xref: /linux/arch/mips/mm/tlbex.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004,2005,2006 by Thiemo Seufer
9  * Copyright (C) 2005  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  *
12  * ... and the days got worse and worse and now you see
13  * I've gone completly out of my mind.
14  *
15  * They're coming to take me a away haha
16  * they're coming to take me a away hoho hihi haha
17  * to the funny farm where code is beautiful all the time ...
18  *
19  * (Condolences to Napoleon XIV)
20  */
21 
22 #include <stdarg.h>
23 
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
37 
38 static __init int __attribute__((unused)) r45k_bvahwbug(void)
39 {
40 	/* XXX: We should probe for the presence of this bug, but we don't. */
41 	return 0;
42 }
43 
44 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
45 {
46 	/* XXX: We should probe for the presence of this bug, but we don't. */
47 	return 0;
48 }
49 
50 static __init int __attribute__((unused)) bcm1250_m3_war(void)
51 {
52 	return BCM1250_M3_WAR;
53 }
54 
55 static __init int __attribute__((unused)) r10000_llsc_war(void)
56 {
57 	return R10000_LLSC_WAR;
58 }
59 
60 /*
61  * A little micro-assembler, intended for TLB refill handler
62  * synthesizing. It is intentionally kept simple, does only support
63  * a subset of instructions, and does not try to hide pipeline effects
64  * like branch delay slots.
65  */
66 
67 enum fields
68 {
69 	RS = 0x001,
70 	RT = 0x002,
71 	RD = 0x004,
72 	RE = 0x008,
73 	SIMM = 0x010,
74 	UIMM = 0x020,
75 	BIMM = 0x040,
76 	JIMM = 0x080,
77 	FUNC = 0x100,
78 	SET = 0x200
79 };
80 
81 #define OP_MASK		0x2f
82 #define OP_SH		26
83 #define RS_MASK		0x1f
84 #define RS_SH		21
85 #define RT_MASK		0x1f
86 #define RT_SH		16
87 #define RD_MASK		0x1f
88 #define RD_SH		11
89 #define RE_MASK		0x1f
90 #define RE_SH		6
91 #define IMM_MASK	0xffff
92 #define IMM_SH		0
93 #define JIMM_MASK	0x3ffffff
94 #define JIMM_SH		0
95 #define FUNC_MASK	0x2f
96 #define FUNC_SH		0
97 #define SET_MASK	0x7
98 #define SET_SH		0
99 
100 enum opcode {
101 	insn_invalid,
102 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
103 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
104 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
105 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
106 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
107 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
108 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
109 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
110 	insn_tlbwr, insn_xor, insn_xori
111 };
112 
113 struct insn {
114 	enum opcode opcode;
115 	u32 match;
116 	enum fields fields;
117 };
118 
119 /* This macro sets the non-variable bits of an instruction. */
120 #define M(a, b, c, d, e, f)					\
121 	((a) << OP_SH						\
122 	 | (b) << RS_SH						\
123 	 | (c) << RT_SH						\
124 	 | (d) << RD_SH						\
125 	 | (e) << RE_SH						\
126 	 | (f) << FUNC_SH)
127 
128 static __initdata struct insn insn_table[] = {
129 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
130 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
131 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
132 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
133 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
134 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
135 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
136 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
137 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
138 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
139 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
140 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
141 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
142 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
143 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
144 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
145 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
146 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
147 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
148 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
149 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
150 	{ insn_j, M(j_op,0,0,0,0,0), JIMM },
151 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
152 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
153 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
154 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
155 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
156 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
157 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
158 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
159 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
160 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
161 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
162 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
163 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
164 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
165 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
166 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
167 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
168 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
169 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
170 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
171 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
172 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
173 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
174 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
175 	{ insn_invalid, 0, 0 }
176 };
177 
178 #undef M
179 
180 static __init u32 build_rs(u32 arg)
181 {
182 	if (arg & ~RS_MASK)
183 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
184 
185 	return (arg & RS_MASK) << RS_SH;
186 }
187 
188 static __init u32 build_rt(u32 arg)
189 {
190 	if (arg & ~RT_MASK)
191 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
192 
193 	return (arg & RT_MASK) << RT_SH;
194 }
195 
196 static __init u32 build_rd(u32 arg)
197 {
198 	if (arg & ~RD_MASK)
199 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
200 
201 	return (arg & RD_MASK) << RD_SH;
202 }
203 
204 static __init u32 build_re(u32 arg)
205 {
206 	if (arg & ~RE_MASK)
207 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
208 
209 	return (arg & RE_MASK) << RE_SH;
210 }
211 
212 static __init u32 build_simm(s32 arg)
213 {
214 	if (arg > 0x7fff || arg < -0x8000)
215 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
216 
217 	return arg & 0xffff;
218 }
219 
220 static __init u32 build_uimm(u32 arg)
221 {
222 	if (arg & ~IMM_MASK)
223 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
224 
225 	return arg & IMM_MASK;
226 }
227 
228 static __init u32 build_bimm(s32 arg)
229 {
230 	if (arg > 0x1ffff || arg < -0x20000)
231 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
232 
233 	if (arg & 0x3)
234 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
235 
236 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
237 }
238 
239 static __init u32 build_jimm(u32 arg)
240 {
241 	if (arg & ~((JIMM_MASK) << 2))
242 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
243 
244 	return (arg >> 2) & JIMM_MASK;
245 }
246 
247 static __init u32 build_func(u32 arg)
248 {
249 	if (arg & ~FUNC_MASK)
250 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
251 
252 	return arg & FUNC_MASK;
253 }
254 
255 static __init u32 build_set(u32 arg)
256 {
257 	if (arg & ~SET_MASK)
258 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
259 
260 	return arg & SET_MASK;
261 }
262 
263 /*
264  * The order of opcode arguments is implicitly left to right,
265  * starting with RS and ending with FUNC or IMM.
266  */
267 static void __init build_insn(u32 **buf, enum opcode opc, ...)
