xref: /linux/arch/mips/mm/tlbex.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 static int mips_xpa_disabled;
39 
40 static int __init xpa_disable(char *s)
41 {
42 	mips_xpa_disabled = 1;
43 
44 	return 1;
45 }
46 
47 __setup("noxpa", xpa_disable);
48 
49 /*
50  * TLB load/store/modify handlers.
51  *
52  * Only the fastpath gets synthesized at runtime, the slowpath for
53  * do_page_fault remains normal asm.
54  */
55 extern void tlb_do_page_fault_0(void);
56 extern void tlb_do_page_fault_1(void);
57 
58 struct work_registers {
59 	int r1;
60 	int r2;
61 	int r3;
62 };
63 
64 struct tlb_reg_save {
65 	unsigned long a;
66 	unsigned long b;
67 } ____cacheline_aligned_in_smp;
68 
69 static struct tlb_reg_save handler_reg_save[NR_CPUS];
70 
71 static inline int r45k_bvahwbug(void)
72 {
73 	/* XXX: We should probe for the presence of this bug, but we don't. */
74 	return 0;
75 }
76 
77 static inline int r4k_250MHZhwbug(void)
78 {
79 	/* XXX: We should probe for the presence of this bug, but we don't. */
80 	return 0;
81 }
82 
83 static inline int __maybe_unused bcm1250_m3_war(void)
84 {
85 	return BCM1250_M3_WAR;
86 }
87 
88 static inline int __maybe_unused r10000_llsc_war(void)
89 {
90 	return R10000_LLSC_WAR;
91 }
92 
93 static int use_bbit_insns(void)
94 {
95 	switch (current_cpu_type()) {
96 	case CPU_CAVIUM_OCTEON:
97 	case CPU_CAVIUM_OCTEON_PLUS:
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 
106 static int use_lwx_insns(void)
107 {
108 	switch (current_cpu_type()) {
109 	case CPU_CAVIUM_OCTEON2:
110 	case CPU_CAVIUM_OCTEON3:
111 		return 1;
112 	default:
113 		return 0;
114 	}
115 }
116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118 static bool scratchpad_available(void)
119 {
120 	return true;
121 }
122 static int scratchpad_offset(int i)
123 {
124 	/*
125 	 * CVMSEG starts at address -32768 and extends for
126 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127 	 */
128 	i += 1; /* Kernel use starts at the top and works down. */
129 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130 }
131 #else
132 static bool scratchpad_available(void)
133 {
134 	return false;
135 }
136 static int scratchpad_offset(int i)
137 {
138 	BUG();
139 	/* Really unreachable, but evidently some GCC want this. */
140 	return 0;
141 }
142 #endif
143 /*
144  * Found by experiment: At least some revisions of the 4kc throw under
145  * some circumstances a machine check exception, triggered by invalid
146  * values in the index register.  Delaying the tlbp instruction until
147  * after the next branch,  plus adding an additional nop in front of
148  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149  * why; it's not an issue caused by the core RTL.
150  *
151  */
152 static int m4kc_tlbp_war(void)
153 {
154 	return (current_cpu_data.processor_id & 0xffff00) ==
155 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
156 }
157 
158 /* Handle labels (which must be positive integers). */
159 enum label_id {
160 	label_second_part = 1,
161 	label_leave,
162 	label_vmalloc,
163 	label_vmalloc_done,
164 	label_tlbw_hazard_0,
165 	label_split = label_tlbw_hazard_0 + 8,
166 	label_tlbl_goaround1,
167 	label_tlbl_goaround2,
168 	label_nopage_tlbl,
169 	label_nopage_tlbs,
170 	label_nopage_tlbm,
171 	label_smp_pgtable_change,
172 	label_r3000_write_probe_fail,
173 	label_large_segbits_fault,
174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175 	label_tlb_huge_update,
176 #endif
177 };
178 
179 UASM_L_LA(_second_part)
180 UASM_L_LA(_leave)
181 UASM_L_LA(_vmalloc)
182 UASM_L_LA(_vmalloc_done)
183 /* _tlbw_hazard_x is handled differently.  */
184 UASM_L_LA(_split)
185 UASM_L_LA(_tlbl_goaround1)
186 UASM_L_LA(_tlbl_goaround2)
187 UASM_L_LA(_nopage_tlbl)
188 UASM_L_LA(_nopage_tlbs)
189 UASM_L_LA(_nopage_tlbm)
190 UASM_L_LA(_smp_pgtable_change)
191 UASM_L_LA(_r3000_write_probe_fail)
192 UASM_L_LA(_large_segbits_fault)
193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194 UASM_L_LA(_tlb_huge_update)
195 #endif
196 
197 static int hazard_instance;
198 
199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204 		return;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211 {
212 	switch (instance) {
213 	case 0 ... 7:
214 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215 		break;
216 	default:
217 		BUG();
218 	}
219 }
220 
221 /*
222  * pgtable bits are assigned dynamically depending on processor feature
223  * and statically based on kernel configuration.  This spits out the actual
224  * values the kernel is using.	Required to make sense from disassembled
225  * TLB exception handlers.
226  */
227 static void output_pgtable_bits_defines(void)
228 {
229 #define pr_define(fmt, ...)					\
230 	pr_debug("#define " fmt, ##__VA_ARGS__)
231 
232 	pr_debug("#include <asm/asm.h>\n");
233 	pr_debug("#include <asm/regdef.h>\n");
234 	pr_debug("\n");
235 
236 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244 #endif
245 #ifdef CONFIG_CPU_MIPSR2
246 	if (cpu_has_rixi) {
247 #ifdef _PAGE_NO_EXEC_SHIFT
248 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250 #endif
251 	}
252 #endif
253 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257 	pr_debug("\n");
258 }
259 
260 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
261 {
262 	int i;
263 
264 	pr_debug("LEAF(%s)\n", symbol);
265 
266 	pr_debug("\t.set push\n");
267 	pr_debug("\t.set noreorder\n");
268 
269 	for (i = 0; i < count; i++)
270 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271 
272 	pr_debug("\t.set\tpop\n");
273 
274 	pr_debug("\tEND(%s)\n", symbol);
275 }
276 
277 /* The only general purpose registers allowed in TLB handlers. */
278 #define K0		26
279 #define K1		27
280 
281 /* Some CP0 registers */
282 #define C0_INDEX	0, 0
283 #define C0_ENTRYLO0	2, 0
284 #define C0_TCBIND	2, 2
285 #define C0_ENTRYLO1	3, 0
286 #define C0_CONTEXT	4, 0
287 #define C0_PAGEMASK	5, 0
288 #define C0_BADVADDR	8, 0
289 #define C0_ENTRYHI	10, 0
290 #define C0_EPC		14, 0
291 #define C0_XCONTEXT	20, 0
292 
293 #ifdef CONFIG_64BIT
294 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295 #else
296 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297 #endif
298 
299 /* The worst case length of the handler is around 18 instructions for
300  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301  * Maximum space available is 32 instructions for R3000 and 64
302  * instructions for R4000.
303  *
304  * We deliberately chose a buffer size of 128, so we won't scribble
305  * over anything important on overflow before we panic.
306  */
307 static u32 tlb_handler[128];
308 
309 /* simply assume worst case size for labels and relocs */
310 static struct uasm_label labels[128];
311 static struct uasm_reloc relocs[128];
312 
313 static int check_for_high_segbits;
314 static bool fill_includes_sw_bits;
315 
316 static unsigned int kscratch_used_mask;
317 
318 static inline int __maybe_unused c0_kscratch(void)
319 {
320 	switch (current_cpu_type()) {
321 	case CPU_XLP:
322 	case CPU_XLR:
323 		return 22;
324 	default:
325 		return 31;
326 	}
327 }
328 
329 static int allocate_kscratch(void)
330 {
331 	int r;
332 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
333 
334 	r = ffs(a);
335 
336 	if (r == 0)
337 		return -1;
338 
339 	r--; /* make it zero based */
340 
341 	kscratch_used_mask |= (1 << r);
342 
343 	return r;
344 }
345 
346 static int scratch_reg;
347 static int pgd_reg;
348 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
349 
350 static struct work_registers build_get_work_registers(u32 **p)
351 {
352 	struct work_registers r;
353 
354 	if (scratch_reg >= 0) {
355 		/* Save in CPU local C0_KScratch? */
356 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
357 		r.r1 = K0;
358 		r.r2 = K1;
359 		r.r3 = 1;
360 		return r;
361 	}
362 
363 	if (num_possible_cpus() > 1) {
364 		/* Get smp_processor_id */
365 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
366 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
367 
368 		/* handler_reg_save index in K0 */
369 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
370 
371 		UASM_i_LA(p, K1, (long)&handler_reg_save);
372 		UASM_i_ADDU(p, K0, K0, K1);
373 	} else {
374 		UASM_i_LA(p, K0, (long)&handler_reg_save);
375 	}
376 	/* K0 now points to save area, save $1 and $2  */
377 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
378 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
379 
380 	r.r1 = K1;
381 	r.r2 = 1;
382 	r.r3 = 2;
383 	return r;
384 }
385 
386 static void build_restore_work_registers(u32 **p)
387 {
388 	if (scratch_reg >= 0) {
389 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
390 		return;
391 	}
392 	/* K0 already points to save area, restore $1 and $2  */
393 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
394 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
395 }
396 
397 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
398 
399 /*
400  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
401  * we cannot do r3000 under these circumstances.
