1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Synthesize TLB refill handlers at runtime. 7 * 8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer 9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki 10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org) 11 * Copyright (C) 2008, 2009 Cavium Networks, Inc. 12 * Copyright (C) 2011 MIPS Technologies, Inc. 13 * 14 * ... and the days got worse and worse and now you see 15 * I've gone completly out of my mind. 16 * 17 * They're coming to take me a away haha 18 * they're coming to take me a away hoho hihi haha 19 * to the funny farm where code is beautiful all the time ... 20 * 21 * (Condolences to Napoleon XIV) 22 */ 23 24 #include <linux/bug.h> 25 #include <linux/kernel.h> 26 #include <linux/types.h> 27 #include <linux/smp.h> 28 #include <linux/string.h> 29 #include <linux/cache.h> 30 31 #include <asm/cacheflush.h> 32 #include <asm/cpu-type.h> 33 #include <asm/pgtable.h> 34 #include <asm/war.h> 35 #include <asm/uasm.h> 36 #include <asm/setup.h> 37 38 /* 39 * TLB load/store/modify handlers. 40 * 41 * Only the fastpath gets synthesized at runtime, the slowpath for 42 * do_page_fault remains normal asm. 43 */ 44 extern void tlb_do_page_fault_0(void); 45 extern void tlb_do_page_fault_1(void); 46 47 struct work_registers { 48 int r1; 49 int r2; 50 int r3; 51 }; 52 53 struct tlb_reg_save { 54 unsigned long a; 55 unsigned long b; 56 } ____cacheline_aligned_in_smp; 57 58 static struct tlb_reg_save handler_reg_save[NR_CPUS]; 59 60 static inline int r45k_bvahwbug(void) 61 { 62 /* XXX: We should probe for the presence of this bug, but we don't. */ 63 return 0; 64 } 65 66 static inline int r4k_250MHZhwbug(void) 67 { 68 /* XXX: We should probe for the presence of this bug, but we don't. */ 69 return 0; 70 } 71 72 static inline int __maybe_unused bcm1250_m3_war(void) 73 { 74 return BCM1250_M3_WAR; 75 } 76 77 static inline int __maybe_unused r10000_llsc_war(void) 78 { 79 return R10000_LLSC_WAR; 80 } 81 82 static int use_bbit_insns(void) 83 { 84 switch (current_cpu_type()) { 85 case CPU_CAVIUM_OCTEON: 86 case CPU_CAVIUM_OCTEON_PLUS: 87 case CPU_CAVIUM_OCTEON2: 88 case CPU_CAVIUM_OCTEON3: 89 return 1; 90 default: 91 return 0; 92 } 93 } 94 95 static int use_lwx_insns(void) 96 { 97 switch (current_cpu_type()) { 98 case CPU_CAVIUM_OCTEON2: 99 case CPU_CAVIUM_OCTEON3: 100 return 1; 101 default: 102 return 0; 103 } 104 } 105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \ 106 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0 107 static bool scratchpad_available(void) 108 { 109 return true; 110 } 111 static int scratchpad_offset(int i) 112 { 113 /* 114 * CVMSEG starts at address -32768 and extends for 115 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines. 116 */ 117 i += 1; /* Kernel use starts at the top and works down. */ 118 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768; 119 } 120 #else 121 static bool scratchpad_available(void) 122 { 123 return false; 124 } 125 static int scratchpad_offset(int i) 126 { 127 BUG(); 128 /* Really unreachable, but evidently some GCC want this. */ 129 return 0; 130 } 131 #endif 132 /* 133 * Found by experiment: At least some revisions of the 4kc throw under 134 * some circumstances a machine check exception, triggered by invalid 135 * values in the index register. Delaying the tlbp instruction until 136 * after the next branch, plus adding an additional nop in front of 137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows 138 * why; it's not an issue caused by the core RTL. 139 * 140 */ 141 static int m4kc_tlbp_war(void) 142 { 143 return (current_cpu_data.processor_id & 0xffff00) == 144 (PRID_COMP_MIPS | PRID_IMP_4KC); 145 } 146 147 /* Handle labels (which must be positive integers). */ 148 enum label_id { 149 label_second_part = 1, 150 label_leave, 151 label_vmalloc, 152 label_vmalloc_done, 153 label_tlbw_hazard_0, 154 label_split = label_tlbw_hazard_0 + 8, 155 label_tlbl_goaround1, 156 label_tlbl_goaround2, 157 label_nopage_tlbl, 158 label_nopage_tlbs, 159 label_nopage_tlbm, 160 label_smp_pgtable_change, 161 label_r3000_write_probe_fail, 162 label_large_segbits_fault, 163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 164 label_tlb_huge_update, 165 #endif 166 }; 167 168 UASM_L_LA(_second_part) 169 UASM_L_LA(_leave) 170 UASM_L_LA(_vmalloc) 171 UASM_L_LA(_vmalloc_done) 172 /* _tlbw_hazard_x is handled differently. */ 173 UASM_L_LA(_split) 174 UASM_L_LA(_tlbl_goaround1) 175 UASM_L_LA(_tlbl_goaround2) 176 UASM_L_LA(_nopage_tlbl) 177 UASM_L_LA(_nopage_tlbs) 178 UASM_L_LA(_nopage_tlbm) 179 UASM_L_LA(_smp_pgtable_change) 180 UASM_L_LA(_r3000_write_probe_fail) 181 UASM_L_LA(_large_segbits_fault) 182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 183 UASM_L_LA(_tlb_huge_update) 184 #endif 185 186 static int hazard_instance; 187 188 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance) 189 { 190 switch (instance) { 191 case 0 ... 7: 192 uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance); 193 return; 194 default: 195 BUG(); 196 } 197 } 198 199 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance) 200 { 201 switch (instance) { 202 case 0 ... 7: 203 uasm_build_label(l, *p, label_tlbw_hazard_0 + instance); 204 break; 205 default: 206 BUG(); 207 } 208 } 209 210 /* 211 * pgtable bits are assigned dynamically depending on processor feature 212 * and statically based on kernel configuration. This spits out the actual 213 * values the kernel is using. Required to make sense from disassembled 214 * TLB exception handlers. 215 */ 216 static void output_pgtable_bits_defines(void) 217 { 218 #define pr_define(fmt, ...) \ 219 pr_debug("#define " fmt, ##__VA_ARGS__) 220 221 pr_debug("#include <asm/asm.h>\n"); 222 pr_debug("#include <asm/regdef.h>\n"); 223 pr_debug("\n"); 224 225 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT); 226 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT); 227 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT); 228 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT); 229 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT); 230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 231 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT); 232 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT); 233 #endif 234 if (cpu_has_rixi) { 235 #ifdef _PAGE_NO_EXEC_SHIFT 236 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT); 237 #endif 238 #ifdef _PAGE_NO_READ_SHIFT 239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT); 240 #endif 241 } 242 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT); 243 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT); 244 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT); 245 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT); 246 pr_debug("\n"); 247 } 248 249 static inline void dump_handler(const char *symbol, const u32 *handler, int count) 250 { 251 int i; 252 253 pr_debug("LEAF(%s)\n", symbol); 254 255 pr_debug("\t.set push\n"); 256 pr_debug("\t.set noreorder\n"); 257 258 for (i = 0; i < count; i++) 259 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]); 260 261 pr_debug("\t.set\tpop\n"); 262 263 pr_debug("\tEND(%s)\n", symbol); 264 } 265 266 /* The only general purpose registers allowed in TLB handlers. */ 267 #define K0 26 268 #define K1 27 269 270 /* Some CP0 registers */ 271 #define C0_INDEX 0, 0 272 #define C0_ENTRYLO0 2, 0 273 #define C0_TCBIND 2, 2 274 #define C0_ENTRYLO1 3, 0 275 #define C0_CONTEXT 4, 0 276 #define C0_PAGEMASK 5, 0 277 #define C0_BADVADDR 8, 0 278 #define C0_ENTRYHI 10, 0 279 #define C0_EPC 14, 0 280 #define C0_XCONTEXT 20, 0 281 282 #ifdef CONFIG_64BIT 283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT) 284 #else 285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT) 286 #endif 287 288 /* The worst case length of the handler is around 18 instructions for 289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. 290 * Maximum space available is 32 instructions for R3000 and 64 291 * instructions for R4000. 292 * 293 * We deliberately chose a buffer size of 128, so we won't scribble 294 * over anything important on overflow before we panic. 