268 {
269 	struct insn *ip = NULL;
270 	unsigned int i;
271 	va_list ap;
272 	u32 op;
273 
274 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
275 		if (insn_table[i].opcode == opc) {
276 			ip = &insn_table[i];
277 			break;
278 		}
279 
280 	if (!ip)
281 		panic("Unsupported TLB synthesizer instruction %d", opc);
282 
283 	op = ip->match;
284 	va_start(ap, opc);
285 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
286 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
287 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
288 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
289 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
290 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
291 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
292 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
293 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
294 	if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
295 	va_end(ap);
296 
297 	**buf = op;
298 	(*buf)++;
299 }
300 
301 #define I_u1u2u3(op)						\
302 	static inline void __init i##op(u32 **buf, unsigned int a,	\
303 	 	unsigned int b, unsigned int c)			\
304 	{							\
305 		build_insn(buf, insn##op, a, b, c);		\
306 	}
307 
308 #define I_u2u1u3(op)						\
309 	static inline void __init i##op(u32 **buf, unsigned int a,	\
310 	 	unsigned int b, unsigned int c)			\
311 	{							\
312 		build_insn(buf, insn##op, b, a, c);		\
313 	}
314 
315 #define I_u3u1u2(op)						\
316 	static inline void __init i##op(u32 **buf, unsigned int a,	\
317 	 	unsigned int b, unsigned int c)			\
318 	{							\
319 		build_insn(buf, insn##op, b, c, a);		\
320 	}
321 
322 #define I_u1u2s3(op)						\
323 	static inline void __init i##op(u32 **buf, unsigned int a,	\
324 	 	unsigned int b, signed int c)			\
325 	{							\
326 		build_insn(buf, insn##op, a, b, c);		\
327 	}
328 
329 #define I_u2s3u1(op)						\
330 	static inline void __init i##op(u32 **buf, unsigned int a,	\
331 	 	signed int b, unsigned int c)			\
332 	{							\
333 		build_insn(buf, insn##op, c, a, b);		\
334 	}
335 
336 #define I_u2u1s3(op)						\
337 	static inline void __init i##op(u32 **buf, unsigned int a,	\
338 	 	unsigned int b, signed int c)			\
339 	{							\
340 		build_insn(buf, insn##op, b, a, c);		\
341 	}
342 
343 #define I_u1u2(op)						\
344 	static inline void __init i##op(u32 **buf, unsigned int a,	\
345 	 	unsigned int b)					\
346 	{							\
347 		build_insn(buf, insn##op, a, b);		\
348 	}
349 
350 #define I_u1s2(op)						\
351 	static inline void __init i##op(u32 **buf, unsigned int a,	\
352 	 	signed int b)					\
353 	{							\
354 		build_insn(buf, insn##op, a, b);		\
355 	}
356 
357 #define I_u1(op)						\
358 	static inline void __init i##op(u32 **buf, unsigned int a)	\
359 	{							\
360 		build_insn(buf, insn##op, a);			\
361 	}
362 
363 #define I_0(op)							\
364 	static inline void __init i##op(u32 **buf)		\
365 	{							\
366 		build_insn(buf, insn##op);			\
367 	}
368 
369 I_u2u1s3(_addiu);
370 I_u3u1u2(_addu);
371 I_u2u1u3(_andi);
372 I_u3u1u2(_and);
373 I_u1u2s3(_beq);
374 I_u1u2s3(_beql);
375 I_u1s2(_bgez);
376 I_u1s2(_bgezl);
377 I_u1s2(_bltz);
378 I_u1s2(_bltzl);
379 I_u1u2s3(_bne);
380 I_u1u2u3(_dmfc0);
381 I_u1u2u3(_dmtc0);
382 I_u2u1s3(_daddiu);
383 I_u3u1u2(_daddu);
384 I_u2u1u3(_dsll);
385 I_u2u1u3(_dsll32);
386 I_u2u1u3(_dsra);
387 I_u2u1u3(_dsrl);
388 I_u3u1u2(_dsubu);
389 I_0(_eret);
390 I_u1(_j);
391 I_u1(_jal);
392 I_u1(_jr);
393 I_u2s3u1(_ld);
394 I_u2s3u1(_ll);
395 I_u2s3u1(_lld);
396 I_u1s2(_lui);
397 I_u2s3u1(_lw);
398 I_u1u2u3(_mfc0);
399 I_u1u2u3(_mtc0);
400 I_u2u1u3(_ori);
401 I_0(_rfe);
402 I_u2s3u1(_sc);
403 I_u2s3u1(_scd);
404 I_u2s3u1(_sd);
405 I_u2u1u3(_sll);
406 I_u2u1u3(_sra);
407 I_u2u1u3(_srl);
408 I_u3u1u2(_subu);
409 I_u2s3u1(_sw);
410 I_0(_tlbp);
411 I_0(_tlbwi);
412 I_0(_tlbwr);
413 I_u3u1u2(_xor)
414 I_u2u1u3(_xori);
415 
416 /*
417  * handling labels
418  */
419 
420 enum label_id {
421 	label_invalid,
422 	label_second_part,
423 	label_leave,
424 	label_vmalloc,
425 	label_vmalloc_done,
426 	label_tlbw_hazard,
427 	label_split,
428 	label_nopage_tlbl,
429 	label_nopage_tlbs,
430 	label_nopage_tlbm,
431 	label_smp_pgtable_change,
432 	label_r3000_write_probe_fail,
433 };
434 
435 struct label {
436 	u32 *addr;
437 	enum label_id lab;
438 };
439 
440 static __init void build_label(struct label **lab, u32 *addr,
441 			       enum label_id l)
442 {
443 	(*lab)->addr = addr;
444 	(*lab)->lab = l;
445 	(*lab)++;
446 }
447 
448 #define L_LA(lb)						\
449 	static inline void l##lb(struct label **lab, u32 *addr) \
450 	{							\
451 		build_label(lab, addr, label##lb);		\
452 	}
453 
454 L_LA(_second_part)
455 L_LA(_leave)
456 L_LA(_vmalloc)
457 L_LA(_vmalloc_done)
458 L_LA(_tlbw_hazard)
459 L_LA(_split)
460 L_LA(_nopage_tlbl)
461 L_LA(_nopage_tlbs)
462 L_LA(_nopage_tlbm)
463 L_LA(_smp_pgtable_change)
464 L_LA(_r3000_write_probe_fail)
465 
466 /* convenience macros for instructions */
467 #ifdef CONFIG_64BIT
468 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
469 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
470 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
471 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
472 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
473 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
474 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
475 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
476 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
477 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
478 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
479 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
480 #else
481 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
482 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
483 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
484 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
485 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
486 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
487 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
488 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
489 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
490 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
491 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
492 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
493 #endif
494 
495 #define i_b(buf, off) i_beq(buf, 0, 0, off)
496 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
497 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
498 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
499 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
500 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
501 #define i_nop(buf) i_sll(buf, 0, 0, 0)
502 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
503 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
504 
505 #ifdef CONFIG_64BIT
506 static __init int __attribute__((unused)) in_compat_space_p(long addr)
507 {
508 	/* Is this address in 32bit compat space? */
509 	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
