xref: /linux/arch/mips/mm/tlbex.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
30 
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 	case CPU_CAVIUM_OCTEON3:
89 		return 1;
90 	default:
91 		return 0;
92 	}
93 }
94 
95 static int use_lwx_insns(void)
96 {
97 	switch (current_cpu_type()) {
98 	case CPU_CAVIUM_OCTEON2:
99 	case CPU_CAVIUM_OCTEON3:
100 		return 1;
101 	default:
102 		return 0;
103 	}
104 }
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
108 {
109 	return true;
110 }
111 static int scratchpad_offset(int i)
112 {
113 	/*
114 	 * CVMSEG starts at address -32768 and extends for
115 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
116 	 */
117 	i += 1; /* Kernel use starts at the top and works down. */
118 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
119 }
120 #else
121 static bool scratchpad_available(void)
122 {
123 	return false;
124 }
125 static int scratchpad_offset(int i)
126 {
127 	BUG();
128 	/* Really unreachable, but evidently some GCC want this. */
129 	return 0;
130 }
131 #endif
132 /*
133  * Found by experiment: At least some revisions of the 4kc throw under
134  * some circumstances a machine check exception, triggered by invalid
135  * values in the index register.  Delaying the tlbp instruction until
136  * after the next branch,  plus adding an additional nop in front of
137  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138  * why; it's not an issue caused by the core RTL.
139  *
140  */
141 static int m4kc_tlbp_war(void)
142 {
143 	return (current_cpu_data.processor_id & 0xffff00) ==
144 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
145 }
146 
147 /* Handle labels (which must be positive integers). */
148 enum label_id {
149 	label_second_part = 1,
150 	label_leave,
151 	label_vmalloc,
152 	label_vmalloc_done,
153 	label_tlbw_hazard_0,
154 	label_split = label_tlbw_hazard_0 + 8,
155 	label_tlbl_goaround1,
156 	label_tlbl_goaround2,
157 	label_nopage_tlbl,
158 	label_nopage_tlbs,
159 	label_nopage_tlbm,
160 	label_smp_pgtable_change,
161 	label_r3000_write_probe_fail,
162 	label_large_segbits_fault,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 	label_tlb_huge_update,
165 #endif
166 };
167 
168 UASM_L_LA(_second_part)
169 UASM_L_LA(_leave)
170 UASM_L_LA(_vmalloc)
171 UASM_L_LA(_vmalloc_done)
172 /* _tlbw_hazard_x is handled differently.  */
173 UASM_L_LA(_split)
174 UASM_L_LA(_tlbl_goaround1)
175 UASM_L_LA(_tlbl_goaround2)
176 UASM_L_LA(_nopage_tlbl)
177 UASM_L_LA(_nopage_tlbs)
178 UASM_L_LA(_nopage_tlbm)
179 UASM_L_LA(_smp_pgtable_change)
180 UASM_L_LA(_r3000_write_probe_fail)
181 UASM_L_LA(_large_segbits_fault)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update)
184 #endif
185 
186 static int hazard_instance;
187 
188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
200 {
201 	switch (instance) {
202 	case 0 ... 7:
203 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
204 		break;
205 	default:
206 		BUG();
207 	}
208 }
209 
210 /*
211  * pgtable bits are assigned dynamically depending on processor feature
212  * and statically based on kernel configuration.  This spits out the actual
213  * values the kernel is using.	Required to make sense from disassembled
214  * TLB exception handlers.
215  */
216 static void output_pgtable_bits_defines(void)
217 {
218 #define pr_define(fmt, ...)					\
219 	pr_debug("#define " fmt, ##__VA_ARGS__)
220 
221 	pr_debug("#include <asm/asm.h>\n");
222 	pr_debug("#include <asm/regdef.h>\n");
223 	pr_debug("\n");
224 
225 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
226 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
227 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
228 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
229 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
232 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
233 #endif
234 	if (cpu_has_rixi) {
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
237 #endif
238 #ifdef _PAGE_NO_READ_SHIFT
239 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
240 #endif
241 	}
242 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
243 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
244 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
245 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
246 	pr_debug("\n");
247 }
248 
249 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
250 {
251 	int i;
252 
253 	pr_debug("LEAF(%s)\n", symbol);
254 
255 	pr_debug("\t.set push\n");
256 	pr_debug("\t.set noreorder\n");
257 
258 	for (i = 0; i < count; i++)
259 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
260 
261 	pr_debug("\t.set\tpop\n");
262 
263 	pr_debug("\tEND(%s)\n", symbol);
264 }
265 
266 /* The only general purpose registers allowed in TLB handlers. */
267 #define K0		26
268 #define K1		27
269 
270 /* Some CP0 registers */
271 #define C0_INDEX	0, 0
272 #define C0_ENTRYLO0	2, 0
273 #define C0_TCBIND	2, 2
274 #define C0_ENTRYLO1	3, 0
275 #define C0_CONTEXT	4, 0
276 #define C0_PAGEMASK	5, 0
277 #define C0_BADVADDR	8, 0
278 #define C0_ENTRYHI	10, 0
279 #define C0_EPC		14, 0
280 #define C0_XCONTEXT	20, 0
281 
282 #ifdef CONFIG_64BIT
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
284 #else
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
286 #endif
287 
288 /* The worst case length of the handler is around 18 instructions for
289  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290  * Maximum space available is 32 instructions for R3000 and 64
291  * instructions for R4000.
292  *
293  * We deliberately chose a buffer size of 128, so we won't scribble
294  * over anything important on overflow before we panic.
295  */
296 static u32 tlb_handler[128];
297 
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels[128];
300 static struct uasm_reloc relocs[128];
301 
302 static int check_for_high_segbits;
303 
304 static unsigned int kscratch_used_mask;
305 
306 static inline int __maybe_unused c0_kscratch(void)
307 {
308 	switch (current_cpu_type()) {
309 	case CPU_XLP:
310 	case CPU_XLR:
311 		return 22;
312 	default:
313 		return 31;
314 	}
315 }
316 
317 static int allocate_kscratch(void)
318 {
319 	int r;
320 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
321 
322 	r = ffs(a);
323 
324 	if (r == 0)
325 		return -1;
326 
327 	r--; /* make it zero based */
328 
329 	kscratch_used_mask |= (1 << r);
330 
331 	return r;
332 }
333 
334 static int scratch_reg;
335 static int pgd_reg;
336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
337 
338 static struct work_registers build_get_work_registers(u32 **p)
339 {
340 	struct work_registers r;
341 
342 	if (scratch_reg >= 0) {
343 		/* Save in CPU local C0_KScratch? */
344 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
345 		r.r1 = K0;
346 		r.r2 = K1;
347 		r.r3 = 1;
348 		return r;
349 	}
350 
351 	if (num_possible_cpus() > 1) {
352 		/* Get smp_processor_id */
353 		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
354 		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
355 
356 		/* handler_reg_save index in K0 */
357 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
358 
359 		UASM_i_LA(p, K1, (long)&handler_reg_save);
360 		UASM_i_ADDU(p, K0, K0, K1);
361 	} else {
362 		UASM_i_LA(p, K0, (long)&handler_reg_save);
363 	}
364 	/* K0 now points to save area, save $1 and $2  */
365 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
366 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
367 
368 	r.r1 = K1;
369 	r.r2 = 1;
370 	r.r3 = 2;
371 	return r;
372 }
373 
374 static void build_restore_work_registers(u32 **p)
375 {
376 	if (scratch_reg >= 0) {
377 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
378 		return;
379 	}
380 	/* K0 already points to save area, restore $1 and $2  */
381 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
382 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
383 }
384 
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
386 
387 /*
388  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389  * we cannot do r3000 under these circumstances.
390  *
391  * Declare pgd_current here instead of including mmu_context.h to avoid type
392  * conflicts for tlbmiss_handler_setup_pgd
393  */
394 extern unsigned long pgd_current[];
395 
396 /*
397  * The R3000 TLB handler is simple.
