xref: /linux/arch/mips/mm/tlbex.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004,2005 by Thiemo Seufer
9  * Copyright (C) 2005  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  *
12  * ... and the days got worse and worse and now you see
13  * I've gone completly out of my mind.
14  *
15  * They're coming to take me a away haha
16  * they're coming to take me a away hoho hihi haha
17  * to the funny farm where code is beautiful all the time ...
18  *
19  * (Condolences to Napoleon XIV)
20  */
21 
22 #include <stdarg.h>
23 
24 #include <linux/mm.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 
30 #include <asm/pgtable.h>
31 #include <asm/cacheflush.h>
32 #include <asm/mmu_context.h>
33 #include <asm/inst.h>
34 #include <asm/elf.h>
35 #include <asm/smp.h>
36 #include <asm/war.h>
37 
38 /* #define DEBUG_TLB */
39 
40 static __init int __attribute__((unused)) r45k_bvahwbug(void)
41 {
42 	/* XXX: We should probe for the presence of this bug, but we don't. */
43 	return 0;
44 }
45 
46 static __init int __attribute__((unused)) r4k_250MHZhwbug(void)
47 {
48 	/* XXX: We should probe for the presence of this bug, but we don't. */
49 	return 0;
50 }
51 
52 static __init int __attribute__((unused)) bcm1250_m3_war(void)
53 {
54 	return BCM1250_M3_WAR;
55 }
56 
57 static __init int __attribute__((unused)) r10000_llsc_war(void)
58 {
59 	return R10000_LLSC_WAR;
60 }
61 
62 /*
63  * A little micro-assembler, intended for TLB refill handler
64  * synthesizing. It is intentionally kept simple, does only support
65  * a subset of instructions, and does not try to hide pipeline effects
66  * like branch delay slots.
67  */
68 
69 enum fields
70 {
71 	RS = 0x001,
72 	RT = 0x002,
73 	RD = 0x004,
74 	RE = 0x008,
75 	SIMM = 0x010,
76 	UIMM = 0x020,
77 	BIMM = 0x040,
78 	JIMM = 0x080,
79 	FUNC = 0x100,
80 	SET = 0x200
81 };
82 
83 #define OP_MASK		0x2f
84 #define OP_SH		26
85 #define RS_MASK		0x1f
86 #define RS_SH		21
87 #define RT_MASK		0x1f
88 #define RT_SH		16
89 #define RD_MASK		0x1f
90 #define RD_SH		11
91 #define RE_MASK		0x1f
92 #define RE_SH		6
93 #define IMM_MASK	0xffff
94 #define IMM_SH		0
95 #define JIMM_MASK	0x3ffffff
96 #define JIMM_SH		0
97 #define FUNC_MASK	0x2f
98 #define FUNC_SH		0
99 #define SET_MASK	0x7
100 #define SET_SH		0
101 
102 enum opcode {
103 	insn_invalid,
104 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq,
105 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl,
106 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0,
107 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl,
108 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld,
109 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0,
110 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll,
111 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi,
112 	insn_tlbwr, insn_xor, insn_xori
113 };
114 
115 struct insn {
116 	enum opcode opcode;
117 	u32 match;
118 	enum fields fields;
119 };
120 
121 /* This macro sets the non-variable bits of an instruction. */
122 #define M(a, b, c, d, e, f)					\
123 	((a) << OP_SH						\
124 	 | (b) << RS_SH						\
125 	 | (c) << RT_SH						\
126 	 | (d) << RD_SH						\
127 	 | (e) << RE_SH						\
128 	 | (f) << FUNC_SH)
129 
130 static __initdata struct insn insn_table[] = {
131 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM },
132 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD },
133 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD },
134 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM },
135 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM },
136 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM },
137 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM },
138 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM },
139 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM },
140 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM },
141 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM },
142 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM },
143 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD },
144 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD | SET},
145 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD | SET},
146 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE },
147 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE },
148 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE },
149 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE },
150 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD },
151 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 },
152 	{ insn_j, M(j_op,0,0,0,0,0), JIMM },
153 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM },
154 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS },
155 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM },
156 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM },
157 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM },
158 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM },
159 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM },
160 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD | SET},
161 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD | SET},
162 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM },
163 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 },
164 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM },
165 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM },
166 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM },
167 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE },
168 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE },
169 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE },
170 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD },
171 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM },
172 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 },
173 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 },
174 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 },
175 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD },
176 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM },
177 	{ insn_invalid, 0, 0 }
178 };
179 
180 #undef M
181 
182 static __init u32 build_rs(u32 arg)
183 {
184 	if (arg & ~RS_MASK)
185 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
186 
187 	return (arg & RS_MASK) << RS_SH;
188 }
189 
190 static __init u32 build_rt(u32 arg)
191 {
192 	if (arg & ~RT_MASK)
193 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
194 
195 	return (arg & RT_MASK) << RT_SH;
196 }
197 
198 static __init u32 build_rd(u32 arg)
199 {
200 	if (arg & ~RD_MASK)
201 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
202 
203 	return (arg & RD_MASK) << RD_SH;
204 }
205 
206 static __init u32 build_re(u32 arg)
207 {
208 	if (arg & ~RE_MASK)
209 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
210 
211 	return (arg & RE_MASK) << RE_SH;
212 }
213 
214 static __init u32 build_simm(s32 arg)
215 {
216 	if (arg > 0x7fff || arg < -0x8000)
217 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
218 
219 	return arg & 0xffff;
220 }
221 
222 static __init u32 build_uimm(u32 arg)
223 {
224 	if (arg & ~IMM_MASK)
225 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
226 
227 	return arg & IMM_MASK;
228 }
229 
230 static __init u32 build_bimm(s32 arg)
231 {
232 	if (arg > 0x1ffff || arg < -0x20000)
233 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
234 
235 	if (arg & 0x3)
236 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n");
237 
238 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
239 }
240 
241 static __init u32 build_jimm(u32 arg)
242 {
243 	if (arg & ~((JIMM_MASK) << 2))
244 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
245 
246 	return (arg >> 2) & JIMM_MASK;
247 }
248 
249 static __init u32 build_func(u32 arg)
250 {
251 	if (arg & ~FUNC_MASK)
252 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
253 
254 	return arg & FUNC_MASK;
255 }
256 
257 static __init u32 build_set(u32 arg)
258 {
259 	if (arg & ~SET_MASK)
260 		printk(KERN_WARNING "TLB synthesizer field overflow\n");
261 
262 	return arg & SET_MASK;
263 }
264 
265 /*
266  * The order of opcode arguments is implicitly left to right,
267  * starting with RS and ending with FUNC or IMM.