402  *
403  * Declare pgd_current here instead of including mmu_context.h to avoid type
404  * conflicts for tlbmiss_handler_setup_pgd
405  */
406 extern unsigned long pgd_current[];
407 
408 /*
409  * The R3000 TLB handler is simple.
410  */
411 static void build_r3000_tlb_refill_handler(void)
412 {
413 	long pgdc = (long)pgd_current;
414 	u32 *p;
415 
416 	memset(tlb_handler, 0, sizeof(tlb_handler));
417 	p = tlb_handler;
418 
419 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
420 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
421 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
422 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
423 	uasm_i_sll(&p, K0, K0, 2);
424 	uasm_i_addu(&p, K1, K1, K0);
425 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
426 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
427 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
428 	uasm_i_addu(&p, K1, K1, K0);
429 	uasm_i_lw(&p, K0, 0, K1);
430 	uasm_i_nop(&p); /* load delay */
431 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
432 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
433 	uasm_i_tlbwr(&p); /* cp0 delay */
434 	uasm_i_jr(&p, K1);
435 	uasm_i_rfe(&p); /* branch delay */
436 
437 	if (p > tlb_handler + 32)
438 		panic("TLB refill handler space exceeded");
439 
440 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
441 		 (unsigned int)(p - tlb_handler));
442 
443 	memcpy((void *)ebase, tlb_handler, 0x80);
444 	local_flush_icache_range(ebase, ebase + 0x80);
445 
446 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
447 }
448 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
449 
450 /*
451  * The R4000 TLB handler is much more complicated. We have two
452  * consecutive handler areas with 32 instructions space each.
453  * Since they aren't used at the same time, we can overflow in the
454  * other one.To keep things simple, we first assume linear space,
455  * then we relocate it to the final handler layout as needed.
456  */
457 static u32 final_handler[64];
458 
459 /*
460  * Hazards
461  *
462  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
463  * 2. A timing hazard exists for the TLBP instruction.
464  *
465  *	stalling_instruction
466  *	TLBP
467  *
468  * The JTLB is being read for the TLBP throughout the stall generated by the
469  * previous instruction. This is not really correct as the stalling instruction
470  * can modify the address used to access the JTLB.  The failure symptom is that
471  * the TLBP instruction will use an address created for the stalling instruction
472  * and not the address held in C0_ENHI and thus report the wrong results.
473  *
474  * The software work-around is to not allow the instruction preceding the TLBP
475  * to stall - make it an NOP or some other instruction guaranteed not to stall.
476  *
477  * Errata 2 will not be fixed.	This errata is also on the R5000.
478  *
479  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
480  */
481 static void __maybe_unused build_tlb_probe_entry(u32 **p)
482 {
483 	switch (current_cpu_type()) {
484 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
485 	case CPU_R4600:
486 	case CPU_R4700:
487 	case CPU_R5000:
488 	case CPU_NEVADA:
489 		uasm_i_nop(p);
490 		uasm_i_tlbp(p);
491 		break;
492 
493 	default:
494 		uasm_i_tlbp(p);
495 		break;
496 	}
497 }
498 
499 /*
500  * Write random or indexed TLB entry, and care about the hazards from
501  * the preceding mtc0 and for the following eret.
502  */
503 enum tlb_write_entry { tlb_random, tlb_indexed };
504 
505 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
506 				  struct uasm_reloc **r,
507 				  enum tlb_write_entry wmode)
508 {
509 	void(*tlbw)(u32 **) = NULL;
510 
511 	switch (wmode) {
512 	case tlb_random: tlbw = uasm_i_tlbwr; break;
513 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
514 	}
515 
516 	if (cpu_has_mips_r2_r6) {
517 		if (cpu_has_mips_r2_exec_hazard)
518 			uasm_i_ehb(p);
519 		tlbw(p);
520 		return;
521 	}
522 
523 	switch (current_cpu_type()) {
524 	case CPU_R4000PC:
525 	case CPU_R4000SC:
526 	case CPU_R4000MC:
527 	case CPU_R4400PC:
528 	case CPU_R4400SC:
529 	case CPU_R4400MC:
530 		/*
531 		 * This branch uses up a mtc0 hazard nop slot and saves
532 		 * two nops after the tlbw instruction.
533 		 */
534 		uasm_bgezl_hazard(p, r, hazard_instance);
535 		tlbw(p);
536 		uasm_bgezl_label(l, p, hazard_instance);
537 		hazard_instance++;
538 		uasm_i_nop(p);
539 		break;
540 
541 	case CPU_R4600:
542 	case CPU_R4700:
543 		uasm_i_nop(p);
544 		tlbw(p);
545 		uasm_i_nop(p);
546 		break;
547 
548 	case CPU_R5000:
549 	case CPU_NEVADA:
550 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
551 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
552 		tlbw(p);
553 		break;
554 
555 	case CPU_R4300:
556 	case CPU_5KC:
557 	case CPU_TX49XX:
558 	case CPU_PR4450:
559 	case CPU_XLR:
560 		uasm_i_nop(p);
561 		tlbw(p);
562 		break;
563 
564 	case CPU_R10000:
565 	case CPU_R12000:
566 	case CPU_R14000:
567 	case CPU_R16000:
568 	case CPU_4KC:
569 	case CPU_4KEC:
570 	case CPU_M14KC:
571 	case CPU_M14KEC:
572 	case CPU_SB1:
573 	case CPU_SB1A:
574 	case CPU_4KSC:
575 	case CPU_20KC:
576 	case CPU_25KF:
577 	case CPU_BMIPS32:
578 	case CPU_BMIPS3300:
579 	case CPU_BMIPS4350:
580 	case CPU_BMIPS4380:
581 	case CPU_BMIPS5000:
582 	case CPU_LOONGSON2:
583 	case CPU_LOONGSON3:
584 	case CPU_R5500:
585 		if (m4kc_tlbp_war())
586 			uasm_i_nop(p);
587 	case CPU_ALCHEMY:
588 		tlbw(p);
589 		break;
590 
591 	case CPU_RM7000:
592 		uasm_i_nop(p);
593 		uasm_i_nop(p);
594 		uasm_i_nop(p);
595 		uasm_i_nop(p);
596 		tlbw(p);
597 		break;
598 
599 	case CPU_VR4111:
600 	case CPU_VR4121:
601 	case CPU_VR4122:
602 	case CPU_VR4181:
603 	case CPU_VR4181A:
604 		uasm_i_nop(p);
605 		uasm_i_nop(p);
606 		tlbw(p);
607 		uasm_i_nop(p);
608 		uasm_i_nop(p);
609 		break;
610 
611 	case CPU_VR4131:
612 	case CPU_VR4133:
613 	case CPU_R5432:
614 		uasm_i_nop(p);
615 		uasm_i_nop(p);
616 		tlbw(p);
617 		break;
618 
619 	case CPU_JZRISC:
620 		tlbw(p);
621 		uasm_i_nop(p);
622 		break;
623 
624 	default:
625 		panic("No TLB refill handler yet (CPU type: %d)",
626 		      current_cpu_type());
627 		break;
628 	}
629 }
630 
631 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
632 							unsigned int reg)
633 {
634 	if (cpu_has_rixi && _PAGE_NO_EXEC) {
635 		if (fill_includes_sw_bits) {
636 			UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
637 		} else {
638 			UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
639 			UASM_i_ROTR(p, reg, reg,
640 				    ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
641 		}
642 	} else {
643 #ifdef CONFIG_PHYS_ADDR_T_64BIT
644 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
645 #else
646 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 #endif
648 	}
649 }
650 
651 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
652 
653 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
654 				   unsigned int tmp, enum label_id lid,
655 				   int restore_scratch)
656 {
657 	if (restore_scratch) {
658 		/* Reset default page size */
659 		if (PM_DEFAULT_MASK >> 16) {
660 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
661 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
662 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
663 			uasm_il_b(p, r, lid);
664 		} else if (PM_DEFAULT_MASK) {
665 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
666 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
667 			uasm_il_b(p, r, lid);
668 		} else {
669 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
670 			uasm_il_b(p, r, lid);
671 		}
672 		if (scratch_reg >= 0)
673 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
674 		else
675 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
676 	} else {
677 		/* Reset default page size */
678 		if (PM_DEFAULT_MASK >> 16) {
679 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
680 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
681 			uasm_il_b(p, r, lid);
682 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
683 		} else if (PM_DEFAULT_MASK) {
684 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
685 			uasm_il_b(p, r, lid);
686 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
687 		} else {
688 			uasm_il_b(p, r, lid);
689 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
690 		}
691 	}
692 }
693 
694 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
695 				       struct uasm_reloc **r,
696 				       unsigned int tmp,
697 				       enum tlb_write_entry wmode,
698 				       int restore_scratch)
699 {
700 	/* Set huge page tlb entry size */
701 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
702 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
703 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
704 
705 	build_tlb_write_entry(p, l, r, wmode);
706 
707 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
708 }
709 
710 /*
711  * Check if Huge PTE is present, if so then jump to LABEL.