510 }
511 
512 static __init int __attribute__((unused)) rel_highest(long val)
513 {
514 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
515 }
516 
517 static __init int __attribute__((unused)) rel_higher(long val)
518 {
519 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
520 }
521 #endif
522 
523 static __init int rel_hi(long val)
524 {
525 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
526 }
527 
528 static __init int rel_lo(long val)
529 {
530 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
531 }
532 
533 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
534 {
535 #ifdef CONFIG_64BIT
536 	if (!in_compat_space_p(addr)) {
537 		i_lui(buf, rs, rel_highest(addr));
538 		if (rel_higher(addr))
539 			i_daddiu(buf, rs, rs, rel_higher(addr));
540 		if (rel_hi(addr)) {
541 			i_dsll(buf, rs, rs, 16);
542 			i_daddiu(buf, rs, rs, rel_hi(addr));
543 			i_dsll(buf, rs, rs, 16);
544 		} else
545 			i_dsll32(buf, rs, rs, 0);
546 	} else
547 #endif
548 		i_lui(buf, rs, rel_hi(addr));
549 }
550 
551 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
552 						long addr)
553 {
554 	i_LA_mostly(buf, rs, addr);
555 	if (rel_lo(addr))
556 		i_ADDIU(buf, rs, rs, rel_lo(addr));
557 }
558 
559 /*
560  * handle relocations
561  */
562 
563 struct reloc {
564 	u32 *addr;
565 	unsigned int type;
566 	enum label_id lab;
567 };
568 
569 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
570 			       enum label_id l)
571 {
572 	(*rel)->addr = addr;
573 	(*rel)->type = R_MIPS_PC16;
574 	(*rel)->lab = l;
575 	(*rel)++;
576 }
577 
578 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
579 {
580 	long laddr = (long)lab->addr;
581 	long raddr = (long)rel->addr;
582 
583 	switch (rel->type) {
584 	case R_MIPS_PC16:
585 		*rel->addr |= build_bimm(laddr - (raddr + 4));
586 		break;
587 
588 	default:
589 		panic("Unsupported TLB synthesizer relocation %d",
590 		      rel->type);
591 	}
592 }
593 
594 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
595 {
596 	struct label *l;
597 
598 	for (; rel->lab != label_invalid; rel++)
599 		for (l = lab; l->lab != label_invalid; l++)
600 			if (rel->lab == l->lab)
601 				__resolve_relocs(rel, l);
602 }
603 
604 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
605 			       long off)
606 {
607 	for (; rel->lab != label_invalid; rel++)
608 		if (rel->addr >= first && rel->addr < end)
609 			rel->addr += off;
610 }
611 
612 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
613 			       long off)
614 {
615 	for (; lab->lab != label_invalid; lab++)
616 		if (lab->addr >= first && lab->addr < end)
617 			lab->addr += off;
618 }
619 
620 static __init void copy_handler(struct reloc *rel, struct label *lab,
621 				u32 *first, u32 *end, u32 *target)
622 {
623 	long off = (long)(target - first);
624 
625 	memcpy(target, first, (end - first) * sizeof(u32));
626 
627 	move_relocs(rel, first, end, off);
628 	move_labels(lab, first, end, off);
629 }
630 
631 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
632 							  u32 *addr)
633 {
634 	for (; rel->lab != label_invalid; rel++) {
635 		if (rel->addr == addr
636 		    && (rel->type == R_MIPS_PC16
637 			|| rel->type == R_MIPS_26))
638 			return 1;
639 	}
640 
641 	return 0;
642 }
643 
644 /* convenience functions for labeled branches */
645 static void __init __attribute__((unused))
646 	il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
647 {
648 	r_mips_pc16(r, *p, l);
649 	i_bltz(p, reg, 0);
650 }
651 
652 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
653 					 enum label_id l)
654 {
655 	r_mips_pc16(r, *p, l);
656 	i_b(p, 0);
657 }
658 
659 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
660 		    enum label_id l)
661 {
662 	r_mips_pc16(r, *p, l);
663 	i_beqz(p, reg, 0);
664 }
665 
666 static void __init __attribute__((unused))
667 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
668 {
669 	r_mips_pc16(r, *p, l);
670 	i_beqzl(p, reg, 0);
671 }
672 
673 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
674 		    enum label_id l)
675 {
676 	r_mips_pc16(r, *p, l);
677 	i_bnez(p, reg, 0);
678 }
679 
680 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
681 		     enum label_id l)
682 {
683 	r_mips_pc16(r, *p, l);
684 	i_bgezl(p, reg, 0);
685 }
686 
687 /* The only general purpose registers allowed in TLB handlers. */
688 #define K0		26
689 #define K1		27
690 
691 /* Some CP0 registers */
692 #define C0_INDEX	0, 0
693 #define C0_ENTRYLO0	2, 0
694 #define C0_TCBIND	2, 2
695 #define C0_ENTRYLO1	3, 0
696 #define C0_CONTEXT	4, 0
697 #define C0_BADVADDR	8, 0
698 #define C0_ENTRYHI	10, 0
699 #define C0_EPC		14, 0
700 #define C0_XCONTEXT	20, 0
701 
702 #ifdef CONFIG_64BIT
703 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
704 #else
705 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
706 #endif
707 
708 /* The worst case length of the handler is around 18 instructions for
709  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
710  * Maximum space available is 32 instructions for R3000 and 64
711  * instructions for R4000.
712  *
713  * We deliberately chose a buffer size of 128, so we won't scribble
714  * over anything important on overflow before we panic.
715  */
716 static __initdata u32 tlb_handler[128];
717 
718 /* simply assume worst case size for labels and relocs */
719 static __initdata struct label labels[128];
720 static __initdata struct reloc relocs[128];
721 
722 /*
723  * The R3000 TLB handler is simple.
724  */
725 static void __init build_r3000_tlb_refill_handler(void)
726 {
727 	long pgdc = (long)pgd_current;
728 	u32 *p;
729 	int i;
730 
731 	memset(tlb_handler, 0, sizeof(tlb_handler));
732 	p = tlb_handler;
733 
734 	i_mfc0(&p, K0, C0_BADVADDR);
735 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
736 	i_lw(&p, K1, rel_lo(pgdc), K1);
737 	i_srl(&p, K0, K0, 22); /* load delay */
738 	i_sll(&p, K0, K0, 2);
739 	i_addu(&p, K1, K1, K0);
740 	i_mfc0(&p, K0, C0_CONTEXT);
741 	i_lw(&p, K1, 0, K1); /* cp0 delay */
742 	i_andi(&p, K0, K0, 0xffc); /* load delay */
743 	i_addu(&p, K1, K1, K0);
744 	i_lw(&p, K0, 0, K1);
745 	i_nop(&p); /* load delay */
746 	i_mtc0(&p, K0, C0_ENTRYLO0);
747 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
748 	i_tlbwr(&p); /* cp0 delay */
749 	i_jr(&p, K1);
750 	i_rfe(&p); /* branch delay */
751 
752 	if (p > tlb_handler + 32)
753 		panic("TLB refill handler space exceeded");
754 
755 	pr_info("Synthesized TLB refill handler (%u instructions).\n",
756 		(unsigned int)(p - tlb_handler));
757 
758 	pr_debug("\t.set push\n");
759 	pr_debug("\t.set noreorder\n");
760 	for (i = 0; i < (p - tlb_handler); i++)
761 		pr_debug("\t.word 0x%08x\n", tlb_handler[i]);
762 	pr_debug("\t.set pop\n");
763 
764 	memcpy((void *)ebase, tlb_handler, 0x80);
765 }
766 
767 /*
768  * The R4000 TLB handler is much more complicated. We have two
769  * consecutive handler areas with 32 instructions space each.
770  * Since they aren't used at the same time, we can overflow in the
771  * other one.To keep things simple, we first assume linear space,
772  * then we relocate it to the final handler layout as needed.
