xref: /linux/arch/mips/mm/tlbex.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 	case CPU_CAVIUM_OCTEON3:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 	return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 	/*
114 	 * CVMSEG starts at address -32768 and extends for
115 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 	 */
117 	i += 1; /* Kernel use starts at the top and works down. */
118 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 	return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	BUG();
128 	/* Really unreachable, but evidently some GCC want this. */
129 	return 0;
130 }
131 #endif
132 /*
133  * Found by experiment: At least some revisions of the 4kc throw under
134  * some circumstances a machine check exception, triggered by invalid
135  * values in the index register.  Delaying the tlbp instruction until
136  * after the next branch,  plus adding an additional nop in front of
137  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138  * why; it's not an issue caused by the core RTL.
139  *
140  */
141 static int m4kc_tlbp_war(void)
142 {
143 	return (current_cpu_data.processor_id & 0xffff00) ==
144 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146 
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 	label_second_part = 1,
150 	label_leave,
151 	label_vmalloc,
152 	label_vmalloc_done,
153 	label_tlbw_hazard_0,
154 	label_split = label_tlbw_hazard_0 + 8,
155 	label_tlbl_goaround1,
156 	label_tlbl_goaround2,
157 	label_nopage_tlbl,
158 	label_nopage_tlbs,
159 	label_nopage_tlbm,
160 	label_smp_pgtable_change,
161 	label_r3000_write_probe_fail,
162 	label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 	label_tlb_huge_update,
165 #endif
166 };
167 
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently.  */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185 
186 static int hazard_instance;
187 
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 		break;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 /*
211  * pgtable bits are assigned dynamically depending on processor feature
212  * and statically based on kernel configuration.  This spits out the actual
213  * values the kernel is using.	Required to make sense from disassembled
214  * TLB exception handlers.
215  */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...)					\
219 	pr_debug("#define " fmt, ##__VA_ARGS__)
220 
221 	pr_debug("#include <asm/asm.h>\n");
222 	pr_debug("#include <asm/regdef.h>\n");
223 	pr_debug("\n");
224 
225 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 	if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 	}
242 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 	pr_debug("\n");
247 }
248 
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 	int i;
252 
253 	pr_debug("LEAF(%s)\n", symbol);
254 
255 	pr_debug("\t.set push\n");
256 	pr_debug("\t.set noreorder\n");
257 
258 	for (i = 0; i < count; i++)
259 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260 
261 	pr_debug("\t.set\tpop\n");
262 
263 	pr_debug("\tEND(%s)\n", symbol);
264 }
265 
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0		26
268 #define K1		27
269 
270 /* Some CP0 registers */
271 #define C0_INDEX	0, 0
272 #define C0_ENTRYLO0	2, 0
273 #define C0_TCBIND	2, 2
274 #define C0_ENTRYLO1	3, 0
275 #define C0_CONTEXT	4, 0
276 #define C0_PAGEMASK	5, 0
277 #define C0_BADVADDR	8, 0
278 #define C0_ENTRYHI	10, 0
279 #define C0_EPC		14, 0
280 #define C0_XCONTEXT	20, 0
281 
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287 
288 /* The worst case length of the handler is around 18 instructions for
289  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290  * Maximum space available is 32 instructions for R3000 and 64
291  * instructions for R4000.
292  *
293  * We deliberately chose a buffer size of 128, so we won't scribble
294  * over anything important on overflow before we panic.
295  */
296 static u32 tlb_handler[128];
297 
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301 
302 static int check_for_high_segbits;
303 
304 static unsigned int kscratch_used_mask;
305 
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 	switch (current_cpu_type()) {
309 	case CPU_XLP:
310 	case CPU_XLR:
311 		return 22;
312 	default:
313 		return 31;
314 	}
315 }
316 
317 static int allocate_kscratch(void)
318 {
319 	int r;
320 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321 
322 	r = ffs(a);
323 
324 	if (r == 0)
325 		return -1;
326 
327 	r--; /* make it zero based */
328 
329 	kscratch_used_mask |= (1 << r);
330 
331 	return r;
332 }
333 
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337 
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 	struct work_registers r;
341 
342 	if (scratch_reg >= 0) {
343 		/* Save in CPU local C0_KScratch? */
344 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
345 		r.r1 = K0;
346 		r.r2 = K1;
347 		r.r3 = 1;
348 		return r;
349 	}
350 
351 	if (num_possible_cpus() > 1) {
352 		/* Get smp_processor_id */
353 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
355 
356 		/* handler_reg_save index in K0 */
357 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
358 
359 		UASM_i_LA(p, K1, (long)&handler_reg_save);
360 		UASM_i_ADDU(p, K0, K0, K1);
361 	} else {
362 		UASM_i_LA(p, K0, (long)&handler_reg_save);
363 	}
364 	/* K0 now points to save area, save $1 and $2  */
365 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
367 
368 	r.r1 = K1;
369 	r.r2 = 1;
370 	r.r3 = 2;
371 	return r;
372 }
373 
374 static void build_restore_work_registers(u32 **p)
375 {
376 	if (scratch_reg >= 0) {
377 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
378 		return;
379 	}
380 	/* K0 already points to save area, restore $1 and $2  */
381 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
383 }
384 
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
386 
387 /*
388  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389  * we cannot do r3000 under these circumstances.
390  *
391  * Declare pgd_current here instead of including mmu_context.h to avoid type
392  * conflicts for tlbmiss_handler_setup_pgd
393  */
394 extern unsigned long pgd_current[];
395 
396 /*
397  * The R3000 TLB handler is simple.
398  */
399 static void build_r3000_tlb_refill_handler(void)
400 {
401 	long pgdc = (long)pgd_current;
402 	u32 *p;
403 
404 	memset(tlb_handler, 0, sizeof(tlb_handler));
405 	p = tlb_handler;
406 
407 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 	uasm_i_sll(&p, K0, K0, 2);
412 	uasm_i_addu(&p, K1, K1, K0);
413 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 	uasm_i_addu(&p, K1, K1, K0);
417 	uasm_i_lw(&p, K0, 0, K1);
418 	uasm_i_nop(&p); /* load delay */
419 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 	uasm_i_tlbwr(&p); /* cp0 delay */
422 	uasm_i_jr(&p, K1);
423 	uasm_i_rfe(&p); /* branch delay */
424 
425 	if (p > tlb_handler + 32)
426 		panic("TLB refill handler space exceeded");
427 
428 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 		 (unsigned int)(p - tlb_handler));
430 
431 	memcpy((void *)ebase, tlb_handler, 0x80);
432 	local_flush_icache_range(ebase, ebase + 0x80);
433 
434 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437 
438 /*
439  * The R4000 TLB handler is much more complicated. We have two
440  * consecutive handler areas with 32 instructions space each.
441  * Since they aren't used at the same time, we can overflow in the
442  * other one.To keep things simple, we first assume linear space,
443  * then we relocate it to the final handler layout as needed.
444  */
445 static u32 final_handler[64];
446 
447 /*
448  * Hazards
449  *
450  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451  * 2. A timing hazard exists for the TLBP instruction.
452  *
453  *	stalling_instruction
454  *	TLBP
455  *
456  * The JTLB is being read for the TLBP throughout the stall generated by the
457  * previous instruction. This is not really correct as the stalling instruction
458  * can modify the address used to access the JTLB.  The failure symptom is that
459  * the TLBP instruction will use an address created for the stalling instruction
460  * and not the address held in C0_ENHI and thus report the wrong results.
461  *
462  * The software work-around is to not allow the instruction preceding the TLBP
463  * to stall - make it an NOP or some other instruction guaranteed not to stall.
464  *
465  * Errata 2 will not be fixed.	This errata is also on the R5000.
