xref: /linux/arch/mips/mm/tlbex.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004,2005 by Thiemo Seufer
9  * Copyright (C) 2005  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  *
12  * ... and the days got worse and worse and now you see
13  * I've gone completly out of my mind.
14  *
15  * They're coming to take me a away haha
16  * they're coming to take me a away hoho hihi haha
17  * to the funny farm where code is beautiful all the time ...
18  *
19  * (Condolences to Napoleon XIV)
20  */
21 
22 #include <stdarg.h>
23 
24 #include <linux/config.h>
25 #include <linux/mm.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 
31 #include <asm/pgtable.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/inst.h>
35 #include <asm/elf.h>
36 #include <asm/smp.h>
37 #include <asm/war.h>
38 
39 /* #define DEBUG_TLB */
40 
41 static __init int __attribute__((unused)) r45k_bvahwbug(void)
42 {
43 	/* XXX: We should probe for the presence of this bug, but we don't. */
44 	return 0;
45 }
46 
47 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
48 {
49 	/* XXX: We should probe for the presence of this bug, but we don't. */
50 	return 0;
51 }
52 
53 static __init int __attribute__((unused)) bcm1250_m3_war(void)
54 {
55 	return BCM1250_M3_WAR;
56 }
57 
58 static __init int __attribute__((unused)) r10000_llsc_war(void)
59 {
60 	return R10000_LLSC_WAR;
61 }
62 
63 /*
64  * A little micro-assembler, intended for TLB refill handler
65  * synthesizing. It is intentionally kept simple, does only support
66  * a subset of instructions, and does not try to hide pipeline effects
67  * like branch delay slots.
68  */
69 
70 enum fields
71 {
72 	RS = 0x001,
73 	RT = 0x002,
74 	RD = 0x004,
75 	RE = 0x008,
76 	SIMM = 0x010,
77 	UIMM = 0x020,
78 	BIMM = 0x040,
79 	JIMM = 0x080,
80 	FUNC = 0x100,
81 	SET = 0x200
82 };
83 
84 #define OP_MASK		0x2f
85 #define OP_SH		26
86 #define RS_MASK		0x1f
87 #define RS_SH		21
88 #define RT_MASK		0x1f
89 #define RT_SH		16
90 #define RD_MASK		0x1f
91 #define RD_SH		11
92 #define RE_MASK		0x1f
93 #define RE_SH		6
94 #define IMM_MASK	0xffff
95 #define IMM_SH		0
96 #define JIMM_MASK	0x3ffffff
97 #define JIMM_SH		0
98 #define FUNC_MASK	0x2f
99 #define FUNC_SH		0
100 #define SET_MASK	0x7
101 #define SET_SH		0
102 
103 enum opcode {
104 	insn_invalid,
105 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
106 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
107 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
108 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
109 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
110 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
111 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
112 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
113 	insn_tlbwr, insn_xor, insn_xori
114 };
115 
116 struct insn {
117 	enum opcode opcode;
118 	u32 match;
119 	enum fields fields;
120 };
121 
122 /* This macro sets the non-variable bits of an instruction. */
123 #define M(a, b, c, d, e, f)					\
124 	((a) << OP_SH						\
125 	 | (b) << RS_SH						\
126 	 | (c) << RT_SH						\
127 	 | (d) << RD_SH						\
128 	 | (e) << RE_SH						\
129 	 | (f) << FUNC_SH)
130 
131 static __initdata struct insn insn_table[] = {
132 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
133 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
134 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
135 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
136 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
137 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
138 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
139 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
140 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
141 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
142 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
143 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
144 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
145 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
146 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
147 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
148 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
149 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
150 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
151 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
152 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
153 	{ insn_j, M(j_op,0,0,0,0,0), JIMM },
154 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
155 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
156 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
157 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
158 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
159 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
160 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
161 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
162 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
163 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
164 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
165 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
166 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
167 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
168 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
169 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
170 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
171 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
172 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
173 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
174 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
175 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
176 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
177 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
178 	{ insn_invalid, 0, 0 }
179 };
180 
181 #undef M
182 
183 static __init u32 build_rs(u32 arg)
184 {
185 	if (arg & ~RS_MASK)
186 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
187 
188 	return (arg & RS_MASK) << RS_SH;
189 }
190 
191 static __init u32 build_rt(u32 arg)
192 {
193 	if (arg & ~RT_MASK)
194 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
195 
196 	return (arg & RT_MASK) << RT_SH;
197 }
198 
199 static __init u32 build_rd(u32 arg)
200 {
201 	if (arg & ~RD_MASK)
202 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
203 
204 	return (arg & RD_MASK) << RD_SH;
205 }
206 
207 static __init u32 build_re(u32 arg)
208 {
209 	if (arg & ~RE_MASK)
210 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
211 
212 	return (arg & RE_MASK) << RE_SH;
213 }
214 
215 static __init u32 build_simm(s32 arg)
216 {
217 	if (arg > 0x7fff || arg < -0x8000)
218 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
219 
220 	return arg & 0xffff;
221 }
222 
223 static __init u32 build_uimm(u32 arg)
224 {
225 	if (arg & ~IMM_MASK)
226 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
227 
228 	return arg & IMM_MASK;
229 }
230 
231 static __init u32 build_bimm(s32 arg)
232 {
233 	if (arg > 0x1ffff || arg < -0x20000)
234 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
235 
236 	if (arg & 0x3)
237 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
238 
239 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
240 }
241 
242 static __init u32 build_jimm(u32 arg)
243 {
244 	if (arg & ~((JIMM_MASK) << 2))
245 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
246 
247 	return (arg >> 2) & JIMM_MASK;
248 }
249 
250 static __init u32 build_func(u32 arg)
251 {
252 	if (arg & ~FUNC_MASK)
253 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
254 
255 	return arg & FUNC_MASK;
256 }
257 
258 static __init u32 build_set(u32 arg)
259 {
260 	if (arg & ~SET_MASK)
261 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
262 
263 	return arg & SET_MASK;
264 }
265 
266 /*
267  * The order of opcode arguments is implicitly left to right,
268  * starting with RS and ending with FUNC or IMM.
269  */
270 static void __init build_insn(u32 **buf, enum opcode opc, ...)