773  */
774 static __initdata u32 final_handler[64];
775 
776 /*
777  * Hazards
778  *
779  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
780  * 2. A timing hazard exists for the TLBP instruction.
781  *
782  *      stalling_instruction
783  *      TLBP
784  *
785  * The JTLB is being read for the TLBP throughout the stall generated by the
786  * previous instruction. This is not really correct as the stalling instruction
787  * can modify the address used to access the JTLB.  The failure symptom is that
788  * the TLBP instruction will use an address created for the stalling instruction
789  * and not the address held in C0_ENHI and thus report the wrong results.
790  *
791  * The software work-around is to not allow the instruction preceding the TLBP
792  * to stall - make it an NOP or some other instruction guaranteed not to stall.
793  *
794  * Errata 2 will not be fixed.  This errata is also on the R5000.
795  *
796  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
797  */
798 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
799 {
800 	switch (current_cpu_data.cputype) {
801 	/* Found by experiment: R4600 v2.0 needs this, too.  */
802 	case CPU_R4600:
803 	case CPU_R5000:
804 	case CPU_R5000A:
805 	case CPU_NEVADA:
806 		i_nop(p);
807 		i_tlbp(p);
808 		break;
809 
810 	default:
811 		i_tlbp(p);
812 		break;
813 	}
814 }
815 
816 /*
817  * Write random or indexed TLB entry, and care about the hazards from
818  * the preceeding mtc0 and for the following eret.
819  */
820 enum tlb_write_entry { tlb_random, tlb_indexed };
821 
822 static __init void build_tlb_write_entry(u32 **p, struct label **l,
823 					 struct reloc **r,
824 					 enum tlb_write_entry wmode)
825 {
826 	void(*tlbw)(u32 **) = NULL;
827 
828 	switch (wmode) {
829 	case tlb_random: tlbw = i_tlbwr; break;
830 	case tlb_indexed: tlbw = i_tlbwi; break;
831 	}
832 
833 	switch (current_cpu_data.cputype) {
834 	case CPU_R4000PC:
835 	case CPU_R4000SC:
836 	case CPU_R4000MC:
837 	case CPU_R4400PC:
838 	case CPU_R4400SC:
839 	case CPU_R4400MC:
840 		/*
841 		 * This branch uses up a mtc0 hazard nop slot and saves
842 		 * two nops after the tlbw instruction.
843 		 */
844 		il_bgezl(p, r, 0, label_tlbw_hazard);
845 		tlbw(p);
846 		l_tlbw_hazard(l, *p);
847 		i_nop(p);
848 		break;
849 
850 	case CPU_R4600:
851 	case CPU_R4700:
852 	case CPU_R5000:
853 	case CPU_R5000A:
854 		i_nop(p);
855 		tlbw(p);
856 		i_nop(p);
857 		break;
858 
859 	case CPU_R4300:
860 	case CPU_5KC:
861 	case CPU_TX49XX:
862 	case CPU_AU1000:
863 	case CPU_AU1100:
864 	case CPU_AU1500:
865 	case CPU_AU1550:
866 	case CPU_AU1200:
867 	case CPU_PR4450:
868 		i_nop(p);
869 		tlbw(p);
870 		break;
871 
872 	case CPU_R10000:
873 	case CPU_R12000:
874 	case CPU_R14000:
875 	case CPU_4KC:
876 	case CPU_SB1:
877 	case CPU_SB1A:
878 	case CPU_4KSC:
879 	case CPU_20KC:
880 	case CPU_25KF:
881 		tlbw(p);
882 		break;
883 
884 	case CPU_NEVADA:
885 		i_nop(p); /* QED specifies 2 nops hazard */
886 		/*
887 		 * This branch uses up a mtc0 hazard nop slot and saves
888 		 * a nop after the tlbw instruction.
889 		 */
890 		il_bgezl(p, r, 0, label_tlbw_hazard);
891 		tlbw(p);
892 		l_tlbw_hazard(l, *p);
893 		break;
894 
895 	case CPU_RM7000:
896 		i_nop(p);
897 		i_nop(p);
898 		i_nop(p);
899 		i_nop(p);
900 		tlbw(p);
901 		break;
902 
903 	case CPU_4KEC:
904 	case CPU_24K:
905 	case CPU_34K:
906 	case CPU_74K:
907 		i_ehb(p);
908 		tlbw(p);
909 		break;
910 
911 	case CPU_RM9000:
912 		/*
913 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
914 		 * use of the JTLB for instructions should not occur for 4
915 		 * cpu cycles and use for data translations should not occur
916 		 * for 3 cpu cycles.
917 		 */
918 		i_ssnop(p);
919 		i_ssnop(p);
920 		i_ssnop(p);
921 		i_ssnop(p);
922 		tlbw(p);
923 		i_ssnop(p);
924 		i_ssnop(p);
925 		i_ssnop(p);
926 		i_ssnop(p);
927 		break;
928 
929 	case CPU_VR4111:
930 	case CPU_VR4121:
931 	case CPU_VR4122:
932 	case CPU_VR4181:
933 	case CPU_VR4181A:
934 		i_nop(p);
935 		i_nop(p);
936 		tlbw(p);
937 		i_nop(p);
938 		i_nop(p);
939 		break;
940 
941 	case CPU_VR4131:
942 	case CPU_VR4133:
943 	case CPU_R5432:
944 		i_nop(p);
945 		i_nop(p);
946 		tlbw(p);
947 		break;
948 
949 	default:
950 		panic("No TLB refill handler yet (CPU type: %d)",
951 		      current_cpu_data.cputype);
952 		break;
953 	}
954 }
955 
956 #ifdef CONFIG_64BIT
957 /*
958  * TMP and PTR are scratch.
959  * TMP will be clobbered, PTR will hold the pmd entry.
960  */
961 static __init void
962 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
963 		 unsigned int tmp, unsigned int ptr)
964 {
965 	long pgdc = (long)pgd_current;
966 
967 	/*
968 	 * The vmalloc handling is not in the hotpath.
969 	 */
970 	i_dmfc0(p, tmp, C0_BADVADDR);
971 	il_bltz(p, r, tmp, label_vmalloc);
972 	/* No i_nop needed here, since the next insn doesn't touch TMP. */
973 
974 #ifdef CONFIG_SMP
975 # ifdef  CONFIG_MIPS_MT_SMTC
976 	/*
977 	 * SMTC uses TCBind value as "CPU" index
978 	 */
979 	i_mfc0(p, ptr, C0_TCBIND);
980 	i_dsrl(p, ptr, ptr, 19);
981 # else
982 	/*
983 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
984 	 * stored in CONTEXT.