398  */
399 static void build_r3000_tlb_refill_handler(void)
400 {
401 	long pgdc = (long)pgd_current;
402 	u32 *p;
403 
404 	memset(tlb_handler, 0, sizeof(tlb_handler));
405 	p = tlb_handler;
406 
407 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
408 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
409 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
410 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
411 	uasm_i_sll(&p, K0, K0, 2);
412 	uasm_i_addu(&p, K1, K1, K0);
413 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
414 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
415 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
416 	uasm_i_addu(&p, K1, K1, K0);
417 	uasm_i_lw(&p, K0, 0, K1);
418 	uasm_i_nop(&p); /* load delay */
419 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
420 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
421 	uasm_i_tlbwr(&p); /* cp0 delay */
422 	uasm_i_jr(&p, K1);
423 	uasm_i_rfe(&p); /* branch delay */
424 
425 	if (p > tlb_handler + 32)
426 		panic("TLB refill handler space exceeded");
427 
428 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 		 (unsigned int)(p - tlb_handler));
430 
431 	memcpy((void *)ebase, tlb_handler, 0x80);
432 	local_flush_icache_range(ebase, ebase + 0x80);
433 
434 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
435 }
436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
437 
438 /*
439  * The R4000 TLB handler is much more complicated. We have two
440  * consecutive handler areas with 32 instructions space each.
441  * Since they aren't used at the same time, we can overflow in the
442  * other one.To keep things simple, we first assume linear space,
443  * then we relocate it to the final handler layout as needed.
444  */
445 static u32 final_handler[64];
446 
447 /*
448  * Hazards
449  *
450  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
451  * 2. A timing hazard exists for the TLBP instruction.
452  *
453  *	stalling_instruction
454  *	TLBP
455  *
456  * The JTLB is being read for the TLBP throughout the stall generated by the
457  * previous instruction. This is not really correct as the stalling instruction
458  * can modify the address used to access the JTLB.  The failure symptom is that
459  * the TLBP instruction will use an address created for the stalling instruction
460  * and not the address held in C0_ENHI and thus report the wrong results.
461  *
462  * The software work-around is to not allow the instruction preceding the TLBP
463  * to stall - make it an NOP or some other instruction guaranteed not to stall.
464  *
465  * Errata 2 will not be fixed.	This errata is also on the R5000.
466  *
467  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468  */
469 static void __maybe_unused build_tlb_probe_entry(u32 **p)
470 {
471 	switch (current_cpu_type()) {
472 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
473 	case CPU_R4600:
474 	case CPU_R4700:
475 	case CPU_R5000:
476 	case CPU_NEVADA:
477 		uasm_i_nop(p);
478 		uasm_i_tlbp(p);
479 		break;
480 
481 	default:
482 		uasm_i_tlbp(p);
483 		break;
484 	}
485 }
486 
487 /*
488  * Write random or indexed TLB entry, and care about the hazards from
489  * the preceding mtc0 and for the following eret.
490  */
491 enum tlb_write_entry { tlb_random, tlb_indexed };
492 
493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
494 				  struct uasm_reloc **r,
495 				  enum tlb_write_entry wmode)
496 {
497 	void(*tlbw)(u32 **) = NULL;
498 
499 	switch (wmode) {
500 	case tlb_random: tlbw = uasm_i_tlbwr; break;
501 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
502 	}
503 
504 	if (cpu_has_mips_r2_exec_hazard) {
505 		/*
506 		 * The architecture spec says an ehb is required here,
507 		 * but a number of cores do not have the hazard and
508 		 * using an ehb causes an expensive pipeline stall.
509 		 */
510 		switch (current_cpu_type()) {
511 		case CPU_M14KC:
512 		case CPU_74K:
513 		case CPU_1074K:
514 		case CPU_PROAPTIV:
515 		case CPU_P5600:
516 		case CPU_M5150:
517 		case CPU_QEMU_GENERIC:
518 			break;
519 
520 		default:
521 			uasm_i_ehb(p);
522 			break;
523 		}
524 		tlbw(p);
525 		return;
526 	}
527 
528 	switch (current_cpu_type()) {
529 	case CPU_R4000PC:
530 	case CPU_R4000SC:
531 	case CPU_R4000MC:
532 	case CPU_R4400PC:
533 	case CPU_R4400SC:
534 	case CPU_R4400MC:
535 		/*
536 		 * This branch uses up a mtc0 hazard nop slot and saves
537 		 * two nops after the tlbw instruction.
538 		 */
539 		uasm_bgezl_hazard(p, r, hazard_instance);
540 		tlbw(p);
541 		uasm_bgezl_label(l, p, hazard_instance);
542 		hazard_instance++;
543 		uasm_i_nop(p);
544 		break;
545 
546 	case CPU_R4600:
547 	case CPU_R4700:
548 		uasm_i_nop(p);
549 		tlbw(p);
550 		uasm_i_nop(p);
551 		break;
552 
553 	case CPU_R5000:
554 	case CPU_NEVADA:
555 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
556 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
557 		tlbw(p);
558 		break;
559 
560 	case CPU_R4300:
561 	case CPU_5KC:
562 	case CPU_TX49XX:
563 	case CPU_PR4450:
564 	case CPU_XLR:
565 		uasm_i_nop(p);
566 		tlbw(p);
567 		break;
568 
569 	case CPU_R10000:
570 	case CPU_R12000:
571 	case CPU_R14000:
572 	case CPU_4KC:
573 	case CPU_4KEC:
574 	case CPU_M14KC:
575 	case CPU_M14KEC:
576 	case CPU_SB1:
577 	case CPU_SB1A:
578 	case CPU_4KSC:
579 	case CPU_20KC:
580 	case CPU_25KF:
581 	case CPU_BMIPS32:
582 	case CPU_BMIPS3300:
583 	case CPU_BMIPS4350:
584 	case CPU_BMIPS4380:
585 	case CPU_BMIPS5000:
586 	case CPU_LOONGSON2:
587 	case CPU_LOONGSON3:
588 	case CPU_R5500:
589 		if (m4kc_tlbp_war())
590 			uasm_i_nop(p);
591 	case CPU_ALCHEMY:
592 		tlbw(p);
593 		break;
594 
595 	case CPU_RM7000:
596 		uasm_i_nop(p);
597 		uasm_i_nop(p);
598 		uasm_i_nop(p);
599 		uasm_i_nop(p);
600 		tlbw(p);
601 		break;
602 
603 	case CPU_VR4111:
604 	case CPU_VR4121:
605 	case CPU_VR4122:
606 	case CPU_VR4181:
607 	case CPU_VR4181A:
608 		uasm_i_nop(p);
609 		uasm_i_nop(p);
610 		tlbw(p);
611 		uasm_i_nop(p);
612 		uasm_i_nop(p);
613 		break;
614 
615 	case CPU_VR4131:
616 	case CPU_VR4133:
617 	case CPU_R5432:
618 		uasm_i_nop(p);
619 		uasm_i_nop(p);
620 		tlbw(p);
621 		break;
622 
623 	case CPU_JZRISC:
624 		tlbw(p);
625 		uasm_i_nop(p);
626 		break;
627 
628 	default:
629 		panic("No TLB refill handler yet (CPU type: %d)",
630 		      current_cpu_type());
631 		break;
632 	}
633 }
634 
635 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
636 							unsigned int reg)
637 {
638 	if (cpu_has_rixi) {
639 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
640 	} else {
641 #ifdef CONFIG_PHYS_ADDR_T_64BIT
642 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
643 #else
644 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
645 #endif
646 	}
647 }
648 
649 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
650 
651 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
652 				   unsigned int tmp, enum label_id lid,
653 				   int restore_scratch)
654 {
655 	if (restore_scratch) {
656 		/* Reset default page size */
657 		if (PM_DEFAULT_MASK >> 16) {
658 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
659 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
660 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
661 			uasm_il_b(p, r, lid);
662 		} else if (PM_DEFAULT_MASK) {
663 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
664 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
665 			uasm_il_b(p, r, lid);
666 		} else {
667 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
668 			uasm_il_b(p, r, lid);
669 		}
670 		if (scratch_reg >= 0)
671 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
672 		else
673 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
674 	} else {
675 		/* Reset default page size */
676 		if (PM_DEFAULT_MASK >> 16) {
677 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
678 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
679 			uasm_il_b(p, r, lid);
680 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
681 		} else if (PM_DEFAULT_MASK) {
682 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
683 			uasm_il_b(p, r, lid);
684 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
685 		} else {
686 			uasm_il_b(p, r, lid);
687 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
688 		}
689 	}
690 }
691 
692 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
693 				       struct uasm_reloc **r,
694 				       unsigned int tmp,
695 				       enum tlb_write_entry wmode,
696 				       int restore_scratch)
697 {
698 	/* Set huge page tlb entry size */
699 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
700 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
701 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
702 
703 	build_tlb_write_entry(p, l, r, wmode);
704 
705 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
706 }
707 
708 /*
709  * Check if Huge PTE is present, if so then jump to LABEL.