271 {
272 	struct insn *ip = NULL;
273 	unsigned int i;
274 	va_list ap;
275 	u32 op;
276 
277 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
278 		if (insn_table[i].opcode == opc) {
279 			ip = &insn_table[i];
280 			break;
281 		}
282 
283 	if (!ip)
284 		panic("Unsupported TLB synthesizer instruction %d", opc);
285 
286 	op = ip->match;
287 	va_start(ap, opc);
288 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
289 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
290 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
291 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
292 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
293 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
294 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
295 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
296 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
297 	if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
298 	va_end(ap);
299 
300 	**buf = op;
301 	(*buf)++;
302 }
303 
304 #define I_u1u2u3(op)						\
305 	static inline void __init i##op(u32 **buf, unsigned int a,	\
306 	 	unsigned int b, unsigned int c)			\
307 	{							\
308 		build_insn(buf, insn##op, a, b, c);		\
309 	}
310 
311 #define I_u2u1u3(op)						\
312 	static inline void __init i##op(u32 **buf, unsigned int a,	\
313 	 	unsigned int b, unsigned int c)			\
314 	{							\
315 		build_insn(buf, insn##op, b, a, c);		\
316 	}
317 
318 #define I_u3u1u2(op)						\
319 	static inline void __init i##op(u32 **buf, unsigned int a,	\
320 	 	unsigned int b, unsigned int c)			\
321 	{							\
322 		build_insn(buf, insn##op, b, c, a);		\
323 	}
324 
325 #define I_u1u2s3(op)						\
326 	static inline void __init i##op(u32 **buf, unsigned int a,	\
327 	 	unsigned int b, signed int c)			\
328 	{							\
329 		build_insn(buf, insn##op, a, b, c);		\
330 	}
331 
332 #define I_u2s3u1(op)						\
333 	static inline void __init i##op(u32 **buf, unsigned int a,	\
334 	 	signed int b, unsigned int c)			\
335 	{							\
336 		build_insn(buf, insn##op, c, a, b);		\
337 	}
338 
339 #define I_u2u1s3(op)						\
340 	static inline void __init i##op(u32 **buf, unsigned int a,	\
341 	 	unsigned int b, signed int c)			\
342 	{							\
343 		build_insn(buf, insn##op, b, a, c);		\
344 	}
345 
346 #define I_u1u2(op)						\
347 	static inline void __init i##op(u32 **buf, unsigned int a,	\
348 	 	unsigned int b)					\
349 	{							\
350 		build_insn(buf, insn##op, a, b);		\
351 	}
352 
353 #define I_u1s2(op)						\
354 	static inline void __init i##op(u32 **buf, unsigned int a,	\
355 	 	signed int b)					\
356 	{							\
357 		build_insn(buf, insn##op, a, b);		\
358 	}
359 
360 #define I_u1(op)						\
361 	static inline void __init i##op(u32 **buf, unsigned int a)	\
362 	{							\
363 		build_insn(buf, insn##op, a);			\
364 	}
365 
366 #define I_0(op)							\
367 	static inline void __init i##op(u32 **buf)		\
368 	{							\
369 		build_insn(buf, insn##op);			\
370 	}
371 
372 I_u2u1s3(_addiu);
373 I_u3u1u2(_addu);
374 I_u2u1u3(_andi);
375 I_u3u1u2(_and);
376 I_u1u2s3(_beq);
377 I_u1u2s3(_beql);
378 I_u1s2(_bgez);
379 I_u1s2(_bgezl);
380 I_u1s2(_bltz);
381 I_u1s2(_bltzl);
382 I_u1u2s3(_bne);
383 I_u1u2u3(_dmfc0);
384 I_u1u2u3(_dmtc0);
385 I_u2u1s3(_daddiu);
386 I_u3u1u2(_daddu);
387 I_u2u1u3(_dsll);
388 I_u2u1u3(_dsll32);
389 I_u2u1u3(_dsra);
390 I_u2u1u3(_dsrl);
391 I_u3u1u2(_dsubu);
392 I_0(_eret);
393 I_u1(_j);
394 I_u1(_jal);
395 I_u1(_jr);
396 I_u2s3u1(_ld);
397 I_u2s3u1(_ll);
398 I_u2s3u1(_lld);
399 I_u1s2(_lui);
400 I_u2s3u1(_lw);
401 I_u1u2u3(_mfc0);
402 I_u1u2u3(_mtc0);
403 I_u2u1u3(_ori);
404 I_0(_rfe);
405 I_u2s3u1(_sc);
406 I_u2s3u1(_scd);
407 I_u2s3u1(_sd);
408 I_u2u1u3(_sll);
409 I_u2u1u3(_sra);
410 I_u2u1u3(_srl);
411 I_u3u1u2(_subu);
412 I_u2s3u1(_sw);
413 I_0(_tlbp);
414 I_0(_tlbwi);
415 I_0(_tlbwr);
416 I_u3u1u2(_xor)
417 I_u2u1u3(_xori);
418 
419 /*
420  * handling labels
421  */
422 
423 enum label_id {
424 	label_invalid,
425 	label_second_part,
426 	label_leave,
427 	label_vmalloc,
428 	label_vmalloc_done,
429 	label_tlbw_hazard,
430 	label_split,
431 	label_nopage_tlbl,
432 	label_nopage_tlbs,
433 	label_nopage_tlbm,
434 	label_smp_pgtable_change,
435 	label_r3000_write_probe_fail,
436 };
437 
438 struct label {
439 	u32 *addr;
440 	enum label_id lab;
441 };
442 
443 static __init void build_label(struct label **lab, u32 *addr,
444 			       enum label_id l)
445 {
446 	(*lab)->addr = addr;
447 	(*lab)->lab = l;
448 	(*lab)++;
449 }
450 
451 #define L_LA(lb)						\
452 	static inline void l##lb(struct label **lab, u32 *addr) \
453 	{							\
454 		build_label(lab, addr, label##lb);		\
455 	}
456 
457 L_LA(_second_part)
458 L_LA(_leave)
459 L_LA(_vmalloc)
460 L_LA(_vmalloc_done)
461 L_LA(_tlbw_hazard)
462 L_LA(_split)
463 L_LA(_nopage_tlbl)
464 L_LA(_nopage_tlbs)
465 L_LA(_nopage_tlbm)
466 L_LA(_smp_pgtable_change)
467 L_LA(_r3000_write_probe_fail)
468 
469 /* convenience macros for instructions */
470 #ifdef CONFIG_64BIT
471 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
472 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
473 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
474 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
475 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
476 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
477 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
478 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
479 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
480 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
481 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
482 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
483 #else
484 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
485 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
486 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
487 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
488 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
489 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
490 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
491 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
492 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
493 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
494 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
495 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
496 #endif
497 
498 #define i_b(buf, off) i_beq(buf, 0, 0, off)
499 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
500 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
501 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
502 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
503 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
504 #define i_nop(buf) i_sll(buf, 0, 0, 0)
505 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
506 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
507 
508 #ifdef CONFIG_64BIT
509 static __init int __attribute__((unused)) in_compat_space_p(long addr)