985 	 */
986 	i_dmfc0(p, ptr, C0_CONTEXT);
987 	i_dsrl(p, ptr, ptr, 23);
988 #endif
989 	i_LA_mostly(p, tmp, pgdc);
990 	i_daddu(p, ptr, ptr, tmp);
991 	i_dmfc0(p, tmp, C0_BADVADDR);
992 	i_ld(p, ptr, rel_lo(pgdc), ptr);
993 #else
994 	i_LA_mostly(p, ptr, pgdc);
995 	i_ld(p, ptr, rel_lo(pgdc), ptr);
996 #endif
997 
998 	l_vmalloc_done(l, *p);
999 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1000 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1001 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1002 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1003 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1004 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1005 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1006 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1007 }
1008 
1009 /*
1010  * BVADDR is the faulting address, PTR is scratch.
1011  * PTR will hold the pgd for vmalloc.
1012  */
1013 static __init void
1014 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1015 			unsigned int bvaddr, unsigned int ptr)
1016 {
1017 	long swpd = (long)swapper_pg_dir;
1018 
1019 	l_vmalloc(l, *p);
1020 	i_LA(p, ptr, VMALLOC_START);
1021 	i_dsubu(p, bvaddr, bvaddr, ptr);
1022 
1023 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1024 		il_b(p, r, label_vmalloc_done);
1025 		i_lui(p, ptr, rel_hi(swpd));
1026 	} else {
1027 		i_LA_mostly(p, ptr, swpd);
1028 		il_b(p, r, label_vmalloc_done);
1029 		i_daddiu(p, ptr, ptr, rel_lo(swpd));
1030 	}
1031 }
1032 
1033 #else /* !CONFIG_64BIT */
1034 
1035 /*
1036  * TMP and PTR are scratch.
1037  * TMP will be clobbered, PTR will hold the pgd entry.
1038  */
1039 static __init void __attribute__((unused))
1040 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1041 {
1042 	long pgdc = (long)pgd_current;
1043 
1044 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1045 #ifdef CONFIG_SMP
1046 #ifdef  CONFIG_MIPS_MT_SMTC
1047 	/*
1048 	 * SMTC uses TCBind value as "CPU" index
1049 	 */
1050 	i_mfc0(p, ptr, C0_TCBIND);
1051 	i_LA_mostly(p, tmp, pgdc);
1052 	i_srl(p, ptr, ptr, 19);
1053 #else
1054 	/*
1055 	 * smp_processor_id() << 3 is stored in CONTEXT.
1056          */
1057 	i_mfc0(p, ptr, C0_CONTEXT);
1058 	i_LA_mostly(p, tmp, pgdc);
1059 	i_srl(p, ptr, ptr, 23);
1060 #endif
1061 	i_addu(p, ptr, tmp, ptr);
1062 #else
1063 	i_LA_mostly(p, ptr, pgdc);
1064 #endif
1065 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1066 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1067 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1068 	i_sll(p, tmp, tmp, PGD_T_LOG2);
1069 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1070 }
1071 
1072 #endif /* !CONFIG_64BIT */
1073 
1074 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1075 {
1076 	unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1077 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1078 
1079 	switch (current_cpu_data.cputype) {
1080 	case CPU_VR41XX:
1081 	case CPU_VR4111:
1082 	case CPU_VR4121:
1083 	case CPU_VR4122:
1084 	case CPU_VR4131:
1085 	case CPU_VR4181:
1086 	case CPU_VR4181A:
1087 	case CPU_VR4133:
1088 		shift += 2;
1089 		break;
1090 
1091 	default:
1092 		break;
1093 	}
1094 
1095 	if (shift)
1096 		i_SRL(p, ctx, ctx, shift);
1097 	i_andi(p, ctx, ctx, mask);
1098 }
1099 
1100 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1101 {
1102 	/*
1103 	 * Bug workaround for the Nevada. It seems as if under certain
1104 	 * circumstances the move from cp0_context might produce a
1105 	 * bogus result when the mfc0 instruction and its consumer are
1106 	 * in a different cacheline or a load instruction, probably any
1107 	 * memory reference, is between them.
1108 	 */
1109 	switch (current_cpu_data.cputype) {
1110 	case CPU_NEVADA:
1111 		i_LW(p, ptr, 0, ptr);
1112 		GET_CONTEXT(p, tmp); /* get context reg */
1113 		break;
1114 
1115 	default:
1116 		GET_CONTEXT(p, tmp); /* get context reg */
1117 		i_LW(p, ptr, 0, ptr);
1118 		break;
1119 	}
1120 
1121 	build_adjust_context(p, tmp);
1122 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1123 }
1124 
1125 static __init void build_update_entries(u32 **p, unsigned int tmp,
1126 					unsigned int ptep)
1127 {
1128 	/*
1129 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1130 	 * Kernel is a special case. Only a few CPUs use it.
1131 	 */
1132 #ifdef CONFIG_64BIT_PHYS_ADDR
1133 	if (cpu_has_64bits) {
1134 		i_ld(p, tmp, 0, ptep); /* get even pte */
1135 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1136 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1137 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1138 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1139 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1140 	} else {
1141 		int pte_off_even = sizeof(pte_t) / 2;
1142 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1143 
1144 		/* The pte entries are pre-shifted */
1145 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1146 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1147 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1148 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1149 	}
1150 #else
1151 	i_LW(p, tmp, 0, ptep); /* get even pte */
1152 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1153 	if (r45k_bvahwbug())
1154 		build_tlb_probe_entry(p);
1155 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1156 	if (r4k_250MHZhwbug())
1157 		i_mtc0(p, 0, C0_ENTRYLO0);
1158 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1159 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1160 	if (r45k_bvahwbug())
1161 		i_mfc0(p, tmp, C0_INDEX);
1162 	if (r4k_250MHZhwbug())
1163 		i_mtc0(p, 0, C0_ENTRYLO1);
1164 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1165 #endif
1166 }
1167 
1168 static void __init build_r4000_tlb_refill_handler(void)
1169 {
1170 	u32 *p = tlb_handler;
1171 	struct label *l = labels;
1172 	struct reloc *r = relocs;
1173 	u32 *f;
1174 	unsigned int final_len;
1175 	int i;
1176 
1177 	memset(tlb_handler, 0, sizeof(tlb_handler));
1178 	memset(labels, 0, sizeof(labels));
1179 	memset(relocs, 0, sizeof(relocs));
1180 	memset(final_handler, 0, sizeof(final_handler));
1181 
1182 	/*
1183 	 * create the plain linear handler
1184 	 */
1185 	if (bcm1250_m3_war()) {
1186 		i_MFC0(&p, K0, C0_BADVADDR);
1187 		i_MFC0(&p, K1, C0_ENTRYHI);
1188 		i_xor(&p, K0, K0, K1);
1189 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1190 		il_bnez(&p, &r, K0, label_leave);
1191 		/* No need for i_nop */
1192 	}
1193 
1194 #ifdef CONFIG_64BIT
1195 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1196 #else
1197 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1198 #endif
1199 
1200 	build_get_ptep(&p, K0, K1);
1201 	build_update_entries(&p, K0, K1);
1202 	build_tlb_write_entry(&p, &l, &r, tlb_random);
1203 	l_leave(&l, p);
1204 	i_eret(&p); /* return from trap */
1205 
1206 #ifdef CONFIG_64BIT
1207 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1208 #endif
1209 
1210 	/*
1211 	 * Overflow check: For the 64bit handler, we need at least one
1212 	 * free instruction slot for the wrap-around branch. In worst
1213 	 * case, if the intended insertion point is a delay slot, we
1214 	 * need three, with the the second nop'ed and the third being
1215 	 * unused.