268  */
269 static void __init build_insn(u32 **buf, enum opcode opc, ...)
270 {
271 	struct insn *ip = NULL;
272 	unsigned int i;
273 	va_list ap;
274 	u32 op;
275 
276 	for (i = 0; insn_table[i].opcode != insn_invalid; i++)
277 		if (insn_table[i].opcode == opc) {
278 			ip = &insn_table[i];
279 			break;
280 		}
281 
282 	if (!ip)
283 		panic("Unsupported TLB synthesizer instruction %d", opc);
284 
285 	op = ip->match;
286 	va_start(ap, opc);
287 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32));
288 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32));
289 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32));
290 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32));
291 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32));
292 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32));
293 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32));
294 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32));
295 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32));
296 	if (ip->fields & SET) op |= build_set(va_arg(ap, u32));
297 	va_end(ap);
298 
299 	**buf = op;
300 	(*buf)++;
301 }
302 
303 #define I_u1u2u3(op)						\
304 	static inline void __init i##op(u32 **buf, unsigned int a,	\
305 	 	unsigned int b, unsigned int c)			\
306 	{							\
307 		build_insn(buf, insn##op, a, b, c);		\
308 	}
309 
310 #define I_u2u1u3(op)						\
311 	static inline void __init i##op(u32 **buf, unsigned int a,	\
312 	 	unsigned int b, unsigned int c)			\
313 	{							\
314 		build_insn(buf, insn##op, b, a, c);		\
315 	}
316 
317 #define I_u3u1u2(op)						\
318 	static inline void __init i##op(u32 **buf, unsigned int a,	\
319 	 	unsigned int b, unsigned int c)			\
320 	{							\
321 		build_insn(buf, insn##op, b, c, a);		\
322 	}
323 
324 #define I_u1u2s3(op)						\
325 	static inline void __init i##op(u32 **buf, unsigned int a,	\
326 	 	unsigned int b, signed int c)			\
327 	{							\
328 		build_insn(buf, insn##op, a, b, c);		\
329 	}
330 
331 #define I_u2s3u1(op)						\
332 	static inline void __init i##op(u32 **buf, unsigned int a,	\
333 	 	signed int b, unsigned int c)			\
334 	{							\
335 		build_insn(buf, insn##op, c, a, b);		\
336 	}
337 
338 #define I_u2u1s3(op)						\
339 	static inline void __init i##op(u32 **buf, unsigned int a,	\
340 	 	unsigned int b, signed int c)			\
341 	{							\
342 		build_insn(buf, insn##op, b, a, c);		\
343 	}
344 
345 #define I_u1u2(op)						\
346 	static inline void __init i##op(u32 **buf, unsigned int a,	\
347 	 	unsigned int b)					\
348 	{							\
349 		build_insn(buf, insn##op, a, b);		\
350 	}
351 
352 #define I_u1s2(op)						\
353 	static inline void __init i##op(u32 **buf, unsigned int a,	\
354 	 	signed int b)					\
355 	{							\
356 		build_insn(buf, insn##op, a, b);		\
357 	}
358 
359 #define I_u1(op)						\
360 	static inline void __init i##op(u32 **buf, unsigned int a)	\
361 	{							\
362 		build_insn(buf, insn##op, a);			\
363 	}
364 
365 #define I_0(op)							\
366 	static inline void __init i##op(u32 **buf)		\
367 	{							\
368 		build_insn(buf, insn##op);			\
369 	}
370 
371 I_u2u1s3(_addiu);
372 I_u3u1u2(_addu);
373 I_u2u1u3(_andi);
374 I_u3u1u2(_and);
375 I_u1u2s3(_beq);
376 I_u1u2s3(_beql);
377 I_u1s2(_bgez);
378 I_u1s2(_bgezl);
379 I_u1s2(_bltz);
380 I_u1s2(_bltzl);
381 I_u1u2s3(_bne);
382 I_u1u2u3(_dmfc0);
383 I_u1u2u3(_dmtc0);
384 I_u2u1s3(_daddiu);
385 I_u3u1u2(_daddu);
386 I_u2u1u3(_dsll);
387 I_u2u1u3(_dsll32);
388 I_u2u1u3(_dsra);
389 I_u2u1u3(_dsrl);
390 I_u3u1u2(_dsubu);
391 I_0(_eret);
392 I_u1(_j);
393 I_u1(_jal);
394 I_u1(_jr);
395 I_u2s3u1(_ld);
396 I_u2s3u1(_ll);
397 I_u2s3u1(_lld);
398 I_u1s2(_lui);
399 I_u2s3u1(_lw);
400 I_u1u2u3(_mfc0);
401 I_u1u2u3(_mtc0);
402 I_u2u1u3(_ori);
403 I_0(_rfe);
404 I_u2s3u1(_sc);
405 I_u2s3u1(_scd);
406 I_u2s3u1(_sd);
407 I_u2u1u3(_sll);
408 I_u2u1u3(_sra);
409 I_u2u1u3(_srl);
410 I_u3u1u2(_subu);
411 I_u2s3u1(_sw);
412 I_0(_tlbp);
413 I_0(_tlbwi);
414 I_0(_tlbwr);
415 I_u3u1u2(_xor)
416 I_u2u1u3(_xori);
417 
418 /*
419  * handling labels
420  */
421 
422 enum label_id {
423 	label_invalid,
424 	label_second_part,
425 	label_leave,
426 	label_vmalloc,
427 	label_vmalloc_done,
428 	label_tlbw_hazard,
429 	label_split,
430 	label_nopage_tlbl,
431 	label_nopage_tlbs,
432 	label_nopage_tlbm,
433 	label_smp_pgtable_change,
434 	label_r3000_write_probe_fail,
435 };
436 
437 struct label {
438 	u32 *addr;
439 	enum label_id lab;
440 };
441 
442 static __init void build_label(struct label **lab, u32 *addr,
443 			       enum label_id l)
444 {
445 	(*lab)->addr = addr;
446 	(*lab)->lab = l;
447 	(*lab)++;
448 }
449 
450 #define L_LA(lb)						\
451 	static inline void l##lb(struct label **lab, u32 *addr) \
452 	{							\
453 		build_label(lab, addr, label##lb);		\