466  *
467  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468  */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 	switch (current_cpu_type()) {
472 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
473 	case CPU_R4600:
474 	case CPU_R4700:
475 	case CPU_R5000:
476 	case CPU_NEVADA:
477 		uasm_i_nop(p);
478 		uasm_i_tlbp(p);
479 		break;
480 
481 	default:
482 		uasm_i_tlbp(p);
483 		break;
484 	}
485 }
486 
487 /*
488  * Write random or indexed TLB entry, and care about the hazards from
489  * the preceding mtc0 and for the following eret.
490  */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492 
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 				  struct uasm_reloc **r,
495 				  enum tlb_write_entry wmode)
496 {
497 	void(*tlbw)(u32 **) = NULL;
498 
499 	switch (wmode) {
500 	case tlb_random: tlbw = uasm_i_tlbwr; break;
501 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 	}
503 
504 	if (cpu_has_mips_r2) {
505 		/*
506 		 * The architecture spec says an ehb is required here,
507 		 * but a number of cores do not have the hazard and
508 		 * using an ehb causes an expensive pipeline stall.
509 		 */
510 		switch (current_cpu_type()) {
511 		case CPU_M14KC:
512 		case CPU_74K:
513 		case CPU_1074K:
514 		case CPU_PROAPTIV:
515 		case CPU_P5600:
516 		case CPU_M5150:
517 			break;
518 
519 		default:
520 			uasm_i_ehb(p);
521 			break;
522 		}
523 		tlbw(p);
524 		return;
525 	}
526 
527 	switch (current_cpu_type()) {
528 	case CPU_R4000PC:
529 	case CPU_R4000SC:
530 	case CPU_R4000MC:
531 	case CPU_R4400PC:
532 	case CPU_R4400SC:
533 	case CPU_R4400MC:
534 		/*
535 		 * This branch uses up a mtc0 hazard nop slot and saves
536 		 * two nops after the tlbw instruction.
537 		 */
538 		uasm_bgezl_hazard(p, r, hazard_instance);
539 		tlbw(p);
540 		uasm_bgezl_label(l, p, hazard_instance);
541 		hazard_instance++;
542 		uasm_i_nop(p);
543 		break;
544 
545 	case CPU_R4600:
546 	case CPU_R4700:
547 		uasm_i_nop(p);
548 		tlbw(p);
549 		uasm_i_nop(p);
550 		break;
551 
552 	case CPU_R5000:
553 	case CPU_NEVADA:
554 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
555 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
556 		tlbw(p);
557 		break;
558 
559 	case CPU_R4300:
560 	case CPU_5KC:
561 	case CPU_TX49XX:
562 	case CPU_PR4450:
563 	case CPU_XLR:
564 		uasm_i_nop(p);
565 		tlbw(p);
566 		break;
567 
568 	case CPU_R10000:
569 	case CPU_R12000:
570 	case CPU_R14000:
571 	case CPU_4KC:
572 	case CPU_4KEC:
573 	case CPU_M14KC:
574 	case CPU_M14KEC:
575 	case CPU_SB1:
576 	case CPU_SB1A:
577 	case CPU_4KSC:
578 	case CPU_20KC:
579 	case CPU_25KF:
580 	case CPU_BMIPS32:
581 	case CPU_BMIPS3300:
582 	case CPU_BMIPS4350:
583 	case CPU_BMIPS4380:
584 	case CPU_BMIPS5000:
585 	case CPU_LOONGSON2:
586 	case CPU_LOONGSON3:
587 	case CPU_R5500:
588 		if (m4kc_tlbp_war())
589 			uasm_i_nop(p);
590 	case CPU_ALCHEMY:
591 		tlbw(p);
592 		break;
593 
594 	case CPU_RM7000:
595 		uasm_i_nop(p);
596 		uasm_i_nop(p);
597 		uasm_i_nop(p);
598 		uasm_i_nop(p);
599 		tlbw(p);
600 		break;
601 
602 	case CPU_VR4111:
603 	case CPU_VR4121:
604 	case CPU_VR4122:
605 	case CPU_VR4181:
606 	case CPU_VR4181A:
607 		uasm_i_nop(p);
608 		uasm_i_nop(p);
609 		tlbw(p);
610 		uasm_i_nop(p);
611 		uasm_i_nop(p);
612 		break;
613 
614 	case CPU_VR4131:
615 	case CPU_VR4133:
616 	case CPU_R5432:
617 		uasm_i_nop(p);
618 		uasm_i_nop(p);
619 		tlbw(p);
620 		break;
621 
622 	case CPU_JZRISC:
623 		tlbw(p);
624 		uasm_i_nop(p);
625 		break;
626 
627 	default:
628 		panic("No TLB refill handler yet (CPU type: %d)",
629 		      current_cpu_type());
630 		break;
631 	}
632 }
633 
634 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
635 							unsigned int reg)
636 {
637 	if (cpu_has_rixi) {
638 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
639 	} else {
640 #ifdef CONFIG_PHYS_ADDR_T_64BIT
641 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
642 #else
643 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
644 #endif
645 	}
646 }
647 
648 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
649 
650 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
651 				   unsigned int tmp, enum label_id lid,
652 				   int restore_scratch)
653 {
654 	if (restore_scratch) {
655 		/* Reset default page size */
656 		if (PM_DEFAULT_MASK >> 16) {
657 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
658 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
659 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
660 			uasm_il_b(p, r, lid);
661 		} else if (PM_DEFAULT_MASK) {
662 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
663 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
664 			uasm_il_b(p, r, lid);
665 		} else {
666 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
667 			uasm_il_b(p, r, lid);
668 		}
669 		if (scratch_reg >= 0)
670 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
671 		else
672 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
673 	} else {
674 		/* Reset default page size */
675 		if (PM_DEFAULT_MASK >> 16) {
676 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
677 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
678 			uasm_il_b(p, r, lid);
679 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
680 		} else if (PM_DEFAULT_MASK) {
681 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
682 			uasm_il_b(p, r, lid);
683 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
684 		} else {
685 			uasm_il_b(p, r, lid);
686 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
687 		}
688 	}
689 }
690 
691 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
692 				       struct uasm_reloc **r,
693 				       unsigned int tmp,
694 				       enum tlb_write_entry wmode,
695 				       int restore_scratch)
696 {
697 	/* Set huge page tlb entry size */
698 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
699 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
700 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
701 
702 	build_tlb_write_entry(p, l, r, wmode);
703 
704 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
705 }
706 
707 /*
708  * Check if Huge PTE is present, if so then jump to LABEL.
709  */
710 static void
711 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
712 		  unsigned int pmd, int lid)
713 {
714 	UASM_i_LW(p, tmp, 0, pmd);
715 	if (use_bbit_insns()) {
716 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
717 	} else {
718 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
719 		uasm_il_bnez(p, r, tmp, lid);
720 	}
721 }
722 
723 static void build_huge_update_entries(u32 **p, unsigned int pte,
724 				      unsigned int tmp)
725 {
726 	int small_sequence;
727 
728 	/*
729 	 * A huge PTE describes an area the size of the
730 	 * configured huge page size. This is twice the
731 	 * of the large TLB entry size we intend to use.
732 	 * A TLB entry half the size of the configured
733 	 * huge page size is configured into entrylo0
734 	 * and entrylo1 to cover the contiguous huge PTE
735 	 * address space.
736 	 */
737 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
738 
739 	/* We can clobber tmp.	It isn't used after this.*/
740 	if (!small_sequence)
741 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
742 
743 	build_convert_pte_to_entrylo(p, pte);
744 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
745 	/* convert to entrylo1 */
746 	if (small_sequence)
747 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
748 	else
749 		UASM_i_ADDU(p, pte, pte, tmp);
750 
751 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
752 }
753 
754 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
755 				    struct uasm_label **l,
756 				    unsigned int pte,
757 				    unsigned int ptr)
758 {
759 #ifdef CONFIG_SMP
760 	UASM_i_SC(p, pte, 0, ptr);
761 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
762 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
763 #else
764 	UASM_i_SW(p, pte, 0, ptr);
765 #endif
766 	build_huge_update_entries(p, pte, ptr);
767 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
768 }
769 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
770 
771 #ifdef CONFIG_64BIT
772 /*
773  * TMP and PTR are scratch.