712  */
713 static void
714 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
715 		  unsigned int pmd, int lid)
716 {
717 	UASM_i_LW(p, tmp, 0, pmd);
718 	if (use_bbit_insns()) {
719 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
720 	} else {
721 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
722 		uasm_il_bnez(p, r, tmp, lid);
723 	}
724 }
725 
726 static void build_huge_update_entries(u32 **p, unsigned int pte,
727 				      unsigned int tmp)
728 {
729 	int small_sequence;
730 
731 	/*
732 	 * A huge PTE describes an area the size of the
733 	 * configured huge page size. This is twice the
734 	 * of the large TLB entry size we intend to use.
735 	 * A TLB entry half the size of the configured
736 	 * huge page size is configured into entrylo0
737 	 * and entrylo1 to cover the contiguous huge PTE
738 	 * address space.
739 	 */
740 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
741 
742 	/* We can clobber tmp.	It isn't used after this.*/
743 	if (!small_sequence)
744 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
745 
746 	build_convert_pte_to_entrylo(p, pte);
747 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
748 	/* convert to entrylo1 */
749 	if (small_sequence)
750 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
751 	else
752 		UASM_i_ADDU(p, pte, pte, tmp);
753 
754 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
755 }
756 
757 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
758 				    struct uasm_label **l,
759 				    unsigned int pte,
760 				    unsigned int ptr)
761 {
762 #ifdef CONFIG_SMP
763 	UASM_i_SC(p, pte, 0, ptr);
764 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
765 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
766 #else
767 	UASM_i_SW(p, pte, 0, ptr);
768 #endif
769 	build_huge_update_entries(p, pte, ptr);
770 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
771 }
772 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
773 
774 #ifdef CONFIG_64BIT
775 /*
776  * TMP and PTR are scratch.
777  * TMP will be clobbered, PTR will hold the pmd entry.
778  */
779 static void
780 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
781 		 unsigned int tmp, unsigned int ptr)
782 {
783 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
784 	long pgdc = (long)pgd_current;
785 #endif
786 	/*
787 	 * The vmalloc handling is not in the hotpath.
788 	 */
789 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
790 
791 	if (check_for_high_segbits) {
792 		/*
793 		 * The kernel currently implicitely assumes that the
794 		 * MIPS SEGBITS parameter for the processor is
795 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
796 		 * allocate virtual addresses outside the maximum
797 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
798 		 * that doesn't prevent user code from accessing the
799 		 * higher xuseg addresses.  Here, we make sure that
800 		 * everything but the lower xuseg addresses goes down
801 		 * the module_alloc/vmalloc path.
802 		 */
803 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
804 		uasm_il_bnez(p, r, ptr, label_vmalloc);
805 	} else {
806 		uasm_il_bltz(p, r, tmp, label_vmalloc);
807 	}
808 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
809 
810 	if (pgd_reg != -1) {
811 		/* pgd is in pgd_reg */
812 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
813 	} else {
814 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
815 		/*
816 		 * &pgd << 11 stored in CONTEXT [23..63].
817 		 */
818 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
819 
820 		/* Clear lower 23 bits of context. */
821 		uasm_i_dins(p, ptr, 0, 0, 23);
822 
823 		/* 1 0	1 0 1  << 6  xkphys cached */
824 		uasm_i_ori(p, ptr, ptr, 0x540);
825 		uasm_i_drotr(p, ptr, ptr, 11);
826 #elif defined(CONFIG_SMP)
827 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
828 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
829 		UASM_i_LA_mostly(p, tmp, pgdc);
830 		uasm_i_daddu(p, ptr, ptr, tmp);
831 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
832 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
833 #else
834 		UASM_i_LA_mostly(p, ptr, pgdc);
835 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
836 #endif
837 	}
838 
839 	uasm_l_vmalloc_done(l, *p);
840 
841 	/* get pgd offset in bytes */
842 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
843 
844 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
845 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
846 #ifndef __PAGETABLE_PMD_FOLDED
847 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
848 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
849 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
850 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
851 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
852 #endif
853 }
854 
855 /*
856  * BVADDR is the faulting address, PTR is scratch.
857  * PTR will hold the pgd for vmalloc.
858  */
859 static void
860 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
861 			unsigned int bvaddr, unsigned int ptr,
862 			enum vmalloc64_mode mode)
863 {
864 	long swpd = (long)swapper_pg_dir;
865 	int single_insn_swpd;
866 	int did_vmalloc_branch = 0;
867 
868 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
869 
870 	uasm_l_vmalloc(l, *p);
871 
872 	if (mode != not_refill && check_for_high_segbits) {
873 		if (single_insn_swpd) {
874 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
875 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
876 			did_vmalloc_branch = 1;
877 			/* fall through */
878 		} else {
879 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
880 		}
881 	}
882 	if (!did_vmalloc_branch) {
883 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
884 			uasm_il_b(p, r, label_vmalloc_done);
885 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
886 		} else {
887 			UASM_i_LA_mostly(p, ptr, swpd);
888 			uasm_il_b(p, r, label_vmalloc_done);
889 			if (uasm_in_compat_space_p(swpd))
890 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
891 			else
892 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
893 		}
894 	}
895 	if (mode != not_refill && check_for_high_segbits) {
896 		uasm_l_large_segbits_fault(l, *p);
897 		/*
898 		 * We get here if we are an xsseg address, or if we are
899 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
900 		 *
901 		 * Ignoring xsseg (assume disabled so would generate
902 		 * (address errors?), the only remaining possibility
903 		 * is the upper xuseg addresses.  On processors with
904 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
905 		 * addresses would have taken an address error. We try
906 		 * to mimic that here by taking a load/istream page
907 		 * fault.
908 		 */
909 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
910 		uasm_i_jr(p, ptr);
911 
912 		if (mode == refill_scratch) {
913 			if (scratch_reg >= 0)
914 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
915 			else
916 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
917 		} else {
918 			uasm_i_nop(p);
919 		}
920 	}
921 }
922 
923 #else /* !CONFIG_64BIT */
924 
925 /*
926  * TMP and PTR are scratch.
927  * TMP will be clobbered, PTR will hold the pgd entry.
928  */
929 static void __maybe_unused
930 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
931 {
932 	if (pgd_reg != -1) {
933 		/* pgd is in pgd_reg */
934 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
935 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
936 	} else {
937 		long pgdc = (long)pgd_current;
938 
939 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
940 #ifdef CONFIG_SMP
941 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
942 		UASM_i_LA_mostly(p, tmp, pgdc);
943 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
944 		uasm_i_addu(p, ptr, tmp, ptr);
945 #else
946 		UASM_i_LA_mostly(p, ptr, pgdc);
947 #endif
948 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
949 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
950 	}
951 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
952 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
953 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
954 }
955 
956 #endif /* !CONFIG_64BIT */
957 
958 static void build_adjust_context(u32 **p, unsigned int ctx)
959 {
960 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
961 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
962 
963 	switch (current_cpu_type()) {
964 	case CPU_VR41XX:
965 	case CPU_VR4111:
966 	case CPU_VR4121:
967 	case CPU_VR4122:
968 	case CPU_VR4131:
969 	case CPU_VR4181:
970 	case CPU_VR4181A:
971 	case CPU_VR4133:
972 		shift += 2;
973 		break;
974 
975 	default:
976 		break;
977 	}
978 
979 	if (shift)
980 		UASM_i_SRL(p, ctx, ctx, shift);
981 	uasm_i_andi(p, ctx, ctx, mask);
982 }
983 
984 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
985 {
986 	/*
987 	 * Bug workaround for the Nevada. It seems as if under certain
988 	 * circumstances the move from cp0_context might produce a
989 	 * bogus result when the mfc0 instruction and its consumer are
990 	 * in a different cacheline or a load instruction, probably any
991 	 * memory reference, is between them.
992 	 */
993 	switch (current_cpu_type()) {
994 	case CPU_NEVADA:
995 		UASM_i_LW(p, ptr, 0, ptr);
996 		GET_CONTEXT(p, tmp); /* get context reg */
997 		break;
998 
999 	default:
1000 		GET_CONTEXT(p, tmp); /* get context reg */
1001 		UASM_i_LW(p, ptr, 0, ptr);
1002 		break;
1003 	}
1004 
1005 	build_adjust_context(p, tmp);
1006 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1007 }
1008 
1009 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1010 {
1011 	/*
1012 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1013 	 * Kernel is a special case. Only a few CPUs use it.