510 {
511 	/* Is this address in 32bit compat space? */
512 	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
513 }
514 
515 static __init int __attribute__((unused)) rel_highest(long val)
516 {
517 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
518 }
519 
520 static __init int __attribute__((unused)) rel_higher(long val)
521 {
522 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
523 }
524 #endif
525 
526 static __init int rel_hi(long val)
527 {
528 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
529 }
530 
531 static __init int rel_lo(long val)
532 {
533 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
534 }
535 
536 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
537 {
538 #ifdef CONFIG_64BIT
539 	if (!in_compat_space_p(addr)) {
540 		i_lui(buf, rs, rel_highest(addr));
541 		if (rel_higher(addr))
542 			i_daddiu(buf, rs, rs, rel_higher(addr));
543 		if (rel_hi(addr)) {
544 			i_dsll(buf, rs, rs, 16);
545 			i_daddiu(buf, rs, rs, rel_hi(addr));
546 			i_dsll(buf, rs, rs, 16);
547 		} else
548 			i_dsll32(buf, rs, rs, 0);
549 	} else
550 #endif
551 		i_lui(buf, rs, rel_hi(addr));
552 }
553 
554 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
555 						long addr)
556 {
557 	i_LA_mostly(buf, rs, addr);
558 	if (rel_lo(addr))
559 		i_ADDIU(buf, rs, rs, rel_lo(addr));
560 }
561 
562 /*
563  * handle relocations
564  */
565 
566 struct reloc {
567 	u32 *addr;
568 	unsigned int type;
569 	enum label_id lab;
570 };
571 
572 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
573 			       enum label_id l)
574 {
575 	(*rel)->addr = addr;
576 	(*rel)->type = R_MIPS_PC16;
577 	(*rel)->lab = l;
578 	(*rel)++;
579 }
580 
581 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
582 {
583 	long laddr = (long)lab->addr;
584 	long raddr = (long)rel->addr;
585 
586 	switch (rel->type) {
587 	case R_MIPS_PC16:
588 		*rel->addr |= build_bimm(laddr - (raddr + 4));
589 		break;
590 
591 	default:
592 		panic("Unsupported TLB synthesizer relocation %d",
593 		      rel->type);
594 	}
595 }
596 
597 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
598 {
599 	struct label *l;
600 
601 	for (; rel->lab != label_invalid; rel++)
602 		for (l = lab; l->lab != label_invalid; l++)
603 			if (rel->lab == l->lab)
604 				__resolve_relocs(rel, l);
605 }
606 
607 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
608 			       long off)
609 {
610 	for (; rel->lab != label_invalid; rel++)
611 		if (rel->addr >= first && rel->addr < end)
612 			rel->addr += off;
613 }
614 
615 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
616 			       long off)
617 {
618 	for (; lab->lab != label_invalid; lab++)
619 		if (lab->addr >= first && lab->addr < end)
620 			lab->addr += off;
621 }
622 
623 static __init void copy_handler(struct reloc *rel, struct label *lab,
624 				u32 *first, u32 *end, u32 *target)
625 {
626 	long off = (long)(target - first);
627 
628 	memcpy(target, first, (end - first) * sizeof(u32));
629 
630 	move_relocs(rel, first, end, off);
631 	move_labels(lab, first, end, off);
632 }
633 
634 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
635 							  u32 *addr)
636 {
637 	for (; rel->lab != label_invalid; rel++) {
638 		if (rel->addr == addr
639 		    && (rel->type == R_MIPS_PC16
640 			|| rel->type == R_MIPS_26))
641 			return 1;
642 	}
643 
644 	return 0;
645 }
646 
647 /* convenience functions for labeled branches */
648 static void __init __attribute__((unused))
649 	il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
650 {
651 	r_mips_pc16(r, *p, l);
652 	i_bltz(p, reg, 0);
653 }
654 
655 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
656 					 enum label_id l)
657 {
658 	r_mips_pc16(r, *p, l);
659 	i_b(p, 0);
660 }
661 
662 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
663 		    enum label_id l)
664 {
665 	r_mips_pc16(r, *p, l);
666 	i_beqz(p, reg, 0);
667 }
668 
669 static void __init __attribute__((unused))
670 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
671 {
672 	r_mips_pc16(r, *p, l);
673 	i_beqzl(p, reg, 0);
674 }
675 
676 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
677 		    enum label_id l)
678 {
679 	r_mips_pc16(r, *p, l);
680 	i_bnez(p, reg, 0);
681 }
682 
683 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
684 		     enum label_id l)
685 {
686 	r_mips_pc16(r, *p, l);
687 	i_bgezl(p, reg, 0);
688 }
689 
690 /* The only general purpose registers allowed in TLB handlers. */
691 #define K0		26
692 #define K1		27
693 
694 /* Some CP0 registers */
695 #define C0_INDEX	0, 0
696 #define C0_ENTRYLO0	2, 0
697 #define C0_TCBIND	2, 2
698 #define C0_ENTRYLO1	3, 0
699 #define C0_CONTEXT	4, 0
700 #define C0_BADVADDR	8, 0
701 #define C0_ENTRYHI	10, 0
702 #define C0_EPC		14, 0
703 #define C0_XCONTEXT	20, 0
704 
705 #ifdef CONFIG_64BIT
706 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
707 #else
708 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
709 #endif
710 
711 /* The worst case length of the handler is around 18 instructions for
712  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
713  * Maximum space available is 32 instructions for R3000 and 64
714  * instructions for R4000.
715  *
716  * We deliberately chose a buffer size of 128, so we won't scribble
717  * over anything important on overflow before we panic.
718  */
719 static __initdata u32 tlb_handler[128];
720 
721 /* simply assume worst case size for labels and relocs */
722 static __initdata struct label labels[128];
723 static __initdata struct reloc relocs[128];
724 
725 /*
726  * The R3000 TLB handler is simple.
727  */
728 static void __init build_r3000_tlb_refill_handler(void)
729 {
730 	long pgdc = (long)pgd_current;
731 	u32 *p;
732 
733 	memset(tlb_handler, 0, sizeof(tlb_handler));
734 	p = tlb_handler;
735 
736 	i_mfc0(&p, K0, C0_BADVADDR);
737 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
738 	i_lw(&p, K1, rel_lo(pgdc), K1);
739 	i_srl(&p, K0, K0, 22); /* load delay */
740 	i_sll(&p, K0, K0, 2);
741 	i_addu(&p, K1, K1, K0);
742 	i_mfc0(&p, K0, C0_CONTEXT);
743 	i_lw(&p, K1, 0, K1); /* cp0 delay */
744 	i_andi(&p, K0, K0, 0xffc); /* load delay */
745 	i_addu(&p, K1, K1, K0);
746 	i_lw(&p, K0, 0, K1);
747 	i_nop(&p); /* load delay */
748 	i_mtc0(&p, K0, C0_ENTRYLO0);
749 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
750 	i_tlbwr(&p); /* cp0 delay */
751 	i_jr(&p, K1);
752 	i_rfe(&p); /* branch delay */
753 
754 	if (p > tlb_handler + 32)
755 		panic("TLB refill handler space exceeded");
756 
757 	printk("Synthesized TLB refill handler (%u instructions).\n",
758 	       (unsigned int)(p - tlb_handler));
759 #ifdef DEBUG_TLB
760 	{
761 		int i;
762 
763 		for (i = 0; i < (p - tlb_handler); i++)
764 			printk("%08x\n", tlb_handler[i]);
765 	}
766 #endif
767 
768 	memcpy((void *)ebase, tlb_handler, 0x80);
769 }
770 
771 /*
772  * The R4000 TLB handler is much more complicated. We have two
773  * consecutive handler areas with 32 instructions space each.