295 */ 296 static u32 tlb_handler[128]; 297 298 /* simply assume worst case size for labels and relocs */ 299 static struct uasm_label labels[128]; 300 static struct uasm_reloc relocs[128]; 301 302 static int check_for_high_segbits; 303 304 static unsigned int kscratch_used_mask; 305 306 static inline int __maybe_unused c0_kscratch(void) 307 { 308 switch (current_cpu_type()) { 309 case CPU_XLP: 310 case CPU_XLR: 311 return 22; 312 default: 313 return 31; 314 } 315 } 316 317 static int allocate_kscratch(void) 318 { 319 int r; 320 unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask; 321 322 r = ffs(a); 323 324 if (r == 0) 325 return -1; 326 327 r--; /* make it zero based */ 328 329 kscratch_used_mask |= (1 << r); 330 331 return r; 332 } 333 334 static int scratch_reg; 335 static int pgd_reg; 336 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch}; 337 338 static struct work_registers build_get_work_registers(u32 **p) 339 { 340 struct work_registers r; 341 342 if (scratch_reg >= 0) { 343 /* Save in CPU local C0_KScratch? */ 344 UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg); 345 r.r1 = K0; 346 r.r2 = K1; 347 r.r3 = 1; 348 return r; 349 } 350 351 if (num_possible_cpus() > 1) { 352 /* Get smp_processor_id */ 353 UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG); 354 UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT); 355 356 /* handler_reg_save index in K0 */ 357 UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save))); 358 359 UASM_i_LA(p, K1, (long)&handler_reg_save); 360 UASM_i_ADDU(p, K0, K0, K1); 361 } else { 362 UASM_i_LA(p, K0, (long)&handler_reg_save); 363 } 364 /* K0 now points to save area, save $1 and $2 */ 365 UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0); 366 UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0); 367 368 r.r1 = K1; 369 r.r2 = 1; 370 r.r3 = 2; 371 return r; 372 } 373 374 static void build_restore_work_registers(u32 **p) 375 { 376 if (scratch_reg >= 0) { 377 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 378 return; 379 } 380 /* K0 already points to save area, restore $1 and $2 */ 381 UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0); 382 UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0); 383 } 384 385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 386 387 /* 388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current, 389 * we cannot do r3000 under these circumstances. 390 * 391 * Declare pgd_current here instead of including mmu_context.h to avoid type 392 * conflicts for tlbmiss_handler_setup_pgd 393 */ 394 extern unsigned long pgd_current[]; 395 396 /* 397 * The R3000 TLB handler is simple. 398 */ 399 static void build_r3000_tlb_refill_handler(void) 400 { 401 long pgdc = (long)pgd_current; 402 u32 *p; 403 404 memset(tlb_handler, 0, sizeof(tlb_handler)); 405 p = tlb_handler; 406 407 uasm_i_mfc0(&p, K0, C0_BADVADDR); 408 uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */ 409 uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1); 410 uasm_i_srl(&p, K0, K0, 22); /* load delay */ 411 uasm_i_sll(&p, K0, K0, 2); 412 uasm_i_addu(&p, K1, K1, K0); 413 uasm_i_mfc0(&p, K0, C0_CONTEXT); 414 uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */ 415 uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */ 416 uasm_i_addu(&p, K1, K1, K0); 417 uasm_i_lw(&p, K0, 0, K1); 418 uasm_i_nop(&p); /* load delay */ 419 uasm_i_mtc0(&p, K0, C0_ENTRYLO0); 420 uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ 421 uasm_i_tlbwr(&p); /* cp0 delay */ 422 uasm_i_jr(&p, K1); 423 uasm_i_rfe(&p); /* branch delay */ 424 425 if (p > tlb_handler + 32) 426 panic("TLB refill handler space exceeded"); 427 428 pr_debug("Wrote TLB refill handler (%u instructions).\n", 429 (unsigned int)(p - tlb_handler)); 430 431 memcpy((void *)ebase, tlb_handler, 0x80); 432 local_flush_icache_range(ebase, ebase + 0x80); 433 434 dump_handler("r3000_tlb_refill", (u32 *)ebase, 32); 435 } 436 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 437 438 /* 439 * The R4000 TLB handler is much more complicated. We have two 440 * consecutive handler areas with 32 instructions space each. 441 * Since they aren't used at the same time, we can overflow in the 442 * other one.To keep things simple, we first assume linear space, 443 * then we relocate it to the final handler layout as needed. 444 */ 445 static u32 final_handler[64]; 446 447 /* 448 * Hazards 449 * 450 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: 451 * 2. A timing hazard exists for the TLBP instruction. 452 * 453 * stalling_instruction 454 * TLBP 455 * 456 * The JTLB is being read for the TLBP throughout the stall generated by the 457 * previous instruction. This is not really correct as the stalling instruction 458 * can modify the address used to access the JTLB. The failure symptom is that 459 * the TLBP instruction will use an address created for the stalling instruction 460 * and not the address held in C0_ENHI and thus report the wrong results. 461 * 462 * The software work-around is to not allow the instruction preceding the TLBP 463 * to stall - make it an NOP or some other instruction guaranteed not to stall. 464 * 465 * Errata 2 will not be fixed. This errata is also on the R5000. 466 * 467 * As if we MIPS hackers wouldn't know how to nop pipelines happy ... 468 */ 469 static void __maybe_unused build_tlb_probe_entry(u32 **p) 470 { 471 switch (current_cpu_type()) { 472 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */ 473 case CPU_R4600: 474 case CPU_R4700: 475 case CPU_R5000: 476 case CPU_NEVADA: 477 uasm_i_nop(p); 478 uasm_i_tlbp(p); 479 break; 480 481 default: 482 uasm_i_tlbp(p); 483 break; 484 } 485 } 486 487 /* 488 * Write random or indexed TLB entry, and care about the hazards from 489 * the preceding mtc0 and for the following eret. 490 */ 491 enum tlb_write_entry { tlb_random, tlb_indexed }; 492 493 static void build_tlb_write_entry(u32 **p, struct uasm_label **l, 494 struct uasm_reloc **r, 495 enum tlb_write_entry wmode) 496 { 497 void(*tlbw)(u32 **) = NULL; 498 499 switch (wmode) { 500 case tlb_random: tlbw = uasm_i_tlbwr; break; 501 case tlb_indexed: tlbw = uasm_i_tlbwi; break; 502 } 503 504 if (cpu_has_mips_r2_exec_hazard) { 505 /* 506 * The architecture spec says an ehb is required here, 507 * but a number of cores do not have the hazard and 508 * using an ehb causes an expensive pipeline stall. 509 */ 510 switch (current_cpu_type()) { 511 case CPU_M14KC: 512 case CPU_74K: 513 case CPU_1074K: 514 case CPU_PROAPTIV: 515 case CPU_P5600: 516 case CPU_M5150: 517 case CPU_QEMU_GENERIC: 518 break; 519 520 default: 521 uasm_i_ehb(p); 522 break; 523 } 524 tlbw(p); 525 return; 526 } 527 528 switch (current_cpu_type()) { 529 case CPU_R4000PC: 530 case CPU_R4000SC: 531 case CPU_R4000MC: 532 case CPU_R4400PC: 533 case CPU_R4400SC: 534 case CPU_R4400MC: 535 /* 536 * This branch uses up a mtc0 hazard nop slot and saves 537 * two nops after the tlbw instruction. 538 */ 539 uasm_bgezl_hazard(p, r, hazard_instance); 540 tlbw(p); 541 uasm_bgezl_label(l, p, hazard_instance); 542 hazard_instance++; 543 uasm_i_nop(p); 544 break; 545 546 case CPU_R4600: 547 case CPU_R4700: 548 uasm_i_nop(p); 549 tlbw(p); 550 uasm_i_nop(p); 551 break; 552 553 case CPU_R5000: 554 case CPU_NEVADA: 555 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 556 uasm_i_nop(p); /* QED specifies 2 nops hazard */ 557 tlbw(p); 558 break; 559 560 case CPU_R4300: 561 case CPU_5KC: 562 case CPU_TX49XX: 563 case CPU_PR4450: 564 case CPU_XLR: 565 uasm_i_nop(p); 566 tlbw(p); 567 break; 568 569 case CPU_R10000: 570 case CPU_R12000: 571 case CPU_R14000: 572 case CPU_4KC: 573 case CPU_4KEC: 574 case CPU_M14KC: 575 case CPU_M14KEC: 576 case CPU_SB1: 577 case CPU_SB1A: 578 case CPU_4KSC: 579 case CPU_20KC: 580 case CPU_25KF: 581 case CPU_BMIPS32: 582 case CPU_BMIPS3300: 583 case CPU_BMIPS4350: 584 case CPU_BMIPS4380: 585 case CPU_BMIPS5000: 586 case CPU_LOONGSON2: 587 case CPU_LOONGSON3: 588 case CPU_R5500: 589 if (m4kc_tlbp_war()) 590 uasm_i_nop(p); 591 case CPU_ALCHEMY: 592 tlbw(p); 593 break; 594 595 case CPU_RM7000: 596 uasm_i_nop(p); 597 uasm_i_nop(p); 598 uasm_i_nop(p); 599 uasm_i_nop(p); 600 tlbw(p); 601 break; 602 603 case CPU_VR4111: 604 case CPU_VR4121: 605 case CPU_VR4122: 606 case CPU_VR4181: 607 case CPU_VR4181A: 608 uasm_i_nop(p); 609 uasm_i_nop(p); 610 tlbw(p); 611 uasm_i_nop(p); 612 uasm_i_nop(p); 613 break; 614 615 case CPU_VR4131: 616 case CPU_VR4133: 617 case CPU_R5432: 618 uasm_i_nop(p); 619 uasm_i_nop(p); 620 tlbw(p); 621 break; 622 623 case CPU_JZRISC: 624 tlbw(p); 625 uasm_i_nop(p); 626 break; 627 628 default: 629 panic("No TLB refill handler yet (CPU type: %d)", 630 current_cpu_type()); 631 break; 632 } 633 } 634 635 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p, 636 unsigned int reg) 637 { 638 if (cpu_has_rixi) { 639 UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL)); 640 } else { 641 #ifdef CONFIG_PHYS_ADDR_T_64BIT 642 uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL)); 643 #else 644 UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL)); 645 #endif 646 } 647 } 648 649 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 650 651 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r, 652 unsigned int tmp, enum label_id lid, 653 int restore_scratch) 654 { 655 if (restore_scratch) { 656 /* Reset default page size */ 657 if (PM_DEFAULT_MASK >> 16) { 658 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 659 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 660 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 661 uasm_il_b(p, r, lid); 662 } else if (PM_DEFAULT_MASK) { 663 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 664 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 665 uasm_il_b(p, r, lid); 666 } else { 667 uasm_i_mtc0(p, 0, C0_PAGEMASK); 668 uasm_il_b(p, r, lid); 669 } 670 if (scratch_reg >= 0) 671 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 672 else 673 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 674 } else { 675 /* Reset default page size */ 676 if (PM_DEFAULT_MASK >> 16) { 677 uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16); 678 uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff); 679 uasm_il_b(p, r, lid); 680 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 681 } else if (PM_DEFAULT_MASK) { 682 uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK); 683 uasm_il_b(p, r, lid); 684 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 685 } else { 686 uasm_il_b(p, r, lid); 687 uasm_i_mtc0(p, 0, C0_PAGEMASK); 688 } 689 } 690 } 691 692 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l, 693 struct uasm_reloc **r, 694 unsigned int tmp, 695 enum tlb_write_entry wmode, 696 int restore_scratch) 697 { 698 /* Set huge page tlb entry size */ 699 uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16); 700 uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff); 701 uasm_i_mtc0(p, tmp, C0_PAGEMASK); 702 703 build_tlb_write_entry(p, l, r, wmode); 704 705 build_restore_pagemask(p, r, tmp, label_leave, restore_scratch); 706 } 707 708 /* 709 * Check if Huge PTE is present, if so then jump to LABEL. 