1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completly out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 #include <linux/types.h> 27 #include <linux/smp.h> 28 #include <linux/string.h> 29 #include <linux/cache.h> 30 31 #include <asm/cacheflush.h> 32 #include <asm/cpu-type.h> 33 #include <asm/pgtable.h> 34 #include <asm/war.h> 35 #include <asm/uasm.h> 36 #include <asm/setup.h> 37 38 static int mips_xpa_disabled; 39 40 static int __init xpa_disable(char *s) 41 { 42 mips_xpa_disabled = 1; 43 44 return 1; 45 } 46 47 __setup("noxpa", xpa_disable); 48 49 /* 50 * TLB load/store/modify handlers. 51 * 52 * Only the fastpath gets synthesized at runtime, the slowpath for 53 * do_page_fault remains normal asm. 54 */ 55 extern void tlb_do_page_fault_0(void); 56 extern void tlb_do_page_fault_1(void); 57 58 struct work_registers { 59 int r1; 60 int r2; 61 int r3; 62 }; 63 64 struct tlb_reg_save { 65 unsigned long a; 66 unsigned long b; 67 } ____cacheline_aligned_in_smp; 68 69 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 70 71 static inline int r45k_bvahwbug(void) 72 { 73 /* XXX: We should probe for the presence of this bug, but we don't. */ 74 return 0; 75 } 76 77 static inline int r4k_250MHZhwbug(void) 78 { 79 /* XXX: We should probe for the presence of this bug, but we don't. */ 80 return 0; 81 } 82 83 static inline int __maybe_unused bcm1250_m3_war(void) 84 { 85 return BCM1250_M3_WAR; 86 } 87 88 static inline int __maybe_unused r10000_llsc_war(void) 89 { 90 return R10000_LLSC_WAR; 91 } 92 93 static int use_bbit_insns(void) 94 { 95 switch (current_cpu_type()) { 96 case CPU_CAVIUM_OCTEON: 97 case CPU_CAVIUM_OCTEON_PLUS: 98 case CPU_CAVIUM_OCTEON2: 99 case CPU_CAVIUM_OCTEON3: 100 return 1; 101 default: 102 return 0; 103 } 104 } 105 106 static int use_lwx_insns(void) 107 { 108 switch (current_cpu_type()) { 109 case CPU_CAVIUM_OCTEON2: 110 case CPU_CAVIUM_OCTEON3: 111 return 1; 112 default: 113 return 0; 114 } 115 } 116 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 117 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 118 static bool scratchpad_available(void) 119 { 120 return true; 121 } 122 static int scratchpad_offset(int i) 123 { 124 /* 125 * CVMSEG starts at address -32768 and extends for 126 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 127 */ 128 i += 1; /* Kernel use starts at the top and works down. */ 129 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 130 } 131 #else 132 static bool scratchpad_available(void) 133 { 134 return false; 135 } 136 static int scratchpad_offset(int i) 137 { 138 BUG(); 139 /* Really unreachable, but evidently some GCC want this. */ 140 return 0; 141 } 142 #endif 143 /* 144 * Found by experiment: At least some revisions of the 4kc throw under 145 * some circumstances a machine check exception, triggered by invalid 146 * values in the index register. Delaying the tlbp instruction until 147 * after the next branch, plus adding an additional nop in front of 148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 149 * why; it's not an issue caused by the core RTL. 150 * 151 */ 152 static int m4kc_tlbp_war(void) 153 { 154 return (current_cpu_data.processor_id & 0xffff00) == 155 (PRID_COMP_MIPS | PRID_IMP_4KC); 156 } 157 158 /* Handle labels (which must be positive integers). */ 159 enum label_id { 160 label_second_part = 1, 161 label_leave, 162 label_vmalloc, 163 label_vmalloc_done, 164 label_tlbw_hazard_0, 165 label_split = label_tlbw_hazard_0 + 8, 166 label_tlbl_goaround1, 167 label_tlbl_goaround2, 168 label_nopage_tlbl, 169 label_nopage_tlbs, 170 label_nopage_tlbm, 171 label_smp_pgtable_change, 172 label_r3000_write_probe_fail, 173 label_large_segbits_fault, 174 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 175 label_tlb_huge_update, 176 #endif 177 }; 178 179 UASM_L_LA(_second_part) 180 UASM_L_LA(_leave) 181 UASM_L_LA(_vmalloc) 182 UASM_L_LA(_vmalloc_done) 183 /* _tlbw_hazard_x is handled differently. */ 184 UASM_L_LA(_split) 185 UASM_L_LA(_tlbl_goaround1) 186 UASM_L_LA(_tlbl_goaround2) 187 UASM_L_LA(_nopage_tlbl) 188 UASM_L_LA(_nopage_tlbs) 189 UASM_L_LA(_nopage_tlbm) 190 UASM_L_LA(_smp_pgtable_change) 191 UASM_L_LA(_r3000_write_probe_fail) 192 UASM_L_LA(_large_segbits_fault) 193 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 194 UASM_L_LA(_tlb_huge_update) 195 #endif 196 197 static int hazard_instance; 198 199 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 200 { 201 switch (instance) { 202 case 0 ... 7: 203 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 204 return; 205 default: 206 BUG(); 207 } 208 } 209 210 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 211 { 212 switch (instance) { 213 case 0 ... 7: 214 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 215 break; 216 default: 217 BUG(); 218 } 219 } 220 221 /* 222 * pgtable bits are assigned dynamically depending on processor feature 223 * and statically based on kernel configuration. This spits out the actual 224 * values the kernel is using. Required to make sense from disassembled 225 * TLB exception handlers. 226 */ 227 static void output_pgtable_bits_defines(void) 228 { 229 #define pr_define(fmt, ...) \ 230 pr_debug("#define " fmt, ##__VA_ARGS__) 231 232 pr_debug("#include <asm/asm.h>\n"); 233 pr_debug("#include <asm/regdef.h>\n"); 234 pr_debug("\n"); 235 236 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 237 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT); 238 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 239 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 240 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 241 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 242 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 243 #endif 244 #if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6) 245 if (cpu_has_rixi) { 246 #ifdef _PAGE_NO_EXEC_SHIFT 247 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 248 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 249 #endif 250 } 251 #endif 252 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 253 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 254 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 255 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 256 pr_debug("\n"); 257 } 258 259 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 260 { 261 int i; 262 263 pr_debug("LEAF(%s)\n", symbol); 264 265 pr_debug("\t.set push\n"); 266 pr_debug("\t.set noreorder\n"); 267 268 for (i = 0; i < count; i++) 269 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 270 271 pr_debug("\t.set\tpop\n"); 272 273 pr_debug("\tEND(%s)\n", symbol); 274 } 275 276 /* The only general purpose registers allowed in TLB handlers. */ 277 #define K0 26 278 #define K1 27 279 280 /* Some CP0 registers */ 281 #define C0_INDEX 0, 0 282 #define C0_ENTRYLO0 2, 0 283 #define C0_TCBIND 2, 2 284 #define C0_ENTRYLO1 3, 0 285 #define C0_CONTEXT 4, 0 286 #define C0_PAGEMASK 5, 0 287 #define C0_BADVADDR 8, 0 288 #define C0_ENTRYHI 10, 0 289 #define C0_EPC 14, 0 290 #define C0_XCONTEXT 20, 0 291 292 #ifdef CONFIG_64BIT 293 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 294 #else 295 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 296 #endif 297 298 /* The worst case length of the handler is around 18 instructions for 299 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 300 * Maximum space available is 32 instructions for R3000 and 64 301 * instructions for R4000. 302 * 303 * We deliberately chose a buffer size of 128, so we won't scribble 304 * over anything important on overflow before we panic. 305 */ 306 static u32 tlb_handler[128]; 307 308 /* simply assume worst case size for labels and relocs */ 309 static struct uasm_label labels[128]; 310 static struct uasm_reloc relocs[128]; 311 312 static int check_for_high_segbits; 313 static bool fill_includes_sw_bits; 314 315 static unsigned int kscratch_used_mask; 316 317 static inline int __maybe_unused c0_kscratch(void) 318 { 319 switch (current_cpu_type()) { 320 case CPU_XLP: 321 case CPU_XLR: 322 return 22; 323 default: 324 return 31; 325 } 326 } 327 328 static int allocate_kscratch(void) 329 { 330 int r; 331 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 332 333 r = ffs(a); 334 335 if (r == 0) 336 return -1; 337 338 r--; /* make it zero based */ 339 340 kscratch_used_mask |= (1 << r); 341 342 return r; 343 } 344 345 static int scratch_reg; 346 static int pgd_reg; 347 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 348 349 static struct work_registers build_get_work_registers(u32 **p) 350 { 351 struct work_registers r; 352 353 if (scratch_reg >= 0) { 354 /* Save in CPU local C0_KScratch? */ 355 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 356 r.r1 = K0; 357 r.r2 = K1; 358 r.r3 = 1; 359 return r; 360 } 361 362 if (num_possible_cpus() > 1) { 363 /* Get smp_processor_id */ 364 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 365 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 366 367 /* handler_reg_save index in K0 */ 368 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 369 370 UASM_i_LA(p, K1, (long)&handler_reg_save); 371 UASM_i_ADDU(p, K0, K0, K1); 372 } else { 373 UASM_i_LA(p, K0, (long)&handler_reg_save); 374 } 375 /* K0 now points to save area, save $1 and $2 */ 376 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 377 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 378 379 r.r1 = K1; 380 r.r2 = 1; 381 r.r3 = 2; 382 return r; 383 } 384 385 static void build_restore_work_registers(u32 **p) 386 { 387 if (scratch_reg >= 0) { 388 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 389 return; 390 } 391 /* K0 already points to save area, restore $1 and $2 */ 392 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 393 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 394 } 395 396 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 397 398 /* 399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 400 * we cannot do r3000 under these circumstances. 