454 	}
455 
456 L_LA(_second_part)
457 L_LA(_leave)
458 L_LA(_vmalloc)
459 L_LA(_vmalloc_done)
460 L_LA(_tlbw_hazard)
461 L_LA(_split)
462 L_LA(_nopage_tlbl)
463 L_LA(_nopage_tlbs)
464 L_LA(_nopage_tlbm)
465 L_LA(_smp_pgtable_change)
466 L_LA(_r3000_write_probe_fail)
467 
468 /* convenience macros for instructions */
469 #ifdef CONFIG_64BIT
470 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
471 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
472 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
473 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
474 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
475 # define i_MFC0(buf, rt, rd...) i_dmfc0(buf, rt, rd)
476 # define i_MTC0(buf, rt, rd...) i_dmtc0(buf, rt, rd)
477 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
478 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
479 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
480 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
481 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
482 #else
483 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
484 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
485 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
486 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
487 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
488 # define i_MFC0(buf, rt, rd...) i_mfc0(buf, rt, rd)
489 # define i_MTC0(buf, rt, rd...) i_mtc0(buf, rt, rd)
490 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
491 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
492 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
493 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
494 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
495 #endif
496 
497 #define i_b(buf, off) i_beq(buf, 0, 0, off)
498 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
499 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
500 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
501 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
502 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
503 #define i_nop(buf) i_sll(buf, 0, 0, 0)
504 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
505 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
506 
507 #ifdef CONFIG_64BIT
508 static __init int __attribute__((unused)) in_compat_space_p(long addr)
509 {
510 	/* Is this address in 32bit compat space? */
511 	return (((addr) & 0xffffffff00000000L) == 0xffffffff00000000L);
512 }
513 
514 static __init int __attribute__((unused)) rel_highest(long val)
515 {
516 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
517 }
518 
519 static __init int __attribute__((unused)) rel_higher(long val)
520 {
521 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
522 }
523 #endif
524 
525 static __init int rel_hi(long val)
526 {
527 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
528 }
529 
530 static __init int rel_lo(long val)
531 {
532 	return ((val & 0xffff) ^ 0x8000) - 0x8000;
533 }
534 
535 static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr)
536 {
537 #ifdef CONFIG_64BIT
538 	if (!in_compat_space_p(addr)) {
539 		i_lui(buf, rs, rel_highest(addr));
540 		if (rel_higher(addr))
541 			i_daddiu(buf, rs, rs, rel_higher(addr));
542 		if (rel_hi(addr)) {
543 			i_dsll(buf, rs, rs, 16);
544 			i_daddiu(buf, rs, rs, rel_hi(addr));
545 			i_dsll(buf, rs, rs, 16);
546 		} else
547 			i_dsll32(buf, rs, rs, 0);
548 	} else
549 #endif
550 		i_lui(buf, rs, rel_hi(addr));
551 }
552 
553 static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs,
554 						long addr)
555 {
556 	i_LA_mostly(buf, rs, addr);
557 	if (rel_lo(addr))
558 		i_ADDIU(buf, rs, rs, rel_lo(addr));
559 }
560 
561 /*
562  * handle relocations
563  */
564 
565 struct reloc {
566 	u32 *addr;
567 	unsigned int type;
568 	enum label_id lab;
569 };
570 
571 static __init void r_mips_pc16(struct reloc **rel, u32 *addr,
572 			       enum label_id l)
573 {
574 	(*rel)->addr = addr;
575 	(*rel)->type = R_MIPS_PC16;
576 	(*rel)->lab = l;
577 	(*rel)++;
578 }
579 
580 static inline void __resolve_relocs(struct reloc *rel, struct label *lab)
581 {
582 	long laddr = (long)lab->addr;
583 	long raddr = (long)rel->addr;
584 
585 	switch (rel->type) {
586 	case R_MIPS_PC16:
587 		*rel->addr |= build_bimm(laddr - (raddr + 4));
588 		break;
589 
590 	default:
591 		panic("Unsupported TLB synthesizer relocation %d",
592 		      rel->type);
593 	}
594 }
595 
596 static __init void resolve_relocs(struct reloc *rel, struct label *lab)
597 {
598 	struct label *l;
599 
600 	for (; rel->lab != label_invalid; rel++)
601 		for (l = lab; l->lab != label_invalid; l++)
602 			if (rel->lab == l->lab)
603 				__resolve_relocs(rel, l);
604 }
605 
