
54  * @dev:    Device requesting MSI interrupts
55  * @desc:   MSI descriptor
56  *
57  * Returns 0 on success.
58  */
59 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
60 {
61 	struct msi_msg msg;
62 	u16 control;
63 	int configured_private_bits;
64 	int request_private_bits;
65 	int irq = 0;
66 	int irq_step;
67 	u64 search_mask;
68 	int index;
69 
70 	/*
71 	 * Read the MSI config to figure out how many IRQs this device
72 	 * wants.  Most devices only want 1, which will give
73 	 * configured_private_bits and request_private_bits equal 0.
74 	 */
75 	pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
76 			     &control);
77 
78 	/*
79 	 * If the number of private bits has been configured then use
80 	 * that value instead of the requested number. This gives the
81 	 * driver the chance to override the number of interrupts
82 	 * before calling pci_enable_msi().
83 	 */
84 	configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
85 	if (configured_private_bits == 0) {
86 		/* Nothing is configured, so use the hardware requested size */
87 		request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
88 	} else {
89 		/*
90 		 * Use the number of configured bits, assuming the
91 		 * driver wanted to override the hardware request
92 		 * value.
93 		 */
94 		request_private_bits = configured_private_bits;
95 	}
96 
97 	/*
98 	 * The PCI 2.3 spec mandates that there are at most 32
99 	 * interrupts. If this device asks for more, only give it one.
100 	 */
101 	if (request_private_bits > 5)
102 		request_private_bits = 0;
103 
104 try_only_one:
105 	/*
106 	 * The IRQs have to be aligned on a power of two based on the
107 	 * number being requested.
108 	 */
109 	irq_step = 1 << request_private_bits;
110 
111 	/* Mask with one bit for each IRQ */
112 	search_mask = (1 << irq_step) - 1;
113 
114 	/*
115 	 * We're going to search msi_free_irq_bitmask_lock for zero
116 	 * bits. This represents an MSI interrupt number that isn't in
117 	 * use.
118 	 */
119 	spin_lock(&msi_free_irq_bitmask_lock);
120 	for (index = 0; index < msi_irq_size/64; index++) {
121 		for (irq = 0; irq < 64; irq += irq_step) {
122 			if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
123 				msi_free_irq_bitmask[index] |= search_mask << irq;
124 				msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
125 				goto msi_irq_allocated;
126 			}
127 		}
128 	}
129 msi_irq_allocated:
130 	spin_unlock(&msi_free_irq_bitmask_lock);
131 
132 	/* Make sure the search for available interrupts didn't fail */
133 	if (irq >= 64) {
134 		if (request_private_bits) {
135 			pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 			       1 << request_private_bits);
137 			request_private_bits = 0;
138 			goto try_only_one;
139 		} else
140 			panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
141 	}
142 
143 	/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
144 	irq += index*64;
145 	irq += OCTEON_IRQ_MSI_BIT0;
146 
147 	switch (octeon_dma_bar_type) {
148 	case OCTEON_DMA_BAR_TYPE_SMALL:
149 		/* When not using big bar, Bar 0 is based at 128MB */
150 		msg.address_lo =
151 			((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
152 		msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
153 		break;
154 	case OCTEON_DMA_BAR_TYPE_BIG:
155 		/* When using big bar, Bar 0 is based at 0 */
156 		msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
157 		msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
158 		break;
159 	case OCTEON_DMA_BAR_TYPE_PCIE:
160 		/* When using PCIe, Bar 0 is based at 0 */
161 		/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162 		msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
163 		msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
164 		break;
165 	default:
166 		panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
167 	}
168 	msg.data = irq - OCTEON_IRQ_MSI_BIT0;
169 
170 	/* Update the number of IRQs the device has available to it */
171 	control &= ~PCI_MSI_FLAGS_QSIZE;
172 	control |= request_private_bits << 4;
173 	pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
174 			      control);
175 
176 	irq_set_msi_desc(irq, desc);
177 	write_msi_msg(irq, &msg);
178 	return 0;
179 }
180 
181 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
182 {
183 	struct msi_desc *entry;
184 	int ret;
185 
186 	/*
187 	 * MSI-X is not supported.