774  * TMP will be clobbered, PTR will hold the pmd entry.
775  */
776 static void
777 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
778 		 unsigned int tmp, unsigned int ptr)
779 {
780 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
781 	long pgdc = (long)pgd_current;
782 #endif
783 	/*
784 	 * The vmalloc handling is not in the hotpath.
785 	 */
786 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
787 
788 	if (check_for_high_segbits) {
789 		/*
790 		 * The kernel currently implicitely assumes that the
791 		 * MIPS SEGBITS parameter for the processor is
792 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
793 		 * allocate virtual addresses outside the maximum
794 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
795 		 * that doesn't prevent user code from accessing the
796 		 * higher xuseg addresses.  Here, we make sure that
797 		 * everything but the lower xuseg addresses goes down
798 		 * the module_alloc/vmalloc path.
799 		 */
800 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
801 		uasm_il_bnez(p, r, ptr, label_vmalloc);
802 	} else {
803 		uasm_il_bltz(p, r, tmp, label_vmalloc);
804 	}
805 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
806 
807 	if (pgd_reg != -1) {
808 		/* pgd is in pgd_reg */
809 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
810 	} else {
811 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
812 		/*
813 		 * &pgd << 11 stored in CONTEXT [23..63].
814 		 */
815 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
816 
817 		/* Clear lower 23 bits of context. */
818 		uasm_i_dins(p, ptr, 0, 0, 23);
819 
820 		/* 1 0	1 0 1  << 6  xkphys cached */
821 		uasm_i_ori(p, ptr, ptr, 0x540);
822 		uasm_i_drotr(p, ptr, ptr, 11);
823 #elif defined(CONFIG_SMP)
824 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
825 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
826 		UASM_i_LA_mostly(p, tmp, pgdc);
827 		uasm_i_daddu(p, ptr, ptr, tmp);
828 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
829 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
830 #else
831 		UASM_i_LA_mostly(p, ptr, pgdc);
832 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
833 #endif
834 	}
835 
836 	uasm_l_vmalloc_done(l, *p);
837 
838 	/* get pgd offset in bytes */
839 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
840 
841 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
842 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
843 #ifndef __PAGETABLE_PMD_FOLDED
844 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
845 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
846 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
847 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
848 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
849 #endif
850 }
851 
852 /*
853  * BVADDR is the faulting address, PTR is scratch.
854  * PTR will hold the pgd for vmalloc.
855  */
856 static void
857 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
858 			unsigned int bvaddr, unsigned int ptr,
859 			enum vmalloc64_mode mode)
860 {
861 	long swpd = (long)swapper_pg_dir;
862 	int single_insn_swpd;
863 	int did_vmalloc_branch = 0;
864 
865 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
866 
867 	uasm_l_vmalloc(l, *p);
868 
869 	if (mode != not_refill && check_for_high_segbits) {
870 		if (single_insn_swpd) {
871 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
872 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
873 			did_vmalloc_branch = 1;
874 			/* fall through */
875 		} else {
876 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
877 		}
878 	}
879 	if (!did_vmalloc_branch) {
880 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
881 			uasm_il_b(p, r, label_vmalloc_done);
882 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
883 		} else {
884 			UASM_i_LA_mostly(p, ptr, swpd);
885 			uasm_il_b(p, r, label_vmalloc_done);
886 			if (uasm_in_compat_space_p(swpd))
887 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
888 			else
889 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
890 		}
891 	}
892 	if (mode != not_refill && check_for_high_segbits) {
893 		uasm_l_large_segbits_fault(l, *p);
894 		/*
895 		 * We get here if we are an xsseg address, or if we are
896 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
897 		 *
898 		 * Ignoring xsseg (assume disabled so would generate
899 		 * (address errors?), the only remaining possibility
900 		 * is the upper xuseg addresses.  On processors with
901 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
902 		 * addresses would have taken an address error. We try
903 		 * to mimic that here by taking a load/istream page
904 		 * fault.
905 		 */
906 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
907 		uasm_i_jr(p, ptr);
908 
909 		if (mode == refill_scratch) {
910 			if (scratch_reg >= 0)
911 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
912 			else
913 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
914 		} else {
915 			uasm_i_nop(p);
916 		}
917 	}
918 }
919 
920 #else /* !CONFIG_64BIT */
921 
922 /*
923  * TMP and PTR are scratch.
924  * TMP will be clobbered, PTR will hold the pgd entry.
925  */
926 static void __maybe_unused
927 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
928 {
929 	if (pgd_reg != -1) {
930 		/* pgd is in pgd_reg */
931 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
932 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
933 	} else {
934 		long pgdc = (long)pgd_current;
935 
936 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
937 #ifdef CONFIG_SMP
938 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
939 		UASM_i_LA_mostly(p, tmp, pgdc);
940 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
941 		uasm_i_addu(p, ptr, tmp, ptr);
942 #else
943 		UASM_i_LA_mostly(p, ptr, pgdc);
944 #endif
945 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
946 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
947 	}
948 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
949 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
950 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
951 }
952 
953 #endif /* !CONFIG_64BIT */
954 
955 static void build_adjust_context(u32 **p, unsigned int ctx)
956 {
957 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
958 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
959 
960 	switch (current_cpu_type()) {
961 	case CPU_VR41XX:
962 	case CPU_VR4111:
963 	case CPU_VR4121:
964 	case CPU_VR4122:
965 	case CPU_VR4131:
966 	case CPU_VR4181:
967 	case CPU_VR4181A:
968 	case CPU_VR4133:
969 		shift += 2;
970 		break;
971 
972 	default:
973 		break;
974 	}
975 
976 	if (shift)
977 		UASM_i_SRL(p, ctx, ctx, shift);
978 	uasm_i_andi(p, ctx, ctx, mask);
979 }
980 
981 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
982 {
983 	/*
984 	 * Bug workaround for the Nevada. It seems as if under certain
985 	 * circumstances the move from cp0_context might produce a
986 	 * bogus result when the mfc0 instruction and its consumer are
987 	 * in a different cacheline or a load instruction, probably any
988 	 * memory reference, is between them.
989 	 */
990 	switch (current_cpu_type()) {
991 	case CPU_NEVADA:
992 		UASM_i_LW(p, ptr, 0, ptr);
993 		GET_CONTEXT(p, tmp); /* get context reg */
994 		break;
995 
996 	default:
997 		GET_CONTEXT(p, tmp); /* get context reg */
998 		UASM_i_LW(p, ptr, 0, ptr);
999 		break;
1000 	}
1001 
1002 	build_adjust_context(p, tmp);
1003 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1004 }
1005 
1006 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1007 {
1008 	/*
1009 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1010 	 * Kernel is a special case. Only a few CPUs use it.