1014 	 */
1015 	if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) {
1016 		int pte_off_even = sizeof(pte_t) / 2;
1017 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1018 #ifdef CONFIG_XPA
1019 		const int scratch = 1; /* Our extra working register */
1020 
1021 		uasm_i_addu(p, scratch, 0, ptep);
1022 #endif
1023 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1024 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1025 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1026 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1027 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1028 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1029 #ifdef CONFIG_XPA
1030 		uasm_i_lw(p, tmp, 0, scratch);
1031 		uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1032 		uasm_i_lui(p, scratch, 0xff);
1033 		uasm_i_ori(p, scratch, scratch, 0xffff);
1034 		uasm_i_and(p, tmp, scratch, tmp);
1035 		uasm_i_and(p, ptep, scratch, ptep);
1036 		uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1037 		uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1038 #endif
1039 		return;
1040 	}
1041 
1042 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1043 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1044 	if (r45k_bvahwbug())
1045 		build_tlb_probe_entry(p);
1046 	build_convert_pte_to_entrylo(p, tmp);
1047 	if (r4k_250MHZhwbug())
1048 		UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1049 	UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1050 	build_convert_pte_to_entrylo(p, ptep);
1051 	if (r45k_bvahwbug())
1052 		uasm_i_mfc0(p, tmp, C0_INDEX);
1053 	if (r4k_250MHZhwbug())
1054 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1055 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1056 }
1057 
1058 struct mips_huge_tlb_info {
1059 	int huge_pte;
1060 	int restore_scratch;
1061 	bool need_reload_pte;
1062 };
1063 
1064 static struct mips_huge_tlb_info
1065 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1066 			       struct uasm_reloc **r, unsigned int tmp,
1067 			       unsigned int ptr, int c0_scratch_reg)
1068 {
1069 	struct mips_huge_tlb_info rv;
1070 	unsigned int even, odd;
1071 	int vmalloc_branch_delay_filled = 0;
1072 	const int scratch = 1; /* Our extra working register */
1073 
1074 	rv.huge_pte = scratch;
1075 	rv.restore_scratch = 0;
1076 	rv.need_reload_pte = false;
1077 
1078 	if (check_for_high_segbits) {
1079 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1080 
1081 		if (pgd_reg != -1)
1082 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1083 		else
1084 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1085 
1086 		if (c0_scratch_reg >= 0)
1087 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1088 		else
1089 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1090 
1091 		uasm_i_dsrl_safe(p, scratch, tmp,
1092 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1093 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1094 
1095 		if (pgd_reg == -1) {
1096 			vmalloc_branch_delay_filled = 1;
1097 			/* Clear lower 23 bits of context. */
1098 			uasm_i_dins(p, ptr, 0, 0, 23);
1099 		}
1100 	} else {
1101 		if (pgd_reg != -1)
1102 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1103 		else
1104 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1105 
1106 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1107 
1108 		if (c0_scratch_reg >= 0)
1109 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1110 		else
1111 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1112 
1113 		if (pgd_reg == -1)
1114 			/* Clear lower 23 bits of context. */
1115 			uasm_i_dins(p, ptr, 0, 0, 23);
1116 
1117 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1118 	}
1119 
1120 	if (pgd_reg == -1) {
1121 		vmalloc_branch_delay_filled = 1;
1122 		/* 1 0	1 0 1  << 6  xkphys cached */
1123 		uasm_i_ori(p, ptr, ptr, 0x540);
1124 		uasm_i_drotr(p, ptr, ptr, 11);
1125 	}
1126 
1127 #ifdef __PAGETABLE_PMD_FOLDED
1128 #define LOC_PTEP scratch
1129 #else
1130 #define LOC_PTEP ptr
1131 #endif
1132 
1133 	if (!vmalloc_branch_delay_filled)
1134 		/* get pgd offset in bytes */
1135 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1136 
1137 	uasm_l_vmalloc_done(l, *p);
1138 
1139 	/*
1140 	 *			   tmp		ptr
1141 	 * fall-through case =	 badvaddr  *pgd_current
1142 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1143 	 */
1144 
1145 	if (vmalloc_branch_delay_filled)
1146 		/* get pgd offset in bytes */
1147 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1148 
1149 #ifdef __PAGETABLE_PMD_FOLDED
1150 	GET_CONTEXT(p, tmp); /* get context reg */
1151 #endif
1152 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1153 
1154 	if (use_lwx_insns()) {
1155 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1156 	} else {
1157 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1158 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1159 	}
1160 
1161 #ifndef __PAGETABLE_PMD_FOLDED
1162 	/* get pmd offset in bytes */
1163 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1164 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1165 	GET_CONTEXT(p, tmp); /* get context reg */
1166 
1167 	if (use_lwx_insns()) {
1168 		UASM_i_LWX(p, scratch, scratch, ptr);
1169 	} else {
1170 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1171 		UASM_i_LW(p, scratch, 0, ptr);
1172 	}
1173 #endif
1174 	/* Adjust the context during the load latency. */
1175 	build_adjust_context(p, tmp);
1176 
1177 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1178 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1179 	/*
1180 	 * The in the LWX case we don't want to do the load in the
1181 	 * delay slot.	It cannot issue in the same cycle and may be
1182 	 * speculative and unneeded.
1183 	 */
1184 	if (use_lwx_insns())
1185 		uasm_i_nop(p);
1186 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1187 
1188 
1189 	/* build_update_entries */
1190 	if (use_lwx_insns()) {
1191 		even = ptr;
1192 		odd = tmp;
1193 		UASM_i_LWX(p, even, scratch, tmp);
1194 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1195 		UASM_i_LWX(p, odd, scratch, tmp);
1196 	} else {
1197 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1198 		even = tmp;
1199 		odd = ptr;
1200 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1201 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1202 	}
1203 	if (cpu_has_rixi) {
1204 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1205 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1206 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1207 	} else {
1208 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1209 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1211 	}
1212 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1213 
1214 	if (c0_scratch_reg >= 0) {
1215 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1216 		build_tlb_write_entry(p, l, r, tlb_random);
1217 		uasm_l_leave(l, *p);
1218 		rv.restore_scratch = 1;
1219 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1220 		build_tlb_write_entry(p, l, r, tlb_random);
1221 		uasm_l_leave(l, *p);
1222 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1223 	} else {
1224 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1225 		build_tlb_write_entry(p, l, r, tlb_random);
1226 		uasm_l_leave(l, *p);
1227 		rv.restore_scratch = 1;
1228 	}
1229 
1230 	uasm_i_eret(p); /* return from trap */
1231 
1232 	return rv;
1233 }
1234 
1235 /*
1236  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1237  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1238  * slots before the XTLB refill exception handler which belong to the
1239  * unused TLB refill exception.
1240  */
1241 #define MIPS64_REFILL_INSNS 32
1242 
1243 static void build_r4000_tlb_refill_handler(void)
1244 {
1245 	u32 *p = tlb_handler;
1246 	struct uasm_label *l = labels;
1247 	struct uasm_reloc *r = relocs;
1248 	u32 *f;
1249 	unsigned int final_len;
1250 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1251 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1252 
1253 	memset(tlb_handler, 0, sizeof(tlb_handler));
1254 	memset(labels, 0, sizeof(labels));
1255 	memset(relocs, 0, sizeof(relocs));
1256 	memset(final_handler, 0, sizeof(final_handler));
1257 
1258 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1259 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1260 							  scratch_reg);
1261 		vmalloc_mode = refill_scratch;
1262 	} else {
1263 		htlb_info.huge_pte = K0;
1264 		htlb_info.restore_scratch = 0;
1265 		htlb_info.need_reload_pte = true;
1266 		vmalloc_mode = refill_noscratch;
1267 		/*
1268 		 * create the plain linear handler
1269 		 */
1270 		if (bcm1250_m3_war()) {
1271 			unsigned int segbits = 44;
1272 
1273 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1274 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1275 			uasm_i_xor(&p, K0, K0, K1);
1276 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1277 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1278 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1279 			uasm_i_or(&p, K0, K0, K1);
1280 			uasm_il_bnez(&p, &r, K0, label_leave);
1281 			/* No need for uasm_i_nop */
1282 		}
1283 
1284 #ifdef CONFIG_64BIT
1285 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1286 #else
1287 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1288 #endif
1289 
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1292 #endif
1293 
1294 		build_get_ptep(&p, K0, K1);
1295 		build_update_entries(&p, K0, K1);
1296 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1297 		uasm_l_leave(&l, p);
1298 		uasm_i_eret(&p); /* return from trap */
1299 	}
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 	uasm_l_tlb_huge_update(&l, p);
1302 	if (htlb_info.need_reload_pte)
1303 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1304 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1305 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1306 				   htlb_info.restore_scratch);
1307 #endif
1308 
1309 #ifdef CONFIG_64BIT
1310 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1311 #endif
1312 
1313 	/*
1314 	 * Overflow check: For the 64bit handler, we need at least one
1315 	 * free instruction slot for the wrap-around branch. In worst
1316 	 * case, if the intended insertion point is a delay slot, we
1317 	 * need three, with the second nop'ed and the third being
1318 	 * unused.