710 */ 711 static void 712 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp, 713 unsigned int pmd, int lid) 714 { 715 UASM_i_LW(p, tmp, 0, pmd); 716 if (use_bbit_insns()) { 717 uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid); 718 } else { 719 uasm_i_andi(p, tmp, tmp, _PAGE_HUGE); 720 uasm_il_bnez(p, r, tmp, lid); 721 } 722 } 723 724 static void build_huge_update_entries(u32 **p, unsigned int pte, 725 unsigned int tmp) 726 { 727 int small_sequence; 728 729 /* 730 * A huge PTE describes an area the size of the 731 * configured huge page size. This is twice the 732 * of the large TLB entry size we intend to use. 733 * A TLB entry half the size of the configured 734 * huge page size is configured into entrylo0 735 * and entrylo1 to cover the contiguous huge PTE 736 * address space. 737 */ 738 small_sequence = (HPAGE_SIZE >> 7) < 0x10000; 739 740 /* We can clobber tmp. It isn't used after this.*/ 741 if (!small_sequence) 742 uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16)); 743 744 build_convert_pte_to_entrylo(p, pte); 745 UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */ 746 /* convert to entrylo1 */ 747 if (small_sequence) 748 UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7); 749 else 750 UASM_i_ADDU(p, pte, pte, tmp); 751 752 UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */ 753 } 754 755 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r, 756 struct uasm_label **l, 757 unsigned int pte, 758 unsigned int ptr) 759 { 760 #ifdef CONFIG_SMP 761 UASM_i_SC(p, pte, 0, ptr); 762 uasm_il_beqz(p, r, pte, label_tlb_huge_update); 763 UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */ 764 #else 765 UASM_i_SW(p, pte, 0, ptr); 766 #endif 767 build_huge_update_entries(p, pte, ptr); 768 build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0); 769 } 770 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 771 772 #ifdef CONFIG_64BIT 773 /* 774 * TMP and PTR are scratch. 775 * TMP will be clobbered, PTR will hold the pmd entry. 776 */ 777 static void 778 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 779 unsigned int tmp, unsigned int ptr) 780 { 781 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 782 long pgdc = (long)pgd_current; 783 #endif 784 /* 785 * The vmalloc handling is not in the hotpath. 786 */ 787 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 788 789 if (check_for_high_segbits) { 790 /* 791 * The kernel currently implicitely assumes that the 792 * MIPS SEGBITS parameter for the processor is 793 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never 794 * allocate virtual addresses outside the maximum 795 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But 796 * that doesn't prevent user code from accessing the 797 * higher xuseg addresses. Here, we make sure that 798 * everything but the lower xuseg addresses goes down 799 * the module_alloc/vmalloc path. 800 */ 801 uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 802 uasm_il_bnez(p, r, ptr, label_vmalloc); 803 } else { 804 uasm_il_bltz(p, r, tmp, label_vmalloc); 805 } 806 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */ 807 808 if (pgd_reg != -1) { 809 /* pgd is in pgd_reg */ 810 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 811 } else { 812 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT) 813 /* 814 * &pgd << 11 stored in CONTEXT [23..63]. 815 */ 816 UASM_i_MFC0(p, ptr, C0_CONTEXT); 817 818 /* Clear lower 23 bits of context. */ 819 uasm_i_dins(p, ptr, 0, 0, 23); 820 821 /* 1 0 1 0 1 << 6 xkphys cached */ 822 uasm_i_ori(p, ptr, ptr, 0x540); 823 uasm_i_drotr(p, ptr, ptr, 11); 824 #elif defined(CONFIG_SMP) 825 UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG); 826 uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 827 UASM_i_LA_mostly(p, tmp, pgdc); 828 uasm_i_daddu(p, ptr, ptr, tmp); 829 uasm_i_dmfc0(p, tmp, C0_BADVADDR); 830 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 831 #else 832 UASM_i_LA_mostly(p, ptr, pgdc); 833 uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr); 834 #endif 835 } 836 837 uasm_l_vmalloc_done(l, *p); 838 839 /* get pgd offset in bytes */ 840 uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3); 841 842 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); 843 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ 844 #ifndef __PAGETABLE_PMD_FOLDED 845 uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 846 uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */ 847 uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ 848 uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); 849 uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ 850 #endif 851 } 852 853 /* 854 * BVADDR is the faulting address, PTR is scratch. 855 * PTR will hold the pgd for vmalloc. 856 */ 857 static void 858 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r, 859 unsigned int bvaddr, unsigned int ptr, 860 enum vmalloc64_mode mode) 861 { 862 long swpd = (long)swapper_pg_dir; 863 int single_insn_swpd; 864 int did_vmalloc_branch = 0; 865 866 single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd); 867 868 uasm_l_vmalloc(l, *p); 869 870 if (mode != not_refill && check_for_high_segbits) { 871 if (single_insn_swpd) { 872 uasm_il_bltz(p, r, bvaddr, label_vmalloc_done); 873 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 874 did_vmalloc_branch = 1; 875 /* fall through */ 876 } else { 877 uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault); 878 } 879 } 880 if (!did_vmalloc_branch) { 881 if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) { 882 uasm_il_b(p, r, label_vmalloc_done); 883 uasm_i_lui(p, ptr, uasm_rel_hi(swpd)); 884 } else { 885 UASM_i_LA_mostly(p, ptr, swpd); 886 uasm_il_b(p, r, label_vmalloc_done); 887 if (uasm_in_compat_space_p(swpd)) 888 uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd)); 889 else 890 uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd)); 891 } 892 } 893 if (mode != not_refill && check_for_high_segbits) { 894 uasm_l_large_segbits_fault(l, *p); 895 /* 896 * We get here if we are an xsseg address, or if we are 897 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary. 898 * 899 * Ignoring xsseg (assume disabled so would generate 900 * (address errors?), the only remaining possibility 901 * is the upper xuseg addresses. On processors with 902 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these 903 * addresses would have taken an address error. We try 904 * to mimic that here by taking a load/istream page 905 * fault. 906 */ 907 UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0); 908 uasm_i_jr(p, ptr); 909 910 if (mode == refill_scratch) { 911 if (scratch_reg >= 0) 912 UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg); 913 else 914 UASM_i_LW(p, 1, scratchpad_offset(0), 0); 915 } else { 916 uasm_i_nop(p); 917 } 918 } 919 } 920 921 #else /* !CONFIG_64BIT */ 922 923 /* 924 * TMP and PTR are scratch. 925 * TMP will be clobbered, PTR will hold the pgd entry. 