606 static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end,
607 			       long off)
608 {
609 	for (; rel->lab != label_invalid; rel++)
610 		if (rel->addr >= first && rel->addr < end)
611 			rel->addr += off;
612 }
613 
614 static __init void move_labels(struct label *lab, u32 *first, u32 *end,
615 			       long off)
616 {
617 	for (; lab->lab != label_invalid; lab++)
618 		if (lab->addr >= first && lab->addr < end)
619 			lab->addr += off;
620 }
621 
622 static __init void copy_handler(struct reloc *rel, struct label *lab,
623 				u32 *first, u32 *end, u32 *target)
624 {
625 	long off = (long)(target - first);
626 
627 	memcpy(target, first, (end - first) * sizeof(u32));
628 
629 	move_relocs(rel, first, end, off);
630 	move_labels(lab, first, end, off);
631 }
632 
633 static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel,
634 							  u32 *addr)
635 {
636 	for (; rel->lab != label_invalid; rel++) {
637 		if (rel->addr == addr
638 		    && (rel->type == R_MIPS_PC16
639 			|| rel->type == R_MIPS_26))
640 			return 1;
641 	}
642 
643 	return 0;
644 }
645 
646 /* convenience functions for labeled branches */
647 static void __init __attribute__((unused))
648 	il_bltz(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
649 {
650 	r_mips_pc16(r, *p, l);
651 	i_bltz(p, reg, 0);
652 }
653 
654 static void __init __attribute__((unused)) il_b(u32 **p, struct reloc **r,
655 					 enum label_id l)
656 {
657 	r_mips_pc16(r, *p, l);
658 	i_b(p, 0);
659 }
660 
661 static void __init il_beqz(u32 **p, struct reloc **r, unsigned int reg,
662 		    enum label_id l)
663 {
664 	r_mips_pc16(r, *p, l);
665 	i_beqz(p, reg, 0);
666 }
667 
668 static void __init __attribute__((unused))
669 il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l)
670 {
671 	r_mips_pc16(r, *p, l);
672 	i_beqzl(p, reg, 0);
673 }
674 
675 static void __init il_bnez(u32 **p, struct reloc **r, unsigned int reg,
676 		    enum label_id l)
677 {
678 	r_mips_pc16(r, *p, l);
679 	i_bnez(p, reg, 0);
680 }
681 
682 static void __init il_bgezl(u32 **p, struct reloc **r, unsigned int reg,
683 		     enum label_id l)
684 {
685 	r_mips_pc16(r, *p, l);
686 	i_bgezl(p, reg, 0);
687 }
688 
689 /* The only general purpose registers allowed in TLB handlers. */
690 #define K0		26
691 #define K1		27
692 
693 /* Some CP0 registers */
694 #define C0_INDEX	0, 0
695 #define C0_ENTRYLO0	2, 0
696 #define C0_TCBIND	2, 2
697 #define C0_ENTRYLO1	3, 0
698 #define C0_CONTEXT	4, 0
699 #define C0_BADVADDR	8, 0
700 #define C0_ENTRYHI	10, 0
701 #define C0_EPC		14, 0
702 #define C0_XCONTEXT	20, 0
703 
704 #ifdef CONFIG_64BIT
705 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
706 #else
707 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
708 #endif
709 
710 /* The worst case length of the handler is around 18 instructions for
711  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
712  * Maximum space available is 32 instructions for R3000 and 64
713  * instructions for R4000.
714  *
715  * We deliberately chose a buffer size of 128, so we won't scribble
716  * over anything important on overflow before we panic.
717  */
718 static __initdata u32 tlb_handler[128];
719 
720 /* simply assume worst case size for labels and relocs */
721 static __initdata struct label labels[128];
722 static __initdata struct reloc relocs[128];
723 
724 /*
725  * The R3000 TLB handler is simple.
726  */
727 static void __init build_r3000_tlb_refill_handler(void)
728 {
729 	long pgdc = (long)pgd_current;
730 	u32 *p;
731 
732 	memset(tlb_handler, 0, sizeof(tlb_handler));
733 	p = tlb_handler;
734 
735 	i_mfc0(&p, K0, C0_BADVADDR);
736 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */
737 	i_lw(&p, K1, rel_lo(pgdc), K1);
738 	i_srl(&p, K0, K0, 22); /* load delay */
739 	i_sll(&p, K0, K0, 2);
740 	i_addu(&p, K1, K1, K0);
741 	i_mfc0(&p, K0, C0_CONTEXT);
742 	i_lw(&p, K1, 0, K1); /* cp0 delay */
743 	i_andi(&p, K0, K0, 0xffc); /* load delay */
744 	i_addu(&p, K1, K1, K0);
745 	i_lw(&p, K0, 0, K1);
746 	i_nop(&p); /* load delay */
747 	i_mtc0(&p, K0, C0_ENTRYLO0);
748 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
749 	i_tlbwr(&p); /* cp0 delay */
750 	i_jr(&p, K1);
751 	i_rfe(&p); /* branch delay */
752 
753 	if (p > tlb_handler + 32)
754 		panic("TLB refill handler space exceeded");
755 
756 	printk("Synthesized TLB refill handler (%u instructions).\n",
757 	       (unsigned int)(p - tlb_handler));
758 #ifdef DEBUG_TLB
759 	{
760 		int i;
761 
762 		for (i = 0; i < (p - tlb_handler); i++)
763 			printk("%08x\n", tlb_handler[i]);
764 	}
765 #endif
766 
767 	memcpy((void *)ebase, tlb_handler, 0x80);
768 }
769 
770 /*
771  * The R4000 TLB handler is much more complicated. We have two
772  * consecutive handler areas with 32 instructions space each.