188 	 */
189 	if (type == PCI_CAP_ID_MSIX)
190 		return -EINVAL;
191 
192 	/*
193 	 * If an architecture wants to support multiple MSI, it needs to
194 	 * override arch_setup_msi_irqs()
195 	 */
196 	if (type == PCI_CAP_ID_MSI && nvec > 1)
197 		return 1;
198 
199 	list_for_each_entry(entry, &dev->msi_list, list) {
200 		ret = arch_setup_msi_irq(dev, entry);
201 		if (ret < 0)
202 			return ret;
203 		if (ret > 0)
204 			return -ENOSPC;
205 	}
206 
207 	return 0;
208 }
209 
210 /**
211  * Called when a device no longer needs its MSI interrupts. All
212  * MSI interrupts for the device are freed.
213  *
214  * @irq:    The devices first irq number. There may be multple in sequence.
215  */
216 void arch_teardown_msi_irq(unsigned int irq)
217 {
218 	int number_irqs;
219 	u64 bitmask;
220 	int index = 0;
221 	int irq0;
222 
223 	if ((irq < OCTEON_IRQ_MSI_BIT0)
224 		|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
225 		panic("arch_teardown_msi_irq: Attempted to teardown illegal "
226 		      "MSI interrupt (%d)", irq);
227 
228 	irq -= OCTEON_IRQ_MSI_BIT0;
229 	index = irq / 64;
230 	irq0 = irq % 64;
231 
232 	/*
233 	 * Count the number of IRQs we need to free by looking at the
234 	 * msi_multiple_irq_bitmask. Each bit set means that the next
235 	 * IRQ is also owned by this device.
236 	 */
237 	number_irqs = 0;
238 	while ((irq0 + number_irqs < 64) &&
239 	       (msi_multiple_irq_bitmask[index]
240 		& (1ull << (irq0 + number_irqs))))
241 		number_irqs++;
242 	number_irqs++;
243 	/* Mask with one bit for each IRQ */
244 	bitmask = (1 << number_irqs) - 1;
245 	/* Shift the mask to the correct bit location */
246 	bitmask <<= irq0;
247 	if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
248 		panic("arch_teardown_msi_irq: Attempted to teardown MSI "
249 		      "interrupt (%d) not in use", irq);
250 
251 	/* Checks are done, update the in use bitmask */
252 	spin_lock(&msi_free_irq_bitmask_lock);
253 	msi_free_irq_bitmask[index] &= ~bitmask;
254 	msi_multiple_irq_bitmask[index] &= ~bitmask;
255 	spin_unlock(&msi_free_irq_bitmask_lock);
256 }
257 
258 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
259 
260 static u64 msi_rcv_reg[4];
261 static u64 mis_ena_reg[4];
262 
263 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
264 {
265 	u64 en;
266 	unsigned long flags;
267 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
268 	int irq_index = msi_number >> 6;
269 	int irq_bit = msi_number & 0x3f;
270 
271 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
272 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
273 	en |= 1ull << irq_bit;
274 	cvmx_write_csr(mis_ena_reg[irq_index], en);
275 	cvmx_read_csr(mis_ena_reg[irq_index]);
276 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
277 }
278 
279 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
280 {
281 	u64 en;
282 	unsigned long flags;
283 	int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
284 	int irq_index = msi_number >> 6;
285 	int irq_bit = msi_number & 0x3f;
286 
287 	raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
288 	en = cvmx_read_csr(mis_ena_reg[irq_index]);
289 	en &= ~(1ull << irq_bit);
290 	cvmx_write_csr(mis_ena_reg[irq_index], en);
291 	cvmx_read_csr(mis_ena_reg[irq_index]);
292 	raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
293 }
294 
295 static struct irq_chip octeon_irq_chip_msi_pcie = {
296 	.name = "MSI",
297 	.irq_enable = octeon_irq_msi_enable_pcie,
298 	.irq_disable = octeon_irq_msi_disable_pcie,
299 };
300 
301 static void octeon_irq_msi_enable_pci(struct irq_data *data)
302 {
303 	/*
304 	 * Octeon PCI doesn't have the ability to mask/unmask MSI
305 	 * interrupts individually. Instead of masking/unmasking them
306 	 * in groups of 16, we simple assume MSI devices are well
307 	 * behaved. MSI interrupts are always enable and the ACK is
308 	 * assumed to be enough
309 	 */
310 }
311 
312 static void octeon_irq_msi_disable_pci(struct irq_data *data)
313 {
314 	/* See comment in enable */
315 }
316 
317 static struct irq_chip octeon_irq_chip_msi_pci = {
318 	.name = "MSI",
319 	.irq_enable = octeon_irq_msi_enable_pci,
320 	.irq_disable = octeon_irq_msi_disable_pci,
321 };
322 
323 /*
324  * Called by the interrupt handling code when an MSI interrupt
325  * occurs.