710  */
711 static void
712 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
713 		  unsigned int pmd, int lid)
714 {
715 	UASM_i_LW(p, tmp, 0, pmd);
716 	if (use_bbit_insns()) {
717 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
718 	} else {
719 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
720 		uasm_il_bnez(p, r, tmp, lid);
721 	}
722 }
723 
724 static void build_huge_update_entries(u32 **p, unsigned int pte,
725 				      unsigned int tmp)
726 {
727 	int small_sequence;
728 
729 	/*
730 	 * A huge PTE describes an area the size of the
731 	 * configured huge page size. This is twice the
732 	 * of the large TLB entry size we intend to use.
733 	 * A TLB entry half the size of the configured
734 	 * huge page size is configured into entrylo0
735 	 * and entrylo1 to cover the contiguous huge PTE
736 	 * address space.
737 	 */
738 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
739 
740 	/* We can clobber tmp.	It isn't used after this.*/
741 	if (!small_sequence)
742 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
743 
744 	build_convert_pte_to_entrylo(p, pte);
745 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
746 	/* convert to entrylo1 */
747 	if (small_sequence)
748 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
749 	else
750 		UASM_i_ADDU(p, pte, pte, tmp);
751 
752 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
753 }
754 
755 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
756 				    struct uasm_label **l,
757 				    unsigned int pte,
758 				    unsigned int ptr)
759 {
760 #ifdef CONFIG_SMP
761 	UASM_i_SC(p, pte, 0, ptr);
762 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
763 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
764 #else
765 	UASM_i_SW(p, pte, 0, ptr);
766 #endif
767 	build_huge_update_entries(p, pte, ptr);
768 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
769 }
770 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
771 
772 #ifdef CONFIG_64BIT
773 /*
774  * TMP and PTR are scratch.
775  * TMP will be clobbered, PTR will hold the pmd entry.
776  */
777 static void
778 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
779 		 unsigned int tmp, unsigned int ptr)
780 {
781 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
782 	long pgdc = (long)pgd_current;
783 #endif
784 	/*
785 	 * The vmalloc handling is not in the hotpath.
786 	 */
787 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
788 
789 	if (check_for_high_segbits) {
790 		/*
791 		 * The kernel currently implicitely assumes that the
792 		 * MIPS SEGBITS parameter for the processor is
793 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
794 		 * allocate virtual addresses outside the maximum
795 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
796 		 * that doesn't prevent user code from accessing the
797 		 * higher xuseg addresses.  Here, we make sure that
798 		 * everything but the lower xuseg addresses goes down
799 		 * the module_alloc/vmalloc path.
800 		 */
801 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
802 		uasm_il_bnez(p, r, ptr, label_vmalloc);
803 	} else {
804 		uasm_il_bltz(p, r, tmp, label_vmalloc);
805 	}
806 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
807 
808 	if (pgd_reg != -1) {
809 		/* pgd is in pgd_reg */
810 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
811 	} else {
812 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
813 		/*
814 		 * &pgd << 11 stored in CONTEXT [23..63].
815 		 */
816 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
817 
818 		/* Clear lower 23 bits of context. */
819 		uasm_i_dins(p, ptr, 0, 0, 23);
820 
821 		/* 1 0	1 0 1  << 6  xkphys cached */
822 		uasm_i_ori(p, ptr, ptr, 0x540);
823 		uasm_i_drotr(p, ptr, ptr, 11);
824 #elif defined(CONFIG_SMP)
825 		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
826 		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
827 		UASM_i_LA_mostly(p, tmp, pgdc);
828 		uasm_i_daddu(p, ptr, ptr, tmp);
829 		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
830 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
831 #else
832 		UASM_i_LA_mostly(p, ptr, pgdc);
833 		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
834 #endif
835 	}
836 
837 	uasm_l_vmalloc_done(l, *p);
838 
839 	/* get pgd offset in bytes */
840 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
841 
842 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
843 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
844 #ifndef __PAGETABLE_PMD_FOLDED
845 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
846 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
847 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
848 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
849 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
850 #endif
851 }
852 
853 /*
854  * BVADDR is the faulting address, PTR is scratch.
855  * PTR will hold the pgd for vmalloc.
856  */
857 static void
858 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
859 			unsigned int bvaddr, unsigned int ptr,
860 			enum vmalloc64_mode mode)
861 {
862 	long swpd = (long)swapper_pg_dir;
863 	int single_insn_swpd;
864 	int did_vmalloc_branch = 0;
865 
866 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
867 
868 	uasm_l_vmalloc(l, *p);
869 
870 	if (mode != not_refill && check_for_high_segbits) {
871 		if (single_insn_swpd) {
872 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
873 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
874 			did_vmalloc_branch = 1;
875 			/* fall through */
876 		} else {
877 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
878 		}
879 	}
880 	if (!did_vmalloc_branch) {
881 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
882 			uasm_il_b(p, r, label_vmalloc_done);
883 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
884 		} else {
885 			UASM_i_LA_mostly(p, ptr, swpd);
886 			uasm_il_b(p, r, label_vmalloc_done);
887 			if (uasm_in_compat_space_p(swpd))
888 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
889 			else
890 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
891 		}
892 	}
893 	if (mode != not_refill && check_for_high_segbits) {
894 		uasm_l_large_segbits_fault(l, *p);
895 		/*
896 		 * We get here if we are an xsseg address, or if we are
897 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
898 		 *
899 		 * Ignoring xsseg (assume disabled so would generate
900 		 * (address errors?), the only remaining possibility
901 		 * is the upper xuseg addresses.  On processors with
902 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
903 		 * addresses would have taken an address error. We try
904 		 * to mimic that here by taking a load/istream page
905 		 * fault.
906 		 */
907 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
908 		uasm_i_jr(p, ptr);
909 
910 		if (mode == refill_scratch) {
911 			if (scratch_reg >= 0)
912 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
913 			else
914 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
915 		} else {
916 			uasm_i_nop(p);
917 		}
918 	}
919 }
920 
921 #else /* !CONFIG_64BIT */
922 
923 /*
924  * TMP and PTR are scratch.
925  * TMP will be clobbered, PTR will hold the pgd entry.
926  */
927 static void __maybe_unused
928 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
929 {
930 	if (pgd_reg != -1) {
931 		/* pgd is in pgd_reg */
932 		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
933 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
934 	} else {
935 		long pgdc = (long)pgd_current;
936 
937 		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
938 #ifdef CONFIG_SMP
939 		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
940 		UASM_i_LA_mostly(p, tmp, pgdc);
941 		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
942 		uasm_i_addu(p, ptr, tmp, ptr);
943 #else
944 		UASM_i_LA_mostly(p, ptr, pgdc);
945 #endif
946 		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
947 		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
948 	}
949 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
950 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
951 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
952 }
953 
954 #endif /* !CONFIG_64BIT */
955 
956 static void build_adjust_context(u32 **p, unsigned int ctx)
957 {
958 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
959 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
960 
961 	switch (current_cpu_type()) {
962 	case CPU_VR41XX:
963 	case CPU_VR4111:
964 	case CPU_VR4121:
965 	case CPU_VR4122:
966 	case CPU_VR4131:
967 	case CPU_VR4181:
968 	case CPU_VR4181A:
969 	case CPU_VR4133:
970 		shift += 2;
971 		break;
972 
973 	default:
974 		break;
975 	}
976 
977 	if (shift)
978 		UASM_i_SRL(p, ctx, ctx, shift);
979 	uasm_i_andi(p, ctx, ctx, mask);
980 }
981 
982 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
983 {
984 	/*
985 	 * Bug workaround for the Nevada. It seems as if under certain
986 	 * circumstances the move from cp0_context might produce a
987 	 * bogus result when the mfc0 instruction and its consumer are
988 	 * in a different cacheline or a load instruction, probably any
989 	 * memory reference, is between them.