773  * Since they aren't used at the same time, we can overflow in the
774  * other one.To keep things simple, we first assume linear space,
775  * then we relocate it to the final handler layout as needed.
776  */
777 static __initdata u32 final_handler[64];
778 
779 /*
780  * Hazards
781  *
782  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
783  * 2. A timing hazard exists for the TLBP instruction.
784  *
785  *      stalling_instruction
786  *      TLBP
787  *
788  * The JTLB is being read for the TLBP throughout the stall generated by the
789  * previous instruction. This is not really correct as the stalling instruction
790  * can modify the address used to access the JTLB.  The failure symptom is that
791  * the TLBP instruction will use an address created for the stalling instruction
792  * and not the address held in C0_ENHI and thus report the wrong results.
793  *
794  * The software work-around is to not allow the instruction preceding the TLBP
795  * to stall - make it an NOP or some other instruction guaranteed not to stall.
796  *
797  * Errata 2 will not be fixed.  This errata is also on the R5000.
798  *
799  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
800  */
801 static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p)
802 {
803 	switch (current_cpu_data.cputype) {
804 	/* Found by experiment: R4600 v2.0 needs this, too.  */
805 	case CPU_R4600:
806 	case CPU_R5000:
807 	case CPU_R5000A:
808 	case CPU_NEVADA:
809 		i_nop(p);
810 		i_tlbp(p);
811 		break;
812 
813 	default:
814 		i_tlbp(p);
815 		break;
816 	}
817 }
818 
819 /*
820  * Write random or indexed TLB entry, and care about the hazards from
821  * the preceeding mtc0 and for the following eret.
822  */
823 enum tlb_write_entry { tlb_random, tlb_indexed };
824 
825 static __init void build_tlb_write_entry(u32 **p, struct label **l,
826 					 struct reloc **r,
827 					 enum tlb_write_entry wmode)
828 {
829 	void(*tlbw)(u32 **) = NULL;
830 
831 	switch (wmode) {
832 	case tlb_random: tlbw = i_tlbwr; break;
833 	case tlb_indexed: tlbw = i_tlbwi; break;
834 	}
835 
836 	switch (current_cpu_data.cputype) {
837 	case CPU_R4000PC:
838 	case CPU_R4000SC:
839 	case CPU_R4000MC:
840 	case CPU_R4400PC:
841 	case CPU_R4400SC:
842 	case CPU_R4400MC:
843 		/*
844 		 * This branch uses up a mtc0 hazard nop slot and saves
845 		 * two nops after the tlbw instruction.
846 		 */
847 		il_bgezl(p, r, 0, label_tlbw_hazard);
848 		tlbw(p);
849 		l_tlbw_hazard(l, *p);
850 		i_nop(p);
851 		break;
852 
853 	case CPU_R4600:
854 	case CPU_R4700:
855 	case CPU_R5000:
856 	case CPU_R5000A:
857 		i_nop(p);
858 		tlbw(p);
859 		i_nop(p);
860 		break;
861 
862 	case CPU_R4300:
863 	case CPU_5KC:
864 	case CPU_TX49XX:
865 	case CPU_AU1000:
866 	case CPU_AU1100:
867 	case CPU_AU1500:
868 	case CPU_AU1550:
869 	case CPU_AU1200:
870 	case CPU_PR4450:
871 		i_nop(p);
872 		tlbw(p);
873 		break;
874 
875 	case CPU_R10000:
876 	case CPU_R12000:
877 	case CPU_R14000:
878 	case CPU_4KC:
879 	case CPU_SB1:
880 	case CPU_SB1A:
881 	case CPU_4KSC:
882 	case CPU_20KC:
883 	case CPU_25KF:
884 		tlbw(p);
885 		break;
886 
887 	case CPU_NEVADA:
888 		i_nop(p); /* QED specifies 2 nops hazard */
889 		/*
890 		 * This branch uses up a mtc0 hazard nop slot and saves
891 		 * a nop after the tlbw instruction.
892 		 */
893 		il_bgezl(p, r, 0, label_tlbw_hazard);
894 		tlbw(p);
895 		l_tlbw_hazard(l, *p);
896 		break;
897 
898 	case CPU_RM7000:
899 		i_nop(p);
900 		i_nop(p);
901 		i_nop(p);
902 		i_nop(p);
903 		tlbw(p);
904 		break;
905 
906 	case CPU_4KEC:
907 	case CPU_24K:
908 	case CPU_34K:
909 	case CPU_74K:
910 		i_ehb(p);
911 		tlbw(p);
912 		break;
913 
914 	case CPU_RM9000:
915 		/*
916 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
917 		 * use of the JTLB for instructions should not occur for 4
918 		 * cpu cycles and use for data translations should not occur
919 		 * for 3 cpu cycles.