926 */ 927 static void __maybe_unused 928 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) 929 { 930 if (pgd_reg != -1) { 931 /* pgd is in pgd_reg */ 932 uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg); 933 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 934 } else { 935 long pgdc = (long)pgd_current; 936 937 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ 938 #ifdef CONFIG_SMP 939 uasm_i_mfc0(p, ptr, SMP_CPUID_REG); 940 UASM_i_LA_mostly(p, tmp, pgdc); 941 uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT); 942 uasm_i_addu(p, ptr, tmp, ptr); 943 #else 944 UASM_i_LA_mostly(p, ptr, pgdc); 945 #endif 946 uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ 947 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 948 } 949 uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ 950 uasm_i_sll(p, tmp, tmp, PGD_T_LOG2); 951 uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ 952 } 953 954 #endif /* !CONFIG_64BIT */ 955 956 static void build_adjust_context(u32 **p, unsigned int ctx) 957 { 958 unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12; 959 unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); 960 961 switch (current_cpu_type()) { 962 case CPU_VR41XX: 963 case CPU_VR4111: 964 case CPU_VR4121: 965 case CPU_VR4122: 966 case CPU_VR4131: 967 case CPU_VR4181: 968 case CPU_VR4181A: 969 case CPU_VR4133: 970 shift += 2; 971 break; 972 973 default: 974 break; 975 } 976 977 if (shift) 978 UASM_i_SRL(p, ctx, ctx, shift); 979 uasm_i_andi(p, ctx, ctx, mask); 980 } 981 982 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) 983 { 984 /* 985 * Bug workaround for the Nevada. It seems as if under certain 986 * circumstances the move from cp0_context might produce a 987 * bogus result when the mfc0 instruction and its consumer are 988 * in a different cacheline or a load instruction, probably any 989 * memory reference, is between them. 990 */ 991 switch (current_cpu_type()) { 992 case CPU_NEVADA: 993 UASM_i_LW(p, ptr, 0, ptr); 994 GET_CONTEXT(p, tmp); /* get context reg */ 995 break; 996 997 default: 998 GET_CONTEXT(p, tmp); /* get context reg */ 999 UASM_i_LW(p, ptr, 0, ptr); 1000 break; 1001 } 1002 1003 build_adjust_context(p, tmp); 1004 UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */ 1005 } 1006 1007 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep) 1008 { 1009 /* 1010 * 64bit address support (36bit on a 32bit CPU) in a 32bit 1011 * Kernel is a special case. Only a few CPUs use it. 1012 */ 1013 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1014 if (cpu_has_64bits) { 1015 uasm_i_ld(p, tmp, 0, ptep); /* get even pte */ 1016 uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1017 if (cpu_has_rixi) { 1018 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1019 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1020 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1021 } else { 1022 uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1023 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1024 uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1025 } 1026 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1027 } else { 1028 int pte_off_even = sizeof(pte_t) / 2; 1029 int pte_off_odd = pte_off_even + sizeof(pte_t); 1030 1031 /* The pte entries are pre-shifted */ 1032 uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ 1033 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1034 uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ 1035 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1036 } 1037 #else 1038 UASM_i_LW(p, tmp, 0, ptep); /* get even pte */ 1039 UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ 1040 if (r45k_bvahwbug()) 1041 build_tlb_probe_entry(p); 1042 if (cpu_has_rixi) { 1043 UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); 1044 if (r4k_250MHZhwbug()) 1045 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1046 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1047 UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); 1048 } else { 1049 UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */ 1050 if (r4k_250MHZhwbug()) 1051 UASM_i_MTC0(p, 0, C0_ENTRYLO0); 1052 UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */ 1053 UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */ 1054 if (r45k_bvahwbug()) 1055 uasm_i_mfc0(p, tmp, C0_INDEX); 1056 } 1057 if (r4k_250MHZhwbug()) 1058 UASM_i_MTC0(p, 0, C0_ENTRYLO1); 1059 UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */ 1060 #endif 1061 } 1062 1063 struct mips_huge_tlb_info { 1064 int huge_pte; 1065 int restore_scratch; 1066 bool need_reload_pte; 1067 }; 1068 1069 static struct mips_huge_tlb_info 1070 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l, 1071 struct uasm_reloc **r, unsigned int tmp, 1072 unsigned int ptr, int c0_scratch_reg) 1073 { 1074 struct mips_huge_tlb_info rv; 1075 unsigned int even, odd; 1076 int vmalloc_branch_delay_filled = 0; 1077 const int scratch = 1; /* Our extra working register */ 1078 1079 rv.huge_pte = scratch; 1080 rv.restore_scratch = 0; 1081 rv.need_reload_pte = false; 1082 1083 if (check_for_high_segbits) { 1084 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1085 1086 if (pgd_reg != -1) 1087 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1088 else 1089 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1090 1091 if (c0_scratch_reg >= 0) 1092 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1093 else 1094 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1095 1096 uasm_i_dsrl_safe(p, scratch, tmp, 1097 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 1098 uasm_il_bnez(p, r, scratch, label_vmalloc); 1099 1100 if (pgd_reg == -1) { 1101 vmalloc_branch_delay_filled = 1; 1102 /* Clear lower 23 bits of context. */ 1103 uasm_i_dins(p, ptr, 0, 0, 23); 1104 } 1105 } else { 1106 if (pgd_reg != -1) 1107 UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg); 1108 else 1109 UASM_i_MFC0(p, ptr, C0_CONTEXT); 1110 1111 UASM_i_MFC0(p, tmp, C0_BADVADDR); 1112 1113 if (c0_scratch_reg >= 0) 1114 UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1115 else 1116 UASM_i_SW(p, scratch, scratchpad_offset(0), 0); 1117 1118 if (pgd_reg == -1) 1119 /* Clear lower 23 bits of context. */ 1120 uasm_i_dins(p, ptr, 0, 0, 23); 1121 1122 uasm_il_bltz(p, r, tmp, label_vmalloc); 1123 } 1124 1125 if (pgd_reg == -1) { 1126 vmalloc_branch_delay_filled = 1; 1127 /* 1 0 1 0 1 << 6 xkphys cached */ 1128 uasm_i_ori(p, ptr, ptr, 0x540); 1129 uasm_i_drotr(p, ptr, ptr, 11); 1130 } 1131 1132 #ifdef __PAGETABLE_PMD_FOLDED 1133 #define LOC_PTEP scratch 1134 #else 1135 #define LOC_PTEP ptr 1136 #endif 1137 1138 if (!vmalloc_branch_delay_filled) 1139 /* get pgd offset in bytes */ 1140 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1141 1142 uasm_l_vmalloc_done(l, *p); 1143 1144 /* 1145 * tmp ptr 1146 * fall-through case = badvaddr *pgd_current 1147 * vmalloc case = badvaddr swapper_pg_dir 1148 */ 1149 1150 if (vmalloc_branch_delay_filled) 1151 /* get pgd offset in bytes */ 1152 uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3); 1153 1154 #ifdef __PAGETABLE_PMD_FOLDED 1155 GET_CONTEXT(p, tmp); /* get context reg */ 1156 #endif 1157 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3); 1158 1159 if (use_lwx_insns()) { 1160 UASM_i_LWX(p, LOC_PTEP, scratch, ptr); 1161 } else { 1162 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */ 1163 uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */ 1164 } 1165 1166 #ifndef __PAGETABLE_PMD_FOLDED 1167 /* get pmd offset in bytes */ 1168 uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3); 1169 uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3); 1170 GET_CONTEXT(p, tmp); /* get context reg */ 1171 1172 if (use_lwx_insns()) { 1173 UASM_i_LWX(p, scratch, scratch, ptr); 1174 } else { 1175 uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */ 1176 UASM_i_LW(p, scratch, 0, ptr); 1177 } 1178 #endif 1179 /* Adjust the context during the load latency. */ 1180 build_adjust_context(p, tmp); 1181 1182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1183 uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update); 1184 /* 1185 * The in the LWX case we don't want to do the load in the 1186 * delay slot. It cannot issue in the same cycle and may be 1187 * speculative and unneeded. 1188 */ 1189 if (use_lwx_insns()) 1190 uasm_i_nop(p); 1191 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */ 1192 1193 1194 /* build_update_entries */ 1195 if (use_lwx_insns()) { 1196 even = ptr; 1197 odd = tmp; 1198 UASM_i_LWX(p, even, scratch, tmp); 1199 UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t)); 1200 UASM_i_LWX(p, odd, scratch, tmp); 1201 } else { 1202 UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */ 1203 even = tmp; 1204 odd = ptr; 1205 UASM_i_LW(p, even, 0, ptr); /* get even pte */ 1206 UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */ 1207 } 1208 if (cpu_has_rixi) { 1209 uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL)); 1210 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1211 uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1212 } else { 1213 uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL)); 1214 UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */ 1215 uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL)); 1216 } 1217 UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */ 1218 1219 if (c0_scratch_reg >= 0) { 1220 UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg); 1221 build_tlb_write_entry(p, l, r, tlb_random); 1222 uasm_l_leave(l, *p); 1223 rv.restore_scratch = 1; 1224 } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) { 1225 build_tlb_write_entry(p, l, r, tlb_random); 1226 uasm_l_leave(l, *p); 1227 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1228 } else { 1229 UASM_i_LW(p, scratch, scratchpad_offset(0), 0); 1230 build_tlb_write_entry(p, l, r, tlb_random); 1231 uasm_l_leave(l, *p); 1232 rv.restore_scratch = 1; 1233 } 1234 1235 uasm_i_eret(p); /* return from trap */ 1236 1237 return rv; 1238 } 1239 1240 /* 1241 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception 1242 * because EXL == 0. If we wrap, we can also use the 32 instruction 1243 * slots before the XTLB refill exception handler which belong to the 1244 * unused TLB refill exception. 