1011 	 */
1012 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1013 	if (cpu_has_64bits) {
1014 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1015 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1016 		if (cpu_has_rixi) {
1017 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1018 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1019 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1020 		} else {
1021 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1022 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1023 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1024 		}
1025 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1026 	} else {
1027 		int pte_off_even = sizeof(pte_t) / 2;
1028 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1029 
1030 		/* The pte entries are pre-shifted */
1031 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1032 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1033 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1034 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1035 	}
1036 #else
1037 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1038 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1039 	if (r45k_bvahwbug())
1040 		build_tlb_probe_entry(p);
1041 	if (cpu_has_rixi) {
1042 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1043 		if (r4k_250MHZhwbug())
1044 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1045 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1046 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1047 	} else {
1048 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1049 		if (r4k_250MHZhwbug())
1050 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1051 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1052 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1053 		if (r45k_bvahwbug())
1054 			uasm_i_mfc0(p, tmp, C0_INDEX);
1055 	}
1056 	if (r4k_250MHZhwbug())
1057 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1058 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1059 #endif
1060 }
1061 
1062 struct mips_huge_tlb_info {
1063 	int huge_pte;
1064 	int restore_scratch;
1065 	bool need_reload_pte;
1066 };
1067 
1068 static struct mips_huge_tlb_info
1069 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1070 			       struct uasm_reloc **r, unsigned int tmp,
1071 			       unsigned int ptr, int c0_scratch_reg)
1072 {
1073 	struct mips_huge_tlb_info rv;
1074 	unsigned int even, odd;
1075 	int vmalloc_branch_delay_filled = 0;
1076 	const int scratch = 1; /* Our extra working register */
1077 
1078 	rv.huge_pte = scratch;
1079 	rv.restore_scratch = 0;
1080 	rv.need_reload_pte = false;
1081 
1082 	if (check_for_high_segbits) {
1083 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1084 
1085 		if (pgd_reg != -1)
1086 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1087 		else
1088 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1089 
1090 		if (c0_scratch_reg >= 0)
1091 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1092 		else
1093 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1094 
1095 		uasm_i_dsrl_safe(p, scratch, tmp,
1096 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1097 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1098 
1099 		if (pgd_reg == -1) {
1100 			vmalloc_branch_delay_filled = 1;
1101 			/* Clear lower 23 bits of context. */
1102 			uasm_i_dins(p, ptr, 0, 0, 23);
1103 		}
1104 	} else {
1105 		if (pgd_reg != -1)
1106 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1107 		else
1108 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1109 
1110 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1111 
1112 		if (c0_scratch_reg >= 0)
1113 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1114 		else
1115 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1116 
1117 		if (pgd_reg == -1)
1118 			/* Clear lower 23 bits of context. */
1119 			uasm_i_dins(p, ptr, 0, 0, 23);
1120 
1121 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1122 	}
1123 
1124 	if (pgd_reg == -1) {
1125 		vmalloc_branch_delay_filled = 1;
1126 		/* 1 0	1 0 1  << 6  xkphys cached */
1127 		uasm_i_ori(p, ptr, ptr, 0x540);
1128 		uasm_i_drotr(p, ptr, ptr, 11);
1129 	}
1130 
1131 #ifdef __PAGETABLE_PMD_FOLDED
1132 #define LOC_PTEP scratch
1133 #else
1134 #define LOC_PTEP ptr
1135 #endif
1136 
1137 	if (!vmalloc_branch_delay_filled)
1138 		/* get pgd offset in bytes */
1139 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1140 
1141 	uasm_l_vmalloc_done(l, *p);
1142 
1143 	/*
1144 	 *			   tmp		ptr
1145 	 * fall-through case =	 badvaddr  *pgd_current
1146 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1147 	 */
1148 
1149 	if (vmalloc_branch_delay_filled)
1150 		/* get pgd offset in bytes */
1151 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1152 
1153 #ifdef __PAGETABLE_PMD_FOLDED
1154 	GET_CONTEXT(p, tmp); /* get context reg */
1155 #endif
1156 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1157 
1158 	if (use_lwx_insns()) {
1159 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1160 	} else {
1161 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1162 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1163 	}
1164 
1165 #ifndef __PAGETABLE_PMD_FOLDED
1166 	/* get pmd offset in bytes */
1167 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1168 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1169 	GET_CONTEXT(p, tmp); /* get context reg */
1170 
1171 	if (use_lwx_insns()) {
1172 		UASM_i_LWX(p, scratch, scratch, ptr);
1173 	} else {
1174 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1175 		UASM_i_LW(p, scratch, 0, ptr);
1176 	}
1177 #endif
1178 	/* Adjust the context during the load latency. */
1179 	build_adjust_context(p, tmp);
1180 
1181 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1182 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1183 	/*
1184 	 * The in the LWX case we don't want to do the load in the
1185 	 * delay slot.	It cannot issue in the same cycle and may be
1186 	 * speculative and unneeded.
1187 	 */
1188 	if (use_lwx_insns())
1189 		uasm_i_nop(p);
1190 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1191 
1192 
1193 	/* build_update_entries */
1194 	if (use_lwx_insns()) {
1195 		even = ptr;
1196 		odd = tmp;
1197 		UASM_i_LWX(p, even, scratch, tmp);
1198 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1199 		UASM_i_LWX(p, odd, scratch, tmp);
1200 	} else {
1201 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1202 		even = tmp;
1203 		odd = ptr;
1204 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1205 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1206 	}
1207 	if (cpu_has_rixi) {
1208 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1209 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1210 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1211 	} else {
1212 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1213 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1214 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1215 	}
1216 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1217 
1218 	if (c0_scratch_reg >= 0) {
1219 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1220 		build_tlb_write_entry(p, l, r, tlb_random);
1221 		uasm_l_leave(l, *p);
1222 		rv.restore_scratch = 1;
1223 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1224 		build_tlb_write_entry(p, l, r, tlb_random);
1225 		uasm_l_leave(l, *p);
1226 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1227 	} else {
1228 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1229 		build_tlb_write_entry(p, l, r, tlb_random);
1230 		uasm_l_leave(l, *p);
1231 		rv.restore_scratch = 1;
1232 	}
1233 
1234 	uasm_i_eret(p); /* return from trap */
1235 
1236 	return rv;
1237 }
1238 
1239 /*
1240  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1241  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1242  * slots before the XTLB refill exception handler which belong to the
1243  * unused TLB refill exception.
1244  */
1245 #define MIPS64_REFILL_INSNS 32
1246 
1247 static void build_r4000_tlb_refill_handler(void)
1248 {
1249 	u32 *p = tlb_handler;
1250 	struct uasm_label *l = labels;
1251 	struct uasm_reloc *r = relocs;
1252 	u32 *f;
1253 	unsigned int final_len;
1254 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1255 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1256 
1257 	memset(tlb_handler, 0, sizeof(tlb_handler));
1258 	memset(labels, 0, sizeof(labels));
1259 	memset(relocs, 0, sizeof(relocs));
1260 	memset(final_handler, 0, sizeof(final_handler));
1261 
1262 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1263 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1264 							  scratch_reg);
1265 		vmalloc_mode = refill_scratch;
1266 	} else {
1267 		htlb_info.huge_pte = K0;
1268 		htlb_info.restore_scratch = 0;
1269 		htlb_info.need_reload_pte = true;
1270 		vmalloc_mode = refill_noscratch;
1271 		/*
1272 		 * create the plain linear handler
1273 		 */
1274 		if (bcm1250_m3_war()) {
1275 			unsigned int segbits = 44;
1276 
1277 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1278 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1279 			uasm_i_xor(&p, K0, K0, K1);
1280 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1281 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1282 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1283 			uasm_i_or(&p, K0, K0, K1);
1284 			uasm_il_bnez(&p, &r, K0, label_leave);
1285 			/* No need for uasm_i_nop */
1286 		}
1287 
1288 #ifdef CONFIG_64BIT
1289 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1290 #else
1291 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1292 #endif
1293 
1294 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1295 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1296 #endif
1297 
1298 		build_get_ptep(&p, K0, K1);
1299 		build_update_entries(&p, K0, K1);
1300 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1301 		uasm_l_leave(&l, p);
1302 		uasm_i_eret(&p); /* return from trap */
1303 	}
1304 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1305 	uasm_l_tlb_huge_update(&l, p);
1306 	if (htlb_info.need_reload_pte)
1307 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1308 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1309 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1310 				   htlb_info.restore_scratch);
1311 #endif
1312 
1313 #ifdef CONFIG_64BIT
1314 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1315 #endif
1316 
1317 	/*
1318 	 * Overflow check: For the 64bit handler, we need at least one
1319 	 * free instruction slot for the wrap-around branch. In worst
1320 	 * case, if the intended insertion point is a delay slot, we
1321 	 * need three, with the second nop'ed and the third being
1322 	 * unused.