920 		 */
921 		i_ssnop(p);
922 		i_ssnop(p);
923 		i_ssnop(p);
924 		i_ssnop(p);
925 		tlbw(p);
926 		i_ssnop(p);
927 		i_ssnop(p);
928 		i_ssnop(p);
929 		i_ssnop(p);
930 		break;
931 
932 	case CPU_VR4111:
933 	case CPU_VR4121:
934 	case CPU_VR4122:
935 	case CPU_VR4181:
936 	case CPU_VR4181A:
937 		i_nop(p);
938 		i_nop(p);
939 		tlbw(p);
940 		i_nop(p);
941 		i_nop(p);
942 		break;
943 
944 	case CPU_VR4131:
945 	case CPU_VR4133:
946 	case CPU_R5432:
947 		i_nop(p);
948 		i_nop(p);
949 		tlbw(p);
950 		break;
951 
952 	default:
953 		panic("No TLB refill handler yet (CPU type: %d)",
954 		      current_cpu_data.cputype);
955 		break;
956 	}
957 }
958 
959 #ifdef CONFIG_64BIT
960 /*
961  * TMP and PTR are scratch.
962  * TMP will be clobbered, PTR will hold the pmd entry.
963  */
964 static __init void
965 build_get_pmde64(u32 **p, struct label **l, struct reloc **r,
966 		 unsigned int tmp, unsigned int ptr)
967 {
968 	long pgdc = (long)pgd_current;
969 
970 	/*
971 	 * The vmalloc handling is not in the hotpath.
972 	 */
973 	i_dmfc0(p, tmp, C0_BADVADDR);
974 	il_bltz(p, r, tmp, label_vmalloc);
975 	/* No i_nop needed here, since the next insn doesn't touch TMP. */
976 
977 #ifdef CONFIG_SMP
978 # ifdef  CONFIG_MIPS_MT_SMTC
979 	/*
980 	 * SMTC uses TCBind value as "CPU" index
981 	 */
982 	i_mfc0(p, ptr, C0_TCBIND);
983 	i_dsrl(p, ptr, ptr, 19);
984 # else
985 	/*
986 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
987 	 * stored in CONTEXT.
988 	 */
989 	i_dmfc0(p, ptr, C0_CONTEXT);
990 	i_dsrl(p, ptr, ptr, 23);
991 #endif
992 	i_LA_mostly(p, tmp, pgdc);
993 	i_daddu(p, ptr, ptr, tmp);
994 	i_dmfc0(p, tmp, C0_BADVADDR);
995 	i_ld(p, ptr, rel_lo(pgdc), ptr);
996 #else
997 	i_LA_mostly(p, ptr, pgdc);
998 	i_ld(p, ptr, rel_lo(pgdc), ptr);
999 #endif
1000 
1001 	l_vmalloc_done(l, *p);
1002 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */
1003 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
1004 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
1005 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1006 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */
1007 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
1008 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
1009 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
1010 }
1011 
1012 /*
1013  * BVADDR is the faulting address, PTR is scratch.
1014  * PTR will hold the pgd for vmalloc.
1015  */
1016 static __init void
1017 build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r,
1018 			unsigned int bvaddr, unsigned int ptr)
1019 {
1020 	long swpd = (long)swapper_pg_dir;
1021 
1022 	l_vmalloc(l, *p);
1023 	i_LA(p, ptr, VMALLOC_START);
1024 	i_dsubu(p, bvaddr, bvaddr, ptr);
1025 
1026 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) {
1027 		il_b(p, r, label_vmalloc_done);
1028 		i_lui(p, ptr, rel_hi(swpd));
1029 	} else {
1030 		i_LA_mostly(p, ptr, swpd);
1031 		il_b(p, r, label_vmalloc_done);
1032 		i_daddiu(p, ptr, ptr, rel_lo(swpd));
1033 	}
1034 }
1035 
1036 #else /* !CONFIG_64BIT */
1037 
1038 /*
1039  * TMP and PTR are scratch.
1040  * TMP will be clobbered, PTR will hold the pgd entry.
1041  */
1042 static __init void __attribute__((unused))
1043 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
1044 {
1045 	long pgdc = (long)pgd_current;
1046 
1047 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1048 #ifdef CONFIG_SMP
1049 #ifdef  CONFIG_MIPS_MT_SMTC
1050 	/*
1051 	 * SMTC uses TCBind value as "CPU" index
1052 	 */
1053 	i_mfc0(p, ptr, C0_TCBIND);
1054 	i_LA_mostly(p, tmp, pgdc);
1055 	i_srl(p, ptr, ptr, 19);
1056 #else
1057 	/*
1058 	 * smp_processor_id() << 3 is stored in CONTEXT.
1059          */
1060 	i_mfc0(p, ptr, C0_CONTEXT);
1061 	i_LA_mostly(p, tmp, pgdc);
1062 	i_srl(p, ptr, ptr, 23);
1063 #endif
1064 	i_addu(p, ptr, tmp, ptr);
1065 #else
1066 	i_LA_mostly(p, ptr, pgdc);
1067 #endif
1068 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
1069 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1070 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
1071 	i_sll(p, tmp, tmp, PGD_T_LOG2);
1072 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
1073 }
1074 
1075 #endif /* !CONFIG_64BIT */
1076 
1077 static __init void build_adjust_context(u32 **p, unsigned int ctx)
1078 {
1079 	unsigned int shift = 4 - (PTE_T_LOG2 + 1);
1080 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
1081 
1082 	switch (current_cpu_data.cputype) {
1083 	case CPU_VR41XX:
1084 	case CPU_VR4111:
1085 	case CPU_VR4121:
1086 	case CPU_VR4122:
1087 	case CPU_VR4131:
1088 	case CPU_VR4181:
1089 	case CPU_VR4181A:
1090 	case CPU_VR4133:
1091 		shift += 2;
1092 		break;
1093 
1094 	default:
1095 		break;
1096 	}
1097 
1098 	if (shift)
1099 		i_SRL(p, ctx, ctx, shift);
1100 	i_andi(p, ctx, ctx, mask);
1101 }
1102 
1103 static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1104 {
1105 	/*
1106 	 * Bug workaround for the Nevada. It seems as if under certain
1107 	 * circumstances the move from cp0_context might produce a
1108 	 * bogus result when the mfc0 instruction and its consumer are
1109 	 * in a different cacheline or a load instruction, probably any
1110 	 * memory reference, is between them.