1319 	 */
1320 	switch (boot_cpu_type()) {
1321 	default:
1322 		if (sizeof(long) == 4) {
1323 	case CPU_LOONGSON2:
1324 		/* Loongson2 ebase is different than r4k, we have more space */
1325 			if ((p - tlb_handler) > 64)
1326 				panic("TLB refill handler space exceeded");
1327 			/*
1328 			 * Now fold the handler in the TLB refill handler space.
1329 			 */
1330 			f = final_handler;
1331 			/* Simplest case, just copy the handler. */
1332 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1333 			final_len = p - tlb_handler;
1334 			break;
1335 		} else {
1336 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1337 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1338 				&& uasm_insn_has_bdelay(relocs,
1339 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1340 				panic("TLB refill handler space exceeded");
1341 			/*
1342 			 * Now fold the handler in the TLB refill handler space.
1343 			 */
1344 			f = final_handler + MIPS64_REFILL_INSNS;
1345 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1346 				/* Just copy the handler. */
1347 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348 				final_len = p - tlb_handler;
1349 			} else {
1350 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1351 				const enum label_id ls = label_tlb_huge_update;
1352 #else
1353 				const enum label_id ls = label_vmalloc;
1354 #endif
1355 				u32 *split;
1356 				int ov = 0;
1357 				int i;
1358 
1359 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1360 					;
1361 				BUG_ON(i == ARRAY_SIZE(labels));
1362 				split = labels[i].addr;
1363 
1364 				/*
1365 				 * See if we have overflown one way or the other.
1366 				 */
1367 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1368 				    split < p - MIPS64_REFILL_INSNS)
1369 					ov = 1;
1370 
1371 				if (ov) {
1372 					/*
1373 					 * Split two instructions before the end.  One
1374 					 * for the branch and one for the instruction
1375 					 * in the delay slot.
1376 					 */
1377 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1378 
1379 					/*
1380 					 * If the branch would fall in a delay slot,
1381 					 * we must back up an additional instruction
1382 					 * so that it is no longer in a delay slot.
1383 					 */
1384 					if (uasm_insn_has_bdelay(relocs, split - 1))
1385 						split--;
1386 				}
1387 				/* Copy first part of the handler. */
1388 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1389 				f += split - tlb_handler;
1390 
1391 				if (ov) {
1392 					/* Insert branch. */
1393 					uasm_l_split(&l, final_handler);
1394 					uasm_il_b(&f, &r, label_split);
1395 					if (uasm_insn_has_bdelay(relocs, split))
1396 						uasm_i_nop(&f);
1397 					else {
1398 						uasm_copy_handler(relocs, labels,
1399 								  split, split + 1, f);
1400 						uasm_move_labels(labels, f, f + 1, -1);
1401 						f++;
1402 						split++;
1403 					}
1404 				}
1405 
1406 				/* Copy the rest of the handler. */
1407 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1408 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1409 					    (p - split);
1410 			}
1411 		}
1412 		break;
1413 	}
1414 
1415 	uasm_resolve_relocs(relocs, labels);
1416 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1417 		 final_len);
1418 
1419 	memcpy((void *)ebase, final_handler, 0x100);
1420 	local_flush_icache_range(ebase, ebase + 0x100);
1421 
1422 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1423 }
1424 
1425 extern u32 handle_tlbl[], handle_tlbl_end[];
1426 extern u32 handle_tlbs[], handle_tlbs_end[];
1427 extern u32 handle_tlbm[], handle_tlbm_end[];
1428 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1429 extern u32 tlbmiss_handler_setup_pgd_end[];
1430 
1431 static void build_setup_pgd(void)
1432 {
1433 	const int a0 = 4;
1434 	const int __maybe_unused a1 = 5;
1435 	const int __maybe_unused a2 = 6;
1436 	u32 *p = tlbmiss_handler_setup_pgd_start;
1437 	const int tlbmiss_handler_setup_pgd_size =
1438 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1439 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1440 	long pgdc = (long)pgd_current;
1441 #endif
1442 
1443 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1444 					sizeof(tlbmiss_handler_setup_pgd[0]));
1445 	memset(labels, 0, sizeof(labels));
1446 	memset(relocs, 0, sizeof(relocs));
1447 	pgd_reg = allocate_kscratch();
1448 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1449 	if (pgd_reg == -1) {
1450 		struct uasm_label *l = labels;
1451 		struct uasm_reloc *r = relocs;
1452 
1453 		/* PGD << 11 in c0_Context */
1454 		/*
1455 		 * If it is a ckseg0 address, convert to a physical
1456 		 * address.  Shifting right by 29 and adding 4 will
1457 		 * result in zero for these addresses.
1458 		 *
1459 		 */
1460 		UASM_i_SRA(&p, a1, a0, 29);
1461 		UASM_i_ADDIU(&p, a1, a1, 4);
1462 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1463 		uasm_i_nop(&p);
1464 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1465 		uasm_l_tlbl_goaround1(&l, p);
1466 		UASM_i_SLL(&p, a0, a0, 11);
1467 		uasm_i_jr(&p, 31);
1468 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1469 	} else {
1470 		/* PGD in c0_KScratch */
1471 		uasm_i_jr(&p, 31);
1472 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1473 	}
1474 #else
1475 #ifdef CONFIG_SMP
1476 	/* Save PGD to pgd_current[smp_processor_id()] */
1477 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1478 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1479 	UASM_i_LA_mostly(&p, a2, pgdc);
1480 	UASM_i_ADDU(&p, a2, a2, a1);
1481 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1482 #else
1483 	UASM_i_LA_mostly(&p, a2, pgdc);
1484 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1485 #endif /* SMP */
1486 	uasm_i_jr(&p, 31);
1487 
1488 	/* if pgd_reg is allocated, save PGD also to scratch register */
1489 	if (pgd_reg != -1)
1490 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1491 	else
1492 		uasm_i_nop(&p);
1493 #endif
1494 	if (p >= tlbmiss_handler_setup_pgd_end)
1495 		panic("tlbmiss_handler_setup_pgd space exceeded");
1496 
1497 	uasm_resolve_relocs(relocs, labels);
1498 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1499 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1500 
1501 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1502 					tlbmiss_handler_setup_pgd_size);
1503 }
1504 
1505 static void
1506 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1507 {
1508 #ifdef CONFIG_SMP
1509 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1510 	if (cpu_has_64bits)
1511 		uasm_i_lld(p, pte, 0, ptr);
1512 	else
1513 # endif
1514 		UASM_i_LL(p, pte, 0, ptr);
1515 #else
1516 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1517 	if (cpu_has_64bits)
1518 		uasm_i_ld(p, pte, 0, ptr);
1519 	else
1520 # endif
1521 		UASM_i_LW(p, pte, 0, ptr);
1522 #endif
1523 }
1524 
1525 static void
1526 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1527 	unsigned int mode)
1528 {
1529 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1530 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1531 
1532 	if (!cpu_has_64bits) {
1533 		const int scratch = 1; /* Our extra working register */
1534 
1535 		uasm_i_lui(p, scratch, (mode >> 16));
1536 		uasm_i_or(p, pte, pte, scratch);
1537 	} else
1538 #endif
1539 	uasm_i_ori(p, pte, pte, mode);
1540 #ifdef CONFIG_SMP
1541 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1542 	if (cpu_has_64bits)
1543 		uasm_i_scd(p, pte, 0, ptr);
1544 	else
1545 # endif
1546 		UASM_i_SC(p, pte, 0, ptr);
1547 
1548 	if (r10000_llsc_war())
1549 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1550 	else
1551 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1552 
1553 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1554 	if (!cpu_has_64bits) {
1555 		/* no uasm_i_nop needed */
1556 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1557 		uasm_i_ori(p, pte, pte, hwmode);
1558 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1559 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1560 		/* no uasm_i_nop needed */
1561 		uasm_i_lw(p, pte, 0, ptr);
1562 	} else
1563 		uasm_i_nop(p);
1564 # else
1565 	uasm_i_nop(p);
1566 # endif
1567 #else
1568 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1569 	if (cpu_has_64bits)
1570 		uasm_i_sd(p, pte, 0, ptr);
1571 	else
1572 # endif
1573 		UASM_i_SW(p, pte, 0, ptr);
1574 
1575 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1576 	if (!cpu_has_64bits) {
1577 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1578 		uasm_i_ori(p, pte, pte, hwmode);
1579 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1580 		uasm_i_lw(p, pte, 0, ptr);
1581 	}
1582 # endif
1583 #endif
1584 }
1585 
1586 /*
1587  * Check if PTE is present, if not then jump to LABEL. PTR points to
1588  * the page table where this PTE is located, PTE will be re-loaded
1589  * with it's original value.