990 	 */
991 	switch (current_cpu_type()) {
992 	case CPU_NEVADA:
993 		UASM_i_LW(p, ptr, 0, ptr);
994 		GET_CONTEXT(p, tmp); /* get context reg */
995 		break;
996 
997 	default:
998 		GET_CONTEXT(p, tmp); /* get context reg */
999 		UASM_i_LW(p, ptr, 0, ptr);
1000 		break;
1001 	}
1002 
1003 	build_adjust_context(p, tmp);
1004 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1005 }
1006 
1007 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1008 {
1009 	/*
1010 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1011 	 * Kernel is a special case. Only a few CPUs use it.
1012 	 */
1013 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1014 	if (cpu_has_64bits) {
1015 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1016 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1017 		if (cpu_has_rixi) {
1018 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1019 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1020 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1021 		} else {
1022 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1023 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1024 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1025 		}
1026 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1027 	} else {
1028 		int pte_off_even = sizeof(pte_t) / 2;
1029 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1030 
1031 		/* The pte entries are pre-shifted */
1032 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1033 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1034 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1035 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1036 	}
1037 #else
1038 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1039 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1040 	if (r45k_bvahwbug())
1041 		build_tlb_probe_entry(p);
1042 	if (cpu_has_rixi) {
1043 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1044 		if (r4k_250MHZhwbug())
1045 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1046 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1047 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1048 	} else {
1049 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1050 		if (r4k_250MHZhwbug())
1051 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1052 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1053 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1054 		if (r45k_bvahwbug())
1055 			uasm_i_mfc0(p, tmp, C0_INDEX);
1056 	}
1057 	if (r4k_250MHZhwbug())
1058 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1059 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1060 #endif
1061 }
1062 
1063 struct mips_huge_tlb_info {
1064 	int huge_pte;
1065 	int restore_scratch;
1066 	bool need_reload_pte;
1067 };
1068 
1069 static struct mips_huge_tlb_info
1070 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1071 			       struct uasm_reloc **r, unsigned int tmp,
1072 			       unsigned int ptr, int c0_scratch_reg)
1073 {
1074 	struct mips_huge_tlb_info rv;
1075 	unsigned int even, odd;
1076 	int vmalloc_branch_delay_filled = 0;
1077 	const int scratch = 1; /* Our extra working register */
1078 
1079 	rv.huge_pte = scratch;
1080 	rv.restore_scratch = 0;
1081 	rv.need_reload_pte = false;
1082 
1083 	if (check_for_high_segbits) {
1084 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1085 
1086 		if (pgd_reg != -1)
1087 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1088 		else
1089 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1090 
1091 		if (c0_scratch_reg >= 0)
1092 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1093 		else
1094 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1095 
1096 		uasm_i_dsrl_safe(p, scratch, tmp,
1097 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1098 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1099 
1100 		if (pgd_reg == -1) {
1101 			vmalloc_branch_delay_filled = 1;
1102 			/* Clear lower 23 bits of context. */
1103 			uasm_i_dins(p, ptr, 0, 0, 23);
1104 		}
1105 	} else {
1106 		if (pgd_reg != -1)
1107 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1108 		else
1109 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1110 
1111 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1112 
1113 		if (c0_scratch_reg >= 0)
1114 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1115 		else
1116 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1117 
1118 		if (pgd_reg == -1)
1119 			/* Clear lower 23 bits of context. */
1120 			uasm_i_dins(p, ptr, 0, 0, 23);
1121 
1122 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1123 	}
1124 
1125 	if (pgd_reg == -1) {
1126 		vmalloc_branch_delay_filled = 1;
1127 		/* 1 0	1 0 1  << 6  xkphys cached */
1128 		uasm_i_ori(p, ptr, ptr, 0x540);
1129 		uasm_i_drotr(p, ptr, ptr, 11);
1130 	}
1131 
1132 #ifdef __PAGETABLE_PMD_FOLDED
1133 #define LOC_PTEP scratch
1134 #else
1135 #define LOC_PTEP ptr
1136 #endif
1137 
1138 	if (!vmalloc_branch_delay_filled)
1139 		/* get pgd offset in bytes */
1140 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1141 
1142 	uasm_l_vmalloc_done(l, *p);
1143 
1144 	/*
1145 	 *			   tmp		ptr
1146 	 * fall-through case =	 badvaddr  *pgd_current
1147 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1148 	 */
1149 
1150 	if (vmalloc_branch_delay_filled)
1151 		/* get pgd offset in bytes */
1152 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1153 
1154 #ifdef __PAGETABLE_PMD_FOLDED
1155 	GET_CONTEXT(p, tmp); /* get context reg */
1156 #endif
1157 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1158 
1159 	if (use_lwx_insns()) {
1160 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1161 	} else {
1162 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1163 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1164 	}
1165 
1166 #ifndef __PAGETABLE_PMD_FOLDED
1167 	/* get pmd offset in bytes */
1168 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1169 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1170 	GET_CONTEXT(p, tmp); /* get context reg */
1171 
1172 	if (use_lwx_insns()) {
1173 		UASM_i_LWX(p, scratch, scratch, ptr);
1174 	} else {
1175 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1176 		UASM_i_LW(p, scratch, 0, ptr);
1177 	}
1178 #endif
1179 	/* Adjust the context during the load latency. */
1180 	build_adjust_context(p, tmp);
1181 
1182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1183 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1184 	/*
1185 	 * The in the LWX case we don't want to do the load in the
1186 	 * delay slot.	It cannot issue in the same cycle and may be
1187 	 * speculative and unneeded.
1188 	 */
1189 	if (use_lwx_insns())
1190 		uasm_i_nop(p);
1191 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1192 
1193 
1194 	/* build_update_entries */
1195 	if (use_lwx_insns()) {
1196 		even = ptr;
1197 		odd = tmp;
1198 		UASM_i_LWX(p, even, scratch, tmp);
1199 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1200 		UASM_i_LWX(p, odd, scratch, tmp);
1201 	} else {
1202 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1203 		even = tmp;
1204 		odd = ptr;
1205 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1206 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1207 	}
1208 	if (cpu_has_rixi) {
1209 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1210 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1211 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1212 	} else {
1213 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1214 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1215 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1216 	}
1217 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1218 
1219 	if (c0_scratch_reg >= 0) {
1220 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1221 		build_tlb_write_entry(p, l, r, tlb_random);
1222 		uasm_l_leave(l, *p);
1223 		rv.restore_scratch = 1;
1224 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1225 		build_tlb_write_entry(p, l, r, tlb_random);
1226 		uasm_l_leave(l, *p);
1227 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1228 	} else {
1229 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1230 		build_tlb_write_entry(p, l, r, tlb_random);
1231 		uasm_l_leave(l, *p);
1232 		rv.restore_scratch = 1;
1233 	}
1234 
1235 	uasm_i_eret(p); /* return from trap */
1236 
1237 	return rv;
1238 }
1239 
1240 /*
1241  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1242  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1243  * slots before the XTLB refill exception handler which belong to the
1244  * unused TLB refill exception.
1245  */
1246 #define MIPS64_REFILL_INSNS 32
1247 
1248 static void build_r4000_tlb_refill_handler(void)
1249 {
1250 	u32 *p = tlb_handler;
1251 	struct uasm_label *l = labels;
1252 	struct uasm_reloc *r = relocs;
1253 	u32 *f;
1254 	unsigned int final_len;
1255 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1256 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1257 
1258 	memset(tlb_handler, 0, sizeof(tlb_handler));
1259 	memset(labels, 0, sizeof(labels));
1260 	memset(relocs, 0, sizeof(relocs));
1261 	memset(final_handler, 0, sizeof(final_handler));
1262 
1263 	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1264 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1265 							  scratch_reg);
1266 		vmalloc_mode = refill_scratch;
1267 	} else {
1268 		htlb_info.huge_pte = K0;
1269 		htlb_info.restore_scratch = 0;
1270 		htlb_info.need_reload_pte = true;
1271 		vmalloc_mode = refill_noscratch;
1272 		/*
1273 		 * create the plain linear handler
1274 		 */
1275 		if (bcm1250_m3_war()) {
1276 			unsigned int segbits = 44;
1277 
1278 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1279 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1280 			uasm_i_xor(&p, K0, K0, K1);
1281 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1282 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1283 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1284 			uasm_i_or(&p, K0, K0, K1);
1285 			uasm_il_bnez(&p, &r, K0, label_leave);
1286 			/* No need for uasm_i_nop */
1287 		}
1288 
1289 #ifdef CONFIG_64BIT
1290 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1291 #else
1292 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1293 #endif
1294 
1295 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1296 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1297 #endif
1298 
1299 		build_get_ptep(&p, K0, K1);
1300 		build_update_entries(&p, K0, K1);
1301 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1302 		uasm_l_leave(&l, p);
1303 		uasm_i_eret(&p); /* return from trap */
1304 	}
1305 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1306 	uasm_l_tlb_huge_update(&l, p);
1307 	if (htlb_info.need_reload_pte)
1308 		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1309 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1310 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1311 				   htlb_info.restore_scratch);
1312 #endif
1313 
1314 #ifdef CONFIG_64BIT
1315 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1316 #endif
1317 
1318 	/*
1319 	 * Overflow check: For the 64bit handler, we need at least one
1320 	 * free instruction slot for the wrap-around branch. In worst
1321 	 * case, if the intended insertion point is a delay slot, we
1322 	 * need three, with the second nop'ed and the third being
1323 	 * unused.