1216 	 */
1217 #ifdef CONFIG_32BIT
1218 	if ((p - tlb_handler) > 64)
1219 		panic("TLB refill handler space exceeded");
1220 #else
1221 	if (((p - tlb_handler) > 63)
1222 	    || (((p - tlb_handler) > 61)
1223 		&& insn_has_bdelay(relocs, tlb_handler + 29)))
1224 		panic("TLB refill handler space exceeded");
1225 #endif
1226 
1227 	/*
1228 	 * Now fold the handler in the TLB refill handler space.
1229 	 */
1230 #ifdef CONFIG_32BIT
1231 	f = final_handler;
1232 	/* Simplest case, just copy the handler. */
1233 	copy_handler(relocs, labels, tlb_handler, p, f);
1234 	final_len = p - tlb_handler;
1235 #else /* CONFIG_64BIT */
1236 	f = final_handler + 32;
1237 	if ((p - tlb_handler) <= 32) {
1238 		/* Just copy the handler. */
1239 		copy_handler(relocs, labels, tlb_handler, p, f);
1240 		final_len = p - tlb_handler;
1241 	} else {
1242 		u32 *split = tlb_handler + 30;
1243 
1244 		/*
1245 		 * Find the split point.
1246 		 */
1247 		if (insn_has_bdelay(relocs, split - 1))
1248 			split--;
1249 
1250 		/* Copy first part of the handler. */
1251 		copy_handler(relocs, labels, tlb_handler, split, f);
1252 		f += split - tlb_handler;
1253 
1254 		/* Insert branch. */
1255 		l_split(&l, final_handler);
1256 		il_b(&f, &r, label_split);
1257 		if (insn_has_bdelay(relocs, split))
1258 			i_nop(&f);
1259 		else {
1260 			copy_handler(relocs, labels, split, split + 1, f);
1261 			move_labels(labels, f, f + 1, -1);
1262 			f++;
1263 			split++;
1264 		}
1265 
1266 		/* Copy the rest of the handler. */
1267 		copy_handler(relocs, labels, split, p, final_handler);
1268 		final_len = (f - (final_handler + 32)) + (p - split);
1269 	}
1270 #endif /* CONFIG_64BIT */
1271 
1272 	resolve_relocs(relocs, labels);
1273 	pr_info("Synthesized TLB refill handler (%u instructions).\n",
1274 		final_len);
1275 
1276 	f = final_handler;
1277 #ifdef CONFIG_64BIT
1278 	if (final_len > 32)
1279 		final_len = 64;
1280 	else
1281 		f = final_handler + 32;
1282 #endif /* CONFIG_64BIT */
1283 	pr_debug("\t.set push\n");
1284 	pr_debug("\t.set noreorder\n");
1285 	for (i = 0; i < final_len; i++)
1286 		pr_debug("\t.word 0x%08x\n", f[i]);
1287 	pr_debug("\t.set pop\n");
1288 
1289 	memcpy((void *)ebase, final_handler, 0x100);
1290 }
1291 
1292 /*
1293  * TLB load/store/modify handlers.
1294  *
1295  * Only the fastpath gets synthesized at runtime, the slowpath for
1296  * do_page_fault remains normal asm.
1297  */
1298 extern void tlb_do_page_fault_0(void);
1299 extern void tlb_do_page_fault_1(void);
1300 
1301 #define __tlb_handler_align \
1302 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1303 
1304 /*
1305  * 128 instructions for the fastpath handler is generous and should
1306  * never be exceeded.
1307  */
1308 #define FASTPATH_SIZE 128
1309 
1310 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1311 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1312 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1313 
1314 static void __init
1315 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1316 {
1317 #ifdef CONFIG_SMP
1318 # ifdef CONFIG_64BIT_PHYS_ADDR
1319 	if (cpu_has_64bits)
1320 		i_lld(p, pte, 0, ptr);
1321 	else
1322 # endif
1323 		i_LL(p, pte, 0, ptr);
1324 #else
1325 # ifdef CONFIG_64BIT_PHYS_ADDR
1326 	if (cpu_has_64bits)
1327 		i_ld(p, pte, 0, ptr);
1328 	else
1329 # endif
1330 		i_LW(p, pte, 0, ptr);
1331 #endif
1332 }
1333 
1334 static void __init
1335 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1336 	unsigned int mode)
1337 {
1338 #ifdef CONFIG_64BIT_PHYS_ADDR
1339 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1340 #endif
1341 
1342 	i_ori(p, pte, pte, mode);
1343 #ifdef CONFIG_SMP
1344 # ifdef CONFIG_64BIT_PHYS_ADDR
1345 	if (cpu_has_64bits)
1346 		i_scd(p, pte, 0, ptr);
1347 	else
1348 # endif
1349 		i_SC(p, pte, 0, ptr);
1350 
1351 	if (r10000_llsc_war())
1352 		il_beqzl(p, r, pte, label_smp_pgtable_change);
1353 	else
1354 		il_beqz(p, r, pte, label_smp_pgtable_change);
1355 
1356 # ifdef CONFIG_64BIT_PHYS_ADDR
1357 	if (!cpu_has_64bits) {
1358 		/* no i_nop needed */
1359 		i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1360 		i_ori(p, pte, pte, hwmode);
1361 		i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1362 		il_beqz(p, r, pte, label_smp_pgtable_change);
1363 		/* no i_nop needed */
1364 		i_lw(p, pte, 0, ptr);
1365 	} else
1366 		i_nop(p);
1367 # else
1368 	i_nop(p);
1369 # endif
1370 #else
1371 # ifdef CONFIG_64BIT_PHYS_ADDR
1372 	if (cpu_has_64bits)
1373 		i_sd(p, pte, 0, ptr);
1374 	else
1375 # endif
1376 		i_SW(p, pte, 0, ptr);
1377 
1378 # ifdef CONFIG_64BIT_PHYS_ADDR
1379 	if (!cpu_has_64bits) {
1380 		i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1381 		i_ori(p, pte, pte, hwmode);
1382 		i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1383 		i_lw(p, pte, 0, ptr);
1384 	}
1385 # endif
1386 #endif
1387 }
1388 
1389 /*
1390  * Check if PTE is present, if not then jump to LABEL. PTR points to
1391  * the page table where this PTE is located, PTE will be re-loaded
1392  * with it's original value.