774  * Since they aren't used at the same time, we can overflow in the
775  * other one.To keep things simple, we first assume linear space,
776  * then we relocate it to the final handler layout as needed.
777  */
778 static __initdata u32 final_handler[64];
779 
780 /*
781  * Hazards
782  *
783  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
784  * 2. A timing hazard exists for the TLBP instruction.
785  *
786  *      stalling_instruction
787  *      TLBP
788  *
789  * The JTLB is being read for the TLBP throughout the stall generated by the
790  * previous instruction. This is not really correct as the stalling instruction
791  * can modify the address used to access the JTLB.  The failure symptom is that
792  * the TLBP instruction will use an address created for the stalling instruction
793  * and not the address held in C0_ENHI and thus report the wrong results.
794  *
795  * The software work-around is to not allow the instruction preceding the TLBP
796  * to stall - make it an NOP or some other instruction guaranteed not to stall.
797  *
798  * Errata 2 will not be fixed.  This errata is also on the R5000.
799  *
800  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
801  */
802 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
803 {
804 	switch (current_cpu_data.cputype) {
805 	/* Found by experiment: R4600 v2.0 needs this, too.  */
806 	case CPU_R4600:
807 	case CPU_R5000:
808 	case CPU_R5000A:
809 	case CPU_NEVADA:
810 		i_nop(p);
811 		i_tlbp(p);
812 		break;
813 
814 	default:
815 		i_tlbp(p);
816 		break;
817 	}
818 }
819 
820 /*
821  * Write random or indexed TLB entry, and care about the hazards from
822  * the preceeding mtc0 and for the following eret.
823  */
824 enum tlb_write_entry { tlb_random, tlb_indexed };
825 
826 static __init void build_tlb_write_entry(u32 **p, struct label **l,
827 					 struct reloc **r,
828 					 enum tlb_write_entry wmode)
829 {
830 	void(*tlbw)(u32 **) = NULL;
831 
832 	switch (wmode) {
833 	case tlb_random: tlbw = i_tlbwr; break;
834 	case tlb_indexed: tlbw = i_tlbwi; break;
835 	}
836 
837 	switch (current_cpu_data.cputype) {
838 	case CPU_R4000PC:
839 	case CPU_R4000SC:
840 	case CPU_R4000MC:
841 	case CPU_R4400PC:
842 	case CPU_R4400SC:
843 	case CPU_R4400MC:
844 		/*
845 		 * This branch uses up a mtc0 hazard nop slot and saves
846 		 * two nops after the tlbw instruction.
847 		 */
848 		il_bgezl(p, r, 0, label_tlbw_hazard);
849 		tlbw(p);
850 		l_tlbw_hazard(l, *p);
851 		i_nop(p);
852 		break;
853 
854 	case CPU_R4600:
855 	case CPU_R4700:
856 	case CPU_R5000:
857 	case CPU_R5000A:
858 		i_nop(p);
859 		tlbw(p);
860 		i_nop(p);
861 		break;
862 
863 	case CPU_R4300:
864 	case CPU_5KC:
865 	case CPU_TX49XX:
866 	case CPU_AU1000:
867 	case CPU_AU1100:
868 	case CPU_AU1500:
869 	case CPU_AU1550:
870 	case CPU_AU1200:
871 	case CPU_PR4450:
872 		i_nop(p);
873 		tlbw(p);
874 		break;
875 
876 	case CPU_R10000:
877 	case CPU_R12000:
878 	case CPU_4KC:
879 	case CPU_SB1:
880 	case CPU_SB1A:
881 	case CPU_4KSC:
882 	case CPU_20KC:
883 	case CPU_25KF:
884 		tlbw(p);
885 		break;
886 
887 	case CPU_NEVADA:
888 		i_nop(p); /* QED specifies 2 nops hazard */
889 		/*
890 		 * This branch uses up a mtc0 hazard nop slot and saves
891 		 * a nop after the tlbw instruction.
892 		 */
893 		il_bgezl(p, r, 0, label_tlbw_hazard);
894 		tlbw(p);
895 		l_tlbw_hazard(l, *p);
896 		break;
897 
898 	case CPU_RM7000:
899 		i_nop(p);
900 		i_nop(p);
901 		i_nop(p);
902 		i_nop(p);
903 		tlbw(p);
904 		break;
905 
906 	case CPU_4KEC:
907 	case CPU_24K:
908 	case CPU_34K:
909 		i_ehb(p);
910 		tlbw(p);
911 		break;
912 
913 	case CPU_RM9000:
914 		/*
915 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
916 		 * use of the JTLB for instructions should not occur for 4
917 		 * cpu cycles and use for data translations should not occur
918 		 * for 3 cpu cycles.
919 		 */
920 		i_ssnop(p);
921 		i_ssnop(p);
922 		i_ssnop(p);
923 		i_ssnop(p);
924 		tlbw(p);
925 		i_ssnop(p);
926 		i_ssnop(p);
927 		i_ssnop(p);
928 		i_ssnop(p);
929 		break;
930 
931 	case CPU_VR4111:
932 	case CPU_VR4121:
933 	case CPU_VR4122:
934 	case CPU_VR4181:
935 	case CPU_VR4181A:
936 		i_nop(p);
937 		i_nop(p);
938 		tlbw(p);
939 		i_nop(p);
940 		i_nop(p);
941 		break;
942 
943 	case CPU_VR4131:
944 	case CPU_VR4133:
945 	case CPU_R5432:
946 		i_nop(p);
947 		i_nop(p);
948 		tlbw(p);
949 		break;
950 
951 	default:
952 		panic("No TLB refill handler yet (CPU type: %d)",
953 		      current_cpu_data.cputype);
954 		break;
955 	}
956 }
957 
958 #ifdef CONFIG_64BIT
959 /*
960  * TMP and PTR are scratch.
961  * TMP will be clobbered, PTR will hold the pmd entry.
962  */
963 static __init void
964 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
965 		 unsigned int tmp, unsigned int ptr)
966 {
967 	long pgdc = (long)pgd_current;
968 
969 	/*
970 	 * The vmalloc handling is not in the hotpath.
971 	 */
972 	i_dmfc0(p, tmp, C0_BADVADDR);
973 	il_bltz(p, r, tmp, label_vmalloc);
974 	/* No i_nop needed here, since the next insn doesn't touch TMP. */
975 
976 #ifdef CONFIG_SMP
977 # ifdef  CONFIG_MIPS_MT_SMTC
978 	/*
979 	 * SMTC uses TCBind value as "CPU" index
980 	 */
981 	i_mfc0(p, ptr, C0_TCBIND);
982 	i_dsrl(p, ptr, ptr, 19);
983 # else
984 	/*
985 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
986 	 * stored in CONTEXT.