1324 	 */
1325 	switch (boot_cpu_type()) {
1326 	default:
1327 		if (sizeof(long) == 4) {
1328 	case CPU_LOONGSON2:
1329 		/* Loongson2 ebase is different than r4k, we have more space */
1330 			if ((p - tlb_handler) > 64)
1331 				panic("TLB refill handler space exceeded");
1332 			/*
1333 			 * Now fold the handler in the TLB refill handler space.
1334 			 */
1335 			f = final_handler;
1336 			/* Simplest case, just copy the handler. */
1337 			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1338 			final_len = p - tlb_handler;
1339 			break;
1340 		} else {
1341 			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1342 			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1343 				&& uasm_insn_has_bdelay(relocs,
1344 							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1345 				panic("TLB refill handler space exceeded");
1346 			/*
1347 			 * Now fold the handler in the TLB refill handler space.
1348 			 */
1349 			f = final_handler + MIPS64_REFILL_INSNS;
1350 			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1351 				/* Just copy the handler. */
1352 				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1353 				final_len = p - tlb_handler;
1354 			} else {
1355 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1356 				const enum label_id ls = label_tlb_huge_update;
1357 #else
1358 				const enum label_id ls = label_vmalloc;
1359 #endif
1360 				u32 *split;
1361 				int ov = 0;
1362 				int i;
1363 
1364 				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1365 					;
1366 				BUG_ON(i == ARRAY_SIZE(labels));
1367 				split = labels[i].addr;
1368 
1369 				/*
1370 				 * See if we have overflown one way or the other.
1371 				 */
1372 				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1373 				    split < p - MIPS64_REFILL_INSNS)
1374 					ov = 1;
1375 
1376 				if (ov) {
1377 					/*
1378 					 * Split two instructions before the end.  One
1379 					 * for the branch and one for the instruction
1380 					 * in the delay slot.
1381 					 */
1382 					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1383 
1384 					/*
1385 					 * If the branch would fall in a delay slot,
1386 					 * we must back up an additional instruction
1387 					 * so that it is no longer in a delay slot.
1388 					 */
1389 					if (uasm_insn_has_bdelay(relocs, split - 1))
1390 						split--;
1391 				}
1392 				/* Copy first part of the handler. */
1393 				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1394 				f += split - tlb_handler;
1395 
1396 				if (ov) {
1397 					/* Insert branch. */
1398 					uasm_l_split(&l, final_handler);
1399 					uasm_il_b(&f, &r, label_split);
1400 					if (uasm_insn_has_bdelay(relocs, split))
1401 						uasm_i_nop(&f);
1402 					else {
1403 						uasm_copy_handler(relocs, labels,
1404 								  split, split + 1, f);
1405 						uasm_move_labels(labels, f, f + 1, -1);
1406 						f++;
1407 						split++;
1408 					}
1409 				}
1410 
1411 				/* Copy the rest of the handler. */
1412 				uasm_copy_handler(relocs, labels, split, p, final_handler);
1413 				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1414 					    (p - split);
1415 			}
1416 		}
1417 		break;
1418 	}
1419 
1420 	uasm_resolve_relocs(relocs, labels);
1421 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1422 		 final_len);
1423 
1424 	memcpy((void *)ebase, final_handler, 0x100);
1425 	local_flush_icache_range(ebase, ebase + 0x100);
1426 
1427 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1428 }
1429 
1430 extern u32 handle_tlbl[], handle_tlbl_end[];
1431 extern u32 handle_tlbs[], handle_tlbs_end[];
1432 extern u32 handle_tlbm[], handle_tlbm_end[];
1433 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1434 extern u32 tlbmiss_handler_setup_pgd_end[];
1435 
1436 static void build_setup_pgd(void)
1437 {
1438 	const int a0 = 4;
1439 	const int __maybe_unused a1 = 5;
1440 	const int __maybe_unused a2 = 6;
1441 	u32 *p = tlbmiss_handler_setup_pgd_start;
1442 	const int tlbmiss_handler_setup_pgd_size =
1443 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1444 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1445 	long pgdc = (long)pgd_current;
1446 #endif
1447 
1448 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1449 					sizeof(tlbmiss_handler_setup_pgd[0]));
1450 	memset(labels, 0, sizeof(labels));
1451 	memset(relocs, 0, sizeof(relocs));
1452 	pgd_reg = allocate_kscratch();
1453 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1454 	if (pgd_reg == -1) {
1455 		struct uasm_label *l = labels;
1456 		struct uasm_reloc *r = relocs;
1457 
1458 		/* PGD << 11 in c0_Context */
1459 		/*
1460 		 * If it is a ckseg0 address, convert to a physical
1461 		 * address.  Shifting right by 29 and adding 4 will
1462 		 * result in zero for these addresses.
1463 		 *
1464 		 */
1465 		UASM_i_SRA(&p, a1, a0, 29);
1466 		UASM_i_ADDIU(&p, a1, a1, 4);
1467 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1468 		uasm_i_nop(&p);
1469 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1470 		uasm_l_tlbl_goaround1(&l, p);
1471 		UASM_i_SLL(&p, a0, a0, 11);
1472 		uasm_i_jr(&p, 31);
1473 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1474 	} else {
1475 		/* PGD in c0_KScratch */
1476 		uasm_i_jr(&p, 31);
1477 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1478 	}
1479 #else
1480 #ifdef CONFIG_SMP
1481 	/* Save PGD to pgd_current[smp_processor_id()] */
1482 	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1483 	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1484 	UASM_i_LA_mostly(&p, a2, pgdc);
1485 	UASM_i_ADDU(&p, a2, a2, a1);
1486 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1487 #else
1488 	UASM_i_LA_mostly(&p, a2, pgdc);
1489 	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1490 #endif /* SMP */
1491 	uasm_i_jr(&p, 31);
1492 
1493 	/* if pgd_reg is allocated, save PGD also to scratch register */
1494 	if (pgd_reg != -1)
1495 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1496 	else
1497 		uasm_i_nop(&p);
1498 #endif
1499 	if (p >= tlbmiss_handler_setup_pgd_end)
1500 		panic("tlbmiss_handler_setup_pgd space exceeded");
1501 
1502 	uasm_resolve_relocs(relocs, labels);
1503 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1504 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1505 
1506 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1507 					tlbmiss_handler_setup_pgd_size);
1508 }
1509 
1510 static void
1511 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1512 {
1513 #ifdef CONFIG_SMP
1514 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1515 	if (cpu_has_64bits)
1516 		uasm_i_lld(p, pte, 0, ptr);
1517 	else
1518 # endif
1519 		UASM_i_LL(p, pte, 0, ptr);
1520 #else
1521 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1522 	if (cpu_has_64bits)
1523 		uasm_i_ld(p, pte, 0, ptr);
1524 	else
1525 # endif
1526 		UASM_i_LW(p, pte, 0, ptr);
1527 #endif
1528 }
1529 
1530 static void
1531 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1532 	unsigned int mode)
1533 {
1534 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1535 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1536 #endif
1537 
1538 	uasm_i_ori(p, pte, pte, mode);
1539 #ifdef CONFIG_SMP
1540 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1541 	if (cpu_has_64bits)
1542 		uasm_i_scd(p, pte, 0, ptr);
1543 	else
1544 # endif
1545 		UASM_i_SC(p, pte, 0, ptr);
1546 
1547 	if (r10000_llsc_war())
1548 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1549 	else
1550 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1551 
1552 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1553 	if (!cpu_has_64bits) {
1554 		/* no uasm_i_nop needed */
1555 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1556 		uasm_i_ori(p, pte, pte, hwmode);
1557 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1558 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1559 		/* no uasm_i_nop needed */
1560 		uasm_i_lw(p, pte, 0, ptr);
1561 	} else
1562 		uasm_i_nop(p);
1563 # else
1564 	uasm_i_nop(p);
1565 # endif
1566 #else
1567 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1568 	if (cpu_has_64bits)
1569 		uasm_i_sd(p, pte, 0, ptr);
1570 	else
1571 # endif
1572 		UASM_i_SW(p, pte, 0, ptr);
1573 
1574 # ifdef CONFIG_PHYS_ADDR_T_64BIT
1575 	if (!cpu_has_64bits) {
1576 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1577 		uasm_i_ori(p, pte, pte, hwmode);
1578 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1579 		uasm_i_lw(p, pte, 0, ptr);
1580 	}
1581 # endif
1582 #endif
1583 }
1584 
1585 /*
1586  * Check if PTE is present, if not then jump to LABEL. PTR points to
1587  * the page table where this PTE is located, PTE will be re-loaded
1588  * with it's original value.