1393  */
1394 static void __init
1395 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1396 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1397 {
1398 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1399 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1400 	il_bnez(p, r, pte, lid);
1401 	iPTE_LW(p, l, pte, ptr);
1402 }
1403 
1404 /* Make PTE valid, store result in PTR. */
1405 static void __init
1406 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1407 		 unsigned int ptr)
1408 {
1409 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1410 
1411 	iPTE_SW(p, r, pte, ptr, mode);
1412 }
1413 
1414 /*
1415  * Check if PTE can be written to, if not branch to LABEL. Regardless
1416  * restore PTE with value from PTR when done.
1417  */
1418 static void __init
1419 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1420 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1421 {
1422 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1423 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1424 	il_bnez(p, r, pte, lid);
1425 	iPTE_LW(p, l, pte, ptr);
1426 }
1427 
1428 /* Make PTE writable, update software status bits as well, then store
1429  * at PTR.
1430  */
1431 static void __init
1432 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1433 		 unsigned int ptr)
1434 {
1435 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1436 			     | _PAGE_DIRTY);
1437 
1438 	iPTE_SW(p, r, pte, ptr, mode);
1439 }
1440 
1441 /*
1442  * Check if PTE can be modified, if not branch to LABEL. Regardless
1443  * restore PTE with value from PTR when done.
1444  */
1445 static void __init
1446 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1447 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1448 {
1449 	i_andi(p, pte, pte, _PAGE_WRITE);
1450 	il_beqz(p, r, pte, lid);
1451 	iPTE_LW(p, l, pte, ptr);
1452 }
1453 
1454 /*
1455  * R3000 style TLB load/store/modify handlers.
1456  */
1457 
1458 /*
1459  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1460  * Then it returns.
1461  */
1462 static void __init
1463 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1464 {
1465 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1466 	i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1467 	i_tlbwi(p);
1468 	i_jr(p, tmp);
1469 	i_rfe(p); /* branch delay */
1470 }
1471 
1472 /*
1473  * This places the pte into ENTRYLO0 and writes it with tlbwi
1474  * or tlbwr as appropriate.  This is because the index register
1475  * may have the probe fail bit set as a result of a trap on a
1476  * kseg2 access, i.e. without refill.  Then it returns.
1477  */
1478 static void __init
1479 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1480 			     unsigned int pte, unsigned int tmp)
1481 {
1482 	i_mfc0(p, tmp, C0_INDEX);
1483 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1484 	il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1485 	i_mfc0(p, tmp, C0_EPC); /* branch delay */
1486 	i_tlbwi(p); /* cp0 delay */
1487 	i_jr(p, tmp);
1488 	i_rfe(p); /* branch delay */
1489 	l_r3000_write_probe_fail(l, *p);
1490 	i_tlbwr(p); /* cp0 delay */
1491 	i_jr(p, tmp);
1492 	i_rfe(p); /* branch delay */
1493 }
1494 
1495 static void __init
1496 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1497 				   unsigned int ptr)
1498 {
1499 	long pgdc = (long)pgd_current;
1500 
1501 	i_mfc0(p, pte, C0_BADVADDR);
1502 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1503 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1504 	i_srl(p, pte, pte, 22); /* load delay */
1505 	i_sll(p, pte, pte, 2);
1506 	i_addu(p, ptr, ptr, pte);
1507 	i_mfc0(p, pte, C0_CONTEXT);
1508 	i_lw(p, ptr, 0, ptr); /* cp0 delay */
1509 	i_andi(p, pte, pte, 0xffc); /* load delay */
1510 	i_addu(p, ptr, ptr, pte);
1511 	i_lw(p, pte, 0, ptr);
1512 	i_tlbp(p); /* load delay */
1513 }
1514 
1515 static void __init build_r3000_tlb_load_handler(void)
1516 {
1517 	u32 *p = handle_tlbl;
1518 	struct label *l = labels;
1519 	struct reloc *r = relocs;
1520 	int i;
1521 
1522 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1523 	memset(labels, 0, sizeof(labels));
1524 	memset(relocs, 0, sizeof(relocs));
1525 
1526 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1527 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1528 	i_nop(&p); /* load delay */
1529 	build_make_valid(&p, &r, K0, K1);
1530 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1531 
1532 	l_nopage_tlbl(&l, p);
1533 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1534 	i_nop(&p);
1535 
1536 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1537 		panic("TLB load handler fastpath space exceeded");
1538 
1539 	resolve_relocs(relocs, labels);
1540 	pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1541 		(unsigned int)(p - handle_tlbl));
1542 
1543 	pr_debug("\t.set push\n");
1544 	pr_debug("\t.set noreorder\n");
1545 	for (i = 0; i < (p - handle_tlbl); i++)
1546 		pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1547 	pr_debug("\t.set pop\n");
1548 }
1549 
1550 static void __init build_r3000_tlb_store_handler(void)
1551 {
1552 	u32 *p = handle_tlbs;
1553 	struct label *l = labels;
1554 	struct reloc *r = relocs;
1555 	int i;
1556 
1557 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1558 	memset(labels, 0, sizeof(labels));
1559 	memset(relocs, 0, sizeof(relocs));
1560 
1561 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1562 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1563 	i_nop(&p); /* load delay */
1564 	build_make_write(&p, &r, K0, K1);
1565 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1566 
1567 	l_nopage_tlbs(&l, p);
1568 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1569 	i_nop(&p);
1570 
1571 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1572 		panic("TLB store handler fastpath space exceeded");
1573 
1574 	resolve_relocs(relocs, labels);
1575 	pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1576 		(unsigned int)(p - handle_tlbs));
1577 
1578 	pr_debug("\t.set push\n");
1579 	pr_debug("\t.set noreorder\n");
1580 	for (i = 0; i < (p - handle_tlbs); i++)
1581 		pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1582 	pr_debug("\t.set pop\n");
1583 }
1584 
1585 static void __init build_r3000_tlb_modify_handler(void)
1586 {
1587 	u32 *p = handle_tlbm;
1588 	struct label *l = labels;
1589 	struct reloc *r = relocs;
1590 	int i;
1591 
1592 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1593 	memset(labels, 0, sizeof(labels));
1594 	memset(relocs, 0, sizeof(relocs));
1595 
1596 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1597 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1598 	i_nop(&p); /* load delay */
1599 	build_make_write(&p, &r, K0, K1);
1600 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1601 
1602 	l_nopage_tlbm(&l, p);
1603 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1604 	i_nop(&p);
1605 
1606 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1607 		panic("TLB modify handler fastpath space exceeded");
1608 
1609 	resolve_relocs(relocs, labels);
1610 	pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1611 		(unsigned int)(p - handle_tlbm));
1612 
1613 	pr_debug("\t.set push\n");
1614 	pr_debug("\t.set noreorder\n");
1615 	for (i = 0; i < (p - handle_tlbm); i++)
1616 		pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1617 	pr_debug("\t.set pop\n");
1618 }
1619 
1620 /*
1621  * R4000 style TLB load/store/modify handlers.