1245 */ 1246 #define MIPS64_REFILL_INSNS 32 1247 1248 static void build_r4000_tlb_refill_handler(void) 1249 { 1250 u32 *p = tlb_handler; 1251 struct uasm_label *l = labels; 1252 struct uasm_reloc *r = relocs; 1253 u32 *f; 1254 unsigned int final_len; 1255 struct mips_huge_tlb_info htlb_info __maybe_unused; 1256 enum vmalloc64_mode vmalloc_mode __maybe_unused; 1257 1258 memset(tlb_handler, 0, sizeof(tlb_handler)); 1259 memset(labels, 0, sizeof(labels)); 1260 memset(relocs, 0, sizeof(relocs)); 1261 memset(final_handler, 0, sizeof(final_handler)); 1262 1263 if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) { 1264 htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1, 1265 scratch_reg); 1266 vmalloc_mode = refill_scratch; 1267 } else { 1268 htlb_info.huge_pte = K0; 1269 htlb_info.restore_scratch = 0; 1270 htlb_info.need_reload_pte = true; 1271 vmalloc_mode = refill_noscratch; 1272 /* 1273 * create the plain linear handler 1274 */ 1275 if (bcm1250_m3_war()) { 1276 unsigned int segbits = 44; 1277 1278 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1279 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1280 uasm_i_xor(&p, K0, K0, K1); 1281 uasm_i_dsrl_safe(&p, K1, K0, 62); 1282 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1283 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1284 uasm_i_or(&p, K0, K0, K1); 1285 uasm_il_bnez(&p, &r, K0, label_leave); 1286 /* No need for uasm_i_nop */ 1287 } 1288 1289 #ifdef CONFIG_64BIT 1290 build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ 1291 #else 1292 build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ 1293 #endif 1294 1295 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1296 build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update); 1297 #endif 1298 1299 build_get_ptep(&p, K0, K1); 1300 build_update_entries(&p, K0, K1); 1301 build_tlb_write_entry(&p, &l, &r, tlb_random); 1302 uasm_l_leave(&l, p); 1303 uasm_i_eret(&p); /* return from trap */ 1304 } 1305 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1306 uasm_l_tlb_huge_update(&l, p); 1307 if (htlb_info.need_reload_pte) 1308 UASM_i_LW(&p, htlb_info.huge_pte, 0, K1); 1309 build_huge_update_entries(&p, htlb_info.huge_pte, K1); 1310 build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random, 1311 htlb_info.restore_scratch); 1312 #endif 1313 1314 #ifdef CONFIG_64BIT 1315 build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode); 1316 #endif 1317 1318 /* 1319 * Overflow check: For the 64bit handler, we need at least one 1320 * free instruction slot for the wrap-around branch. In worst 1321 * case, if the intended insertion point is a delay slot, we 1322 * need three, with the second nop'ed and the third being 1323 * unused. 1324 */ 1325 switch (boot_cpu_type()) { 1326 default: 1327 if (sizeof(long) == 4) { 1328 case CPU_LOONGSON2: 1329 /* Loongson2 ebase is different than r4k, we have more space */ 1330 if ((p - tlb_handler) > 64) 1331 panic("TLB refill handler space exceeded"); 1332 /* 1333 * Now fold the handler in the TLB refill handler space. 1334 */ 1335 f = final_handler; 1336 /* Simplest case, just copy the handler. */ 1337 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1338 final_len = p - tlb_handler; 1339 break; 1340 } else { 1341 if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1) 1342 || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3) 1343 && uasm_insn_has_bdelay(relocs, 1344 tlb_handler + MIPS64_REFILL_INSNS - 3))) 1345 panic("TLB refill handler space exceeded"); 1346 /* 1347 * Now fold the handler in the TLB refill handler space. 1348 */ 1349 f = final_handler + MIPS64_REFILL_INSNS; 1350 if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) { 1351 /* Just copy the handler. */ 1352 uasm_copy_handler(relocs, labels, tlb_handler, p, f); 1353 final_len = p - tlb_handler; 1354 } else { 1355 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1356 const enum label_id ls = label_tlb_huge_update; 1357 #else 1358 const enum label_id ls = label_vmalloc; 1359 #endif 1360 u32 *split; 1361 int ov = 0; 1362 int i; 1363 1364 for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++) 1365 ; 1366 BUG_ON(i == ARRAY_SIZE(labels)); 1367 split = labels[i].addr; 1368 1369 /* 1370 * See if we have overflown one way or the other. 1371 */ 1372 if (split > tlb_handler + MIPS64_REFILL_INSNS || 1373 split < p - MIPS64_REFILL_INSNS) 1374 ov = 1; 1375 1376 if (ov) { 1377 /* 1378 * Split two instructions before the end. One 1379 * for the branch and one for the instruction 1380 * in the delay slot. 1381 */ 1382 split = tlb_handler + MIPS64_REFILL_INSNS - 2; 1383 1384 /* 1385 * If the branch would fall in a delay slot, 1386 * we must back up an additional instruction 1387 * so that it is no longer in a delay slot. 1388 */ 1389 if (uasm_insn_has_bdelay(relocs, split - 1)) 1390 split--; 1391 } 1392 /* Copy first part of the handler. */ 1393 uasm_copy_handler(relocs, labels, tlb_handler, split, f); 1394 f += split - tlb_handler; 1395 1396 if (ov) { 1397 /* Insert branch. */ 1398 uasm_l_split(&l, final_handler); 1399 uasm_il_b(&f, &r, label_split); 1400 if (uasm_insn_has_bdelay(relocs, split)) 1401 uasm_i_nop(&f); 1402 else { 1403 uasm_copy_handler(relocs, labels, 1404 split, split + 1, f); 1405 uasm_move_labels(labels, f, f + 1, -1); 1406 f++; 1407 split++; 1408 } 1409 } 1410 1411 /* Copy the rest of the handler. */ 1412 uasm_copy_handler(relocs, labels, split, p, final_handler); 1413 final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) + 1414 (p - split); 1415 } 1416 } 1417 break; 1418 } 1419 1420 uasm_resolve_relocs(relocs, labels); 1421 pr_debug("Wrote TLB refill handler (%u instructions).\n", 1422 final_len); 1423 1424 memcpy((void *)ebase, final_handler, 0x100); 1425 local_flush_icache_range(ebase, ebase + 0x100); 1426 1427 dump_handler("r4000_tlb_refill", (u32 *)ebase, 64); 1428 } 1429 1430 extern u32 handle_tlbl[], handle_tlbl_end[]; 1431 extern u32 handle_tlbs[], handle_tlbs_end[]; 1432 extern u32 handle_tlbm[], handle_tlbm_end[]; 1433 extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[]; 1434 extern u32 tlbmiss_handler_setup_pgd_end[]; 1435 1436 static void build_setup_pgd(void) 1437 { 1438 const int a0 = 4; 1439 const int __maybe_unused a1 = 5; 1440 const int __maybe_unused a2 = 6; 1441 u32 *p = tlbmiss_handler_setup_pgd_start; 1442 const int tlbmiss_handler_setup_pgd_size = 1443 tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start; 1444 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1445 long pgdc = (long)pgd_current; 1446 #endif 1447 1448 memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size * 1449 sizeof(tlbmiss_handler_setup_pgd[0])); 1450 memset(labels, 0, sizeof(labels)); 1451 memset(relocs, 0, sizeof(relocs)); 1452 pgd_reg = allocate_kscratch(); 1453 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT 1454 if (pgd_reg == -1) { 1455 struct uasm_label *l = labels; 1456 struct uasm_reloc *r = relocs; 1457 1458 /* PGD << 11 in c0_Context */ 1459 /* 1460 * If it is a ckseg0 address, convert to a physical 1461 * address. Shifting right by 29 and adding 4 will 1462 * result in zero for these addresses. 1463 * 1464 */ 1465 UASM_i_SRA(&p, a1, a0, 29); 1466 UASM_i_ADDIU(&p, a1, a1, 4); 1467 uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1); 1468 uasm_i_nop(&p); 1469 uasm_i_dinsm(&p, a0, 0, 29, 64 - 29); 1470 uasm_l_tlbl_goaround1(&l, p); 1471 UASM_i_SLL(&p, a0, a0, 11); 1472 uasm_i_jr(&p, 31); 1473 UASM_i_MTC0(&p, a0, C0_CONTEXT); 1474 } else { 1475 /* PGD in c0_KScratch */ 1476 uasm_i_jr(&p, 31); 1477 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1478 } 1479 #else 1480 #ifdef CONFIG_SMP 1481 /* Save PGD to pgd_current[smp_processor_id()] */ 1482 UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG); 1483 UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT); 1484 UASM_i_LA_mostly(&p, a2, pgdc); 1485 UASM_i_ADDU(&p, a2, a2, a1); 1486 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1487 #else 1488 UASM_i_LA_mostly(&p, a2, pgdc); 1489 UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2); 1490 #endif /* SMP */ 1491 uasm_i_jr(&p, 31); 1492 1493 /* if pgd_reg is allocated, save PGD also to scratch register */ 1494 if (pgd_reg != -1) 1495 UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg); 1496 else 1497 uasm_i_nop(&p); 1498 #endif 1499 if (p >= tlbmiss_handler_setup_pgd_end) 1500 panic("tlbmiss_handler_setup_pgd space exceeded"); 1501 1502 uasm_resolve_relocs(relocs, labels); 1503 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n", 1504 (unsigned int)(p - tlbmiss_handler_setup_pgd)); 1505 1506 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd, 1507 tlbmiss_handler_setup_pgd_size); 1508 } 1509 1510 static void 1511 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr) 1512 { 1513 #ifdef CONFIG_SMP 1514 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1515 if (cpu_has_64bits) 1516 uasm_i_lld(p, pte, 0, ptr); 1517 else 1518 # endif 1519 UASM_i_LL(p, pte, 0, ptr); 1520 #else 1521 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1522 if (cpu_has_64bits) 1523 uasm_i_ld(p, pte, 0, ptr); 1524 else 1525 # endif 1526 UASM_i_LW(p, pte, 