1111 	 */
1112 	switch (current_cpu_data.cputype) {
1113 	case CPU_NEVADA:
1114 		i_LW(p, ptr, 0, ptr);
1115 		GET_CONTEXT(p, tmp); /* get context reg */
1116 		break;
1117 
1118 	default:
1119 		GET_CONTEXT(p, tmp); /* get context reg */
1120 		i_LW(p, ptr, 0, ptr);
1121 		break;
1122 	}
1123 
1124 	build_adjust_context(p, tmp);
1125 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1126 }
1127 
1128 static __init void build_update_entries(u32 **p, unsigned int tmp,
1129 					unsigned int ptep)
1130 {
1131 	/*
1132 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1133 	 * Kernel is a special case. Only a few CPUs use it.
1134 	 */
1135 #ifdef CONFIG_64BIT_PHYS_ADDR
1136 	if (cpu_has_64bits) {
1137 		i_ld(p, tmp, 0, ptep); /* get even pte */
1138 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1139 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */
1140 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1141 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */
1142 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1143 	} else {
1144 		int pte_off_even = sizeof(pte_t) / 2;
1145 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1146 
1147 		/* The pte entries are pre-shifted */
1148 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1149 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1150 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1151 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1152 	}
1153 #else
1154 	i_LW(p, tmp, 0, ptep); /* get even pte */
1155 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1156 	if (r45k_bvahwbug())
1157 		build_tlb_probe_entry(p);
1158 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */
1159 	if (r4k_250MHZhwbug())
1160 		i_mtc0(p, 0, C0_ENTRYLO0);
1161 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */
1162 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */
1163 	if (r45k_bvahwbug())
1164 		i_mfc0(p, tmp, C0_INDEX);
1165 	if (r4k_250MHZhwbug())
1166 		i_mtc0(p, 0, C0_ENTRYLO1);
1167 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */
1168 #endif
1169 }
1170 
1171 static void __init build_r4000_tlb_refill_handler(void)
1172 {
1173 	u32 *p = tlb_handler;
1174 	struct label *l = labels;
1175 	struct reloc *r = relocs;
1176 	u32 *f;
1177 	unsigned int final_len;
1178 
1179 	memset(tlb_handler, 0, sizeof(tlb_handler));
1180 	memset(labels, 0, sizeof(labels));
1181 	memset(relocs, 0, sizeof(relocs));
1182 	memset(final_handler, 0, sizeof(final_handler));
1183 
1184 	/*
1185 	 * create the plain linear handler
1186 	 */
1187 	if (bcm1250_m3_war()) {
1188 		i_MFC0(&p, K0, C0_BADVADDR);
1189 		i_MFC0(&p, K1, C0_ENTRYHI);
1190 		i_xor(&p, K0, K0, K1);
1191 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1192 		il_bnez(&p, &r, K0, label_leave);
1193 		/* No need for i_nop */
1194 	}
1195 
1196 #ifdef CONFIG_64BIT
1197 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1198 #else
1199 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1200 #endif
1201 
1202 	build_get_ptep(&p, K0, K1);
1203 	build_update_entries(&p, K0, K1);
1204 	build_tlb_write_entry(&p, &l, &r, tlb_random);
1205 	l_leave(&l, p);
1206 	i_eret(&p); /* return from trap */
1207 
1208 #ifdef CONFIG_64BIT
1209 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1);
1210 #endif
1211 
1212 	/*
1213 	 * Overflow check: For the 64bit handler, we need at least one
1214 	 * free instruction slot for the wrap-around branch. In worst
1215 	 * case, if the intended insertion point is a delay slot, we
1216 	 * need three, with the the second nop'ed and the third being
1217 	 * unused.
1218 	 */
1219 #ifdef CONFIG_32BIT
1220 	if ((p - tlb_handler) > 64)
1221 		panic("TLB refill handler space exceeded");
1222 #else
1223 	if (((p - tlb_handler) > 63)
1224 	    || (((p - tlb_handler) > 61)
1225 		&& insn_has_bdelay(relocs, tlb_handler + 29)))
1226 		panic("TLB refill handler space exceeded");
1227 #endif
1228 
1229 	/*
1230 	 * Now fold the handler in the TLB refill handler space.
1231 	 */
1232 #ifdef CONFIG_32BIT
1233 	f = final_handler;
1234 	/* Simplest case, just copy the handler. */
1235 	copy_handler(relocs, labels, tlb_handler, p, f);
1236 	final_len = p - tlb_handler;
1237 #else /* CONFIG_64BIT */
1238 	f = final_handler + 32;
1239 	if ((p - tlb_handler) <= 32) {
1240 		/* Just copy the handler. */
1241 		copy_handler(relocs, labels, tlb_handler, p, f);
1242 		final_len = p - tlb_handler;
1243 	} else {
1244 		u32 *split = tlb_handler + 30;
1245 
1246 		/*
1247 		 * Find the split point.