1589  */
1590 static void
1591 build_pte_present(u32 **p, struct uasm_reloc **r,
1592 		  int pte, int ptr, int scratch, enum label_id lid)
1593 {
1594 	int t = scratch >= 0 ? scratch : pte;
1595 
1596 	if (cpu_has_rixi) {
1597 		if (use_bbit_insns()) {
1598 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1599 			uasm_i_nop(p);
1600 		} else {
1601 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1602 			uasm_il_beqz(p, r, t, lid);
1603 			if (pte == t)
1604 				/* You lose the SMP race :-(*/
1605 				iPTE_LW(p, pte, ptr);
1606 		}
1607 	} else {
1608 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1609 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1610 		uasm_il_bnez(p, r, t, lid);
1611 		if (pte == t)
1612 			/* You lose the SMP race :-(*/
1613 			iPTE_LW(p, pte, ptr);
1614 	}
1615 }
1616 
1617 /* Make PTE valid, store result in PTR. */
1618 static void
1619 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1620 		 unsigned int ptr)
1621 {
1622 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1623 
1624 	iPTE_SW(p, r, pte, ptr, mode);
1625 }
1626 
1627 /*
1628  * Check if PTE can be written to, if not branch to LABEL. Regardless
1629  * restore PTE with value from PTR when done.
1630  */
1631 static void
1632 build_pte_writable(u32 **p, struct uasm_reloc **r,
1633 		   unsigned int pte, unsigned int ptr, int scratch,
1634 		   enum label_id lid)
1635 {
1636 	int t = scratch >= 0 ? scratch : pte;
1637 
1638 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1639 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1640 	uasm_il_bnez(p, r, t, lid);
1641 	if (pte == t)
1642 		/* You lose the SMP race :-(*/
1643 		iPTE_LW(p, pte, ptr);
1644 	else
1645 		uasm_i_nop(p);
1646 }
1647 
1648 /* Make PTE writable, update software status bits as well, then store
1649  * at PTR.
1650  */
1651 static void
1652 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1653 		 unsigned int ptr)
1654 {
1655 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1656 			     | _PAGE_DIRTY);
1657 
1658 	iPTE_SW(p, r, pte, ptr, mode);
1659 }
1660 
1661 /*
1662  * Check if PTE can be modified, if not branch to LABEL. Regardless
1663  * restore PTE with value from PTR when done.
1664  */
1665 static void
1666 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1667 		     unsigned int pte, unsigned int ptr, int scratch,
1668 		     enum label_id lid)
1669 {
1670 	if (use_bbit_insns()) {
1671 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1672 		uasm_i_nop(p);
1673 	} else {
1674 		int t = scratch >= 0 ? scratch : pte;
1675 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1676 		uasm_il_beqz(p, r, t, lid);
1677 		if (pte == t)
1678 			/* You lose the SMP race :-(*/
1679 			iPTE_LW(p, pte, ptr);
1680 	}
1681 }
1682 
1683 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1684 
1685 
1686 /*
1687  * R3000 style TLB load/store/modify handlers.
1688  */
1689 
1690 /*
1691  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1692  * Then it returns.
1693  */
1694 static void
1695 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1696 {
1697 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1698 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1699 	uasm_i_tlbwi(p);
1700 	uasm_i_jr(p, tmp);
1701 	uasm_i_rfe(p); /* branch delay */
1702 }
1703 
1704 /*
1705  * This places the pte into ENTRYLO0 and writes it with tlbwi
1706  * or tlbwr as appropriate.  This is because the index register
1707  * may have the probe fail bit set as a result of a trap on a
1708  * kseg2 access, i.e. without refill.  Then it returns.
1709  */
1710 static void
1711 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1712 			     struct uasm_reloc **r, unsigned int pte,
1713 			     unsigned int tmp)
1714 {
1715 	uasm_i_mfc0(p, tmp, C0_INDEX);
1716 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1717 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1718 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1719 	uasm_i_tlbwi(p); /* cp0 delay */
1720 	uasm_i_jr(p, tmp);
1721 	uasm_i_rfe(p); /* branch delay */
1722 	uasm_l_r3000_write_probe_fail(l, *p);
1723 	uasm_i_tlbwr(p); /* cp0 delay */
1724 	uasm_i_jr(p, tmp);
1725 	uasm_i_rfe(p); /* branch delay */
1726 }
1727 
1728 static void
1729 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1730 				   unsigned int ptr)
1731 {
1732 	long pgdc = (long)pgd_current;
1733 
1734 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1735 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1736 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1737 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1738 	uasm_i_sll(p, pte, pte, 2);
1739 	uasm_i_addu(p, ptr, ptr, pte);
1740 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1741 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1742 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1743 	uasm_i_addu(p, ptr, ptr, pte);
1744 	uasm_i_lw(p, pte, 0, ptr);
1745 	uasm_i_tlbp(p); /* load delay */
1746 }
1747 
1748 static void build_r3000_tlb_load_handler(void)
1749 {
1750 	u32 *p = handle_tlbl;
1751 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1752 	struct uasm_label *l = labels;
1753 	struct uasm_reloc *r = relocs;
1754 
1755 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1756 	memset(labels, 0, sizeof(labels));
1757 	memset(relocs, 0, sizeof(relocs));
1758 
1759 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1760 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1761 	uasm_i_nop(&p); /* load delay */
1762 	build_make_valid(&p, &r, K0, K1);
1763 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1764 
1765 	uasm_l_nopage_tlbl(&l, p);
1766 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1767 	uasm_i_nop(&p);
1768 
1769 	if (p >= handle_tlbl_end)
1770 		panic("TLB load handler fastpath space exceeded");
1771 
1772 	uasm_resolve_relocs(relocs, labels);
1773 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1774 		 (unsigned int)(p - handle_tlbl));
1775 
1776 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1777 }
1778 
1779 static void build_r3000_tlb_store_handler(void)
1780 {
1781 	u32 *p = handle_tlbs;
1782 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1783 	struct uasm_label *l = labels;
1784 	struct uasm_reloc *r = relocs;
1785 
1786 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1787 	memset(labels, 0, sizeof(labels));
1788 	memset(relocs, 0, sizeof(relocs));
1789 
1790 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1791 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1792 	uasm_i_nop(&p); /* load delay */
1793 	build_make_write(&p, &r, K0, K1);
1794 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1795 
1796 	uasm_l_nopage_tlbs(&l, p);
1797 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1798 	uasm_i_nop(&p);
1799 
1800 	if (p >= handle_tlbs_end)
1801 		panic("TLB store handler fastpath space exceeded");
1802 
1803 	uasm_resolve_relocs(relocs, labels);
1804 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1805 		 (unsigned int)(p - handle_tlbs));
1806 
1807 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1808 }
1809 
1810 static void build_r3000_tlb_modify_handler(void)
1811 {
1812 	u32 *p = handle_tlbm;
1813 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1814 	struct uasm_label *l = labels;
1815 	struct uasm_reloc *r = relocs;
1816 
1817 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1818 	memset(labels, 0, sizeof(labels));
1819 	memset(relocs, 0, sizeof(relocs));
1820 
1821 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1822 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1823 	uasm_i_nop(&p); /* load delay */
1824 	build_make_write(&p, &r, K0, K1);
1825 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1826 
1827 	uasm_l_nopage_tlbm(&l, p);
1828 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1829 	uasm_i_nop(&p);
1830 
1831 	if (p >= handle_tlbm_end)
1832 		panic("TLB modify handler fastpath space exceeded");
1833 
1834 	uasm_resolve_relocs(relocs, labels);
1835 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1836 		 (unsigned int)(p - handle_tlbm));
1837 
1838 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1839 }
1840 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1841 
1842 /*
1843  * R4000 style TLB load/store/modify handlers.