0, ptr); 1527 #endif 1528 } 1529 1530 static void 1531 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr, 1532 unsigned int mode) 1533 { 1534 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1535 unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY); 1536 #endif 1537 1538 uasm_i_ori(p, pte, pte, mode); 1539 #ifdef CONFIG_SMP 1540 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1541 if (cpu_has_64bits) 1542 uasm_i_scd(p, pte, 0, ptr); 1543 else 1544 # endif 1545 UASM_i_SC(p, pte, 0, ptr); 1546 1547 if (r10000_llsc_war()) 1548 uasm_il_beqzl(p, r, pte, label_smp_pgtable_change); 1549 else 1550 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1551 1552 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1553 if (!cpu_has_64bits) { 1554 /* no uasm_i_nop needed */ 1555 uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr); 1556 uasm_i_ori(p, pte, pte, hwmode); 1557 uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr); 1558 uasm_il_beqz(p, r, pte, label_smp_pgtable_change); 1559 /* no uasm_i_nop needed */ 1560 uasm_i_lw(p, pte, 0, ptr); 1561 } else 1562 uasm_i_nop(p); 1563 # else 1564 uasm_i_nop(p); 1565 # endif 1566 #else 1567 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1568 if (cpu_has_64bits) 1569 uasm_i_sd(p, pte, 0, ptr); 1570 else 1571 # endif 1572 UASM_i_SW(p, pte, 0, ptr); 1573 1574 # ifdef CONFIG_PHYS_ADDR_T_64BIT 1575 if (!cpu_has_64bits) { 1576 uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr); 1577 uasm_i_ori(p, pte, pte, hwmode); 1578 uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr); 1579 uasm_i_lw(p, pte, 0, ptr); 1580 } 1581 # endif 1582 #endif 1583 } 1584 1585 /* 1586 * Check if PTE is present, if not then jump to LABEL. PTR points to 1587 * the page table where this PTE is located, PTE will be re-loaded 1588 * with it's original value. 1589 */ 1590 static void 1591 build_pte_present(u32 **p, struct uasm_reloc **r, 1592 int pte, int ptr, int scratch, enum label_id lid) 1593 { 1594 int t = scratch >= 0 ? scratch : pte; 1595 1596 if (cpu_has_rixi) { 1597 if (use_bbit_insns()) { 1598 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid); 1599 uasm_i_nop(p); 1600 } else { 1601 uasm_i_andi(p, t, pte, _PAGE_PRESENT); 1602 uasm_il_beqz(p, r, t, lid); 1603 if (pte == t) 1604 /* You lose the SMP race :-(*/ 1605 iPTE_LW(p, pte, ptr); 1606 } 1607 } else { 1608 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ); 1609 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ); 1610 uasm_il_bnez(p, r, t, lid); 1611 if (pte == t) 1612 /* You lose the SMP race :-(*/ 1613 iPTE_LW(p, pte, ptr); 1614 } 1615 } 1616 1617 /* Make PTE valid, store result in PTR. */ 1618 static void 1619 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte, 1620 unsigned int ptr) 1621 { 1622 unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED; 1623 1624 iPTE_SW(p, r, pte, ptr, mode); 1625 } 1626 1627 /* 1628 * Check if PTE can be written to, if not branch to LABEL. Regardless 1629 * restore PTE with value from PTR when done. 1630 */ 1631 static void 1632 build_pte_writable(u32 **p, struct uasm_reloc **r, 1633 unsigned int pte, unsigned int ptr, int scratch, 1634 enum label_id lid) 1635 { 1636 int t = scratch >= 0 ? scratch : pte; 1637 1638 uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE); 1639 uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE); 1640 uasm_il_bnez(p, r, t, lid); 1641 if (pte == t) 1642 /* You lose the SMP race :-(*/ 1643 iPTE_LW(p, pte, ptr); 1644 else 1645 uasm_i_nop(p); 1646 } 1647 1648 /* Make PTE writable, update software status bits as well, then store 1649 * at PTR. 1650 */ 1651 static void 1652 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte, 1653 unsigned int ptr) 1654 { 1655 unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID 1656 | _PAGE_DIRTY); 1657 1658 iPTE_SW(p, r, pte, ptr, mode); 1659 } 1660 1661 /* 1662 * Check if PTE can be modified, if not branch to LABEL. Regardless 1663 * restore PTE with value from PTR when done. 1664 */ 1665 static void 1666 build_pte_modifiable(u32 **p, struct uasm_reloc **r, 1667 unsigned int pte, unsigned int ptr, int scratch, 1668 enum label_id lid) 1669 { 1670 if (use_bbit_insns()) { 1671 uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid); 1672 uasm_i_nop(p); 1673 } else { 1674 int t = scratch >= 0 ? scratch : pte; 1675 uasm_i_andi(p, t, pte, _PAGE_WRITE); 1676 uasm_il_beqz(p, r, t, lid); 1677 if (pte == t) 1678 /* You lose the SMP race :-(*/ 1679 iPTE_LW(p, pte, ptr); 1680 } 1681 } 1682 1683 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 1684 1685 1686 /* 1687 * R3000 style TLB load/store/modify handlers. 1688 */ 1689 1690 /* 1691 * This places the pte into ENTRYLO0 and writes it with tlbwi. 1692 * Then it returns. 1693 */ 1694 static void 1695 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp) 1696 { 1697 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1698 uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */ 1699 uasm_i_tlbwi(p); 1700 uasm_i_jr(p, tmp); 1701 uasm_i_rfe(p); /* branch delay */ 1702 } 1703 1704 /* 1705 * This places the pte into ENTRYLO0 and writes it with tlbwi 1706 * or tlbwr as appropriate. This is because the index register 1707 * may have the probe fail bit set as a result of a trap on a 1708 * kseg2 access, i.e. without refill. Then it returns. 1709 */ 1710 static void 1711 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l, 1712 struct uasm_reloc **r, unsigned int pte, 1713 unsigned int tmp) 1714 { 1715 uasm_i_mfc0(p, tmp, C0_INDEX); 1716 uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */ 1717 uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */ 1718 uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */ 1719 uasm_i_tlbwi(p); /* cp0 delay */ 1720 uasm_i_jr(p, tmp); 1721 uasm_i_rfe(p); /* branch delay */ 1722 uasm_l_r3000_write_probe_fail(l, *p); 1723 uasm_i_tlbwr(p); /* cp0 delay */ 1724 uasm_i_jr(p, tmp); 1725 uasm_i_rfe(p); /* branch delay */ 1726 } 1727 1728 static void 1729 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, 1730 unsigned int ptr) 1731 { 1732 long pgdc = (long)pgd_current; 1733 1734 uasm_i_mfc0(p, pte, C0_BADVADDR); 1735 uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */ 1736 uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr); 1737 uasm_i_srl(p, pte, pte, 22); /* load delay */ 1738 uasm_i_sll(p, pte, pte, 2); 1739 uasm_i_addu(p, ptr, ptr, pte); 1740 uasm_i_mfc0(p, pte, C0_CONTEXT); 1741 uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */ 1742 uasm_i_andi(p, pte, pte, 0xffc); /* load delay */ 1743 uasm_i_addu(p, ptr, ptr, pte); 1744 uasm_i_lw(p, pte, 0, ptr); 1745 uasm_i_tlbp(p); /* load delay */ 1746 } 1747 1748 static void build_r3000_tlb_load_handler(void) 1749 { 1750 u32 *p = handle_tlbl; 1751 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1752 struct uasm_label *l = labels; 1753 struct uasm_reloc *r = relocs; 1754 1755 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1756 memset(labels, 0, sizeof(labels)); 1757 memset(relocs, 0, sizeof(relocs)); 1758 1759 build_r3000_tlbchange_handler_head(&p, K0, K1); 1760 build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl); 1761 uasm_i_nop(&p); /* load delay */ 1762 build_make_valid(&p, &r, K0, K1); 1763 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1764 1765 uasm_l_nopage_tlbl(&l, p); 1766 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 1767 uasm_i_nop(&p); 1768 1769 if (p >= handle_tlbl_end) 1770 panic("TLB load handler fastpath space exceeded"); 1771 1772 uasm_resolve_relocs(relocs, labels); 1773 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 1774 (unsigned int)(p - handle_tlbl)); 1775 1776 dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size); 1777 } 1778 1779 static void build_r3000_tlb_store_handler(void) 1780 { 1781 u32 *p = handle_tlbs; 1782 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 1783 struct uasm_label *l = labels; 1784 struct uasm_reloc *r = relocs; 1785 1786 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 1787 memset(labels, 0, sizeof(labels)); 1788 memset(relocs, 0, sizeof(relocs)); 1789 1790 build_r3000_tlbchange_handler_head(&p, K0, K1); 1791 build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs); 1792 uasm_i_nop(&p); /* load delay */ 1793 build_make_write(&p, &r, K0, K1); 1794 build_r3000_tlb_reload_write(&p, &l, &r, K0, K1); 1795 1796 uasm_l_nopage_tlbs(&l, p); 1797 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1798 uasm_i_nop(&p); 1799 1800 if (p >= handle_tlbs_end) 1801 panic("TLB store handler fastpath space exceeded"); 1802 1803 uasm_resolve_relocs(relocs, labels); 1804 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 1805 (unsigned int)(p - handle_tlbs)); 1806 1807 dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size); 1808 } 1809 1810 static void build_r3000_tlb_modify_handler(void) 1811 { 1812 u32 *p = handle_tlbm; 1813 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 1814 struct uasm_label *l = labels; 1815 struct uasm_reloc *r = relocs; 1816 1817 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 1818 memset(labels, 0, sizeof(labels)); 1819 memset(relocs, 0, sizeof(relocs)); 1820 1821 build_r3000_tlbchange_handler_head(&p, K0, K1); 1822 build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm); 1823 uasm_i_nop(&p); /* load delay */ 1824 build_make_write(&p, &r, K0, K1); 1825 build_r3000_pte_reload_tlbwi(&p, K0, K1); 1826 1827 uasm_l_nopage_tlbm(&l, p); 1828 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 1829 uasm_i_nop(&p); 1830 1831 if (p >= handle_tlbm_end) 1832 panic("TLB modify handler fastpath space exceeded"); 1833 1834 uasm_resolve_relocs(relocs, labels); 1835 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 1836 (unsigned int)(p - handle_tlbm)); 1837 1838 dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size); 1839 } 1840 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */ 1841 1842 /* 1843 * R4000 style TLB load/store/modify handlers. 