987 	 */
988 	i_dmfc0(p, ptr, C0_CONTEXT);
989 	i_dsrl(p, ptr, ptr, 23);
990 #endif
991 	i_LA_mostly(p, tmp, pgdc);
992 	i_daddu(p, ptr, ptr, tmp);
993 	i_dmfc0(p, tmp, C0_BADVADDR);
994 	i_ld(p, ptr, rel_lo(pgdc), ptr);
995 #else
996 	i_LA_mostly(p, ptr, pgdc);
997 	i_ld(p, ptr, rel_lo(pgdc), ptr);
998 #endif
999 
1000 	l_vmalloc_done(l, *p);
1001 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1002 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1003 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1004 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1005 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1006 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1007 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1008 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1009 }
1010 
1011 /*
1012  * BVADDR is the faulting address, PTR is scratch.
1013  * PTR will hold the pgd for vmalloc.
1014  */
1015 static __init void
1016 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1017 			unsigned int bvaddr, unsigned int ptr)
1018 {
1019 	long swpd = (long)swapper_pg_dir;
1020 
1021 	l_vmalloc(l, *p);
1022 	i_LA(p, ptr, VMALLOC_START);
1023 	i_dsubu(p, bvaddr, bvaddr, ptr);
1024 
1025 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1026 		il_b(p, r, label_vmalloc_done);
1027 		i_lui(p, ptr, rel_hi(swpd));
1028 	} else {
1029 		i_LA_mostly(p, ptr, swpd);
1030 		il_b(p, r, label_vmalloc_done);
1031 		i_daddiu(p, ptr, ptr, rel_lo(swpd));
1032 	}
1033 }
1034 
1035 #else /* !CONFIG_64BIT */
1036 
1037 /*
1038  * TMP and PTR are scratch.
1039  * TMP will be clobbered, PTR will hold the pgd entry.
1040  */
1041 static __init void __attribute__((unused))
1042 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1043 {
1044 	long pgdc = (long)pgd_current;
1045 
1046 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1047 #ifdef CONFIG_SMP
1048 #ifdef  CONFIG_MIPS_MT_SMTC
1049 	/*
1050 	 * SMTC uses TCBind value as "CPU" index
1051 	 */
1052 	i_mfc0(p, ptr, C0_TCBIND);
1053 	i_LA_mostly(p, tmp, pgdc);
1054 	i_srl(p, ptr, ptr, 19);
1055 #else
1056 	/*
1057 	 * smp_processor_id() << 3 is stored in CONTEXT.
1058          */
1059 	i_mfc0(p, ptr, C0_CONTEXT);
1060 	i_LA_mostly(p, tmp, pgdc);
1061 	i_srl(p, ptr, ptr, 23);
1062 #endif
1063 	i_addu(p, ptr, tmp, ptr);
1064 #else
1065 	i_LA_mostly(p, ptr, pgdc);
1066 #endif
1067 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1068 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1069 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1070 	i_sll(p, tmp, tmp, PGD_T_LOG2);
1071 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1072 }
1073 
1074 #endif /* !CONFIG_64BIT */
1075 
1076 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1077 {
1078 	unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1079 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1080 
1081 	switch (current_cpu_data.cputype) {
1082 	case CPU_VR41XX:
1083 	case CPU_VR4111:
1084 	case CPU_VR4121:
1085 	case CPU_VR4122:
1086 	case CPU_VR4131:
1087 	case CPU_VR4181:
1088 	case CPU_VR4181A:
1089 	case CPU_VR4133:
1090 		shift += 2;
1091 		break;
1092 
1093 	default:
1094 		break;
1095 	}
1096 
1097 	if (shift)
1098 		i_SRL(p, ctx, ctx, shift);
1099 	i_andi(p, ctx, ctx, mask);
1100 }
1101 
1102 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1103 {
1104 	/*
1105 	 * Bug workaround for the Nevada. It seems as if under certain
1106 	 * circumstances the move from cp0_context might produce a
1107 	 * bogus result when the mfc0 instruction and its consumer are
1108 	 * in a different cacheline or a load instruction, probably any
1109 	 * memory reference, is between them.
1110 	 */
1111 	switch (current_cpu_data.cputype) {
1112 	case CPU_NEVADA:
1113 		i_LW(p, ptr, 0, ptr);
1114 		GET_CONTEXT(p, tmp); /* get context reg */
1115 		break;
1116 
1117 	default:
1118 		GET_CONTEXT(p, tmp); /* get context reg */
1119 		i_LW(p, ptr, 0, ptr);
1120 		break;
1121 	}
1122 
1123 	build_adjust_context(p, tmp);
1124 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1125 }
1126 
1127 static __init void build_update_entries(u32 **p, unsigned int tmp,
1128 					unsigned int ptep)
1129 {
1130 	/*
1131 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1132 	 * Kernel is a special case. Only a few CPUs use it.
1133 	 */
1134 #ifdef CONFIG_64BIT_PHYS_ADDR
1135 	if (cpu_has_64bits) {
1136 		i_ld(p, tmp, 0, ptep); /* get even pte */
1137 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1138 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1139 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1140 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1141 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1142 	} else {
1143 		int pte_off_even = sizeof(pte_t) / 2;
1144 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1145 
1146 		/* The pte entries are pre-shifted */
1147 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1148 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1149 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1150 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1151 	}
1152 #else
1153 	i_LW(p, tmp, 0, ptep); /* get even pte */
1154 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1155 	if (r45k_bvahwbug())
1156 		build_tlb_probe_entry(p);
1157 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1158 	if (r4k_250MHZhwbug())
1159 		i_mtc0(p, 0, C0_ENTRYLO0);
1160 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1161 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1162 	if (r45k_bvahwbug())
1163 		i_mfc0(p, tmp, C0_INDEX);
1164 	if (r4k_250MHZhwbug())
1165 		i_mtc0(p, 0, C0_ENTRYLO1);
1166 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1167 #endif
1168 }
1169 
1170 static void __init build_r4000_tlb_refill_handler(void)
1171 {
1172 	u32 *p = tlb_handler;
1173 	struct label *l = labels;
1174 	struct reloc *r = relocs;
1175 	u32 *f;
1176 	unsigned int final_len;
1177 
1178 	memset(tlb_handler, 0, sizeof(tlb_handler));
1179 	memset(labels, 0, sizeof(labels));
1180 	memset(relocs, 0, sizeof(relocs));
1181 	memset(final_handler, 0, sizeof(final_handler));
1182 
1183 	/*
1184 	 * create the plain linear handler
1185 	 */
1186 	if (bcm1250_m3_war()) {
1187 		i_MFC0(&p, K0, C0_BADVADDR);
1188 		i_MFC0(&p, K1, C0_ENTRYHI);
1189 		i_xor(&p, K0, K0, K1);
1190 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1191 		il_bnez(&p, &r, K0, label_leave);
1192 		/* No need for i_nop */
1193 	}
1194 
1195 #ifdef CONFIG_64BIT
1196 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1197 #else
1198 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1199 #endif
1200 
1201 	build_get_ptep(&p, K0, K1);
1202 	build_update_entries(&p, K0, K1);
1203 	build_tlb_write_entry(&p, &l, &r, tlb_random);
1204 	l_leave(&l, p);
1205 	i_eret(&p); /* return from trap */
1206 
1207 #ifdef CONFIG_64BIT
1208 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1209 #endif
1210 
1211 	/*
1212 	 * Overflow check: For the 64bit handler, we need at least one
1213 	 * free instruction slot for the wrap-around branch. In worst
1214 	 * case, if the intended insertion point is a delay slot, we
1215 	 * need three, with the the second nop'ed and the third being
1216 	 * unused.