401 * 402 * Declare pgd_current here instead of including mmu_context.h to avoid type 403 * conflicts for tlbmiss_handler_setup_pgd 404 */ 405 extern unsigned long pgd_current[]; 406 407 /* 408 * The R3000 TLB handler is simple. 409 */ 410 static void build_r3000_tlb_refill_handler(void) 411 { 412 long pgdc = (long)pgd_current; 413 u32 *p; 414 415 memset(tlb_handler, 0, sizeof(tlb_handler)); 416 p = tlb_handler; 417 418 uasm_i_mfc0(&p, K0, C0_BADVADDR); 419 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 420 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 421 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 422 uasm_i_sll(&p, K0, K0, 2); 423 uasm_i_addu(&p, K1, K1, K0); 424 uasm_i_mfc0(&p, K0, C0_CONTEXT); 425 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 426 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 427 uasm_i_addu(&p, K1, K1, K0); 428 uasm_i_lw(&p, K0, 0, K1); 429 uasm_i_nop(&p); /* load delay */ 430 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 431 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 432 uasm_i_tlbwr(&p); /* cp0 delay */ 433 uasm_i_jr(&p, K1); 434 uasm_i_rfe(&p); /* branch delay */ 435 436 if (p > tlb_handler + 32) 437 panic("TLB refill handler space exceeded"); 438 439 pr_debug("Wrote TLB refill handler (%u instructions).\n", 440 (unsigned int)(p - tlb_handler)); 441 442 memcpy((void *)ebase, tlb_handler, 0x80); 443 local_flush_icache_range(ebase, ebase + 0x80); 444 445 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 446 } 447 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 448 449 /* 450 * The R4000 TLB handler is much more complicated. We have two 451 * consecutive handler areas with 32 instructions space each. 452 * Since they aren't used at the same time, we can overflow in the 453 * other one.To keep things simple, we first assume linear space, 454 * then we relocate it to the final handler layout as needed. 455 */ 456 static u32 final_handler[64]; 457 458 /* 459 * Hazards 460 * 461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 462 * 2. A timing hazard exists for the TLBP instruction. 463 * 464 * stalling_instruction 465 * TLBP 466 * 467 * The JTLB is being read for the TLBP throughout the stall generated by the 468 * previous instruction. This is not really correct as the stalling instruction 469 * can modify the address used to access the JTLB. The failure symptom is that 470 * the TLBP instruction will use an address created for the stalling instruction 471 * and not the address held in C0_ENHI and thus report the wrong results. 472 * 473 * The software work-around is to not allow the instruction preceding the TLBP 474 * to stall - make it an NOP or some other instruction guaranteed not to stall. 475 * 476 * Errata 2 will not be fixed. This errata is also on the R5000. 477 * 478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 479 */ 480 static void __maybe_unused build_tlb_probe_entry(u32 **p) 481 { 482 switch (current_cpu_type()) { 483 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 484 case CPU_R4600: 485 case CPU_R4700: 486 case CPU_R5000: 487 case CPU_NEVADA: 488 uasm_i_nop(p); 489 uasm_i_tlbp(p); 490 break; 491 492 default: 493 uasm_i_tlbp(p); 494 break; 495 } 496 } 497 498 /* 499 * Write random or indexed TLB entry, and care about the hazards from 500 * the preceding mtc0 and for the following eret. 501 */ 502 enum tlb_write_entry { tlb_random, tlb_indexed }; 503 504 static void build_tlb_write_entry(u32 **p, struct uasm_label **l, 505 struct uasm_reloc **r, 506 enum tlb_write_entry wmode) 507 { 508 void(*tlbw)(u32 **) = NULL; 509 510 switch (wmode) { 511 case tlb_random: tlbw = uasm_i_tlbwr; break; 512 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 513 } 514 515 if (cpu_has_mips_r2_r6) { 516 if (cpu_has_mips_r2_exec_hazard) 517 uasm_i_ehb(p); 518 tlbw(p); 519 return; 520 } 521 522 switch (current_cpu_type()) { 523 case CPU_R4000PC: 524 case CPU_R4000SC: 525 case CPU_R4000MC: 526 case CPU_R4400PC: 527 case CPU_R4400SC: 528 case CPU_R4400MC: 529 /* 530 * This branch uses up a mtc0 hazard nop slot and saves 531 * two nops after the tlbw instruction. 532 */ 533 uasm_bgezl_hazard(p, r, hazard_instance); 534 tlbw(p); 535 uasm_bgezl_label(l, p, hazard_instance); 536 hazard_instance++; 537 uasm_i_nop(p); 538 break; 539 540 case CPU_R4600: 541 case CPU_R4700: 542 uasm_i_nop(p); 543 tlbw(p); 544 uasm_i_nop(p); 545 break; 546 547 case CPU_R5000: 548 case CPU_NEVADA: 549 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 550 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 551 tlbw(p); 552 break; 553 554 case CPU_R4300: 555 case CPU_5KC: 556 case CPU_TX49XX: 557 case CPU_PR4450: 558 case CPU_XLR: 559 uasm_i_nop(p); 560 tlbw(p); 561 break; 562 563 case CPU_R10000: 564 case CPU_R12000: 565 case CPU_R14000: 566 case CPU_R16000: 567 case CPU_4KC: 568 case CPU_4KEC: 569 case CPU_M14KC: 570 case CPU_M14KEC: 571 case CPU_SB1: 572 case CPU_SB1A: 573 case CPU_4KSC: 574 case CPU_20KC: 575 case CPU_25KF: 576 case CPU_BMIPS32: 577 case CPU_BMIPS3300: 578 case CPU_BMIPS4350: 579 case CPU_BMIPS4380: 580 case CPU_BMIPS5000: 581 case CPU_LOONGSON2: 582 case CPU_LOONGSON3: 583 case CPU_R5500: 584 if (m4kc_tlbp_war()) 585 uasm_i_nop(p); 586 case CPU_ALCHEMY: 587 tlbw(p); 588 break; 589 590 case CPU_RM7000: 591 uasm_i_nop(p); 592 uasm_i_nop(p); 593 uasm_i_nop(p); 594 uasm_i_nop(p); 595 tlbw(p); 596 break; 597 598 case CPU_VR4111: 599 case CPU_VR4121: 600 case CPU_VR4122: 601 case CPU_VR4181: 602 case CPU_VR4181A: 603 uasm_i_nop(p); 604 uasm_i_nop(p); 605 tlbw(p); 606 uasm_i_nop(p); 607 uasm_i_nop(p); 608 break; 609 610 case CPU_VR4131: 611 case CPU_VR4133: 612 case CPU_R5432: 613 uasm_i_nop(p); 614 uasm_i_nop(p); 615 tlbw(p); 616 break; 617 618 case CPU_JZRISC: 619 tlbw(p); 620 uasm_i_nop(p); 621 break; 622 623 default: 624 panic("No TLB refill handler yet (CPU type: %d)", 625 current_cpu_type()); 626 break; 627 } 628 } 629 630 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 631 unsigned int reg) 632 { 633 if (cpu_has_rixi && _PAGE_NO_EXEC) { 634 if (fill_includes_sw_bits) { 635 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 636 } else { 637 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC)); 638 UASM_i_ROTR(p, reg, reg, 639 ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC)); 640 } 641 } else { 642 #ifdef CONFIG_PHYS_ADDR_T_64BIT 643 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 644 #else 645 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 646 #endif 647 } 648 } 649 650 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 651 652 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 653 unsigned int tmp, enum label_id lid, 654 int restore_scratch) 655 { 656 if (restore_scratch) { 657 /* Reset default page size */ 658 if (PM_DEFAULT_MASK >> 16) { 659 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 660 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 661 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 662 uasm_il_b(p, r, lid); 663 } else if (PM_DEFAULT_MASK) { 664 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 665 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 666 uasm_il_b(p, r, lid); 667 } else { 668 uasm_i_mtc0(p, 0, C0_PAGEMASK); 669 uasm_il_b(p, r, lid); 670 } 671 if (scratch_reg >= 0) 672 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 673 else 674 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 675 } else { 676 /* Reset default page size */ 677 if (PM_DEFAULT_MASK >> 16) { 678 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 679 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 680 uasm_il_b(p, r, lid); 681 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 682 } else if (PM_DEFAULT_MASK) { 683 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 684 uasm_il_b(p, r, lid); 685 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 686 } else { 687 uasm_il_b(p, r, lid); 688 uasm_i_mtc0(p, 0, C0_PAGEMASK); 689 } 690 } 691 } 692 693 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 694 struct uasm_reloc **r, 695 unsigned int tmp, 696 enum tlb_write_entry wmode, 697 int restore_scratch) 698 { 699 /* Set huge page tlb entry size */ 700 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 701 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 702 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 703 704 build_tlb_write_entry(p, l, r, wmode); 705 706 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 707 } 708 709 /* 710 * Check if Huge PTE is present, if so then jump to LABEL. 