1323 	 */
1324 	switch (boot_cpu_type()) {
1325 	default:
1326 		if (sizeof(long) == 4) {
1327 	case CPU_LOONGSON2:
1328 		/* Loongson2 ebase is different than r4k, we have more space */
1329 			if ((p - tlb_handler) > 64)
1330 				panic("TLB refill handler space exceeded");
1331 			/*
1332 			 * Now fold the handler in the TLB refill handler space.
1333 			 */
1334 			f = final_handler;
1335 			/* Simplest case, just copy the handler. */
1336 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1337 			final_len = p - tlb_handler;
1338 			break;
1339 		} else {
1340 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1341 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1342 				&& uasm_insn_has_bdelay(relocs,
1343 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1344 				panic("TLB refill handler space exceeded");
1345 			/*
1346 			 * Now fold the handler in the TLB refill handler space.
1347 			 */
1348 			f = final_handler + MIPS64_REFILL_INSNS;
1349 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1350 				/* Just copy the handler. */
1351 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1352 				final_len = p - tlb_handler;
1353 			} else {
1354 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1355 				const enum label_id ls = label_tlb_huge_update;
1356 #else
1357 				const enum label_id ls = label_vmalloc;
1358 #endif
1359 				u32 *split;
1360 				int ov = 0;
1361 				int i;
1362 
1363 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1364 					;
1365 				BUG_ON(i == ARRAY_SIZE(labels));
1366 				split = labels[i].addr;
1367 
1368 				/*
1369 				 * See if we have overflown one way or the other.
1370 				 */
1371 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1372 				    split < p - MIPS64_REFILL_INSNS)
1373 					ov = 1;
1374 
1375 				if (ov) {
1376 					/*
1377 					 * Split two instructions before the end.  One
1378 					 * for the branch and one for the instruction
1379 					 * in the delay slot.
1380 					 */
1381 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1382 
1383 					/*
1384 					 * If the branch would fall in a delay slot,
1385 					 * we must back up an additional instruction
1386 					 * so that it is no longer in a delay slot.
1387 					 */
1388 					if (uasm_insn_has_bdelay(relocs, split - 1))
1389 						split--;
1390 				}
1391 				/* Copy first part of the handler. */
1392 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1393 				f += split - tlb_handler;
1394 
1395 				if (ov) {
1396 					/* Insert branch. */
1397 					uasm_l_split(&l, final_handler);
1398 					uasm_il_b(&f, &r, label_split);
1399 					if (uasm_insn_has_bdelay(relocs, split))
1400 						uasm_i_nop(&f);
1401 					else {
1402 						uasm_copy_handler(relocs, labels,
1403 								  split, split + 1, f);
1404 						uasm_move_labels(labels, f, f + 1, -1);
1405 						f++;
1406 						split++;
1407 					}
1408 				}
1409 
1410 				/* Copy the rest of the handler. */
1411 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1412 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1413 					    (p - split);
1414 			}
1415 		}
1416 		break;
1417 	}
1418 
1419 	uasm_resolve_relocs(relocs, labels);
1420 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1421 		 final_len);
1422 
1423 	memcpy((void *)ebase, final_handler, 0x100);
1424 	local_flush_icache_range(ebase, ebase + 0x100);
1425 
1426 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1427 }
1428 
1429 extern u32 handle_tlbl[], handle_tlbl_end[];
1430 extern u32 handle_tlbs[], handle_tlbs_end[];
1431 extern u32 handle_tlbm[], handle_tlbm_end[];
1432 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1433 extern u32 tlbmiss_handler_setup_pgd_end[];
1434 
1435 static void build_setup_pgd(void)
1436 {
1437 	const int a0 = 4;
1438 	const int __maybe_unused a1 = 5;
1439 	const int __maybe_unused a2 = 6;
1440 	u32 *p = tlbmiss_handler_setup_pgd_start;
1441 	const int tlbmiss_handler_setup_pgd_size =
1442 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1443 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1444 	long pgdc = (long)pgd_current;
1445 #endif
1446 
1447 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1448 					sizeof(tlbmiss_handler_setup_pgd[0]));
1449 	memset(labels, 0, sizeof(labels));
1450 	memset(relocs, 0, sizeof(relocs));
1451 	pgd_reg = allocate_kscratch();
1452 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1453 	if (pgd_reg == -1) {
1454 		struct uasm_label *l = labels;
1455 		struct uasm_reloc *r = relocs;
1456 
1457 		/* PGD << 11 in c0_Context */
1458 		/*
1459 		 * If it is a ckseg0 address, convert to a physical
1460 		 * address.  Shifting right by 29 and adding 4 will
1461 		 * result in zero for these addresses.
1462 		 *
1463 		 */
1464 		UASM_i_SRA(&p, a1, a0, 29);
1465 		UASM_i_ADDIU(&p, a1, a1, 4);
1466 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1467 		uasm_i_nop(&p);
1468 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1469 		uasm_l_tlbl_goaround1(&l, p);
1470 		UASM_i_SLL(&p, a0, a0, 11);
1471 		uasm_i_jr(&p, 31);
1472 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1473 	} else {
1474 		/* PGD in c0_KScratch */
1475 		uasm_i_jr(&p, 31);
1476 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1477 	}
1478 #else
1479 #ifdef CONFIG_SMP
1480 	/* Save PGD to pgd_current[smp_processor_id()] */
1481 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1482 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1483 	UASM_i_LA_mostly(&p, a2, pgdc);
1484 	UASM_i_ADDU(&p, a2, a2, a1);
1485 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1486 #else
1487 	UASM_i_LA_mostly(&p, a2, pgdc);
1488 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1489 #endif /* SMP */
1490 	uasm_i_jr(&p, 31);
1491 
1492 	/* if pgd_reg is allocated, save PGD also to scratch register */
1493 	if (pgd_reg != -1)
1494 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1495 	else
1496 		uasm_i_nop(&p);
1497 #endif
1498 	if (p >= tlbmiss_handler_setup_pgd_end)
1499 		panic("tlbmiss_handler_setup_pgd space exceeded");
1500 
1501 	uasm_resolve_relocs(relocs, labels);
1502 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1503 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1504 
1505 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1506 					tlbmiss_handler_setup_pgd_size);
1507 }
1508 
1509 static void
1510 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1511 {
1512 #ifdef CONFIG_SMP
1513 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1514 	if (cpu_has_64bits)
1515 		uasm_i_lld(p, pte, 0, ptr);
1516 	else
1517 # endif
1518 		UASM_i_LL(p, pte, 0, ptr);
1519 #else
1520 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1521 	if (cpu_has_64bits)
1522 		uasm_i_ld(p, pte, 0, ptr);
1523 	else
1524 # endif
1525 		UASM_i_LW(p, pte, 0, ptr);
1526 #endif
1527 }
1528 
1529 static void
1530 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1531 	unsigned int mode)
1532 {
1533 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1534 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1535 #endif
1536 
1537 	uasm_i_ori(p, pte, pte, mode);
1538 #ifdef CONFIG_SMP
1539 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1540 	if (cpu_has_64bits)
1541 		uasm_i_scd(p, pte, 0, ptr);
1542 	else
1543 # endif
1544 		UASM_i_SC(p, pte, 0, ptr);
1545 
1546 	if (r10000_llsc_war())
1547 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1548 	else
1549 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1550 
1551 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1552 	if (!cpu_has_64bits) {
1553 		/* no uasm_i_nop needed */
1554 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1555 		uasm_i_ori(p, pte, pte, hwmode);
1556 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1557 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1558 		/* no uasm_i_nop needed */
1559 		uasm_i_lw(p, pte, 0, ptr);
1560 	} else
1561 		uasm_i_nop(p);
1562 # else
1563 	uasm_i_nop(p);
1564 # endif
1565 #else
1566 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1567 	if (cpu_has_64bits)
1568 		uasm_i_sd(p, pte, 0, ptr);
1569 	else
1570 # endif
1571 		UASM_i_SW(p, pte, 0, ptr);
1572 
1573 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1574 	if (!cpu_has_64bits) {
1575 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1576 		uasm_i_ori(p, pte, pte, hwmode);
1577 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1578 		uasm_i_lw(p, pte, 0, ptr);
1579 	}
1580 # endif
1581 #endif
1582 }
1583 
1584 /*
1585  * Check if PTE is present, if not then jump to LABEL. PTR points to
1586  * the page table where this PTE is located, PTE will be re-loaded
1587  * with it's original value.