1844  */
1845 static struct work_registers
1846 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1847 				   struct uasm_reloc **r)
1848 {
1849 	struct work_registers wr = build_get_work_registers(p);
1850 
1851 #ifdef CONFIG_64BIT
1852 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1853 #else
1854 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1855 #endif
1856 
1857 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1858 	/*
1859 	 * For huge tlb entries, pmd doesn't contain an address but
1860 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1861 	 * see if we need to jump to huge tlb processing.
1862 	 */
1863 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1864 #endif
1865 
1866 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1867 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1868 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1869 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1870 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1871 
1872 #ifdef CONFIG_SMP
1873 	uasm_l_smp_pgtable_change(l, *p);
1874 #endif
1875 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1876 	if (!m4kc_tlbp_war()) {
1877 		build_tlb_probe_entry(p);
1878 		if (cpu_has_htw) {
1879 			/* race condition happens, leaving */
1880 			uasm_i_ehb(p);
1881 			uasm_i_mfc0(p, wr.r3, C0_INDEX);
1882 			uasm_il_bltz(p, r, wr.r3, label_leave);
1883 			uasm_i_nop(p);
1884 		}
1885 	}
1886 	return wr;
1887 }
1888 
1889 static void
1890 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1891 				   struct uasm_reloc **r, unsigned int tmp,
1892 				   unsigned int ptr)
1893 {
1894 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1895 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1896 	build_update_entries(p, tmp, ptr);
1897 	build_tlb_write_entry(p, l, r, tlb_indexed);
1898 	uasm_l_leave(l, *p);
1899 	build_restore_work_registers(p);
1900 	uasm_i_eret(p); /* return from trap */
1901 
1902 #ifdef CONFIG_64BIT
1903 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1904 #endif
1905 }
1906 
1907 static void build_r4000_tlb_load_handler(void)
1908 {
1909 	u32 *p = handle_tlbl;
1910 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1911 	struct uasm_label *l = labels;
1912 	struct uasm_reloc *r = relocs;
1913 	struct work_registers wr;
1914 
1915 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1916 	memset(labels, 0, sizeof(labels));
1917 	memset(relocs, 0, sizeof(relocs));
1918 
1919 	if (bcm1250_m3_war()) {
1920 		unsigned int segbits = 44;
1921 
1922 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1923 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1924 		uasm_i_xor(&p, K0, K0, K1);
1925 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1926 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1927 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1928 		uasm_i_or(&p, K0, K0, K1);
1929 		uasm_il_bnez(&p, &r, K0, label_leave);
1930 		/* No need for uasm_i_nop */
1931 	}
1932 
1933 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1934 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1935 	if (m4kc_tlbp_war())
1936 		build_tlb_probe_entry(&p);
1937 
1938 	if (cpu_has_rixi && !cpu_has_rixiex) {
1939 		/*
1940 		 * If the page is not _PAGE_VALID, RI or XI could not
1941 		 * have triggered it.  Skip the expensive test..
1942 		 */
1943 		if (use_bbit_insns()) {
1944 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1945 				      label_tlbl_goaround1);
1946 		} else {
1947 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1948 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1949 		}
1950 		uasm_i_nop(&p);
1951 
1952 		uasm_i_tlbr(&p);
1953 
1954 		switch (current_cpu_type()) {
1955 		default:
1956 			if (cpu_has_mips_r2_exec_hazard) {
1957 				uasm_i_ehb(&p);
1958 
1959 		case CPU_CAVIUM_OCTEON:
1960 		case CPU_CAVIUM_OCTEON_PLUS:
1961 		case CPU_CAVIUM_OCTEON2:
1962 				break;
1963 			}
1964 		}
1965 
1966 		/* Examine  entrylo 0 or 1 based on ptr. */
1967 		if (use_bbit_insns()) {
1968 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1969 		} else {
1970 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1971 			uasm_i_beqz(&p, wr.r3, 8);
1972 		}
1973 		/* load it in the delay slot*/
1974 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1975 		/* load it if ptr is odd */
1976 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1977 		/*
1978 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1979 		 * XI must have triggered it.
1980 		 */
1981 		if (use_bbit_insns()) {
1982 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1983 			uasm_i_nop(&p);
1984 			uasm_l_tlbl_goaround1(&l, p);
1985 		} else {
1986 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1987 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1988 			uasm_i_nop(&p);
1989 		}
1990 		uasm_l_tlbl_goaround1(&l, p);
1991 	}
1992 	build_make_valid(&p, &r, wr.r1, wr.r2);
1993 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1994 
1995 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1996 	/*
1997 	 * This is the entry point when build_r4000_tlbchange_handler_head
1998 	 * spots a huge page.
1999 	 */
2000 	uasm_l_tlb_huge_update(&l, p);
2001 	iPTE_LW(&p, wr.r1, wr.r2);
2002 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2003 	build_tlb_probe_entry(&p);
2004 
2005 	if (cpu_has_rixi && !cpu_has_rixiex) {
2006 		/*
2007 		 * If the page is not _PAGE_VALID, RI or XI could not
2008 		 * have triggered it.  Skip the expensive test..
2009 		 */
2010 		if (use_bbit_insns()) {
2011 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2012 				      label_tlbl_goaround2);
2013 		} else {
2014 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2015 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2016 		}
2017 		uasm_i_nop(&p);
2018 
2019 		uasm_i_tlbr(&p);
2020 
2021 		switch (current_cpu_type()) {
2022 		default:
2023 			if (cpu_has_mips_r2_exec_hazard) {
2024 				uasm_i_ehb(&p);
2025 
2026 		case CPU_CAVIUM_OCTEON:
2027 		case CPU_CAVIUM_OCTEON_PLUS:
2028 		case CPU_CAVIUM_OCTEON2:
2029 				break;
2030 			}
2031 		}
2032 
2033 		/* Examine  entrylo 0 or 1 based on ptr. */
2034 		if (use_bbit_insns()) {
2035 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2036 		} else {
2037 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2038 			uasm_i_beqz(&p, wr.r3, 8);
2039 		}
2040 		/* load it in the delay slot*/
2041 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2042 		/* load it if ptr is odd */
2043 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2044 		/*
2045 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2046 		 * XI must have triggered it.
2047 		 */
2048 		if (use_bbit_insns()) {
2049 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2050 		} else {
2051 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2052 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2053 		}
2054 		if (PM_DEFAULT_MASK == 0)
2055 			uasm_i_nop(&p);
2056 		/*
2057 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2058 		 * it is restored in build_huge_tlb_write_entry.
2059 		 */
2060 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2061 
2062 		uasm_l_tlbl_goaround2(&l, p);
2063 	}
2064 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2065 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2066 #endif
2067 
2068 	uasm_l_nopage_tlbl(&l, p);
2069 	build_restore_work_registers(&p);
2070 #ifdef CONFIG_CPU_MICROMIPS
2071 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2072 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2073 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2074 		uasm_i_jr(&p, K0);
2075 	} else
2076 #endif
2077 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2078 	uasm_i_nop(&p);
2079 
2080 	if (p >= handle_tlbl_end)
2081 		panic("TLB load handler fastpath space exceeded");
2082 
2083 	uasm_resolve_relocs(relocs, labels);
2084 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2085 		 (unsigned int)(p - handle_tlbl));
2086 
2087 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2088 }
2089 
2090 static void build_r4000_tlb_store_handler(void)
2091 {
2092 	u32 *p = handle_tlbs;
2093 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2094 	struct uasm_label *l = labels;
2095 	struct uasm_reloc *r = relocs;
2096 	struct work_registers wr;
2097 
2098 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2099 	memset(labels, 0, sizeof(labels));
2100 	memset(relocs, 0, sizeof(relocs));
2101 
2102 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2103 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2104 	if (m4kc_tlbp_war())
2105 		build_tlb_probe_entry(&p);
2106 	build_make_write(&p, &r, wr.r1, wr.r2);
2107 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2108 
2109 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2110 	/*
2111 	 * This is the entry point when
2112 	 * build_r4000_tlbchange_handler_head spots a huge page.