711 */ 712 static void 713 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 714 unsigned int pmd, int lid) 715 { 716 UASM_i_LW(p, tmp, 0, pmd); 717 if (use_bbit_insns()) { 718 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 719 } else { 720 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 721 uasm_il_bnez(p, r, tmp, lid); 722 } 723 } 724 725 static void build_huge_update_entries(u32 **p, unsigned int pte, 726 unsigned int tmp) 727 { 728 int small_sequence; 729 730 /* 731 * A huge PTE describes an area the size of the 732 * configured huge page size. This is twice the 733 * of the large TLB entry size we intend to use. 734 * A TLB entry half the size of the configured 735 * huge page size is configured into entrylo0 736 * and entrylo1 to cover the contiguous huge PTE 737 * address space. 738 */ 739 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 740 741 /* We can clobber tmp. It isn't used after this.*/ 742 if (!small_sequence) 743 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 744 745 build_convert_pte_to_entrylo(p, pte); 746 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 747 /* convert to entrylo1 */ 748 if (small_sequence) 749 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 750 else 751 UASM_i_ADDU(p, pte, pte, tmp); 752 753 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 754 } 755 756 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 757 struct uasm_label **l, 758 unsigned int pte, 759 unsigned int ptr) 760 { 761 #ifdef CONFIG_SMP 762 UASM_i_SC(p, pte, 0, ptr); 763 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 764 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 765 #else 766 UASM_i_SW(p, pte, 0, ptr); 767 #endif 768 build_huge_update_entries(p, pte, ptr); 769 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 770 } 771 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 772 773 #ifdef CONFIG_64BIT 774 /* 775 * TMP and PTR are scratch. 776 * TMP will be clobbered, PTR will hold the pmd entry. 777 */ 778 static void 779 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 780 unsigned int tmp, unsigned int ptr) 781 { 782 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 783 long pgdc = (long)pgd_current; 784 #endif 785 /* 786 * The vmalloc handling is not in the hotpath. 787 */ 788 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 789 790 if (check_for_high_segbits) { 791 /* 792 * The kernel currently implicitely assumes that the 793 * MIPS SEGBITS parameter for the processor is 794 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 795 * allocate virtual addresses outside the maximum 796 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 797 * that doesn't prevent user code from accessing the 798 * higher xuseg addresses. Here, we make sure that 799 * everything but the lower xuseg addresses goes down 800 * the module_alloc/vmalloc path. 801 */ 802 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 803 uasm_il_bnez(p, r, ptr, label_vmalloc); 804 } else { 805 uasm_il_bltz(p, r, tmp, label_vmalloc); 806 } 807 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 808 809 if (pgd_reg != -1) { 810 /* pgd is in pgd_reg */ 811 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 812 } else { 813 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) 814 /* 815 * &pgd << 11 stored in CONTEXT [23..63]. 816 */ 817 UASM_i_MFC0(p, ptr, C0_CONTEXT); 818 819 /* Clear lower 23 bits of context. */ 820 uasm_i_dins(p, ptr, 0, 0, 23); 821 822 /* 1 0 1 0 1 << 6 xkphys cached */ 823 uasm_i_ori(p, ptr, ptr, 0x540); 824 uasm_i_drotr(p, ptr, ptr, 11); 825 #elif defined(CONFIG_SMP) 826 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 827 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 828 UASM_i_LA_mostly(p, tmp, pgdc); 829 uasm_i_daddu(p, ptr, ptr, tmp); 830 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 831 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 832 #else 833 UASM_i_LA_mostly(p, ptr, pgdc); 834 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 835 #endif 836 } 837 838 uasm_l_vmalloc_done(l, *p); 839 840 /* get pgd offset in bytes */ 841 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 842 843 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 844 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 845 #ifndef __PAGETABLE_PMD_FOLDED 846 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 847 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 848 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 849 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 850 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 851 #endif 852 } 853 854 /* 855 * BVADDR is the faulting address, PTR is scratch. 856 * PTR will hold the pgd for vmalloc. 857 */ 858 static void 859 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 860 unsigned int bvaddr, unsigned int ptr, 861 enum vmalloc64_mode mode) 862 { 863 long swpd = (long)swapper_pg_dir; 864 int single_insn_swpd; 865 int did_vmalloc_branch = 0; 866 867 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 868 869 uasm_l_vmalloc(l, *p); 870 871 if (mode != not_refill && check_for_high_segbits) { 872 if (single_insn_swpd) { 873 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 874 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 875 did_vmalloc_branch = 1; 876 /* fall through */ 877 } else { 878 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 879 } 880 } 881 if (!did_vmalloc_branch) { 882 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { 883 uasm_il_b(p, r, label_vmalloc_done); 884 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 885 } else { 886 UASM_i_LA_mostly(p, ptr, swpd); 887 uasm_il_b(p, r, label_vmalloc_done); 888 if (uasm_in_compat_space_p(swpd)) 889 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 890 else 891 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 892 } 893 } 894 if (mode != not_refill && check_for_high_segbits) { 895 uasm_l_large_segbits_fault(l, *p); 896 /* 897 * We get here if we are an xsseg address, or if we are 898 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 899 * 900 * Ignoring xsseg (assume disabled so would generate 901 * (address errors?), the only remaining possibility 902 * is the upper xuseg addresses. On processors with 903 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 904 * addresses would have taken an address error. We try 905 * to mimic that here by taking a load/istream page 906 * fault. 907 */ 908 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 909 uasm_i_jr(p, ptr); 910 911 if (mode == refill_scratch) { 912 if (scratch_reg >= 0) 913 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 914 else 915 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 916 } else { 917 uasm_i_nop(p); 918 } 919 } 920 } 921 922 #else /* !CONFIG_64BIT */ 923 924 /* 925 * TMP and PTR are scratch. 926 * TMP will be clobbered, PTR will hold the pgd entry. 927 */ 928 static void __maybe_unused 929 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 930 { 931 if (pgd_reg != -1) { 932 /* pgd is in pgd_reg */ 933 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); 934 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 935 } else { 936 long pgdc = (long)pgd_current; 937 938 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 939 #ifdef CONFIG_SMP 940 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 941 UASM_i_LA_mostly(p, tmp, pgdc); 942 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 943 uasm_i_addu(p, ptr, tmp, ptr); 944 #else 945 UASM_i_LA_mostly(p, ptr, pgdc); 946 #endif 947 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 948 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 949 } 950 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 951 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 952 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 953 } 954 955 #endif /* !CONFIG_64BIT */ 956 957 static void build_adjust_context(u32 **p, unsigned int ctx) 958 { 959 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 960 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 961 962 switch (current_cpu_type()) { 963 case CPU_VR41XX: 964 case CPU_VR4111: 965 case CPU_VR4121: 966 case CPU_VR4122: 967 case CPU_VR4131: 968 case CPU_VR4181: 969 case CPU_VR4181A: 970 case CPU_VR4133: 971 shift += 2; 972 break; 973 974 default: 975 break; 976 } 977 978 if (shift) 979 UASM_i_SRL(p, ctx, ctx, shift); 980 uasm_i_andi(p, ctx, ctx, mask); 981 } 982 983 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 984 { 985 /* 986 * Bug workaround for the Nevada. It seems as if under certain 987 * circumstances the move from cp0_context might produce a 988 * bogus result when the mfc0 instruction and its consumer are 989 * in a different cacheline or a load instruction, probably any 990 * memory reference, is between them. 991 */ 992 switch (current_cpu_type()) { 993 case CPU_NEVADA: 994 UASM_i_LW(p, ptr, 0, ptr); 995 GET_CONTEXT(p, tmp); /* get context reg */ 996 break; 997 998 default: 999 GET_CONTEXT(p, tmp); /* get context reg */ 1000 UASM_i_LW(p, ptr, 0, ptr); 1001 break; 1002 } 1003 1004 build_adjust_context(p, tmp); 1005 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 1006 } 1007 1008 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 