1590  */
1591 static void
1592 build_pte_present(u32 **p, struct uasm_reloc **r,
1593 		  int pte, int ptr, int scratch, enum label_id lid)
1594 {
1595 	int t = scratch >= 0 ? scratch : pte;
1596 	int cur = pte;
1597 
1598 	if (cpu_has_rixi) {
1599 		if (use_bbit_insns()) {
1600 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1601 			uasm_i_nop(p);
1602 		} else {
1603 			if (_PAGE_PRESENT_SHIFT) {
1604 				uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1605 				cur = t;
1606 			}
1607 			uasm_i_andi(p, t, cur, 1);
1608 			uasm_il_beqz(p, r, t, lid);
1609 			if (pte == t)
1610 				/* You lose the SMP race :-(*/
1611 				iPTE_LW(p, pte, ptr);
1612 		}
1613 	} else {
1614 		if (_PAGE_PRESENT_SHIFT) {
1615 			uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1616 			cur = t;
1617 		}
1618 		uasm_i_andi(p, t, cur,
1619 			(_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1620 		uasm_i_xori(p, t, t,
1621 			(_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT);
1622 		uasm_il_bnez(p, r, t, lid);
1623 		if (pte == t)
1624 			/* You lose the SMP race :-(*/
1625 			iPTE_LW(p, pte, ptr);
1626 	}
1627 }
1628 
1629 /* Make PTE valid, store result in PTR. */
1630 static void
1631 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1632 		 unsigned int ptr)
1633 {
1634 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1635 
1636 	iPTE_SW(p, r, pte, ptr, mode);
1637 }
1638 
1639 /*
1640  * Check if PTE can be written to, if not branch to LABEL. Regardless
1641  * restore PTE with value from PTR when done.
1642  */
1643 static void
1644 build_pte_writable(u32 **p, struct uasm_reloc **r,
1645 		   unsigned int pte, unsigned int ptr, int scratch,
1646 		   enum label_id lid)
1647 {
1648 	int t = scratch >= 0 ? scratch : pte;
1649 	int cur = pte;
1650 
1651 	if (_PAGE_PRESENT_SHIFT) {
1652 		uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT);
1653 		cur = t;
1654 	}
1655 	uasm_i_andi(p, t, cur,
1656 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1657 	uasm_i_xori(p, t, t,
1658 		    (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT);
1659 	uasm_il_bnez(p, r, t, lid);
1660 	if (pte == t)
1661 		/* You lose the SMP race :-(*/
1662 		iPTE_LW(p, pte, ptr);
1663 	else
1664 		uasm_i_nop(p);
1665 }
1666 
1667 /* Make PTE writable, update software status bits as well, then store
1668  * at PTR.
1669  */
1670 static void
1671 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1672 		 unsigned int ptr)
1673 {
1674 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1675 			     | _PAGE_DIRTY);
1676 
1677 	iPTE_SW(p, r, pte, ptr, mode);
1678 }
1679 
1680 /*
1681  * Check if PTE can be modified, if not branch to LABEL. Regardless
1682  * restore PTE with value from PTR when done.
1683  */
1684 static void
1685 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1686 		     unsigned int pte, unsigned int ptr, int scratch,
1687 		     enum label_id lid)
1688 {
1689 	if (use_bbit_insns()) {
1690 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1691 		uasm_i_nop(p);
1692 	} else {
1693 		int t = scratch >= 0 ? scratch : pte;
1694 		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1695 		uasm_i_andi(p, t, t, 1);
1696 		uasm_il_beqz(p, r, t, lid);
1697 		if (pte == t)
1698 			/* You lose the SMP race :-(*/
1699 			iPTE_LW(p, pte, ptr);
1700 	}
1701 }
1702 
1703 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1704 
1705 
1706 /*
1707  * R3000 style TLB load/store/modify handlers.
1708  */
1709 
1710 /*
1711  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1712  * Then it returns.
1713  */
1714 static void
1715 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1716 {
1717 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1719 	uasm_i_tlbwi(p);
1720 	uasm_i_jr(p, tmp);
1721 	uasm_i_rfe(p); /* branch delay */
1722 }
1723 
1724 /*
1725  * This places the pte into ENTRYLO0 and writes it with tlbwi
1726  * or tlbwr as appropriate.  This is because the index register
1727  * may have the probe fail bit set as a result of a trap on a
1728  * kseg2 access, i.e. without refill.  Then it returns.
1729  */
1730 static void
1731 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1732 			     struct uasm_reloc **r, unsigned int pte,
1733 			     unsigned int tmp)
1734 {
1735 	uasm_i_mfc0(p, tmp, C0_INDEX);
1736 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1737 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1738 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1739 	uasm_i_tlbwi(p); /* cp0 delay */
1740 	uasm_i_jr(p, tmp);
1741 	uasm_i_rfe(p); /* branch delay */
1742 	uasm_l_r3000_write_probe_fail(l, *p);
1743 	uasm_i_tlbwr(p); /* cp0 delay */
1744 	uasm_i_jr(p, tmp);
1745 	uasm_i_rfe(p); /* branch delay */
1746 }
1747 
1748 static void
1749 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1750 				   unsigned int ptr)
1751 {
1752 	long pgdc = (long)pgd_current;
1753 
1754 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1755 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1756 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1757 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1758 	uasm_i_sll(p, pte, pte, 2);
1759 	uasm_i_addu(p, ptr, ptr, pte);
1760 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1761 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1762 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1763 	uasm_i_addu(p, ptr, ptr, pte);
1764 	uasm_i_lw(p, pte, 0, ptr);
1765 	uasm_i_tlbp(p); /* load delay */
1766 }
1767 
1768 static void build_r3000_tlb_load_handler(void)
1769 {
1770 	u32 *p = handle_tlbl;
1771 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1772 	struct uasm_label *l = labels;
1773 	struct uasm_reloc *r = relocs;
1774 
1775 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1776 	memset(labels, 0, sizeof(labels));
1777 	memset(relocs, 0, sizeof(relocs));
1778 
1779 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1780 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1781 	uasm_i_nop(&p); /* load delay */
1782 	build_make_valid(&p, &r, K0, K1);
1783 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1784 
1785 	uasm_l_nopage_tlbl(&l, p);
1786 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1787 	uasm_i_nop(&p);
1788 
1789 	if (p >= handle_tlbl_end)
1790 		panic("TLB load handler fastpath space exceeded");
1791 
1792 	uasm_resolve_relocs(relocs, labels);
1793 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1794 		 (unsigned int)(p - handle_tlbl));
1795 
1796 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1797 }
1798 
1799 static void build_r3000_tlb_store_handler(void)
1800 {
1801 	u32 *p = handle_tlbs;
1802 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1803 	struct uasm_label *l = labels;
1804 	struct uasm_reloc *r = relocs;
1805 
1806 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1807 	memset(labels, 0, sizeof(labels));
1808 	memset(relocs, 0, sizeof(relocs));
1809 
1810 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1811 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1812 	uasm_i_nop(&p); /* load delay */
1813 	build_make_write(&p, &r, K0, K1);
1814 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1815 
1816 	uasm_l_nopage_tlbs(&l, p);
1817 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1818 	uasm_i_nop(&p);
1819 
1820 	if (p >= handle_tlbs_end)
1821 		panic("TLB store handler fastpath space exceeded");
1822 
1823 	uasm_resolve_relocs(relocs, labels);
1824 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1825 		 (unsigned int)(p - handle_tlbs));
1826 
1827 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1828 }
1829 
1830 static void build_r3000_tlb_modify_handler(void)
1831 {
1832 	u32 *p = handle_tlbm;
1833 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1834 	struct uasm_label *l = labels;
1835 	struct uasm_reloc *r = relocs;
1836 
1837 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1838 	memset(labels, 0, sizeof(labels));
1839 	memset(relocs, 0, sizeof(relocs));
1840 
1841 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1842 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1843 	uasm_i_nop(&p); /* load delay */
1844 	build_make_write(&p, &r, K0, K1);
1845 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1846 
1847 	uasm_l_nopage_tlbm(&l, p);
1848 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1849 	uasm_i_nop(&p);
1850 
1851 	if (p >= handle_tlbm_end)
1852 		panic("TLB modify handler fastpath space exceeded");
1853 
1854 	uasm_resolve_relocs(relocs, labels);
1855 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1856 		 (unsigned int)(p - handle_tlbm));
1857 
1858 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1859 }
1860 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1861 
1862 /*
1863  * R4000 style TLB load/store/modify handlers.
1864  */
1865 static struct work_registers
1866 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1867 				   struct uasm_reloc **r)
1868 {
1869 	struct work_registers wr = build_get_work_registers(p);
1870 
1871 #ifdef CONFIG_64BIT
1872 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1873 #else
1874 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1875 #endif
1876 
1877 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1878 	/*
1879 	 * For huge tlb entries, pmd doesn't contain an address but
1880 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1881 	 * see if we need to jump to huge tlb processing.