1622  */
1623 static void __init
1624 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1625 				   struct reloc **r, unsigned int pte,
1626 				   unsigned int ptr)
1627 {
1628 #ifdef CONFIG_64BIT
1629 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1630 #else
1631 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1632 #endif
1633 
1634 	i_MFC0(p, pte, C0_BADVADDR);
1635 	i_LW(p, ptr, 0, ptr);
1636 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1637 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1638 	i_ADDU(p, ptr, ptr, pte);
1639 
1640 #ifdef CONFIG_SMP
1641 	l_smp_pgtable_change(l, *p);
1642 # endif
1643 	iPTE_LW(p, l, pte, ptr); /* get even pte */
1644 	build_tlb_probe_entry(p);
1645 }
1646 
1647 static void __init
1648 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1649 				   struct reloc **r, unsigned int tmp,
1650 				   unsigned int ptr)
1651 {
1652 	i_ori(p, ptr, ptr, sizeof(pte_t));
1653 	i_xori(p, ptr, ptr, sizeof(pte_t));
1654 	build_update_entries(p, tmp, ptr);
1655 	build_tlb_write_entry(p, l, r, tlb_indexed);
1656 	l_leave(l, *p);
1657 	i_eret(p); /* return from trap */
1658 
1659 #ifdef CONFIG_64BIT
1660 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1661 #endif
1662 }
1663 
1664 static void __init build_r4000_tlb_load_handler(void)
1665 {
1666 	u32 *p = handle_tlbl;
1667 	struct label *l = labels;
1668 	struct reloc *r = relocs;
1669 	int i;
1670 
1671 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1672 	memset(labels, 0, sizeof(labels));
1673 	memset(relocs, 0, sizeof(relocs));
1674 
1675 	if (bcm1250_m3_war()) {
1676 		i_MFC0(&p, K0, C0_BADVADDR);
1677 		i_MFC0(&p, K1, C0_ENTRYHI);
1678 		i_xor(&p, K0, K0, K1);
1679 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1680 		il_bnez(&p, &r, K0, label_leave);
1681 		/* No need for i_nop */
1682 	}
1683 
1684 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1685 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1686 	build_make_valid(&p, &r, K0, K1);
1687 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1688 
1689 	l_nopage_tlbl(&l, p);
1690 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1691 	i_nop(&p);
1692 
1693 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1694 		panic("TLB load handler fastpath space exceeded");
1695 
1696 	resolve_relocs(relocs, labels);
1697 	pr_info("Synthesized TLB load handler fastpath (%u instructions).\n",
1698 		(unsigned int)(p - handle_tlbl));
1699 
1700 	pr_debug("\t.set push\n");
1701 	pr_debug("\t.set noreorder\n");
1702 	for (i = 0; i < (p - handle_tlbl); i++)
1703 		pr_debug("\t.word 0x%08x\n", handle_tlbl[i]);
1704 	pr_debug("\t.set pop\n");
1705 }
1706 
1707 static void __init build_r4000_tlb_store_handler(void)
1708 {
1709 	u32 *p = handle_tlbs;
1710 	struct label *l = labels;
1711 	struct reloc *r = relocs;
1712 	int i;
1713 
1714 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1715 	memset(labels, 0, sizeof(labels));
1716 	memset(relocs, 0, sizeof(relocs));
1717 
1718 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1719 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1720 	build_make_write(&p, &r, K0, K1);
1721 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1722 
1723 	l_nopage_tlbs(&l, p);
1724 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1725 	i_nop(&p);
1726 
1727 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1728 		panic("TLB store handler fastpath space exceeded");
1729 
1730 	resolve_relocs(relocs, labels);
1731 	pr_info("Synthesized TLB store handler fastpath (%u instructions).\n",
1732 		(unsigned int)(p - handle_tlbs));
1733 
1734 	pr_debug("\t.set push\n");
1735 	pr_debug("\t.set noreorder\n");
1736 	for (i = 0; i < (p - handle_tlbs); i++)
1737 		pr_debug("\t.word 0x%08x\n", handle_tlbs[i]);
1738 	pr_debug("\t.set pop\n");
1739 }
1740 
1741 static void __init build_r4000_tlb_modify_handler(void)
1742 {
1743 	u32 *p = handle_tlbm;
1744 	struct label *l = labels;
1745 	struct reloc *r = relocs;
1746 	int i;
1747 
1748 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1749 	memset(labels, 0, sizeof(labels));
1750 	memset(relocs, 0, sizeof(relocs));
1751 
1752 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1753 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1754 	/* Present and writable bits set, set accessed and dirty bits. */
1755 	build_make_write(&p, &r, K0, K1);
1756 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1757 
1758 	l_nopage_tlbm(&l, p);
1759 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1760 	i_nop(&p);
1761 
1762 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1763 		panic("TLB modify handler fastpath space exceeded");
1764 
1765 	resolve_relocs(relocs, labels);
1766 	pr_info("Synthesized TLB modify handler fastpath (%u instructions).\n",
1767 		(unsigned int)(p - handle_tlbm));
1768 
1769 	pr_debug("\t.set push\n");
1770 	pr_debug("\t.set noreorder\n");
1771 	for (i = 0; i < (p - handle_tlbm); i++)
1772 		pr_debug("\t.word 0x%08x\n", handle_tlbm[i]);
1773 	pr_debug("\t.set pop\n");
1774 }
1775 
1776 void __init build_tlb_refill_handler(void)
1777 {
1778 	/*
1779 	 * The refill handler is generated per-CPU, multi-node systems
1780 	 * may have local storage for it. The other handlers are only
1781 	 * needed once.
1782 	 */
1783 	static int run_once = 0;
1784 
1785 	switch (current_cpu_data.cputype) {
1786 	case CPU_R2000:
1787 	case CPU_R3000:
1788 	case CPU_R3000A:
1789 	case CPU_R3081E:
1790 	case CPU_TX3912:
1791 	case CPU_TX3922:
1792 	case CPU_TX3927:
1793 		build_r3000_tlb_refill_handler();
1794 		if (!run_once) {
1795 			build_r3000_tlb_load_handler();
1796 			build_r3000_tlb_store_handler();
1797 			build_r3000_tlb_modify_handler();
1798 			run_once++;
1799 		}
1800 		break;
1801 
1802 	case CPU_R6000:
1803 	case CPU_R6000A:
1804 		panic("No R6000 TLB refill handler yet");
1805 		break;
1806 
1807 	case CPU_R8000:
1808 		panic("No R8000 TLB refill handler yet");
1809 		break;
1810 
1811 	default:
1812 		build_r4000_tlb_refill_handler();
1813 		if (!run_once) {
1814 			build_r4000_tlb_load_handler();
1815 			build_r4000_tlb_store_handler();
1816 			build_r4000_tlb_modify_handler();
1817 			run_once++;
1818 		}
1819 	}
1820 }
1821 
1822 void __init flush_tlb_handlers(void)
1823 {
1824 	flush_icache_range((unsigned long)handle_tlbl,
1825 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1826 	flush_icache_range((unsigned long)handle_tlbs,
1827 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1828 	flush_icache_range((unsigned long)handle_tlbm,
1829 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1830 }
1831