1009 { 1010 /* 1011 * 64bit address support (36bit on a 32bit CPU) in a 32bit 1012 * Kernel is a special case. Only a few CPUs use it. 1013 */ 1014 if (config_enabled(CONFIG_PHYS_ADDR_T_64BIT) && !cpu_has_64bits) { 1015 int pte_off_even = sizeof(pte_t) / 2; 1016 int pte_off_odd = pte_off_even + sizeof(pte_t); 1017 #ifdef CONFIG_XPA 1018 const int scratch = 1; /* Our extra working register */ 1019 1020 uasm_i_addu(p, scratch, 0, ptep); 1021 #endif 1022 uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */ 1023 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */ 1024 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1025 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1026 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); 1027 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); 1028 #ifdef CONFIG_XPA 1029 uasm_i_lw(p, tmp, 0, scratch); 1030 uasm_i_lw(p, ptep, sizeof(pte_t), scratch); 1031 uasm_i_lui(p, scratch, 0xff); 1032 uasm_i_ori(p, scratch, scratch, 0xffff); 1033 uasm_i_and(p, tmp, scratch, tmp); 1034 uasm_i_and(p, ptep, scratch, ptep); 1035 uasm_i_mthc0(p, tmp, C0_ENTRYLO0); 1036 uasm_i_mthc0(p, ptep, C0_ENTRYLO1); 1037 #endif 1038 return; 1039 } 1040 1041 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */ 1042 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1043 if (r45k_bvahwbug()) 1044 build_tlb_probe_entry(p); 1045 build_convert_pte_to_entrylo(p, tmp); 1046 if (r4k_250MHZhwbug()) 1047 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1048 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1049 build_convert_pte_to_entrylo(p, ptep); 1050 if (r45k_bvahwbug()) 1051 uasm_i_mfc0(p, tmp, C0_INDEX); 1052 if (r4k_250MHZhwbug()) 1053 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1054 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1055 } 1056 1057 struct mips_huge_tlb_info { 1058 int huge_pte; 1059 int restore_scratch; 1060 bool need_reload_pte; 1061 }; 1062 1063 static struct mips_huge_tlb_info 1064 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1065 struct uasm_reloc **r, unsigned int tmp, 1066 unsigned int ptr, int c0_scratch_reg) 1067 { 1068 struct mips_huge_tlb_info rv; 1069 unsigned int even, odd; 1070 int vmalloc_branch_delay_filled = 0; 1071 const int scratch = 1; /* Our extra working register */ 1072 1073 rv.huge_pte = scratch; 1074 rv.restore_scratch = 0; 1075 rv.need_reload_pte = false; 1076 1077 if (check_for_high_segbits) { 1078 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1079 1080 if (pgd_reg != -1) 1081 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1082 else 1083 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1084 1085 if (c0_scratch_reg >= 0) 1086 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1087 else 1088 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1089 1090 uasm_i_dsrl_safe(p, scratch, tmp, 1091 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1092 uasm_il_bnez(p, r, scratch, label_vmalloc); 1093 1094 if (pgd_reg == -1) { 1095 vmalloc_branch_delay_filled = 1; 1096 /* Clear lower 23 bits of context. */ 1097 uasm_i_dins(p, ptr, 0, 0, 23); 1098 } 1099 } else { 1100 if (pgd_reg != -1) 1101 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1102 else 1103 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1104 1105 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1106 1107 if (c0_scratch_reg >= 0) 1108 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1109 else 1110 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1111 1112 if (pgd_reg == -1) 1113 /* Clear lower 23 bits of context. */ 1114 uasm_i_dins(p, ptr, 0, 0, 23); 1115 1116 uasm_il_bltz(p, r, tmp, label_vmalloc); 1117 } 1118 1119 if (pgd_reg == -1) { 1120 vmalloc_branch_delay_filled = 1; 1121 /* 1 0 1 0 1 << 6 xkphys cached */ 1122 uasm_i_ori(p, ptr, ptr, 0x540); 1123 uasm_i_drotr(p, ptr, ptr, 11); 1124 } 1125 1126 #ifdef __PAGETABLE_PMD_FOLDED 1127 #define LOC_PTEP scratch 1128 #else 1129 #define LOC_PTEP ptr 1130 #endif 1131 1132 if (!vmalloc_branch_delay_filled) 1133 /* get pgd offset in bytes */ 1134 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1135 1136 uasm_l_vmalloc_done(l, *p); 1137 1138 /* 1139 * tmp ptr 1140 * fall-through case = badvaddr *pgd_current 1141 * vmalloc case = badvaddr swapper_pg_dir 1142 */ 1143 1144 if (vmalloc_branch_delay_filled) 1145 /* get pgd offset in bytes */ 1146 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1147 1148 #ifdef __PAGETABLE_PMD_FOLDED 1149 GET_CONTEXT(p, tmp); /* get context reg */ 1150 #endif 1151 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1152 1153 if (use_lwx_insns()) { 1154 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1155 } else { 1156 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1157 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1158 } 1159 1160 #ifndef __PAGETABLE_PMD_FOLDED 1161 /* get pmd offset in bytes */ 1162 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1163 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1164 GET_CONTEXT(p, tmp); /* get context reg */ 1165 1166 if (use_lwx_insns()) { 1167 UASM_i_LWX(p, scratch, scratch, ptr); 1168 } else { 1169 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1170 UASM_i_LW(p, scratch, 0, ptr); 1171 } 1172 #endif 1173 /* Adjust the context during the load latency. */ 1174 build_adjust_context(p, tmp); 1175 1176 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1177 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1178 /* 1179 * The in the LWX case we don't want to do the load in the 1180 * delay slot. It cannot issue in the same cycle and may be 1181 * speculative and unneeded. 1182 */ 1183 if (use_lwx_insns()) 1184 uasm_i_nop(p); 1185 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1186 1187 1188 /* build_update_entries */ 1189 if (use_lwx_insns()) { 1190 even = ptr; 1191 odd = tmp; 1192 UASM_i_LWX(p, even, scratch, tmp); 1193 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1194 UASM_i_LWX(p, odd, scratch, tmp); 1195 } else { 1196 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1197 even = tmp; 1198 odd = ptr; 1199 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1200 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1201 } 1202 if (cpu_has_rixi) { 1203 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1204 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1205 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1206 } else { 1207 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1208 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1209 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1210 } 1211 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1212 1213 if (c0_scratch_reg >= 0) { 1214 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1215 build_tlb_write_entry(p, l, r, tlb_random); 1216 uasm_l_leave(l, *p); 1217 rv.restore_scratch = 1; 1218 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1219 build_tlb_write_entry(p, l, r, tlb_random); 1220 uasm_l_leave(l, *p); 1221 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1222 } else { 1223 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1224 build_tlb_write_entry(p, l, r, tlb_random); 1225 uasm_l_leave(l, *p); 1226 rv.restore_scratch = 1; 1227 } 1228 1229 uasm_i_eret(p); /* return from trap */ 1230 1231 return rv; 1232 } 1233 1234 /* 1235 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1236 * because EXL == 0. If we wrap, we can also use the 32 instruction 1237 * slots before the XTLB refill exception handler which belong to the 1238 * unused TLB refill exception. 1239 */ 1240 #define MIPS64_REFILL_INSNS 32 1241 1242 static void build_r4000_tlb_refill_handler(void) 1243 { 1244 u32 *p = tlb_handler; 1245 struct uasm_label *l = labels; 1246 struct uasm_reloc *r = relocs; 1247 u32 *f; 1248 unsigned int final_len; 1249 struct mips_huge_tlb_info htlb_info __maybe_unused; 1250 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1251 1252 memset(tlb_handler, 0, sizeof(tlb_handler)); 1253 memset(labels, 0, sizeof(labels)); 1254 memset(relocs, 0, sizeof(relocs)); 1255 memset(final_handler, 0, sizeof(final_handler)); 1256 1257 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1258 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1259 scratch_reg); 1260 vmalloc_mode = refill_scratch; 1261 } else { 1262 htlb_info.huge_pte = K0; 1263 htlb_info.restore_scratch = 0; 1264 htlb_info.need_reload_pte = true; 1265 vmalloc_mode = refill_noscratch; 1266 /* 1267 * create the plain linear handler 1268 */ 1269 if (bcm1250_m3_war()) { 1270 unsigned int segbits = 44; 1271 1272 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1273 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1274 uasm_i_xor(&p, K0, K0, K1); 1275 uasm_i_dsrl_safe(&p, K1, K0, 62); 1276 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1277 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1278 uasm_i_or(&p, K0, K0, K1); 1279 uasm_il_bnez(&p, &r, K0, label_leave); 1280 /* No need for uasm_i_nop */ 1281 } 1282 1283 #ifdef CONFIG_64BIT 1284 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1285 #else 1286 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1287 #endif 1288 1289 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1290 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1291 #endif 1292 1293 build_get_ptep(&p, K0, K1); 1294 build_update_entries(&p, K0, K1); 1295 build_tlb_write_entry(&p, &l, &r, tlb_random); 1296 uasm_l_leave(&l, p); 1297 uasm_i_eret(&p); /* return from trap */ 1298 } 1299 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1300 uasm_l_tlb_huge_update(&l, p); 1301 if (htlb_info.need_reload_pte) 1302 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1); 1303 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1304 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1305 htlb_info.restore_scratch); 1306 #endif 1307 1308 #ifdef CONFIG_64BIT 1309 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1310 #endif 1311 1312 /* 1313 * Overflow check: For the 64bit handler, we need at least one 1314 * free instruction slot for the wrap-around branch. In worst 1315 * case, if the intended insertion point is a delay slot, we 1316 * need three, with the second nop'ed and the third being 1317 * unused. 