326  */
327 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
328 {
329 	int irq;
330 	int bit;
331 
332 	bit = fls64(msi_bits);
333 	if (bit) {
334 		bit--;
335 		/* Acknowledge it first. */
336 		cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
337 
338 		irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
339 		do_IRQ(irq);
340 		return IRQ_HANDLED;
341 	}
342 	return IRQ_NONE;
343 }
344 
345 #define OCTEON_MSI_INT_HANDLER_X(x)					\
346 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id)	\
347 {									\
348 	u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]);			\
349 	return __octeon_msi_do_interrupt((x), msi_bits);		\
350 }
351 
352 /*
353  * Create octeon_msi_interrupt{0-3} function body
354  */
355 OCTEON_MSI_INT_HANDLER_X(0);
356 OCTEON_MSI_INT_HANDLER_X(1);
357 OCTEON_MSI_INT_HANDLER_X(2);
358 OCTEON_MSI_INT_HANDLER_X(3);
359 
360 /*
361  * Initializes the MSI interrupt handling code
362  */
363 int __init octeon_msi_initialize(void)
364 {
365 	int irq;
366 	struct irq_chip *msi;
367 
368 	if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
369 		msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
370 		msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
371 		msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
372 		msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
373 		mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
374 		mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
375 		mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
376 		mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
377 		msi = &octeon_irq_chip_msi_pcie;
378 	} else {
379 		msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
380 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
381 		msi_rcv_reg[1] = INVALID_GENERATE_ADE;
382 		msi_rcv_reg[2] = INVALID_GENERATE_ADE;
383 		msi_rcv_reg[3] = INVALID_GENERATE_ADE;
384 		mis_ena_reg[0] = INVALID_GENERATE_ADE;
385 		mis_ena_reg[1] = INVALID_GENERATE_ADE;
386 		mis_ena_reg[2] = INVALID_GENERATE_ADE;
387 		mis_ena_reg[3] = INVALID_GENERATE_ADE;
388 		msi = &octeon_irq_chip_msi_pci;
389 	}
390 
391 	for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
392 		irq_set_chip_and_handler(irq, msi, handle_simple_irq);
393 
394 	if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
395 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
396 				0, "MSI[0:63]", octeon_msi_interrupt0))
397 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
398 
399 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
400 				0, "MSI[64:127]", octeon_msi_interrupt1))
401 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
402 
403 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
404 				0, "MSI[127:191]", octeon_msi_interrupt2))
405 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
406 
407 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
408 				0, "MSI[192:255]", octeon_msi_interrupt3))
409 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
410 
411 		msi_irq_size = 256;
412 	} else if (octeon_is_pci_host()) {
413 		if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
414 				0, "MSI[0:15]", octeon_msi_interrupt0))
415 			panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
416 
417 		if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
418 				0, "MSI[16:31]", octeon_msi_interrupt0))
419 			panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
420 
421 		if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
422 				0, "MSI[32:47]", octeon_msi_interrupt0))
423 			panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
424 
425 		if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
426 				0, "MSI[48:63]", octeon_msi_interrupt0))
427 			panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
428 		msi_irq_size = 64;
429 	}
430 	return 0;
431 }
432 subsys_initcall(octeon_msi_initialize);
433