1217 	 */
1218 #ifdef CONFIG_32BIT
1219 	if ((p - tlb_handler) > 64)
1220 		panic("TLB refill handler space exceeded");
1221 #else
1222 	if (((p - tlb_handler) > 63)
1223 	    || (((p - tlb_handler) > 61)
1224 		&& insn_has_bdelay(relocs, tlb_handler + 29)))
1225 		panic("TLB refill handler space exceeded");
1226 #endif
1227 
1228 	/*
1229 	 * Now fold the handler in the TLB refill handler space.
1230 	 */
1231 #ifdef CONFIG_32BIT
1232 	f = final_handler;
1233 	/* Simplest case, just copy the handler. */
1234 	copy_handler(relocs, labels, tlb_handler, p, f);
1235 	final_len = p - tlb_handler;
1236 #else /* CONFIG_64BIT */
1237 	f = final_handler + 32;
1238 	if ((p - tlb_handler) <= 32) {
1239 		/* Just copy the handler. */
1240 		copy_handler(relocs, labels, tlb_handler, p, f);
1241 		final_len = p - tlb_handler;
1242 	} else {
1243 		u32 *split = tlb_handler + 30;
1244 
1245 		/*
1246 		 * Find the split point.
1247 		 */
1248 		if (insn_has_bdelay(relocs, split - 1))
1249 			split--;
1250 
1251 		/* Copy first part of the handler. */
1252 		copy_handler(relocs, labels, tlb_handler, split, f);
1253 		f += split - tlb_handler;
1254 
1255 		/* Insert branch. */
1256 		l_split(&l, final_handler);
1257 		il_b(&f, &r, label_split);
1258 		if (insn_has_bdelay(relocs, split))
1259 			i_nop(&f);
1260 		else {
1261 			copy_handler(relocs, labels, split, split + 1, f);
1262 			move_labels(labels, f, f + 1, -1);
1263 			f++;
1264 			split++;
1265 		}
1266 
1267 		/* Copy the rest of the handler. */
1268 		copy_handler(relocs, labels, split, p, final_handler);
1269 		final_len = (f - (final_handler + 32)) + (p - split);
1270 	}
1271 #endif /* CONFIG_64BIT */
1272 
1273 	resolve_relocs(relocs, labels);
1274 	printk("Synthesized TLB refill handler (%u instructions).\n",
1275 	       final_len);
1276 
1277 #ifdef DEBUG_TLB
1278 	{
1279 		int i;
1280 
1281 		f = final_handler;
1282 #ifdef CONFIG_64BIT
1283 		if (final_len > 32)
1284 			final_len = 64;
1285 		else
1286 			f = final_handler + 32;
1287 #endif /* CONFIG_64BIT */
1288 		for (i = 0; i < final_len; i++)
1289 			printk("%08x\n", f[i]);
1290 	}
1291 #endif
1292 
1293 	memcpy((void *)ebase, final_handler, 0x100);
1294 }
1295 
1296 /*
1297  * TLB load/store/modify handlers.
1298  *
1299  * Only the fastpath gets synthesized at runtime, the slowpath for
1300  * do_page_fault remains normal asm.
1301  */
1302 extern void tlb_do_page_fault_0(void);
1303 extern void tlb_do_page_fault_1(void);
1304 
1305 #define __tlb_handler_align \
1306 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1307 
1308 /*
1309  * 128 instructions for the fastpath handler is generous and should
1310  * never be exceeded.
1311  */
1312 #define FASTPATH_SIZE 128
1313 
1314 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1315 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1316 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1317 
1318 static void __init
1319 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1320 {
1321 #ifdef CONFIG_SMP
1322 # ifdef CONFIG_64BIT_PHYS_ADDR
1323 	if (cpu_has_64bits)
1324 		i_lld(p, pte, 0, ptr);
1325 	else
1326 # endif
1327 		i_LL(p, pte, 0, ptr);
1328 #else
1329 # ifdef CONFIG_64BIT_PHYS_ADDR
1330 	if (cpu_has_64bits)
1331 		i_ld(p, pte, 0, ptr);
1332 	else
1333 # endif
1334 		i_LW(p, pte, 0, ptr);
1335 #endif
1336 }
1337 
1338 static void __init
1339 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1340 	unsigned int mode)
1341 {
1342 #ifdef CONFIG_64BIT_PHYS_ADDR
1343 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1344 #endif
1345 
1346 	i_ori(p, pte, pte, mode);
1347 #ifdef CONFIG_SMP
1348 # ifdef CONFIG_64BIT_PHYS_ADDR
1349 	if (cpu_has_64bits)
1350 		i_scd(p, pte, 0, ptr);
1351 	else
1352 # endif
1353 		i_SC(p, pte, 0, ptr);
1354 
1355 	if (r10000_llsc_war())
1356 		il_beqzl(p, r, pte, label_smp_pgtable_change);
1357 	else
1358 		il_beqz(p, r, pte, label_smp_pgtable_change);
1359 
1360 # ifdef CONFIG_64BIT_PHYS_ADDR
1361 	if (!cpu_has_64bits) {
1362 		/* no i_nop needed */
1363 		i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1364 		i_ori(p, pte, pte, hwmode);
1365 		i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1366 		il_beqz(p, r, pte, label_smp_pgtable_change);
1367 		/* no i_nop needed */
1368 		i_lw(p, pte, 0, ptr);
1369 	} else
1370 		i_nop(p);
1371 # else
1372 	i_nop(p);
1373 # endif
1374 #else
1375 # ifdef CONFIG_64BIT_PHYS_ADDR
1376 	if (cpu_has_64bits)
1377 		i_sd(p, pte, 0, ptr);
1378 	else
1379 # endif
1380 		i_SW(p, pte, 0, ptr);
1381 
1382 # ifdef CONFIG_64BIT_PHYS_ADDR
1383 	if (!cpu_has_64bits) {
1384 		i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1385 		i_ori(p, pte, pte, hwmode);
1386 		i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1387 		i_lw(p, pte, 0, ptr);
1388 	}
1389 # endif
1390 #endif
1391 }
1392 
1393 /*
1394  * Check if PTE is present, if not then jump to LABEL. PTR points to
1395  * the page table where this PTE is located, PTE will be re-loaded
1396  * with it's original value.