1318 */ 1319 switch (boot_cpu_type()) { 1320 default: 1321 if (sizeof(long) == 4) { 1322 case CPU_LOONGSON2: 1323 /* Loongson2 ebase is different than r4k, we have more space */ 1324 if ((p - tlb_handler) > 64) 1325 panic("TLB refill handler space exceeded"); 1326 /* 1327 * Now fold the handler in the TLB refill handler space. 1328 */ 1329 f = final_handler; 1330 /* Simplest case, just copy the handler. */ 1331 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1332 final_len = p - tlb_handler; 1333 break; 1334 } else { 1335 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1336 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1337 && uasm_insn_has_bdelay(relocs, 1338 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1339 panic("TLB refill handler space exceeded"); 1340 /* 1341 * Now fold the handler in the TLB refill handler space. 1342 */ 1343 f = final_handler + MIPS64_REFILL_INSNS; 1344 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1345 /* Just copy the handler. */ 1346 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1347 final_len = p - tlb_handler; 1348 } else { 1349 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1350 const enum label_id ls = label_tlb_huge_update; 1351 #else 1352 const enum label_id ls = label_vmalloc; 1353 #endif 1354 u32 *split; 1355 int ov = 0; 1356 int i; 1357 1358 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1359 ; 1360 BUG_ON(i == ARRAY_SIZE(labels)); 1361 split = labels[i].addr; 1362 1363 /* 1364 * See if we have overflown one way or the other. 1365 */ 1366 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1367 split < p - MIPS64_REFILL_INSNS) 1368 ov = 1; 1369 1370 if (ov) { 1371 /* 1372 * Split two instructions before the end. One 1373 * for the branch and one for the instruction 1374 * in the delay slot. 1375 */ 1376 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1377 1378 /* 1379 * If the branch would fall in a delay slot, 1380 * we must back up an additional instruction 1381 * so that it is no longer in a delay slot. 1382 */ 1383 if (uasm_insn_has_bdelay(relocs, split - 1)) 1384 split--; 1385 } 1386 /* Copy first part of the handler. */ 1387 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1388 f += split - tlb_handler; 1389 1390 if (ov) { 1391 /* Insert branch. */ 1392 uasm_l_split(&l, final_handler); 1393 uasm_il_b(&f, &r, label_split); 1394 if (uasm_insn_has_bdelay(relocs, split)) 1395 uasm_i_nop(&f); 1396 else { 1397 uasm_copy_handler(relocs, labels, 1398 split, split + 1, f); 1399 uasm_move_labels(labels, f, f + 1, -1); 1400 f++; 1401 split++; 1402 } 1403 } 1404 1405 /* Copy the rest of the handler. */ 1406 uasm_copy_handler(relocs, labels, split, p, final_handler); 1407 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1408 (p - split); 1409 } 1410 } 1411 break; 1412 } 1413 1414 uasm_resolve_relocs(relocs, labels); 1415 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1416 final_len); 1417 1418 memcpy((void *)ebase, final_handler, 0x100); 1419 local_flush_icache_range(ebase, ebase + 0x100); 1420 1421 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1422 } 1423 1424 extern u32 handle_tlbl[], handle_tlbl_end[]; 1425 extern u32 handle_tlbs[], handle_tlbs_end[]; 1426 extern u32 handle_tlbm[], handle_tlbm_end[]; 1427 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[]; 1428 extern u32 tlbmiss_handler_setup_pgd_end[]; 1429 1430 static void build_setup_pgd(void) 1431 { 1432 const int a0 = 4; 1433 const int __maybe_unused a1 = 5; 1434 const int __maybe_unused a2 = 6; 1435 u32 *p = tlbmiss_handler_setup_pgd_start; 1436 const int tlbmiss_handler_setup_pgd_size = 1437 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start; 1438 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1439 long pgdc = (long)pgd_current; 1440 #endif 1441 1442 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1443 sizeof(tlbmiss_handler_setup_pgd[0])); 1444 memset(labels, 0, sizeof(labels)); 1445 memset(relocs, 0, sizeof(relocs)); 1446 pgd_reg = allocate_kscratch(); 1447 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1448 if (pgd_reg == -1) { 1449 struct uasm_label *l = labels; 1450 struct uasm_reloc *r = relocs; 1451 1452 /* PGD << 11 in c0_Context */ 1453 /* 1454 * If it is a ckseg0 address, convert to a physical 1455 * address. Shifting right by 29 and adding 4 will 1456 * result in zero for these addresses. 1457 * 1458 */ 1459 UASM_i_SRA(&p, a1, a0, 29); 1460 UASM_i_ADDIU(&p, a1, a1, 4); 1461 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1462 uasm_i_nop(&p); 1463 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1464 uasm_l_tlbl_goaround1(&l, p); 1465 UASM_i_SLL(&p, a0, a0, 11); 1466 uasm_i_jr(&p, 31); 1467 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1468 } else { 1469 /* PGD in c0_KScratch */ 1470 uasm_i_jr(&p, 31); 1471 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1472 } 1473 #else 1474 #ifdef CONFIG_SMP 1475 /* Save PGD to pgd_current[smp_processor_id()] */ 1476 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); 1477 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); 1478 UASM_i_LA_mostly(&p, a2, pgdc); 1479 UASM_i_ADDU(&p, a2, a2, a1); 1480 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1481 #else 1482 UASM_i_LA_mostly(&p, a2, pgdc); 1483 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1484 #endif /* SMP */ 1485 uasm_i_jr(&p, 31); 1486 1487 /* if pgd_reg is allocated, save PGD also to scratch register */ 1488 if (pgd_reg != -1) 1489 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1490 else 1491 uasm_i_nop(&p); 1492 #endif 1493 if (p >= tlbmiss_handler_setup_pgd_end) 1494 panic("tlbmiss_handler_setup_pgd space exceeded"); 1495 1496 uasm_resolve_relocs(relocs, labels); 1497 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1498 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1499 1500 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1501 tlbmiss_handler_setup_pgd_size); 1502 } 1503 1504 static void 1505 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1506 { 1507 #ifdef CONFIG_SMP 1508 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1509 if (cpu_has_64bits) 1510 uasm_i_lld(p, pte, 0, ptr); 1511 else 1512 # endif 1513 UASM_i_LL(p, pte, 0, ptr); 1514 #else 1515 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1516 if (cpu_has_64bits) 1517 uasm_i_ld(p, pte, 0, ptr); 1518 else 1519 # endif 1520 UASM_i_LW(p, pte, 0, ptr); 1521 #endif 1522 } 1523 1524 static void 1525 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1526 unsigned int mode) 1527 { 1528 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1529 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1530 1531 if (!cpu_has_64bits) { 1532 const int scratch = 1; /* Our extra working register */ 1533 1534 uasm_i_lui(p, scratch, (mode >> 16)); 1535 uasm_i_or(p, pte, pte, scratch); 1536 } else 1537 #endif 1538 uasm_i_ori(p, pte, pte, mode); 1539 #ifdef CONFIG_SMP 1540 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1541 if (cpu_has_64bits) 1542 uasm_i_scd(p, pte, 0, ptr); 1543 else 1544 # endif 1545 UASM_i_SC(p, pte, 0, ptr); 1546 1547 if (r10000_llsc_war()) 1548 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1549 else 1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1551 1552 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1553 if (!cpu_has_64bits) { 1554 /* no uasm_i_nop needed */ 1555 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1556 uasm_i_ori(p, pte, pte, hwmode); 1557 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1558 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1559 /* no uasm_i_nop needed */ 1560 uasm_i_lw(p, pte, 0, ptr); 1561 } else 1562 uasm_i_nop(p); 1563 # else 1564 uasm_i_nop(p); 1565 # endif 1566 #else 1567 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1568 if (cpu_has_64bits) 1569 uasm_i_sd(p, pte, 0, ptr); 1570 else 1571 # endif 1572 UASM_i_SW(p, pte, 0, ptr); 1573 1574 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1575 if (!cpu_has_64bits) { 1576 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1577 uasm_i_ori(p, pte, pte, hwmode); 1578 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1579 uasm_i_lw(p, pte, 0, ptr); 1580 } 1581 # endif 1582 #endif 1583 } 1584 1585 /* 1586 * Check if PTE is present, if not then jump to LABEL. PTR points to 1587 * the page table where this PTE is located, PTE will be re-loaded 1588 * with it's original value. 