1882 	 */
1883 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1884 #endif
1885 
1886 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1887 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1888 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1889 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1890 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1891 
1892 #ifdef CONFIG_SMP
1893 	uasm_l_smp_pgtable_change(l, *p);
1894 #endif
1895 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1896 	if (!m4kc_tlbp_war()) {
1897 		build_tlb_probe_entry(p);
1898 		if (cpu_has_htw) {
1899 			/* race condition happens, leaving */
1900 			uasm_i_ehb(p);
1901 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
1902 			uasm_il_bltz(p, r, wr.r3, label_leave);
1903 			uasm_i_nop(p);
1904 		}
1905 	}
1906 	return wr;
1907 }
1908 
1909 static void
1910 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1911 				   struct uasm_reloc **r, unsigned int tmp,
1912 				   unsigned int ptr)
1913 {
1914 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1915 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1916 	build_update_entries(p, tmp, ptr);
1917 	build_tlb_write_entry(p, l, r, tlb_indexed);
1918 	uasm_l_leave(l, *p);
1919 	build_restore_work_registers(p);
1920 	uasm_i_eret(p); /* return from trap */
1921 
1922 #ifdef CONFIG_64BIT
1923 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1924 #endif
1925 }
1926 
1927 static void build_r4000_tlb_load_handler(void)
1928 {
1929 	u32 *p = handle_tlbl;
1930 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1931 	struct uasm_label *l = labels;
1932 	struct uasm_reloc *r = relocs;
1933 	struct work_registers wr;
1934 
1935 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1936 	memset(labels, 0, sizeof(labels));
1937 	memset(relocs, 0, sizeof(relocs));
1938 
1939 	if (bcm1250_m3_war()) {
1940 		unsigned int segbits = 44;
1941 
1942 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1943 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1944 		uasm_i_xor(&p, K0, K0, K1);
1945 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1946 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1947 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1948 		uasm_i_or(&p, K0, K0, K1);
1949 		uasm_il_bnez(&p, &r, K0, label_leave);
1950 		/* No need for uasm_i_nop */
1951 	}
1952 
1953 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1954 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1955 	if (m4kc_tlbp_war())
1956 		build_tlb_probe_entry(&p);
1957 
1958 	if (cpu_has_rixi && !cpu_has_rixiex) {
1959 		/*
1960 		 * If the page is not _PAGE_VALID, RI or XI could not
1961 		 * have triggered it.  Skip the expensive test..
1962 		 */
1963 		if (use_bbit_insns()) {
1964 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1965 				      label_tlbl_goaround1);
1966 		} else {
1967 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1968 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1969 		}
1970 		uasm_i_nop(&p);
1971 
1972 		uasm_i_tlbr(&p);
1973 
1974 		switch (current_cpu_type()) {
1975 		default:
1976 			if (cpu_has_mips_r2_exec_hazard) {
1977 				uasm_i_ehb(&p);
1978 
1979 		case CPU_CAVIUM_OCTEON:
1980 		case CPU_CAVIUM_OCTEON_PLUS:
1981 		case CPU_CAVIUM_OCTEON2:
1982 				break;
1983 			}
1984 		}
1985 
1986 		/* Examine  entrylo 0 or 1 based on ptr. */
1987 		if (use_bbit_insns()) {
1988 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1989 		} else {
1990 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1991 			uasm_i_beqz(&p, wr.r3, 8);
1992 		}
1993 		/* load it in the delay slot*/
1994 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1995 		/* load it if ptr is odd */
1996 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1997 		/*
1998 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1999 		 * XI must have triggered it.
2000 		 */
2001 		if (use_bbit_insns()) {
2002 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2003 			uasm_i_nop(&p);
2004 			uasm_l_tlbl_goaround1(&l, p);
2005 		} else {
2006 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2007 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2008 			uasm_i_nop(&p);
2009 		}
2010 		uasm_l_tlbl_goaround1(&l, p);
2011 	}
2012 	build_make_valid(&p, &r, wr.r1, wr.r2);
2013 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014 
2015 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2016 	/*
2017 	 * This is the entry point when build_r4000_tlbchange_handler_head
2018 	 * spots a huge page.
2019 	 */
2020 	uasm_l_tlb_huge_update(&l, p);
2021 	iPTE_LW(&p, wr.r1, wr.r2);
2022 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2023 	build_tlb_probe_entry(&p);
2024 
2025 	if (cpu_has_rixi && !cpu_has_rixiex) {
2026 		/*
2027 		 * If the page is not _PAGE_VALID, RI or XI could not
2028 		 * have triggered it.  Skip the expensive test..
2029 		 */
2030 		if (use_bbit_insns()) {
2031 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2032 				      label_tlbl_goaround2);
2033 		} else {
2034 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2035 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2036 		}
2037 		uasm_i_nop(&p);
2038 
2039 		uasm_i_tlbr(&p);
2040 
2041 		switch (current_cpu_type()) {
2042 		default:
2043 			if (cpu_has_mips_r2_exec_hazard) {
2044 				uasm_i_ehb(&p);
2045 
2046 		case CPU_CAVIUM_OCTEON:
2047 		case CPU_CAVIUM_OCTEON_PLUS:
2048 		case CPU_CAVIUM_OCTEON2:
2049 				break;
2050 			}
2051 		}
2052 
2053 		/* Examine  entrylo 0 or 1 based on ptr. */
2054 		if (use_bbit_insns()) {
2055 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2056 		} else {
2057 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2058 			uasm_i_beqz(&p, wr.r3, 8);
2059 		}
2060 		/* load it in the delay slot*/
2061 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2062 		/* load it if ptr is odd */
2063 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2064 		/*
2065 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2066 		 * XI must have triggered it.
2067 		 */
2068 		if (use_bbit_insns()) {
2069 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2070 		} else {
2071 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2072 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2073 		}
2074 		if (PM_DEFAULT_MASK == 0)
2075 			uasm_i_nop(&p);
2076 		/*
2077 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2078 		 * it is restored in build_huge_tlb_write_entry.
2079 		 */
2080 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2081 
2082 		uasm_l_tlbl_goaround2(&l, p);
2083 	}
2084 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2085 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2086 #endif
2087 
2088 	uasm_l_nopage_tlbl(&l, p);
2089 	build_restore_work_registers(&p);
2090 #ifdef CONFIG_CPU_MICROMIPS
2091 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2092 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2093 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2094 		uasm_i_jr(&p, K0);
2095 	} else
2096 #endif
2097 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2098 	uasm_i_nop(&p);
2099 
2100 	if (p >= handle_tlbl_end)
2101 		panic("TLB load handler fastpath space exceeded");
2102 
2103 	uasm_resolve_relocs(relocs, labels);
2104 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2105 		 (unsigned int)(p - handle_tlbl));
2106 
2107 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2108 }
2109 
2110 static void build_r4000_tlb_store_handler(void)
2111 {
2112 	u32 *p = handle_tlbs;
2113 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2114 	struct uasm_label *l = labels;
2115 	struct uasm_reloc *r = relocs;
2116 	struct work_registers wr;
2117 
2118 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2119 	memset(labels, 0, sizeof(labels));
2120 	memset(relocs, 0, sizeof(relocs));
2121 
2122 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2123 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2124 	if (m4kc_tlbp_war())
2125 		build_tlb_probe_entry(&p);
2126 	build_make_write(&p, &r, wr.r1, wr.r2);
2127 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2128 
2129 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2130 	/*
2131 	 * This is the entry point when
2132 	 * build_r4000_tlbchange_handler_head spots a huge page.
2133 	 */
2134 	uasm_l_tlb_huge_update(&l, p);
2135 	iPTE_LW(&p, wr.r1, wr.r2);
2136 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2137 	build_tlb_probe_entry(&p);
2138 	uasm_i_ori(&p, wr.r1, wr.r1,
2139 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2140 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2141 #endif
2142 
2143 	uasm_l_nopage_tlbs(&l, p);
2144 	build_restore_work_registers(&p);
2145 #ifdef CONFIG_CPU_MICROMIPS
2146 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2147 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2148 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2149 		uasm_i_jr(&p, K0);
2150 	} else
2151 #endif
2152 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2153 	uasm_i_nop(&p);
2154 
2155 	if (p >= handle_tlbs_end)
2156 		panic("TLB store handler fastpath space exceeded");
2157 
2158 	uasm_resolve_relocs(relocs, labels);
2159 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2160 		 (unsigned int)(p - handle_tlbs));
2161 
2162 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2163 }
2164 
2165 static void build_r4000_tlb_modify_handler(void)
2166 {
2167 	u32 *p = handle_tlbm;
2168 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2169 	struct uasm_label *l = labels;
2170 	struct uasm_reloc *r = relocs;
2171 	struct work_registers wr;
2172 
2173 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2174 	memset(labels, 0, sizeof(labels));
2175 	memset(relocs, 0, sizeof(relocs));
2176 
2177 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2178 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2179 	if (m4kc_tlbp_war())
2180 		build_tlb_probe_entry(&p);
2181 	/* Present and writable bits set, set accessed and dirty bits. */
2182 	build_make_write(&p, &r, wr.r1, wr.r2);
2183 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2184 
2185 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2186 	/*
2187 	 * This is the entry point when
2188 	 * build_r4000_tlbchange_handler_head spots a huge page.