1588  */
1589 static void
1590 build_pte_present(u32 **p, struct uasm_reloc **r,
1591 		  int pte, int ptr, int scratch, enum label_id lid)
1592 {
1593 	int t = scratch >= 0 ? scratch : pte;
1594 
1595 	if (cpu_has_rixi) {
1596 		if (use_bbit_insns()) {
1597 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1598 			uasm_i_nop(p);
1599 		} else {
1600 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1601 			uasm_il_beqz(p, r, t, lid);
1602 			if (pte == t)
1603 				/* You lose the SMP race :-(*/
1604 				iPTE_LW(p, pte, ptr);
1605 		}
1606 	} else {
1607 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1608 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1609 		uasm_il_bnez(p, r, t, lid);
1610 		if (pte == t)
1611 			/* You lose the SMP race :-(*/
1612 			iPTE_LW(p, pte, ptr);
1613 	}
1614 }
1615 
1616 /* Make PTE valid, store result in PTR. */
1617 static void
1618 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1619 		 unsigned int ptr)
1620 {
1621 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1622 
1623 	iPTE_SW(p, r, pte, ptr, mode);
1624 }
1625 
1626 /*
1627  * Check if PTE can be written to, if not branch to LABEL. Regardless
1628  * restore PTE with value from PTR when done.
1629  */
1630 static void
1631 build_pte_writable(u32 **p, struct uasm_reloc **r,
1632 		   unsigned int pte, unsigned int ptr, int scratch,
1633 		   enum label_id lid)
1634 {
1635 	int t = scratch >= 0 ? scratch : pte;
1636 
1637 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1638 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1639 	uasm_il_bnez(p, r, t, lid);
1640 	if (pte == t)
1641 		/* You lose the SMP race :-(*/
1642 		iPTE_LW(p, pte, ptr);
1643 	else
1644 		uasm_i_nop(p);
1645 }
1646 
1647 /* Make PTE writable, update software status bits as well, then store
1648  * at PTR.
1649  */
1650 static void
1651 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1652 		 unsigned int ptr)
1653 {
1654 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1655 			     | _PAGE_DIRTY);
1656 
1657 	iPTE_SW(p, r, pte, ptr, mode);
1658 }
1659 
1660 /*
1661  * Check if PTE can be modified, if not branch to LABEL. Regardless
1662  * restore PTE with value from PTR when done.
1663  */
1664 static void
1665 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1666 		     unsigned int pte, unsigned int ptr, int scratch,
1667 		     enum label_id lid)
1668 {
1669 	if (use_bbit_insns()) {
1670 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1671 		uasm_i_nop(p);
1672 	} else {
1673 		int t = scratch >= 0 ? scratch : pte;
1674 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1675 		uasm_il_beqz(p, r, t, lid);
1676 		if (pte == t)
1677 			/* You lose the SMP race :-(*/
1678 			iPTE_LW(p, pte, ptr);
1679 	}
1680 }
1681 
1682 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1683 
1684 
1685 /*
1686  * R3000 style TLB load/store/modify handlers.
1687  */
1688 
1689 /*
1690  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1691  * Then it returns.
1692  */
1693 static void
1694 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1695 {
1696 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1697 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1698 	uasm_i_tlbwi(p);
1699 	uasm_i_jr(p, tmp);
1700 	uasm_i_rfe(p); /* branch delay */
1701 }
1702 
1703 /*
1704  * This places the pte into ENTRYLO0 and writes it with tlbwi
1705  * or tlbwr as appropriate.  This is because the index register
1706  * may have the probe fail bit set as a result of a trap on a
1707  * kseg2 access, i.e. without refill.  Then it returns.
1708  */
1709 static void
1710 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1711 			     struct uasm_reloc **r, unsigned int pte,
1712 			     unsigned int tmp)
1713 {
1714 	uasm_i_mfc0(p, tmp, C0_INDEX);
1715 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1716 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1717 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1718 	uasm_i_tlbwi(p); /* cp0 delay */
1719 	uasm_i_jr(p, tmp);
1720 	uasm_i_rfe(p); /* branch delay */
1721 	uasm_l_r3000_write_probe_fail(l, *p);
1722 	uasm_i_tlbwr(p); /* cp0 delay */
1723 	uasm_i_jr(p, tmp);
1724 	uasm_i_rfe(p); /* branch delay */
1725 }
1726 
1727 static void
1728 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1729 				   unsigned int ptr)
1730 {
1731 	long pgdc = (long)pgd_current;
1732 
1733 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1734 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1735 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1736 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1737 	uasm_i_sll(p, pte, pte, 2);
1738 	uasm_i_addu(p, ptr, ptr, pte);
1739 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1740 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1741 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1742 	uasm_i_addu(p, ptr, ptr, pte);
1743 	uasm_i_lw(p, pte, 0, ptr);
1744 	uasm_i_tlbp(p); /* load delay */
1745 }
1746 
1747 static void build_r3000_tlb_load_handler(void)
1748 {
1749 	u32 *p = handle_tlbl;
1750 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1751 	struct uasm_label *l = labels;
1752 	struct uasm_reloc *r = relocs;
1753 
1754 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1755 	memset(labels, 0, sizeof(labels));
1756 	memset(relocs, 0, sizeof(relocs));
1757 
1758 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1759 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1760 	uasm_i_nop(&p); /* load delay */
1761 	build_make_valid(&p, &r, K0, K1);
1762 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1763 
1764 	uasm_l_nopage_tlbl(&l, p);
1765 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1766 	uasm_i_nop(&p);
1767 
1768 	if (p >= handle_tlbl_end)
1769 		panic("TLB load handler fastpath space exceeded");
1770 
1771 	uasm_resolve_relocs(relocs, labels);
1772 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1773 		 (unsigned int)(p - handle_tlbl));
1774 
1775 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1776 }
1777 
1778 static void build_r3000_tlb_store_handler(void)
1779 {
1780 	u32 *p = handle_tlbs;
1781 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1782 	struct uasm_label *l = labels;
1783 	struct uasm_reloc *r = relocs;
1784 
1785 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1786 	memset(labels, 0, sizeof(labels));
1787 	memset(relocs, 0, sizeof(relocs));
1788 
1789 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1790 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1791 	uasm_i_nop(&p); /* load delay */
1792 	build_make_write(&p, &r, K0, K1);
1793 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1794 
1795 	uasm_l_nopage_tlbs(&l, p);
1796 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1797 	uasm_i_nop(&p);
1798 
1799 	if (p >= handle_tlbs_end)
1800 		panic("TLB store handler fastpath space exceeded");
1801 
1802 	uasm_resolve_relocs(relocs, labels);
1803 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1804 		 (unsigned int)(p - handle_tlbs));
1805 
1806 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1807 }
1808 
1809 static void build_r3000_tlb_modify_handler(void)
1810 {
1811 	u32 *p = handle_tlbm;
1812 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1813 	struct uasm_label *l = labels;
1814 	struct uasm_reloc *r = relocs;
1815 
1816 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1817 	memset(labels, 0, sizeof(labels));
1818 	memset(relocs, 0, sizeof(relocs));
1819 
1820 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1821 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1822 	uasm_i_nop(&p); /* load delay */
1823 	build_make_write(&p, &r, K0, K1);
1824 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1825 
1826 	uasm_l_nopage_tlbm(&l, p);
1827 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1828 	uasm_i_nop(&p);
1829 
1830 	if (p >= handle_tlbm_end)
1831 		panic("TLB modify handler fastpath space exceeded");
1832 
1833 	uasm_resolve_relocs(relocs, labels);
1834 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1835 		 (unsigned int)(p - handle_tlbm));
1836 
1837 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1838 }
1839 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1840 
1841 /*
1842  * R4000 style TLB load/store/modify handlers.