1589 */ 1590 static void 1591 build_pte_present(u32 **p, struct uasm_reloc **r, 1592 int pte, int ptr, int scratch, enum label_id lid) 1593 { 1594 int t = scratch >= 0 ? scratch : pte; 1595 int cur = pte; 1596 1597 if (cpu_has_rixi) { 1598 if (use_bbit_insns()) { 1599 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1600 uasm_i_nop(p); 1601 } else { 1602 if (_PAGE_PRESENT_SHIFT) { 1603 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1604 cur = t; 1605 } 1606 uasm_i_andi(p, t, cur, 1); 1607 uasm_il_beqz(p, r, t, lid); 1608 if (pte == t) 1609 /* You lose the SMP race :-(*/ 1610 iPTE_LW(p, pte, ptr); 1611 } 1612 } else { 1613 if (_PAGE_PRESENT_SHIFT) { 1614 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1615 cur = t; 1616 } 1617 uasm_i_andi(p, t, cur, 1618 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT); 1619 uasm_i_xori(p, t, t, 1620 (_PAGE_PRESENT | _PAGE_READ) >> _PAGE_PRESENT_SHIFT); 1621 uasm_il_bnez(p, r, t, lid); 1622 if (pte == t) 1623 /* You lose the SMP race :-(*/ 1624 iPTE_LW(p, pte, ptr); 1625 } 1626 } 1627 1628 /* Make PTE valid, store result in PTR. */ 1629 static void 1630 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1631 unsigned int ptr) 1632 { 1633 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1634 1635 iPTE_SW(p, r, pte, ptr, mode); 1636 } 1637 1638 /* 1639 * Check if PTE can be written to, if not branch to LABEL. Regardless 1640 * restore PTE with value from PTR when done. 1641 */ 1642 static void 1643 build_pte_writable(u32 **p, struct uasm_reloc **r, 1644 unsigned int pte, unsigned int ptr, int scratch, 1645 enum label_id lid) 1646 { 1647 int t = scratch >= 0 ? scratch : pte; 1648 int cur = pte; 1649 1650 if (_PAGE_PRESENT_SHIFT) { 1651 uasm_i_srl(p, t, cur, _PAGE_PRESENT_SHIFT); 1652 cur = t; 1653 } 1654 uasm_i_andi(p, t, cur, 1655 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1656 uasm_i_xori(p, t, t, 1657 (_PAGE_PRESENT | _PAGE_WRITE) >> _PAGE_PRESENT_SHIFT); 1658 uasm_il_bnez(p, r, t, lid); 1659 if (pte == t) 1660 /* You lose the SMP race :-(*/ 1661 iPTE_LW(p, pte, ptr); 1662 else 1663 uasm_i_nop(p); 1664 } 1665 1666 /* Make PTE writable, update software status bits as well, then store 1667 * at PTR. 1668 */ 1669 static void 1670 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1671 unsigned int ptr) 1672 { 1673 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1674 | _PAGE_DIRTY); 1675 1676 iPTE_SW(p, r, pte, ptr, mode); 1677 } 1678 1679 /* 1680 * Check if PTE can be modified, if not branch to LABEL. Regardless 1681 * restore PTE with value from PTR when done. 1682 */ 1683 static void 1684 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1685 unsigned int pte, unsigned int ptr, int scratch, 1686 enum label_id lid) 1687 { 1688 if (use_bbit_insns()) { 1689 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1690 uasm_i_nop(p); 1691 } else { 1692 int t = scratch >= 0 ? scratch : pte; 1693 uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT); 1694 uasm_i_andi(p, t, t, 1); 1695 uasm_il_beqz(p, r, t, lid); 1696 if (pte == t) 1697 /* You lose the SMP race :-(*/ 1698 iPTE_LW(p, pte, ptr); 1699 } 1700 } 1701 1702 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1703 1704 1705 /* 1706 * R3000 style TLB load/store/modify handlers. 1707 */ 1708 1709 /* 1710 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1711 * Then it returns. 1712 */ 1713 static void 1714 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1715 { 1716 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1717 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1718 uasm_i_tlbwi(p); 1719 uasm_i_jr(p, tmp); 1720 uasm_i_rfe(p); /* branch delay */ 1721 } 1722 1723 /* 1724 * This places the pte into ENTRYLO0 and writes it with tlbwi 1725 * or tlbwr as appropriate. This is because the index register 1726 * may have the probe fail bit set as a result of a trap on a 1727 * kseg2 access, i.e. without refill. Then it returns. 1728 */ 1729 static void 1730 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1731 struct uasm_reloc **r, unsigned int pte, 1732 unsigned int tmp) 1733 { 1734 uasm_i_mfc0(p, tmp, C0_INDEX); 1735 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1736 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1737 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1738 uasm_i_tlbwi(p); /* cp0 delay */ 1739 uasm_i_jr(p, tmp); 1740 uasm_i_rfe(p); /* branch delay */ 1741 uasm_l_r3000_write_probe_fail(l, *p); 1742 uasm_i_tlbwr(p); /* cp0 delay */ 1743 uasm_i_jr(p, tmp); 1744 uasm_i_rfe(p); /* branch delay */ 1745 } 1746 1747 static void 1748 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1749 unsigned int ptr) 1750 { 1751 long pgdc = (long)pgd_current; 1752 1753 uasm_i_mfc0(p, pte, C0_BADVADDR); 1754 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1755 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1756 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1757 uasm_i_sll(p, pte, pte, 2); 1758 uasm_i_addu(p, ptr, ptr, pte); 1759 uasm_i_mfc0(p, pte, C0_CONTEXT); 1760 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1761 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1762 uasm_i_addu(p, ptr, ptr, pte); 1763 uasm_i_lw(p, pte, 0, ptr); 1764 uasm_i_tlbp(p); /* load delay */ 1765 } 1766 1767 static void build_r3000_tlb_load_handler(void) 1768 { 1769 u32 *p = handle_tlbl; 1770 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1771 struct uasm_label *l = labels; 1772 struct uasm_reloc *r = relocs; 1773 1774 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1775 memset(labels, 0, sizeof(labels)); 1776 memset(relocs, 0, sizeof(relocs)); 1777 1778 build_r3000_tlbchange_handler_head(&p, K0, K1); 1779 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1780 uasm_i_nop(&p); /* load delay */ 1781 build_make_valid(&p, &r, K0, K1); 1782 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1783 1784 uasm_l_nopage_tlbl(&l, p); 1785 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1786 uasm_i_nop(&p); 1787 1788 if (p >= handle_tlbl_end) 1789 panic("TLB load handler fastpath space exceeded"); 1790 1791 uasm_resolve_relocs(relocs, labels); 1792 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1793 (unsigned int)(p - handle_tlbl)); 1794 1795 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1796 } 1797 1798 static void build_r3000_tlb_store_handler(void) 1799 { 1800 u32 *p = handle_tlbs; 1801 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1802 struct uasm_label *l = labels; 1803 struct uasm_reloc *r = relocs; 1804 1805 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1806 memset(labels, 0, sizeof(labels)); 1807 memset(relocs, 0, sizeof(relocs)); 1808 1809 build_r3000_tlbchange_handler_head(&p, K0, K1); 1810 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1811 uasm_i_nop(&p); /* load delay */ 1812 build_make_write(&p, &r, K0, K1); 1813 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1814 1815 uasm_l_nopage_tlbs(&l, p); 1816 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1817 uasm_i_nop(&p); 1818 1819 if (p >= handle_tlbs_end) 1820 panic("TLB store handler fastpath space exceeded"); 1821 1822 uasm_resolve_relocs(relocs, labels); 1823 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1824 (unsigned int)(p - handle_tlbs)); 1825 1826 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1827 } 1828 1829 static void build_r3000_tlb_modify_handler(void) 1830 { 1831 u32 *p = handle_tlbm; 1832 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1833 struct uasm_label *l = labels; 1834 struct uasm_reloc *r = relocs; 1835 1836 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1837 memset(labels, 0, sizeof(labels)); 1838 memset(relocs, 0, sizeof(relocs)); 1839 1840 build_r3000_tlbchange_handler_head(&p, K0, K1); 1841 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1842 uasm_i_nop(&p); /* load delay */ 1843 build_make_write(&p, &r, K0, K1); 1844 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1845 1846 uasm_l_nopage_tlbm(&l, p); 1847 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1848 uasm_i_nop(&p); 1849 1850 if (p >= handle_tlbm_end) 1851 panic("TLB modify handler fastpath space exceeded"); 1852 1853 uasm_resolve_relocs(relocs, labels); 1854 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1855 (unsigned int)(p - handle_tlbm)); 1856 1857 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1858 } 1859 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1860 1861 /* 1862 * R4000 style TLB load/store/modify handlers. 1863 */ 1864 static struct work_registers 1865 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1866 struct uasm_reloc **r) 1867 { 1868 struct work_registers wr = build_get_work_registers(p); 1869 1870 #ifdef CONFIG_64BIT 1871 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1872 #else 1873 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1874 #endif 1875 1876 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1877 /* 1878 * For huge tlb entries, pmd doesn't contain an address but 1879 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1880 * see if we need to jump to huge tlb processing. 