1397  */
1398 static void __init
1399 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1400 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1401 {
1402 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1403 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1404 	il_bnez(p, r, pte, lid);
1405 	iPTE_LW(p, l, pte, ptr);
1406 }
1407 
1408 /* Make PTE valid, store result in PTR. */
1409 static void __init
1410 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1411 		 unsigned int ptr)
1412 {
1413 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1414 
1415 	iPTE_SW(p, r, pte, ptr, mode);
1416 }
1417 
1418 /*
1419  * Check if PTE can be written to, if not branch to LABEL. Regardless
1420  * restore PTE with value from PTR when done.
1421  */
1422 static void __init
1423 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1424 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1425 {
1426 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1427 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1428 	il_bnez(p, r, pte, lid);
1429 	iPTE_LW(p, l, pte, ptr);
1430 }
1431 
1432 /* Make PTE writable, update software status bits as well, then store
1433  * at PTR.
1434  */
1435 static void __init
1436 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1437 		 unsigned int ptr)
1438 {
1439 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1440 			     | _PAGE_DIRTY);
1441 
1442 	iPTE_SW(p, r, pte, ptr, mode);
1443 }
1444 
1445 /*
1446  * Check if PTE can be modified, if not branch to LABEL. Regardless
1447  * restore PTE with value from PTR when done.
1448  */
1449 static void __init
1450 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1451 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1452 {
1453 	i_andi(p, pte, pte, _PAGE_WRITE);
1454 	il_beqz(p, r, pte, lid);
1455 	iPTE_LW(p, l, pte, ptr);
1456 }
1457 
1458 /*
1459  * R3000 style TLB load/store/modify handlers.
1460  */
1461 
1462 /*
1463  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1464  * Then it returns.
1465  */
1466 static void __init
1467 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1468 {
1469 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1470 	i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1471 	i_tlbwi(p);
1472 	i_jr(p, tmp);
1473 	i_rfe(p); /* branch delay */
1474 }
1475 
1476 /*
1477  * This places the pte into ENTRYLO0 and writes it with tlbwi
1478  * or tlbwr as appropriate.  This is because the index register
1479  * may have the probe fail bit set as a result of a trap on a
1480  * kseg2 access, i.e. without refill.  Then it returns.
1481  */
1482 static void __init
1483 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1484 			     unsigned int pte, unsigned int tmp)
1485 {
1486 	i_mfc0(p, tmp, C0_INDEX);
1487 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1488 	il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1489 	i_mfc0(p, tmp, C0_EPC); /* branch delay */
1490 	i_tlbwi(p); /* cp0 delay */
1491 	i_jr(p, tmp);
1492 	i_rfe(p); /* branch delay */
1493 	l_r3000_write_probe_fail(l, *p);
1494 	i_tlbwr(p); /* cp0 delay */
1495 	i_jr(p, tmp);
1496 	i_rfe(p); /* branch delay */
1497 }
1498 
1499 static void __init
1500 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1501 				   unsigned int ptr)
1502 {
1503 	long pgdc = (long)pgd_current;
1504 
1505 	i_mfc0(p, pte, C0_BADVADDR);
1506 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1507 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1508 	i_srl(p, pte, pte, 22); /* load delay */
1509 	i_sll(p, pte, pte, 2);
1510 	i_addu(p, ptr, ptr, pte);
1511 	i_mfc0(p, pte, C0_CONTEXT);
1512 	i_lw(p, ptr, 0, ptr); /* cp0 delay */
1513 	i_andi(p, pte, pte, 0xffc); /* load delay */
1514 	i_addu(p, ptr, ptr, pte);
1515 	i_lw(p, pte, 0, ptr);
1516 	i_tlbp(p); /* load delay */
1517 }
1518 
1519 static void __init build_r3000_tlb_load_handler(void)
1520 {
1521 	u32 *p = handle_tlbl;
1522 	struct label *l = labels;
1523 	struct reloc *r = relocs;
1524 
1525 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1526 	memset(labels, 0, sizeof(labels));
1527 	memset(relocs, 0, sizeof(relocs));
1528 
1529 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1530 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1531 	i_nop(&p); /* load delay */
1532 	build_make_valid(&p, &r, K0, K1);
1533 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1534 
1535 	l_nopage_tlbl(&l, p);
1536 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1537 	i_nop(&p);
1538 
1539 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1540 		panic("TLB load handler fastpath space exceeded");
1541 
1542 	resolve_relocs(relocs, labels);
1543 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1544 	       (unsigned int)(p - handle_tlbl));
1545 
1546 #ifdef DEBUG_TLB
1547 	{
1548 		int i;
1549 
1550 		for (i = 0; i < (p - handle_tlbl); i++)
1551 			printk("%08x\n", handle_tlbl[i]);
1552 	}
1553 #endif
1554 }
1555 
1556 static void __init build_r3000_tlb_store_handler(void)
1557 {
1558 	u32 *p = handle_tlbs;
1559 	struct label *l = labels;
1560 	struct reloc *r = relocs;
1561 
1562 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1563 	memset(labels, 0, sizeof(labels));
1564 	memset(relocs, 0, sizeof(relocs));
1565 
1566 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1567 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1568 	i_nop(&p); /* load delay */
1569 	build_make_write(&p, &r, K0, K1);
1570 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1571 
1572 	l_nopage_tlbs(&l, p);
1573 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1574 	i_nop(&p);
1575 
1576 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1577 		panic("TLB store handler fastpath space exceeded");
1578 
1579 	resolve_relocs(relocs, labels);
1580 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1581 	       (unsigned int)(p - handle_tlbs));
1582 
1583 #ifdef DEBUG_TLB
1584 	{
1585 		int i;
1586 
1587 		for (i = 0; i < (p - handle_tlbs); i++)
1588 			printk("%08x\n", handle_tlbs[i]);
1589 	}
1590 #endif
1591 }
1592 
1593 static void __init build_r3000_tlb_modify_handler(void)
1594 {
1595 	u32 *p = handle_tlbm;
1596 	struct label *l = labels;
1597 	struct reloc *r = relocs;
1598 
1599 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1600 	memset(labels, 0, sizeof(labels));
1601 	memset(relocs, 0, sizeof(relocs));
1602 
1603 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1604 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1605 	i_nop(&p); /* load delay */
1606 	build_make_write(&p, &r, K0, K1);
1607 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1608 
1609 	l_nopage_tlbm(&l, p);
1610 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1611 	i_nop(&p);
1612 
1613 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1614 		panic("TLB modify handler fastpath space exceeded");
1615 
1616 	resolve_relocs(relocs, labels);
1617 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1618 	       (unsigned int)(p - handle_tlbm));
1619 
1620 #ifdef DEBUG_TLB
1621 	{
1622 		int i;
1623 
1624 		for (i = 0; i < (p - handle_tlbm); i++)
1625 			printk("%08x\n", handle_tlbm[i]);
1626 	}
1627 #endif
1628 }
1629 
1630 /*
1631  * R4000 style TLB load/store/modify handlers.