1844 */ 1845 static struct work_registers 1846 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l, 1847 struct uasm_reloc **r) 1848 { 1849 struct work_registers wr = build_get_work_registers(p); 1850 1851 #ifdef CONFIG_64BIT 1852 build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */ 1853 #else 1854 build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */ 1855 #endif 1856 1857 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1858 /* 1859 * For huge tlb entries, pmd doesn't contain an address but 1860 * instead contains the tlb pte. Check the PAGE_HUGE bit and 1861 * see if we need to jump to huge tlb processing. 1862 */ 1863 build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update); 1864 #endif 1865 1866 UASM_i_MFC0(p, wr.r1, C0_BADVADDR); 1867 UASM_i_LW(p, wr.r2, 0, wr.r2); 1868 UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); 1869 uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2); 1870 UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1); 1871 1872 #ifdef CONFIG_SMP 1873 uasm_l_smp_pgtable_change(l, *p); 1874 #endif 1875 iPTE_LW(p, wr.r1, wr.r2); /* get even pte */ 1876 if (!m4kc_tlbp_war()) { 1877 build_tlb_probe_entry(p); 1878 if (cpu_has_htw) { 1879 /* race condition happens, leaving */ 1880 uasm_i_ehb(p); 1881 uasm_i_mfc0(p, wr.r3, C0_INDEX); 1882 uasm_il_bltz(p, r, wr.r3, label_leave); 1883 uasm_i_nop(p); 1884 } 1885 } 1886 return wr; 1887 } 1888 1889 static void 1890 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l, 1891 struct uasm_reloc **r, unsigned int tmp, 1892 unsigned int ptr) 1893 { 1894 uasm_i_ori(p, ptr, ptr, sizeof(pte_t)); 1895 uasm_i_xori(p, ptr, ptr, sizeof(pte_t)); 1896 build_update_entries(p, tmp, ptr); 1897 build_tlb_write_entry(p, l, r, tlb_indexed); 1898 uasm_l_leave(l, *p); 1899 build_restore_work_registers(p); 1900 uasm_i_eret(p); /* return from trap */ 1901 1902 #ifdef CONFIG_64BIT 1903 build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill); 1904 #endif 1905 } 1906 1907 static void build_r4000_tlb_load_handler(void) 1908 { 1909 u32 *p = handle_tlbl; 1910 const int handle_tlbl_size = handle_tlbl_end - handle_tlbl; 1911 struct uasm_label *l = labels; 1912 struct uasm_reloc *r = relocs; 1913 struct work_registers wr; 1914 1915 memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0])); 1916 memset(labels, 0, sizeof(labels)); 1917 memset(relocs, 0, sizeof(relocs)); 1918 1919 if (bcm1250_m3_war()) { 1920 unsigned int segbits = 44; 1921 1922 uasm_i_dmfc0(&p, K0, C0_BADVADDR); 1923 uasm_i_dmfc0(&p, K1, C0_ENTRYHI); 1924 uasm_i_xor(&p, K0, K0, K1); 1925 uasm_i_dsrl_safe(&p, K1, K0, 62); 1926 uasm_i_dsrl_safe(&p, K0, K0, 12 + 1); 1927 uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits); 1928 uasm_i_or(&p, K0, K0, K1); 1929 uasm_il_bnez(&p, &r, K0, label_leave); 1930 /* No need for uasm_i_nop */ 1931 } 1932 1933 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 1934 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 1935 if (m4kc_tlbp_war()) 1936 build_tlb_probe_entry(&p); 1937 1938 if (cpu_has_rixi && !cpu_has_rixiex) { 1939 /* 1940 * If the page is not _PAGE_VALID, RI or XI could not 1941 * have triggered it. Skip the expensive test.. 1942 */ 1943 if (use_bbit_insns()) { 1944 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 1945 label_tlbl_goaround1); 1946 } else { 1947 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 1948 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1); 1949 } 1950 uasm_i_nop(&p); 1951 1952 uasm_i_tlbr(&p); 1953 1954 switch (current_cpu_type()) { 1955 default: 1956 if (cpu_has_mips_r2_exec_hazard) { 1957 uasm_i_ehb(&p); 1958 1959 case CPU_CAVIUM_OCTEON: 1960 case CPU_CAVIUM_OCTEON_PLUS: 1961 case CPU_CAVIUM_OCTEON2: 1962 break; 1963 } 1964 } 1965 1966 /* Examine entrylo 0 or 1 based on ptr. */ 1967 if (use_bbit_insns()) { 1968 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 1969 } else { 1970 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 1971 uasm_i_beqz(&p, wr.r3, 8); 1972 } 1973 /* load it in the delay slot*/ 1974 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 1975 /* load it if ptr is odd */ 1976 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 1977 /* 1978 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 1979 * XI must have triggered it. 1980 */ 1981 if (use_bbit_insns()) { 1982 uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl); 1983 uasm_i_nop(&p); 1984 uasm_l_tlbl_goaround1(&l, p); 1985 } else { 1986 uasm_i_andi(&p, wr.r3, wr.r3, 2); 1987 uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl); 1988 uasm_i_nop(&p); 1989 } 1990 uasm_l_tlbl_goaround1(&l, p); 1991 } 1992 build_make_valid(&p, &r, wr.r1, wr.r2); 1993 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 1994 1995 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 1996 /* 1997 * This is the entry point when build_r4000_tlbchange_handler_head 1998 * spots a huge page. 1999 */ 2000 uasm_l_tlb_huge_update(&l, p); 2001 iPTE_LW(&p, wr.r1, wr.r2); 2002 build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl); 2003 build_tlb_probe_entry(&p); 2004 2005 if (cpu_has_rixi && !cpu_has_rixiex) { 2006 /* 2007 * If the page is not _PAGE_VALID, RI or XI could not 2008 * have triggered it. Skip the expensive test.. 2009 */ 2010 if (use_bbit_insns()) { 2011 uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID), 2012 label_tlbl_goaround2); 2013 } else { 2014 uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID); 2015 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2016 } 2017 uasm_i_nop(&p); 2018 2019 uasm_i_tlbr(&p); 2020 2021 switch (current_cpu_type()) { 2022 default: 2023 if (cpu_has_mips_r2_exec_hazard) { 2024 uasm_i_ehb(&p); 2025 2026 case CPU_CAVIUM_OCTEON: 2027 case CPU_CAVIUM_OCTEON_PLUS: 2028 case CPU_CAVIUM_OCTEON2: 2029 break; 2030 } 2031 } 2032 2033 /* Examine entrylo 0 or 1 based on ptr. */ 2034 if (use_bbit_insns()) { 2035 uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8); 2036 } else { 2037 uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t)); 2038 uasm_i_beqz(&p, wr.r3, 8); 2039 } 2040 /* load it in the delay slot*/ 2041 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0); 2042 /* load it if ptr is odd */ 2043 UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1); 2044 /* 2045 * If the entryLo (now in wr.r3) is valid (bit 1), RI or 2046 * XI must have triggered it. 2047 */ 2048 if (use_bbit_insns()) { 2049 uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2); 2050 } else { 2051 uasm_i_andi(&p, wr.r3, wr.r3, 2); 2052 uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2); 2053 } 2054 if (PM_DEFAULT_MASK == 0) 2055 uasm_i_nop(&p); 2056 /* 2057 * We clobbered C0_PAGEMASK, restore it. On the other branch 2058 * it is restored in build_huge_tlb_write_entry. 2059 */ 2060 build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0); 2061 2062 uasm_l_tlbl_goaround2(&l, p); 2063 } 2064 uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID)); 2065 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2066 #endif 2067 2068 uasm_l_nopage_tlbl(&l, p); 2069 build_restore_work_registers(&p); 2070 #ifdef CONFIG_CPU_MICROMIPS 2071 if ((unsigned long)tlb_do_page_fault_0 & 1) { 2072 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0)); 2073 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0)); 2074 uasm_i_jr(&p, K0); 2075 } else 2076 #endif 2077 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); 2078 uasm_i_nop(&p); 2079 2080 if (p >= handle_tlbl_end) 2081 panic("TLB load handler fastpath space exceeded"); 2082 2083 uasm_resolve_relocs(relocs, labels); 2084 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n", 2085 (unsigned int)(p - handle_tlbl)); 2086 2087 dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size); 2088 } 2089 2090 static void build_r4000_tlb_store_handler(void) 2091 { 2092 u32 *p = handle_tlbs; 2093 const int handle_tlbs_size = handle_tlbs_end - handle_tlbs; 2094 struct uasm_label *l = labels; 2095 struct uasm_reloc *r = relocs; 2096 struct work_registers wr; 2097 2098 memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0])); 2099 memset(labels, 0, sizeof(labels)); 2100 memset(relocs, 0, sizeof(relocs)); 2101 2102 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2103 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2104 if (m4kc_tlbp_war()) 2105 