1843  */
1844 static struct work_registers
1845 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1846 				   struct uasm_reloc **r)
1847 {
1848 	struct work_registers wr = build_get_work_registers(p);
1849 
1850 #ifdef CONFIG_64BIT
1851 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1852 #else
1853 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1854 #endif
1855 
1856 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1857 	/*
1858 	 * For huge tlb entries, pmd doesn't contain an address but
1859 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1860 	 * see if we need to jump to huge tlb processing.
1861 	 */
1862 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1863 #endif
1864 
1865 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1866 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1867 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1868 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1869 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1870 
1871 #ifdef CONFIG_SMP
1872 	uasm_l_smp_pgtable_change(l, *p);
1873 #endif
1874 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1875 	if (!m4kc_tlbp_war()) {
1876 		build_tlb_probe_entry(p);
1877 		if (cpu_has_htw) {
1878 			/* race condition happens, leaving */
1879 			uasm_i_ehb(p);
1880 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
1881 			uasm_il_bltz(p, r, wr.r3, label_leave);
1882 			uasm_i_nop(p);
1883 		}
1884 	}
1885 	return wr;
1886 }
1887 
1888 static void
1889 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1890 				   struct uasm_reloc **r, unsigned int tmp,
1891 				   unsigned int ptr)
1892 {
1893 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1894 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1895 	build_update_entries(p, tmp, ptr);
1896 	build_tlb_write_entry(p, l, r, tlb_indexed);
1897 	uasm_l_leave(l, *p);
1898 	build_restore_work_registers(p);
1899 	uasm_i_eret(p); /* return from trap */
1900 
1901 #ifdef CONFIG_64BIT
1902 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1903 #endif
1904 }
1905 
1906 static void build_r4000_tlb_load_handler(void)
1907 {
1908 	u32 *p = handle_tlbl;
1909 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1910 	struct uasm_label *l = labels;
1911 	struct uasm_reloc *r = relocs;
1912 	struct work_registers wr;
1913 
1914 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1915 	memset(labels, 0, sizeof(labels));
1916 	memset(relocs, 0, sizeof(relocs));
1917 
1918 	if (bcm1250_m3_war()) {
1919 		unsigned int segbits = 44;
1920 
1921 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1922 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1923 		uasm_i_xor(&p, K0, K0, K1);
1924 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1925 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1926 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1927 		uasm_i_or(&p, K0, K0, K1);
1928 		uasm_il_bnez(&p, &r, K0, label_leave);
1929 		/* No need for uasm_i_nop */
1930 	}
1931 
1932 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1933 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1934 	if (m4kc_tlbp_war())
1935 		build_tlb_probe_entry(&p);
1936 
1937 	if (cpu_has_rixi && !cpu_has_rixiex) {
1938 		/*
1939 		 * If the page is not _PAGE_VALID, RI or XI could not
1940 		 * have triggered it.  Skip the expensive test..
1941 		 */
1942 		if (use_bbit_insns()) {
1943 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1944 				      label_tlbl_goaround1);
1945 		} else {
1946 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1947 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1948 		}
1949 		uasm_i_nop(&p);
1950 
1951 		uasm_i_tlbr(&p);
1952 
1953 		switch (current_cpu_type()) {
1954 		default:
1955 			if (cpu_has_mips_r2) {
1956 				uasm_i_ehb(&p);
1957 
1958 		case CPU_CAVIUM_OCTEON:
1959 		case CPU_CAVIUM_OCTEON_PLUS:
1960 		case CPU_CAVIUM_OCTEON2:
1961 				break;
1962 			}
1963 		}
1964 
1965 		/* Examine  entrylo 0 or 1 based on ptr. */
1966 		if (use_bbit_insns()) {
1967 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1968 		} else {
1969 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1970 			uasm_i_beqz(&p, wr.r3, 8);
1971 		}
1972 		/* load it in the delay slot*/
1973 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1974 		/* load it if ptr is odd */
1975 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1976 		/*
1977 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1978 		 * XI must have triggered it.
1979 		 */
1980 		if (use_bbit_insns()) {
1981 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1982 			uasm_i_nop(&p);
1983 			uasm_l_tlbl_goaround1(&l, p);
1984 		} else {
1985 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1986 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1987 			uasm_i_nop(&p);
1988 		}
1989 		uasm_l_tlbl_goaround1(&l, p);
1990 	}
1991 	build_make_valid(&p, &r, wr.r1, wr.r2);
1992 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1993 
1994 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1995 	/*
1996 	 * This is the entry point when build_r4000_tlbchange_handler_head
1997 	 * spots a huge page.
1998 	 */
1999 	uasm_l_tlb_huge_update(&l, p);
2000 	iPTE_LW(&p, wr.r1, wr.r2);
2001 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2002 	build_tlb_probe_entry(&p);
2003 
2004 	if (cpu_has_rixi && !cpu_has_rixiex) {
2005 		/*
2006 		 * If the page is not _PAGE_VALID, RI or XI could not
2007 		 * have triggered it.  Skip the expensive test..
2008 		 */
2009 		if (use_bbit_insns()) {
2010 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2011 				      label_tlbl_goaround2);
2012 		} else {
2013 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2014 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2015 		}
2016 		uasm_i_nop(&p);
2017 
2018 		uasm_i_tlbr(&p);
2019 
2020 		switch (current_cpu_type()) {
2021 		default:
2022 			if (cpu_has_mips_r2) {
2023 				uasm_i_ehb(&p);
2024 
2025 		case CPU_CAVIUM_OCTEON:
2026 		case CPU_CAVIUM_OCTEON_PLUS:
2027 		case CPU_CAVIUM_OCTEON2:
2028 				break;
2029 			}
2030 		}
2031 
2032 		/* Examine  entrylo 0 or 1 based on ptr. */
2033 		if (use_bbit_insns()) {
2034 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2035 		} else {
2036 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2037 			uasm_i_beqz(&p, wr.r3, 8);
2038 		}
2039 		/* load it in the delay slot*/
2040 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2041 		/* load it if ptr is odd */
2042 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2043 		/*
2044 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2045 		 * XI must have triggered it.
2046 		 */
2047 		if (use_bbit_insns()) {
2048 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2049 		} else {
2050 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2051 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2052 		}
2053 		if (PM_DEFAULT_MASK == 0)
2054 			uasm_i_nop(&p);
2055 		/*
2056 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2057 		 * it is restored in build_huge_tlb_write_entry.
2058 		 */
2059 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2060 
2061 		uasm_l_tlbl_goaround2(&l, p);
2062 	}
2063 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2064 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2065 #endif
2066 
2067 	uasm_l_nopage_tlbl(&l, p);
2068 	build_restore_work_registers(&p);
2069 #ifdef CONFIG_CPU_MICROMIPS
2070 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2071 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2072 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2073 		uasm_i_jr(&p, K0);
2074 	} else
2075 #endif
2076 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2077 	uasm_i_nop(&p);
2078 
2079 	if (p >= handle_tlbl_end)
2080 		panic("TLB load handler fastpath space exceeded");
2081 
2082 	uasm_resolve_relocs(relocs, labels);
2083 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2084 		 (unsigned int)(p - handle_tlbl));
2085 
2086 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2087 }
2088 
2089 static void build_r4000_tlb_store_handler(void)
2090 {
2091 	u32 *p = handle_tlbs;
2092 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2093 	struct uasm_label *l = labels;
2094 	struct uasm_reloc *r = relocs;
2095 	struct work_registers wr;
2096 
2097 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2098 	memset(labels, 0, sizeof(labels));
2099 	memset(relocs, 0, sizeof(relocs));
2100 
2101 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2102 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2103 	if (m4kc_tlbp_war())
2104 		build_tlb_probe_entry(&p);
2105 	build_make_write(&p, &r, wr.r1, wr.r2);
2106 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2107 
2108 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2109 	/*
2110 	 * This is the entry point when
2111 	 * build_r4000_tlbchange_handler_head spots a huge page.