1632  */
1633 static void __init
1634 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1635 				   struct reloc **r, unsigned int pte,
1636 				   unsigned int ptr)
1637 {
1638 #ifdef CONFIG_64BIT
1639 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1640 #else
1641 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1642 #endif
1643 
1644 	i_MFC0(p, pte, C0_BADVADDR);
1645 	i_LW(p, ptr, 0, ptr);
1646 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1647 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1648 	i_ADDU(p, ptr, ptr, pte);
1649 
1650 #ifdef CONFIG_SMP
1651 	l_smp_pgtable_change(l, *p);
1652 # endif
1653 	iPTE_LW(p, l, pte, ptr); /* get even pte */
1654 	build_tlb_probe_entry(p);
1655 }
1656 
1657 static void __init
1658 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1659 				   struct reloc **r, unsigned int tmp,
1660 				   unsigned int ptr)
1661 {
1662 	i_ori(p, ptr, ptr, sizeof(pte_t));
1663 	i_xori(p, ptr, ptr, sizeof(pte_t));
1664 	build_update_entries(p, tmp, ptr);
1665 	build_tlb_write_entry(p, l, r, tlb_indexed);
1666 	l_leave(l, *p);
1667 	i_eret(p); /* return from trap */
1668 
1669 #ifdef CONFIG_64BIT
1670 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1671 #endif
1672 }
1673 
1674 static void __init build_r4000_tlb_load_handler(void)
1675 {
1676 	u32 *p = handle_tlbl;
1677 	struct label *l = labels;
1678 	struct reloc *r = relocs;
1679 
1680 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1681 	memset(labels, 0, sizeof(labels));
1682 	memset(relocs, 0, sizeof(relocs));
1683 
1684 	if (bcm1250_m3_war()) {
1685 		i_MFC0(&p, K0, C0_BADVADDR);
1686 		i_MFC0(&p, K1, C0_ENTRYHI);
1687 		i_xor(&p, K0, K0, K1);
1688 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1689 		il_bnez(&p, &r, K0, label_leave);
1690 		/* No need for i_nop */
1691 	}
1692 
1693 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1694 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1695 	build_make_valid(&p, &r, K0, K1);
1696 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1697 
1698 	l_nopage_tlbl(&l, p);
1699 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1700 	i_nop(&p);
1701 
1702 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1703 		panic("TLB load handler fastpath space exceeded");
1704 
1705 	resolve_relocs(relocs, labels);
1706 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1707 	       (unsigned int)(p - handle_tlbl));
1708 
1709 #ifdef DEBUG_TLB
1710 	{
1711 		int i;
1712 
1713 		for (i = 0; i < (p - handle_tlbl); i++)
1714 			printk("%08x\n", handle_tlbl[i]);
1715 	}
1716 #endif
1717 }
1718 
1719 static void __init build_r4000_tlb_store_handler(void)
1720 {
1721 	u32 *p = handle_tlbs;
1722 	struct label *l = labels;
1723 	struct reloc *r = relocs;
1724 
1725 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1726 	memset(labels, 0, sizeof(labels));
1727 	memset(relocs, 0, sizeof(relocs));
1728 
1729 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1730 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1731 	build_make_write(&p, &r, K0, K1);
1732 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1733 
1734 	l_nopage_tlbs(&l, p);
1735 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1736 	i_nop(&p);
1737 
1738 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1739 		panic("TLB store handler fastpath space exceeded");
1740 
1741 	resolve_relocs(relocs, labels);
1742 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1743 	       (unsigned int)(p - handle_tlbs));
1744 
1745 #ifdef DEBUG_TLB
1746 	{
1747 		int i;
1748 
1749 		for (i = 0; i < (p - handle_tlbs); i++)
1750 			printk("%08x\n", handle_tlbs[i]);
1751 	}
1752 #endif
1753 }
1754 
1755 static void __init build_r4000_tlb_modify_handler(void)
1756 {
1757 	u32 *p = handle_tlbm;
1758 	struct label *l = labels;
1759 	struct reloc *r = relocs;
1760 
1761 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1762 	memset(labels, 0, sizeof(labels));
1763 	memset(relocs, 0, sizeof(relocs));
1764 
1765 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1766 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1767 	/* Present and writable bits set, set accessed and dirty bits. */
1768 	build_make_write(&p, &r, K0, K1);
1769 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1770 
1771 	l_nopage_tlbm(&l, p);
1772 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1773 	i_nop(&p);
1774 
1775 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1776 		panic("TLB modify handler fastpath space exceeded");
1777 
1778 	resolve_relocs(relocs, labels);
1779 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1780 	       (unsigned int)(p - handle_tlbm));
1781 
1782 #ifdef DEBUG_TLB
1783 	{
1784 		int i;
1785 
1786 		for (i = 0; i < (p - handle_tlbm); i++)
1787 			printk("%08x\n", handle_tlbm[i]);
1788 	}
1789 #endif
1790 }
1791 
1792 void __init build_tlb_refill_handler(void)
1793 {
1794 	/*
1795 	 * The refill handler is generated per-CPU, multi-node systems
1796 	 * may have local storage for it. The other handlers are only
1797 	 * needed once.
1798 	 */
1799 	static int run_once = 0;
1800 
1801 	switch (current_cpu_data.cputype) {
1802 	case CPU_R2000:
1803 	case CPU_R3000:
1804 	case CPU_R3000A:
1805 	case CPU_R3081E:
1806 	case CPU_TX3912:
1807 	case CPU_TX3922:
1808 	case CPU_TX3927:
1809 		build_r3000_tlb_refill_handler();
1810 		if (!run_once) {
1811 			build_r3000_tlb_load_handler();
1812 			build_r3000_tlb_store_handler();
1813 			build_r3000_tlb_modify_handler();
1814 			run_once++;
1815 		}
1816 		break;
1817 
1818 	case CPU_R6000:
1819 	case CPU_R6000A:
1820 		panic("No R6000 TLB refill handler yet");
1821 		break;
1822 
1823 	case CPU_R8000:
1824 		panic("No R8000 TLB refill handler yet");
1825 		break;
1826 
1827 	default:
1828 		build_r4000_tlb_refill_handler();
1829 		if (!run_once) {
1830 			build_r4000_tlb_load_handler();
1831 			build_r4000_tlb_store_handler();
1832 			build_r4000_tlb_modify_handler();
1833 			run_once++;
1834 		}
1835 	}
1836 }
1837 
1838 void __init flush_tlb_handlers(void)
1839 {
1840 	flush_icache_range((unsigned long)handle_tlbl,
1841 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1842 	flush_icache_range((unsigned long)handle_tlbs,
1843 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1844 	flush_icache_range((unsigned long)handle_tlbm,
1845 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1846 }
1847