2113 	 */
2114 	uasm_l_tlb_huge_update(&l, p);
2115 	iPTE_LW(&p, wr.r1, wr.r2);
2116 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2117 	build_tlb_probe_entry(&p);
2118 	uasm_i_ori(&p, wr.r1, wr.r1,
2119 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2120 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2121 #endif
2122 
2123 	uasm_l_nopage_tlbs(&l, p);
2124 	build_restore_work_registers(&p);
2125 #ifdef CONFIG_CPU_MICROMIPS
2126 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2127 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2128 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2129 		uasm_i_jr(&p, K0);
2130 	} else
2131 #endif
2132 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2133 	uasm_i_nop(&p);
2134 
2135 	if (p >= handle_tlbs_end)
2136 		panic("TLB store handler fastpath space exceeded");
2137 
2138 	uasm_resolve_relocs(relocs, labels);
2139 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2140 		 (unsigned int)(p - handle_tlbs));
2141 
2142 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2143 }
2144 
2145 static void build_r4000_tlb_modify_handler(void)
2146 {
2147 	u32 *p = handle_tlbm;
2148 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2149 	struct uasm_label *l = labels;
2150 	struct uasm_reloc *r = relocs;
2151 	struct work_registers wr;
2152 
2153 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2154 	memset(labels, 0, sizeof(labels));
2155 	memset(relocs, 0, sizeof(relocs));
2156 
2157 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2158 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2159 	if (m4kc_tlbp_war())
2160 		build_tlb_probe_entry(&p);
2161 	/* Present and writable bits set, set accessed and dirty bits. */
2162 	build_make_write(&p, &r, wr.r1, wr.r2);
2163 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2164 
2165 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2166 	/*
2167 	 * This is the entry point when
2168 	 * build_r4000_tlbchange_handler_head spots a huge page.
2169 	 */
2170 	uasm_l_tlb_huge_update(&l, p);
2171 	iPTE_LW(&p, wr.r1, wr.r2);
2172 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2173 	build_tlb_probe_entry(&p);
2174 	uasm_i_ori(&p, wr.r1, wr.r1,
2175 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2176 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2177 #endif
2178 
2179 	uasm_l_nopage_tlbm(&l, p);
2180 	build_restore_work_registers(&p);
2181 #ifdef CONFIG_CPU_MICROMIPS
2182 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2183 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2184 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2185 		uasm_i_jr(&p, K0);
2186 	} else
2187 #endif
2188 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2189 	uasm_i_nop(&p);
2190 
2191 	if (p >= handle_tlbm_end)
2192 		panic("TLB modify handler fastpath space exceeded");
2193 
2194 	uasm_resolve_relocs(relocs, labels);
2195 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2196 		 (unsigned int)(p - handle_tlbm));
2197 
2198 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2199 }
2200 
2201 static void flush_tlb_handlers(void)
2202 {
2203 	local_flush_icache_range((unsigned long)handle_tlbl,
2204 			   (unsigned long)handle_tlbl_end);
2205 	local_flush_icache_range((unsigned long)handle_tlbs,
2206 			   (unsigned long)handle_tlbs_end);
2207 	local_flush_icache_range((unsigned long)handle_tlbm,
2208 			   (unsigned long)handle_tlbm_end);
2209 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2210 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2211 }
2212 
2213 static void print_htw_config(void)
2214 {
2215 	unsigned long config;
2216 	unsigned int pwctl;
2217 	const int field = 2 * sizeof(unsigned long);
2218 
2219 	config = read_c0_pwfield();
2220 	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2221 		field, config,
2222 		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2223 		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2224 		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2225 		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2226 		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2227 
2228 	config = read_c0_pwsize();
2229 	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2230 		field, config,
2231 		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2232 		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2233 		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2234 		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2235 		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2236 
2237 	pwctl = read_c0_pwctl();
2238 	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2239 		pwctl,
2240 		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2241 		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2242 		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2243 		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2244 }
2245 
2246 static void config_htw_params(void)
2247 {
2248 	unsigned long pwfield, pwsize, ptei;
2249 	unsigned int config;
2250 
2251 	/*
2252 	 * We are using 2-level page tables, so we only need to
2253 	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2254 	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2255 	 * write values less than 0xc in these fields because the entire
2256 	 * write will be dropped. As a result of which, we must preserve
2257 	 * the original reset values and overwrite only what we really want.
2258 	 */
2259 
2260 	pwfield = read_c0_pwfield();
2261 	/* re-initialize the GDI field */
2262 	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2263 	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2264 	/* re-initialize the PTI field including the even/odd bit */
2265 	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2266 	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2267 	/* Set the PTEI right shift */
2268 	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2269 	pwfield |= ptei;
2270 	write_c0_pwfield(pwfield);
2271 	/* Check whether the PTEI value is supported */
2272 	back_to_back_c0_hazard();
2273 	pwfield = read_c0_pwfield();
2274 	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2275 		!= ptei) {
2276 		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2277 			ptei);
2278 		/*
2279 		 * Drop option to avoid HTW being enabled via another path
2280 		 * (eg htw_reset())
2281 		 */
2282 		current_cpu_data.options &= ~MIPS_CPU_HTW;
2283 		return;
2284 	}
2285 
2286 	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2287 	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2288 	write_c0_pwsize(pwsize);
2289 
2290 	/* Make sure everything is set before we enable the HTW */
2291 	back_to_back_c0_hazard();
2292 
2293 	/* Enable HTW and disable the rest of the pwctl fields */
2294 	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2295 	write_c0_pwctl(config);
2296 	pr_info("Hardware Page Table Walker enabled\n");
2297 
2298 	print_htw_config();
2299 }
2300 
2301 void build_tlb_refill_handler(void)
2302 {
2303 	/*
2304 	 * The refill handler is generated per-CPU, multi-node systems
2305 	 * may have local storage for it. The other handlers are only
2306 	 * needed once.
2307 	 */
2308 	static int run_once = 0;
2309 
2310 	output_pgtable_bits_defines();
2311 
2312 #ifdef CONFIG_64BIT
2313 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2314 #endif
2315 
2316 	switch (current_cpu_type()) {
2317 	case CPU_R2000:
2318 	case CPU_R3000:
2319 	case CPU_R3000A:
2320 	case CPU_R3081E:
2321 	case CPU_TX3912:
2322 	case CPU_TX3922:
2323 	case CPU_TX3927:
2324 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2325 		if (cpu_has_local_ebase)
2326 			build_r3000_tlb_refill_handler();
2327 		if (!run_once) {
2328 			if (!cpu_has_local_ebase)
2329 				build_r3000_tlb_refill_handler();
2330 			build_setup_pgd();
2331 			build_r3000_tlb_load_handler();
2332 			build_r3000_tlb_store_handler();
2333 			build_r3000_tlb_modify_handler();
2334 			flush_tlb_handlers();
2335 			run_once++;
2336 		}
2337 #else
2338 		panic("No R3000 TLB refill handler");
2339 #endif
2340 		break;
2341 
2342 	case CPU_R6000:
2343 	case CPU_R6000A:
2344 		panic("No R6000 TLB refill handler yet");
2345 		break;
2346 
2347 	case CPU_R8000:
2348 		panic("No R8000 TLB refill handler yet");
2349 		break;
2350 
2351 	default:
2352 		if (!run_once) {
2353 			scratch_reg = allocate_kscratch();
2354 			build_setup_pgd();
2355 			build_r4000_tlb_load_handler();
2356 			build_r4000_tlb_store_handler();
2357 			build_r4000_tlb_modify_handler();
2358 			if (!cpu_has_local_ebase)
2359 				build_r4000_tlb_refill_handler();
2360 			flush_tlb_handlers();
2361 			run_once++;
2362 		}
2363 		if (cpu_has_local_ebase)
2364 			build_r4000_tlb_refill_handler();
2365 		if (cpu_has_htw)
2366 			config_htw_params();
2367 
2368 	}
2369 }
2370