2112 	 */
2113 	uasm_l_tlb_huge_update(&l, p);
2114 	iPTE_LW(&p, wr.r1, wr.r2);
2115 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2116 	build_tlb_probe_entry(&p);
2117 	uasm_i_ori(&p, wr.r1, wr.r1,
2118 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2119 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2120 #endif
2121 
2122 	uasm_l_nopage_tlbs(&l, p);
2123 	build_restore_work_registers(&p);
2124 #ifdef CONFIG_CPU_MICROMIPS
2125 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2126 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2127 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2128 		uasm_i_jr(&p, K0);
2129 	} else
2130 #endif
2131 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2132 	uasm_i_nop(&p);
2133 
2134 	if (p >= handle_tlbs_end)
2135 		panic("TLB store handler fastpath space exceeded");
2136 
2137 	uasm_resolve_relocs(relocs, labels);
2138 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2139 		 (unsigned int)(p - handle_tlbs));
2140 
2141 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2142 }
2143 
2144 static void build_r4000_tlb_modify_handler(void)
2145 {
2146 	u32 *p = handle_tlbm;
2147 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2148 	struct uasm_label *l = labels;
2149 	struct uasm_reloc *r = relocs;
2150 	struct work_registers wr;
2151 
2152 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2153 	memset(labels, 0, sizeof(labels));
2154 	memset(relocs, 0, sizeof(relocs));
2155 
2156 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2157 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2158 	if (m4kc_tlbp_war())
2159 		build_tlb_probe_entry(&p);
2160 	/* Present and writable bits set, set accessed and dirty bits. */
2161 	build_make_write(&p, &r, wr.r1, wr.r2);
2162 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2163 
2164 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2165 	/*
2166 	 * This is the entry point when
2167 	 * build_r4000_tlbchange_handler_head spots a huge page.
2168 	 */
2169 	uasm_l_tlb_huge_update(&l, p);
2170 	iPTE_LW(&p, wr.r1, wr.r2);
2171 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2172 	build_tlb_probe_entry(&p);
2173 	uasm_i_ori(&p, wr.r1, wr.r1,
2174 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2175 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2176 #endif
2177 
2178 	uasm_l_nopage_tlbm(&l, p);
2179 	build_restore_work_registers(&p);
2180 #ifdef CONFIG_CPU_MICROMIPS
2181 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2182 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2183 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2184 		uasm_i_jr(&p, K0);
2185 	} else
2186 #endif
2187 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2188 	uasm_i_nop(&p);
2189 
2190 	if (p >= handle_tlbm_end)
2191 		panic("TLB modify handler fastpath space exceeded");
2192 
2193 	uasm_resolve_relocs(relocs, labels);
2194 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2195 		 (unsigned int)(p - handle_tlbm));
2196 
2197 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2198 }
2199 
2200 static void flush_tlb_handlers(void)
2201 {
2202 	local_flush_icache_range((unsigned long)handle_tlbl,
2203 			   (unsigned long)handle_tlbl_end);
2204 	local_flush_icache_range((unsigned long)handle_tlbs,
2205 			   (unsigned long)handle_tlbs_end);
2206 	local_flush_icache_range((unsigned long)handle_tlbm,
2207 			   (unsigned long)handle_tlbm_end);
2208 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2209 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2210 }
2211 
2212 static void print_htw_config(void)
2213 {
2214 	unsigned long config;
2215 	unsigned int pwctl;
2216 	const int field = 2 * sizeof(unsigned long);
2217 
2218 	config = read_c0_pwfield();
2219 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2220 		field, config,
2221 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2222 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2223 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2224 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2225 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2226 
2227 	config = read_c0_pwsize();
2228 	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2229 		field, config,
2230 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2231 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2232 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2233 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2234 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2235 
2236 	pwctl = read_c0_pwctl();
2237 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2238 		pwctl,
2239 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2240 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2241 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2242 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2243 }
2244 
2245 static void config_htw_params(void)
2246 {
2247 	unsigned long pwfield, pwsize, ptei;
2248 	unsigned int config;
2249 
2250 	/*
2251 	 * We are using 2-level page tables, so we only need to
2252 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2253 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2254 	 * write values less than 0xc in these fields because the entire
2255 	 * write will be dropped. As a result of which, we must preserve
2256 	 * the original reset values and overwrite only what we really want.
2257 	 */
2258 
2259 	pwfield = read_c0_pwfield();
2260 	/* re-initialize the GDI field */
2261 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2262 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2263 	/* re-initialize the PTI field including the even/odd bit */
2264 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2265 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2266 	/* Set the PTEI right shift */
2267 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2268 	pwfield |= ptei;
2269 	write_c0_pwfield(pwfield);
2270 	/* Check whether the PTEI value is supported */
2271 	back_to_back_c0_hazard();
2272 	pwfield = read_c0_pwfield();
2273 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2274 		!= ptei) {
2275 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2276 			ptei);
2277 		/*
2278 		 * Drop option to avoid HTW being enabled via another path
2279 		 * (eg htw_reset())
2280 		 */
2281 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2282 		return;
2283 	}
2284 
2285 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2286 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2287 	write_c0_pwsize(pwsize);
2288 
2289 	/* Make sure everything is set before we enable the HTW */
2290 	back_to_back_c0_hazard();
2291 
2292 	/* Enable HTW and disable the rest of the pwctl fields */
2293 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2294 	write_c0_pwctl(config);
2295 	pr_info("Hardware Page Table Walker enabled\n");
2296 
2297 	print_htw_config();
2298 }
2299 
2300 void build_tlb_refill_handler(void)
2301 {
2302 	/*
2303 	 * The refill handler is generated per-CPU, multi-node systems
2304 	 * may have local storage for it. The other handlers are only
2305 	 * needed once.
2306 	 */
2307 	static int run_once = 0;
2308 
2309 	output_pgtable_bits_defines();
2310 
2311 #ifdef CONFIG_64BIT
2312 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2313 #endif
2314 
2315 	switch (current_cpu_type()) {
2316 	case CPU_R2000:
2317 	case CPU_R3000:
2318 	case CPU_R3000A:
2319 	case CPU_R3081E:
2320 	case CPU_TX3912:
2321 	case CPU_TX3922:
2322 	case CPU_TX3927:
2323 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2324 		if (cpu_has_local_ebase)
2325 			build_r3000_tlb_refill_handler();
2326 		if (!run_once) {
2327 			if (!cpu_has_local_ebase)
2328 				build_r3000_tlb_refill_handler();
2329 			build_setup_pgd();
2330 			build_r3000_tlb_load_handler();
2331 			build_r3000_tlb_store_handler();
2332 			build_r3000_tlb_modify_handler();
2333 			flush_tlb_handlers();
2334 			run_once++;
2335 		}
2336 #else
2337 		panic("No R3000 TLB refill handler");
2338 #endif
2339 		break;
2340 
2341 	case CPU_R6000:
2342 	case CPU_R6000A:
2343 		panic("No R6000 TLB refill handler yet");
2344 		break;
2345 
2346 	case CPU_R8000:
2347 		panic("No R8000 TLB refill handler yet");
2348 		break;
2349 
2350 	default:
2351 		if (!run_once) {
2352 			scratch_reg = allocate_kscratch();
2353 			build_setup_pgd();
2354 			build_r4000_tlb_load_handler();
2355 			build_r4000_tlb_store_handler();
2356 			build_r4000_tlb_modify_handler();
2357 			if (!cpu_has_local_ebase)
2358 				build_r4000_tlb_refill_handler();
2359 			flush_tlb_handlers();
2360 			run_once++;
2361 		}
2362 		if (cpu_has_local_ebase)
2363 			build_r4000_tlb_refill_handler();
2364 		if (cpu_has_htw)
2365 			config_htw_params();
2366 
2367 	}
2368 }
2369