1881 */ 1882 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 1883 #endif 1884 1885 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 1886 UASM_i_LW(p, wr.r2, 0, wr.r2); 1887 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 1888 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 1889 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 1890 1891 #ifdef CONFIG_SMP 1892 uasm_l_smp_pgtable_change(l, *p); 1893 #endif 1894 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 1895 if (!m4kc_tlbp_war()) { 1896 build_tlb_probe_entry(p); 1897 if (cpu_has_htw) { 1898 /* race condition happens, leaving */ 1899 uasm_i_ehb(p); 1900 uasm_i_mfc0(p, wr.r3, C0_INDEX); 1901 uasm_il_bltz(p, r, wr.r3, label_leave); 1902 uasm_i_nop(p); 1903 } 1904 } 1905 return wr; 1906 } 1907 1908 static void 1909 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 1910 struct uasm_reloc **r, unsigned int tmp, 1911 unsigned int ptr) 1912 { 1913 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 1914 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 1915 build_update_entries(p, tmp, ptr); 1916 build_tlb_write_entry(p, l, r, tlb_indexed); 1917 uasm_l_leave(l, *p); 1918 build_restore_work_registers(p); 1919 uasm_i_eret(p); /* return from trap */ 1920 1921 #ifdef CONFIG_64BIT 1922 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 1923 #endif 1924 } 1925 1926 static void build_r4000_tlb_load_handler(void) 1927 { 1928 u32 *p = handle_tlbl; 1929 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1930 struct uasm_label *l = labels; 1931 struct uasm_reloc *r = relocs; 1932 struct work_registers wr; 1933 1934 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1935 memset(labels, 0, sizeof(labels)); 1936 memset(relocs, 0, sizeof(relocs)); 1937 1938 if (bcm1250_m3_war()) { 1939 unsigned int segbits = 44; 1940 1941 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1942 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1943 uasm_i_xor(&p, K0, K0, K1); 1944 uasm_i_dsrl_safe(&p, K1, K0, 62); 1945 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1946 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1947 uasm_i_or(&p, K0, K0, K1); 1948 uasm_il_bnez(&p, &r, K0, label_leave); 1949 /* No need for uasm_i_nop */ 1950 } 1951 1952 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 1953 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1954 if (m4kc_tlbp_war()) 1955 build_tlb_probe_entry(&p); 1956 1957 if (cpu_has_rixi && !cpu_has_rixiex) { 1958 /* 1959 * If the page is not _PAGE_VALID, RI or XI could not 1960 * have triggered it. Skip the expensive test.. 1961 */ 1962 if (use_bbit_insns()) { 1963 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1964 label_tlbl_goaround1); 1965 } else { 1966 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1967 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 1968 } 1969 uasm_i_nop(&p); 1970 1971 uasm_i_tlbr(&p); 1972 1973 switch (current_cpu_type()) { 1974 default: 1975 if (cpu_has_mips_r2_exec_hazard) { 1976 uasm_i_ehb(&p); 1977 1978 case CPU_CAVIUM_OCTEON: 1979 case CPU_CAVIUM_OCTEON_PLUS: 1980 case CPU_CAVIUM_OCTEON2: 1981 break; 1982 } 1983 } 1984 1985 /* Examine entrylo 0 or 1 based on ptr. */ 1986 if (use_bbit_insns()) { 1987 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 1988 } else { 1989 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 1990 uasm_i_beqz(&p, wr.r3, 8); 1991 } 1992 /* load it in the delay slot*/ 1993 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 1994 /* load it if ptr is odd */ 1995 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 1996 /* 1997 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 1998 * XI must have triggered it. 1999 */ 2000 if (use_bbit_insns()) { 2001 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 2002 uasm_i_nop(&p); 2003 uasm_l_tlbl_goaround1(&l, p); 2004 } else { 2005 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2006 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 2007 uasm_i_nop(&p); 2008 } 2009 uasm_l_tlbl_goaround1(&l, p); 2010 } 2011 build_make_valid(&p, &r, wr.r1, wr.r2); 2012 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2013 2014 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2015 /* 2016 * This is the entry point when build_r4000_tlbchange_handler_head 2017 * spots a huge page. 2018 */ 2019 uasm_l_tlb_huge_update(&l, p); 2020 iPTE_LW(&p, wr.r1, wr.r2); 2021 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2022 build_tlb_probe_entry(&p); 2023 2024 if (cpu_has_rixi && !cpu_has_rixiex) { 2025 /* 2026 * If the page is not _PAGE_VALID, RI or XI could not 2027 * have triggered it. Skip the expensive test.. 2028 */ 2029 if (use_bbit_insns()) { 2030 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2031 label_tlbl_goaround2); 2032 } else { 2033 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2034 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2035 } 2036 uasm_i_nop(&p); 2037 2038 uasm_i_tlbr(&p); 2039 2040 switch (current_cpu_type()) { 2041 default: 2042 if (cpu_has_mips_r2_exec_hazard) { 2043 uasm_i_ehb(&p); 2044 2045 case CPU_CAVIUM_OCTEON: 2046 case CPU_CAVIUM_OCTEON_PLUS: 2047 case CPU_CAVIUM_OCTEON2: 2048 break; 2049 } 2050 } 2051 2052 /* Examine entrylo 0 or 1 based on ptr. */ 2053 if (use_bbit_insns()) { 2054 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2055 } else { 2056 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2057 uasm_i_beqz(&p, wr.r3, 8); 2058 } 2059 /* load it in the delay slot*/ 2060 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2061 /* load it if ptr is odd */ 2062 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2063 /* 2064 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2065 * XI must have triggered it. 2066 */ 2067 if (use_bbit_insns()) { 2068 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 2069 } else { 2070 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2071 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2072 } 2073 if (PM_DEFAULT_MASK == 0) 2074 uasm_i_nop(&p); 2075 /* 2076 * We clobbered C0_PAGEMASK, restore it. On the other branch 2077 * it is restored in build_huge_tlb_write_entry. 2078 */ 2079 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2080 2081 uasm_l_tlbl_goaround2(&l, p); 2082 } 2083 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2084 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2085 #endif 2086 2087 uasm_l_nopage_tlbl(&l, p); 2088 build_restore_work_registers(&p); 2089 #ifdef CONFIG_CPU_MICROMIPS 2090 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2091 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2092 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2093 uasm_i_jr(&p, K0); 2094 } else 2095 #endif 2096 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2097 uasm_i_nop(&p); 2098 2099 if (p >= handle_tlbl_end) 2100 panic("TLB load handler fastpath space exceeded"); 2101 2102 uasm_resolve_relocs(relocs, labels); 2103 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2104 (unsigned int)(p - handle_tlbl)); 2105 2106 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2107 } 2108 2109 static void build_r4000_tlb_store_handler(void) 2110 { 2111 u32 *p = handle_tlbs; 2112 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2113 struct uasm_label *l = labels; 2114 struct uasm_reloc *r = relocs; 2115 struct work_registers wr; 2116 2117 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2118 memset(labels, 0, sizeof(labels)); 2119 memset(relocs, 0, sizeof(relocs)); 2120 2121 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2122 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2123 if (m4kc_tlbp_war()) 2124 build_tlb_probe_entry(&p); 2125 build_make_write(&p, &r, wr.r1, wr.r2); 2126 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2127 2128 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2129 /* 2130 * This is the entry point when 2131 * build_r4000_tlbchange_handler_head spots a huge page. 2132 */ 2133 uasm_l_tlb_huge_update(&l, p); 2134 iPTE_LW(&p, wr.r1, wr.r2); 2135 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2136 build_tlb_probe_entry(&p); 2137 uasm_i_ori(&p, wr.r1, wr.r1, 2138 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2139 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2140 #endif 2141 2142 uasm_l_nopage_tlbs(&l, p); 2143 build_restore_work_registers(&p); 2144 #ifdef CONFIG_CPU_MICROMIPS 2145 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2146 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2147 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2148 uasm_i_jr(&p, K0); 2149 } else 2150 #endif 2151 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2152 uasm_i_nop(&p); 2153 2154 if (p >= handle_tlbs_end) 2155 panic("TLB store handler fastpath space exceeded"); 2156 2157 uasm_resolve_relocs(relocs, labels); 2158 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2159 (unsigned int)(p - handle_tlbs)); 2160 2161 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2162 } 2163 2164 static void build_r4000_tlb_modify_handler(void) 2165 { 2166 u32 *p = handle_tlbm; 2167 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2168 struct uasm_label *l = labels; 2169 struct uasm_reloc *r = relocs; 2170 struct work_registers wr; 2171 2172 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2173 