2189 	 */
2190 	uasm_l_tlb_huge_update(&l, p);
2191 	iPTE_LW(&p, wr.r1, wr.r2);
2192 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2193 	build_tlb_probe_entry(&p);
2194 	uasm_i_ori(&p, wr.r1, wr.r1,
2195 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2196 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2197 #endif
2198 
2199 	uasm_l_nopage_tlbm(&l, p);
2200 	build_restore_work_registers(&p);
2201 #ifdef CONFIG_CPU_MICROMIPS
2202 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2203 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2204 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2205 		uasm_i_jr(&p, K0);
2206 	} else
2207 #endif
2208 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2209 	uasm_i_nop(&p);
2210 
2211 	if (p >= handle_tlbm_end)
2212 		panic("TLB modify handler fastpath space exceeded");
2213 
2214 	uasm_resolve_relocs(relocs, labels);
2215 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2216 		 (unsigned int)(p - handle_tlbm));
2217 
2218 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2219 }
2220 
2221 static void flush_tlb_handlers(void)
2222 {
2223 	local_flush_icache_range((unsigned long)handle_tlbl,
2224 			   (unsigned long)handle_tlbl_end);
2225 	local_flush_icache_range((unsigned long)handle_tlbs,
2226 			   (unsigned long)handle_tlbs_end);
2227 	local_flush_icache_range((unsigned long)handle_tlbm,
2228 			   (unsigned long)handle_tlbm_end);
2229 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2230 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2231 }
2232 
2233 static void print_htw_config(void)
2234 {
2235 	unsigned long config;
2236 	unsigned int pwctl;
2237 	const int field = 2 * sizeof(unsigned long);
2238 
2239 	config = read_c0_pwfield();
2240 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2241 		field, config,
2242 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2243 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2244 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2245 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2246 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2247 
2248 	config = read_c0_pwsize();
2249 	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2250 		field, config,
2251 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2252 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2253 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2254 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2255 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2256 
2257 	pwctl = read_c0_pwctl();
2258 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2259 		pwctl,
2260 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2261 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2262 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2263 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2264 }
2265 
2266 static void config_htw_params(void)
2267 {
2268 	unsigned long pwfield, pwsize, ptei;
2269 	unsigned int config;
2270 
2271 	/*
2272 	 * We are using 2-level page tables, so we only need to
2273 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2274 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2275 	 * write values less than 0xc in these fields because the entire
2276 	 * write will be dropped. As a result of which, we must preserve
2277 	 * the original reset values and overwrite only what we really want.
2278 	 */
2279 
2280 	pwfield = read_c0_pwfield();
2281 	/* re-initialize the GDI field */
2282 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2283 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2284 	/* re-initialize the PTI field including the even/odd bit */
2285 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2286 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2287 	if (CONFIG_PGTABLE_LEVELS >= 3) {
2288 		pwfield &= ~MIPS_PWFIELD_MDI_MASK;
2289 		pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT;
2290 	}
2291 	/* Set the PTEI right shift */
2292 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2293 	pwfield |= ptei;
2294 	write_c0_pwfield(pwfield);
2295 	/* Check whether the PTEI value is supported */
2296 	back_to_back_c0_hazard();
2297 	pwfield = read_c0_pwfield();
2298 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2299 		!= ptei) {
2300 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2301 			ptei);
2302 		/*
2303 		 * Drop option to avoid HTW being enabled via another path
2304 		 * (eg htw_reset())
2305 		 */
2306 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2307 		return;
2308 	}
2309 
2310 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2311 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2312 	if (CONFIG_PGTABLE_LEVELS >= 3)
2313 		pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT;
2314 
2315 	/* If XPA has been enabled, PTEs are 64-bit in size. */
2316 	if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA))
2317 		pwsize |= 1;
2318 
2319 	write_c0_pwsize(pwsize);
2320 
2321 	/* Make sure everything is set before we enable the HTW */
2322 	back_to_back_c0_hazard();
2323 
2324 	/* Enable HTW and disable the rest of the pwctl fields */
2325 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2326 	write_c0_pwctl(config);
2327 	pr_info("Hardware Page Table Walker enabled\n");
2328 
2329 	print_htw_config();
2330 }
2331 
2332 static void config_xpa_params(void)
2333 {
2334 #ifdef CONFIG_XPA
2335 	unsigned int pagegrain;
2336 
2337 	if (mips_xpa_disabled) {
2338 		pr_info("Extended Physical Addressing (XPA) disabled\n");
2339 		return;
2340 	}
2341 
2342 	pagegrain = read_c0_pagegrain();
2343 	write_c0_pagegrain(pagegrain | PG_ELPA);
2344 	back_to_back_c0_hazard();
2345 	pagegrain = read_c0_pagegrain();
2346 
2347 	if (pagegrain & PG_ELPA)
2348 		pr_info("Extended Physical Addressing (XPA) enabled\n");
2349 	else
2350 		panic("Extended Physical Addressing (XPA) disabled");
2351 #endif
2352 }
2353 
2354 static void check_pabits(void)
2355 {
2356 	unsigned long entry;
2357 	unsigned pabits, fillbits;
2358 
2359 	if (!cpu_has_rixi || !_PAGE_NO_EXEC) {
2360 		/*
2361 		 * We'll only be making use of the fact that we can rotate bits
2362 		 * into the fill if the CPU supports RIXI, so don't bother
2363 		 * probing this for CPUs which don't.
2364 		 */
2365 		return;
2366 	}
2367 
2368 	write_c0_entrylo0(~0ul);
2369 	back_to_back_c0_hazard();
2370 	entry = read_c0_entrylo0();
2371 
2372 	/* clear all non-PFN bits */
2373 	entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1);
2374 	entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI);
2375 
2376 	/* find a lower bound on PABITS, and upper bound on fill bits */
2377 	pabits = fls_long(entry) + 6;
2378 	fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0);
2379 
2380 	/* minus the RI & XI bits */
2381 	fillbits -= min_t(unsigned, fillbits, 2);
2382 
2383 	if (fillbits >= ilog2(_PAGE_NO_EXEC))
2384 		fill_includes_sw_bits = true;
2385 
2386 	pr_debug("Entry* registers contain %u fill bits\n", fillbits);
2387 }
2388 
2389 void build_tlb_refill_handler(void)
2390 {
2391 	/*
2392 	 * The refill handler is generated per-CPU, multi-node systems
2393 	 * may have local storage for it. The other handlers are only
2394 	 * needed once.
2395 	 */
2396 	static int run_once = 0;
2397 
2398 	output_pgtable_bits_defines();
2399 	check_pabits();
2400 
2401 #ifdef CONFIG_64BIT
2402 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2403 #endif
2404 
2405 	switch (current_cpu_type()) {
2406 	case CPU_R2000:
2407 	case CPU_R3000:
2408 	case CPU_R3000A:
2409 	case CPU_R3081E:
2410 	case CPU_TX3912:
2411 	case CPU_TX3922:
2412 	case CPU_TX3927:
2413 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2414 		if (cpu_has_local_ebase)
2415 			build_r3000_tlb_refill_handler();
2416 		if (!run_once) {
2417 			if (!cpu_has_local_ebase)
2418 				build_r3000_tlb_refill_handler();
2419 			build_setup_pgd();
2420 			build_r3000_tlb_load_handler();
2421 			build_r3000_tlb_store_handler();
2422 			build_r3000_tlb_modify_handler();
2423 			flush_tlb_handlers();
2424 			run_once++;
2425 		}
2426 #else
2427 		panic("No R3000 TLB refill handler");
2428 #endif
2429 		break;
2430 
2431 	case CPU_R6000:
2432 	case CPU_R6000A:
2433 		panic("No R6000 TLB refill handler yet");
2434 		break;
2435 
2436 	case CPU_R8000:
2437 		panic("No R8000 TLB refill handler yet");
2438 		break;
2439 
2440 	default:
2441 		if (!run_once) {
2442 			scratch_reg = allocate_kscratch();
2443 			build_setup_pgd();
2444 			build_r4000_tlb_load_handler();
2445 			build_r4000_tlb_store_handler();
2446 			build_r4000_tlb_modify_handler();
2447 			if (!cpu_has_local_ebase)
2448 				build_r4000_tlb_refill_handler();
2449 			flush_tlb_handlers();
2450 			run_once++;
2451 		}
2452 		if (cpu_has_local_ebase)
2453 			build_r4000_tlb_refill_handler();
2454 		if (cpu_has_xpa)
2455 			config_xpa_params();
2456 		if (cpu_has_htw)
2457 			config_htw_params();
2458 	}
2459 }
2460