build_tlb_probe_entry(&p); 2106 build_make_write(&p, &r, wr.r1, wr.r2); 2107 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2108 2109 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2110 /* 2111 * This is the entry point when 2112 * build_r4000_tlbchange_handler_head spots a huge page. 2113 */ 2114 uasm_l_tlb_huge_update(&l, p); 2115 iPTE_LW(&p, wr.r1, wr.r2); 2116 build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs); 2117 build_tlb_probe_entry(&p); 2118 uasm_i_ori(&p, wr.r1, wr.r1, 2119 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2120 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2121 #endif 2122 2123 uasm_l_nopage_tlbs(&l, p); 2124 build_restore_work_registers(&p); 2125 #ifdef CONFIG_CPU_MICROMIPS 2126 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2127 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2128 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2129 uasm_i_jr(&p, K0); 2130 } else 2131 #endif 2132 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2133 uasm_i_nop(&p); 2134 2135 if (p >= handle_tlbs_end) 2136 panic("TLB store handler fastpath space exceeded"); 2137 2138 uasm_resolve_relocs(relocs, labels); 2139 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n", 2140 (unsigned int)(p - handle_tlbs)); 2141 2142 dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size); 2143 } 2144 2145 static void build_r4000_tlb_modify_handler(void) 2146 { 2147 u32 *p = handle_tlbm; 2148 const int handle_tlbm_size = handle_tlbm_end - handle_tlbm; 2149 struct uasm_label *l = labels; 2150 struct uasm_reloc *r = relocs; 2151 struct work_registers wr; 2152 2153 memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0])); 2154 memset(labels, 0, sizeof(labels)); 2155 memset(relocs, 0, sizeof(relocs)); 2156 2157 wr = build_r4000_tlbchange_handler_head(&p, &l, &r); 2158 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2159 if (m4kc_tlbp_war()) 2160 build_tlb_probe_entry(&p); 2161 /* Present and writable bits set, set accessed and dirty bits. */ 2162 build_make_write(&p, &r, wr.r1, wr.r2); 2163 build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2); 2164 2165 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT 2166 /* 2167 * This is the entry point when 2168 * build_r4000_tlbchange_handler_head spots a huge page. 2169 */ 2170 uasm_l_tlb_huge_update(&l, p); 2171 iPTE_LW(&p, wr.r1, wr.r2); 2172 build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm); 2173 build_tlb_probe_entry(&p); 2174 uasm_i_ori(&p, wr.r1, wr.r1, 2175 _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); 2176 build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2); 2177 #endif 2178 2179 uasm_l_nopage_tlbm(&l, p); 2180 build_restore_work_registers(&p); 2181 #ifdef CONFIG_CPU_MICROMIPS 2182 if ((unsigned long)tlb_do_page_fault_1 & 1) { 2183 uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1)); 2184 uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1)); 2185 uasm_i_jr(&p, K0); 2186 } else 2187 #endif 2188 uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); 2189 uasm_i_nop(&p); 2190 2191 if (p >= handle_tlbm_end) 2192 panic("TLB modify handler fastpath space exceeded"); 2193 2194 uasm_resolve_relocs(relocs, labels); 2195 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n", 2196 (unsigned int)(p - handle_tlbm)); 2197 2198 dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size); 2199 } 2200 2201 static void flush_tlb_handlers(void) 2202 { 2203 local_flush_icache_range((unsigned long)handle_tlbl, 2204 (unsigned long)handle_tlbl_end); 2205 local_flush_icache_range((unsigned long)handle_tlbs, 2206 (unsigned long)handle_tlbs_end); 2207 local_flush_icache_range((unsigned long)handle_tlbm, 2208 (unsigned long)handle_tlbm_end); 2209 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd, 2210 (unsigned long)tlbmiss_handler_setup_pgd_end); 2211 } 2212 2213 static void print_htw_config(void) 2214 { 2215 unsigned long config; 2216 unsigned int pwctl; 2217 const int field = 2 * sizeof(unsigned long); 2218 2219 config = read_c0_pwfield(); 2220 pr_debug("PWField (0x%0*lx): GDI: 0x%02lx UDI: 0x%02lx MDI: 0x%02lx PTI: 0x%02lx PTEI: 0x%02lx\n", 2221 field, config, 2222 (config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT, 2223 (config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT, 2224 (config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT, 2225 (config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT, 2226 (config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT); 2227 2228 config = read_c0_pwsize(); 2229 pr_debug("PWSize (0x%0*lx): GDW: 0x%02lx UDW: 0x%02lx MDW: 0x%02lx PTW: 0x%02lx PTEW: 0x%02lx\n", 2230 field, config, 2231 (config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT, 2232 (config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT, 2233 (config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT, 2234 (config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT, 2235 (config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT); 2236 2237 pwctl = read_c0_pwctl(); 2238 pr_debug("PWCtl (0x%x): PWEn: 0x%x DPH: 0x%x HugePg: 0x%x Psn: 0x%x\n", 2239 pwctl, 2240 (pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT, 2241 (pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT, 2242 (pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT, 2243 (pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT); 2244 } 2245 2246 static void config_htw_params(void) 2247 { 2248 unsigned long pwfield, pwsize, ptei; 2249 unsigned int config; 2250 2251 /* 2252 * We are using 2-level page tables, so we only need to 2253 * setup GDW and PTW appropriately. UDW and MDW will remain 0. 2254 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to 2255 * write values less than 0xc in these fields because the entire 2256 * write will be dropped. As a result of which, we must preserve 2257 * the original reset values and overwrite only what we really want. 2258 */ 2259 2260 pwfield = read_c0_pwfield(); 2261 /* re-initialize the GDI field */ 2262 pwfield &= ~MIPS_PWFIELD_GDI_MASK; 2263 pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT; 2264 /* re-initialize the PTI field including the even/odd bit */ 2265 pwfield &= ~MIPS_PWFIELD_PTI_MASK; 2266 pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT; 2267 /* Set the PTEI right shift */ 2268 ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT; 2269 pwfield |= ptei; 2270 write_c0_pwfield(pwfield); 2271 /* Check whether the PTEI value is supported */ 2272 back_to_back_c0_hazard(); 2273 pwfield = read_c0_pwfield(); 2274 if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT) 2275 != ptei) { 2276 pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled", 2277 ptei); 2278 /* 2279 * Drop option to avoid HTW being enabled via another path 2280 * (eg htw_reset()) 2281 */ 2282 current_cpu_data.options &= ~MIPS_CPU_HTW; 2283 return; 2284 } 2285 2286 pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT; 2287 pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT; 2288 write_c0_pwsize(pwsize); 2289 2290 /* Make sure everything is set before we enable the HTW */ 2291 back_to_back_c0_hazard(); 2292 2293 /* Enable HTW and disable the rest of the pwctl fields */ 2294 config = 1 << MIPS_PWCTL_PWEN_SHIFT; 2295 write_c0_pwctl(config); 2296 pr_info("Hardware Page Table Walker enabled\n"); 2297 2298 print_htw_config(); 2299 } 2300 2301 void build_tlb_refill_handler(void) 2302 { 2303 /* 2304 * The refill handler is generated per-CPU, multi-node systems 2305 * may have local storage for it. The other handlers are only 2306 * needed once. 2307 */ 2308 static int run_once = 0; 2309 2310 output_pgtable_bits_defines(); 2311 2312 #ifdef CONFIG_64BIT 2313 check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3); 2314 #endif 2315 2316 switch (current_cpu_type()) { 2317 case CPU_R2000: 2318 case CPU_R3000: 2319 case CPU_R3000A: 2320 case CPU_R3081E: 2321 case CPU_TX3912: 2322 case CPU_TX3922: 2323 case CPU_TX3927: 2324 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 2325 if (cpu_has_local_ebase) 2326 build_r3000_tlb_refill_handler(); 2327 if (!run_once) { 2328 if (!cpu_has_local_ebase) 2329 build_r3000_tlb_refill_handler(); 2330 build_setup_pgd(); 2331 build_r3000_tlb_load_handler(); 2332 build_r3000_tlb_store_handler(); 2333 build_r3000_tlb_modify_handler(); 2334 flush_tlb_handlers(); 2335 run_once++; 2336 } 2337 #else 2338 panic("No R3000 TLB refill handler"); 2339 #endif 2340 break; 2341 2342 case CPU_R6000: 2343 case CPU_R6000A: 2344 panic("No R6000 TLB refill handler yet"); 2345 break; 2346 2347 case CPU_R8000: 2348 panic("No R8000 TLB refill handler yet"); 2349 break; 2350 2351 default: 2352 if (!run_once) { 2353 scratch_reg = allocate_kscratch(); 2354 build_setup_pgd(); 2355 build_r4000_tlb_load_handler(); 2356 build_r4000_tlb_store_handler(); 2357 build_r4000_tlb_modify_handler(); 2358 if (!cpu_has_local_ebase) 2359 build_r4000_tlb_refill_handler(); 2360 flush_tlb_handlers(); 2361 run_once++; 2362 } 2363 if (cpu_has_local_ebase) 2364 build_r4000_tlb_refill_handler(); 2365 if (cpu_has_htw) 2366 config_htw_params(); 2367 2368 } 2369 } 2370