memset(labels, 0, sizeof(labels)); 2174 memset(relocs, 0, sizeof(relocs)); 2175 2176 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2177 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2178 if (m4kc_tlbp_war()) 2179 build_tlb_probe_entry(&p); 2180 /* Present and writable bits set, set accessed and dirty bits. */ 2181 build_make_write(&p, &r, wr.r1, wr.r2); 2182 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2183 2184 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2185 /* 2186 * This is the entry point when 2187 * build_r4000_tlbchange_handler_head spots a huge page. 2188 */ 2189 uasm_l_tlb_huge_update(&l, p); 2190 iPTE_LW(&p, wr.r1, wr.r2); 2191 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2192 build_tlb_probe_entry(&p); 2193 uasm_i_ori(&p, wr.r1, wr.r1, 2194 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2195 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2196 #endif 2197 2198 uasm_l_nopage_tlbm(&l, p); 2199 build_restore_work_registers(&p); 2200 #ifdef CONFIG_CPU_MICROMIPS 2201 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2202 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2203 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2204 uasm_i_jr(&p, K0); 2205 } else 2206 #endif 2207 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2208 uasm_i_nop(&p); 2209 2210 if (p >= handle_tlbm_end) 2211 panic("TLB modify handler fastpath space exceeded"); 2212 2213 uasm_resolve_relocs(relocs, labels); 2214 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2215 (unsigned int)(p - handle_tlbm)); 2216 2217 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2218 } 2219 2220 static void flush_tlb_handlers(void) 2221 { 2222 local_flush_icache_range((unsigned long)handle_tlbl, 2223 (unsigned long)handle_tlbl_end); 2224 local_flush_icache_range((unsigned long)handle_tlbs, 2225 (unsigned long)handle_tlbs_end); 2226 local_flush_icache_range((unsigned long)handle_tlbm, 2227 (unsigned long)handle_tlbm_end); 2228 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2229 (unsigned long)tlbmiss_handler_setup_pgd_end); 2230 } 2231 2232 static void print_htw_config(void) 2233 { 2234 unsigned long config; 2235 unsigned int pwctl; 2236 const int field = 2 * sizeof(unsigned long); 2237 2238 config = read_c0_pwfield(); 2239 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n", 2240 field, config, 2241 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT, 2242 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT, 2243 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT, 2244 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT, 2245 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT); 2246 2247 config = read_c0_pwsize(); 2248 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n", 2249 field, config, 2250 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT, 2251 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT, 2252 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT, 2253 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT, 2254 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT); 2255 2256 pwctl = read_c0_pwctl(); 2257 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n", 2258 pwctl, 2259 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT, 2260 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT, 2261 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT, 2262 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT); 2263 } 2264 2265 static void config_htw_params(void) 2266 { 2267 unsigned long pwfield, pwsize, ptei; 2268 unsigned int config; 2269 2270 /* 2271 * We are using 2-level page tables, so we only need to 2272 * setup GDW and PTW appropriately. UDW and MDW will remain 0. 2273 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to 2274 * write values less than 0xc in these fields because the entire 2275 * write will be dropped. As a result of which, we must preserve 2276 * the original reset values and overwrite only what we really want. 2277 */ 2278 2279 pwfield = read_c0_pwfield(); 2280 /* re-initialize the GDI field */ 2281 pwfield &= ~MIPS_PWFIELD_GDI_MASK; 2282 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT; 2283 /* re-initialize the PTI field including the even/odd bit */ 2284 pwfield &= ~MIPS_PWFIELD_PTI_MASK; 2285 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT; 2286 if (CONFIG_PGTABLE_LEVELS >= 3) { 2287 pwfield &= ~MIPS_PWFIELD_MDI_MASK; 2288 pwfield |= PMD_SHIFT << MIPS_PWFIELD_MDI_SHIFT; 2289 } 2290 /* Set the PTEI right shift */ 2291 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT; 2292 pwfield |= ptei; 2293 write_c0_pwfield(pwfield); 2294 /* Check whether the PTEI value is supported */ 2295 back_to_back_c0_hazard(); 2296 pwfield = read_c0_pwfield(); 2297 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT) 2298 != ptei) { 2299 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled", 2300 ptei); 2301 /* 2302 * Drop option to avoid HTW being enabled via another path 2303 * (eg htw_reset()) 2304 */ 2305 current_cpu_data.options &= ~MIPS_CPU_HTW; 2306 return; 2307 } 2308 2309 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT; 2310 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT; 2311 if (CONFIG_PGTABLE_LEVELS >= 3) 2312 pwsize |= ilog2(PTRS_PER_PMD) << MIPS_PWSIZE_MDW_SHIFT; 2313 2314 /* If XPA has been enabled, PTEs are 64-bit in size. */ 2315 if (config_enabled(CONFIG_64BITS) || (read_c0_pagegrain() & PG_ELPA)) 2316 pwsize |= 1; 2317 2318 write_c0_pwsize(pwsize); 2319 2320 /* Make sure everything is set before we enable the HTW */ 2321 back_to_back_c0_hazard(); 2322 2323 /* Enable HTW and disable the rest of the pwctl fields */ 2324 config = 1 << MIPS_PWCTL_PWEN_SHIFT; 2325 write_c0_pwctl(config); 2326 pr_info("Hardware Page Table Walker enabled\n"); 2327 2328 print_htw_config(); 2329 } 2330 2331 static void config_xpa_params(void) 2332 { 2333 #ifdef CONFIG_XPA 2334 unsigned int pagegrain; 2335 2336 if (mips_xpa_disabled) { 2337 pr_info("Extended Physical Addressing (XPA) disabled\n"); 2338 return; 2339 } 2340 2341 pagegrain = read_c0_pagegrain(); 2342 write_c0_pagegrain(pagegrain | PG_ELPA); 2343 back_to_back_c0_hazard(); 2344 pagegrain = read_c0_pagegrain(); 2345 2346 if (pagegrain & PG_ELPA) 2347 pr_info("Extended Physical Addressing (XPA) enabled\n"); 2348 else 2349 panic("Extended Physical Addressing (XPA) disabled"); 2350 #endif 2351 } 2352 2353 static void check_pabits(void) 2354 { 2355 unsigned long entry; 2356 unsigned pabits, fillbits; 2357 2358 if (!cpu_has_rixi || !_PAGE_NO_EXEC) { 2359 /* 2360 * We'll only be making use of the fact that we can rotate bits 2361 * into the fill if the CPU supports RIXI, so don't bother 2362 * probing this for CPUs which don't. 2363 */ 2364 return; 2365 } 2366 2367 write_c0_entrylo0(~0ul); 2368 back_to_back_c0_hazard(); 2369 entry = read_c0_entrylo0(); 2370 2371 /* clear all non-PFN bits */ 2372 entry &= ~((1 << MIPS_ENTRYLO_PFN_SHIFT) - 1); 2373 entry &= ~(MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI); 2374 2375 /* find a lower bound on PABITS, and upper bound on fill bits */ 2376 pabits = fls_long(entry) + 6; 2377 fillbits = max_t(int, (int)BITS_PER_LONG - pabits, 0); 2378 2379 /* minus the RI & XI bits */ 2380 fillbits -= min_t(unsigned, fillbits, 2); 2381 2382 if (fillbits >= ilog2(_PAGE_NO_EXEC)) 2383 fill_includes_sw_bits = true; 2384 2385 pr_debug("Entry* registers contain %u fill bits\n", fillbits); 2386 } 2387 2388 void build_tlb_refill_handler(void) 2389 { 2390 /* 2391 * The refill handler is generated per-CPU, multi-node systems 2392 * may have local storage for it. The other handlers are only 2393 * needed once. 2394 */ 2395 static int run_once = 0; 2396 2397 output_pgtable_bits_defines(); 2398 check_pabits(); 2399 2400 #ifdef CONFIG_64BIT 2401 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2402 #endif 2403 2404 switch (current_cpu_type()) { 2405 case CPU_R2000: 2406 case CPU_R3000: 2407 case CPU_R3000A: 2408 case CPU_R3081E: 2409 case CPU_TX3912: 2410 case CPU_TX3922: 2411 case CPU_TX3927: 2412 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2413 if (cpu_has_local_ebase) 2414 build_r3000_tlb_refill_handler(); 2415 if (!run_once) { 2416 if (!cpu_has_local_ebase) 2417 build_r3000_tlb_refill_handler(); 2418 build_setup_pgd(); 2419 build_r3000_tlb_load_handler(); 2420 build_r3000_tlb_store_handler(); 2421 build_r3000_tlb_modify_handler(); 2422 flush_tlb_handlers(); 2423 run_once++; 2424 } 2425 #else 2426 panic("No R3000 TLB refill handler"); 2427 #endif 2428 break; 2429 2430 case CPU_R6000: 2431 case CPU_R6000A: 2432 panic("No R6000 TLB refill handler yet"); 2433 break; 2434 2435 case CPU_R8000: 2436 panic("No R8000 TLB refill handler yet"); 2437 break; 2438 2439 default: 2440 if (!run_once) { 2441 scratch_reg = allocate_kscratch(); 2442 build_setup_pgd(); 2443 build_r4000_tlb_load_handler(); 2444 build_r4000_tlb_store_handler(); 2445 build_r4000_tlb_modify_handler(); 2446 if (!cpu_has_local_ebase) 2447 build_r4000_tlb_refill_handler(); 2448 flush_tlb_handlers(); 2449 run_once++; 2450 } 2451 if (cpu_has_local_ebase) 2452 build_r4000_tlb_refill_handler(); 2453 if (cpu_has_xpa) 2454 config_xpa_params(); 2455 if (cpu_has_htw) 2456 config_htw_params(); 2457 } 2458 } 2459