1248 		 */
1249 		if (insn_has_bdelay(relocs, split - 1))
1250 			split--;
1251 
1252 		/* Copy first part of the handler. */
1253 		copy_handler(relocs, labels, tlb_handler, split, f);
1254 		f += split - tlb_handler;
1255 
1256 		/* Insert branch. */
1257 		l_split(&l, final_handler);
1258 		il_b(&f, &r, label_split);
1259 		if (insn_has_bdelay(relocs, split))
1260 			i_nop(&f);
1261 		else {
1262 			copy_handler(relocs, labels, split, split + 1, f);
1263 			move_labels(labels, f, f + 1, -1);
1264 			f++;
1265 			split++;
1266 		}
1267 
1268 		/* Copy the rest of the handler. */
1269 		copy_handler(relocs, labels, split, p, final_handler);
1270 		final_len = (f - (final_handler + 32)) + (p - split);
1271 	}
1272 #endif /* CONFIG_64BIT */
1273 
1274 	resolve_relocs(relocs, labels);
1275 	printk("Synthesized TLB refill handler (%u instructions).\n",
1276 	       final_len);
1277 
1278 #ifdef DEBUG_TLB
1279 	{
1280 		int i;
1281 
1282 		f = final_handler;
1283 #ifdef CONFIG_64BIT
1284 		if (final_len > 32)
1285 			final_len = 64;
1286 		else
1287 			f = final_handler + 32;
1288 #endif /* CONFIG_64BIT */
1289 		for (i = 0; i < final_len; i++)
1290 			printk("%08x\n", f[i]);
1291 	}
1292 #endif
1293 
1294 	memcpy((void *)ebase, final_handler, 0x100);
1295 }
1296 
1297 /*
1298  * TLB load/store/modify handlers.
1299  *
1300  * Only the fastpath gets synthesized at runtime, the slowpath for
1301  * do_page_fault remains normal asm.
1302  */
1303 extern void tlb_do_page_fault_0(void);
1304 extern void tlb_do_page_fault_1(void);
1305 
1306 #define __tlb_handler_align \
1307 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1308 
1309 /*
1310  * 128 instructions for the fastpath handler is generous and should
1311  * never be exceeded.
1312  */
1313 #define FASTPATH_SIZE 128
1314 
1315 u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE];
1316 u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE];
1317 u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE];
1318 
1319 static void __init
1320 iPTE_LW(u32 **p, struct label **l, unsigned int pte, unsigned int ptr)
1321 {
1322 #ifdef CONFIG_SMP
1323 # ifdef CONFIG_64BIT_PHYS_ADDR
1324 	if (cpu_has_64bits)
1325 		i_lld(p, pte, 0, ptr);
1326 	else
1327 # endif
1328 		i_LL(p, pte, 0, ptr);
1329 #else
1330 # ifdef CONFIG_64BIT_PHYS_ADDR
1331 	if (cpu_has_64bits)
1332 		i_ld(p, pte, 0, ptr);
1333 	else
1334 # endif
1335 		i_LW(p, pte, 0, ptr);
1336 #endif
1337 }
1338 
1339 static void __init
1340 iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, unsigned int ptr,
1341 	unsigned int mode)
1342 {
1343 #ifdef CONFIG_64BIT_PHYS_ADDR
1344 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1345 #endif
1346 
1347 	i_ori(p, pte, pte, mode);
1348 #ifdef CONFIG_SMP
1349 # ifdef CONFIG_64BIT_PHYS_ADDR
1350 	if (cpu_has_64bits)
1351 		i_scd(p, pte, 0, ptr);
1352 	else
1353 # endif
1354 		i_SC(p, pte, 0, ptr);
1355 
1356 	if (r10000_llsc_war())
1357 		il_beqzl(p, r, pte, label_smp_pgtable_change);
1358 	else
1359 		il_beqz(p, r, pte, label_smp_pgtable_change);
1360 
1361 # ifdef CONFIG_64BIT_PHYS_ADDR
1362 	if (!cpu_has_64bits) {
1363 		/* no i_nop needed */
1364 		i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1365 		i_ori(p, pte, pte, hwmode);
1366 		i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1367 		il_beqz(p, r, pte, label_smp_pgtable_change);
1368 		/* no i_nop needed */
1369 		i_lw(p, pte, 0, ptr);
1370 	} else
1371 		i_nop(p);
1372 # else
1373 	i_nop(p);
1374 # endif
1375 #else
1376 # ifdef CONFIG_64BIT_PHYS_ADDR
1377 	if (cpu_has_64bits)
1378 		i_sd(p, pte, 0, ptr);
1379 	else
1380 # endif
1381 		i_SW(p, pte, 0, ptr);
1382 
1383 # ifdef CONFIG_64BIT_PHYS_ADDR
1384 	if (!cpu_has_64bits) {
1385 		i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1386 		i_ori(p, pte, pte, hwmode);
1387 		i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1388 		i_lw(p, pte, 0, ptr);
1389 	}
1390 # endif
1391 #endif
1392 }
1393 
1394 /*
1395  * Check if PTE is present, if not then jump to LABEL. PTR points to
1396  * the page table where this PTE is located, PTE will be re-loaded
1397  * with it's original value.
1398  */
1399 static void __init
1400 build_pte_present(u32 **p, struct label **l, struct reloc **r,
1401 		  unsigned int pte, unsigned int ptr, enum label_id lid)
1402 {
1403 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1404 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ);
1405 	il_bnez(p, r, pte, lid);
1406 	iPTE_LW(p, l, pte, ptr);
1407 }
1408 
1409 /* Make PTE valid, store result in PTR. */
1410 static void __init
1411 build_make_valid(u32 **p, struct reloc **r, unsigned int pte,
1412 		 unsigned int ptr)
1413 {
1414 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1415 
1416 	iPTE_SW(p, r, pte, ptr, mode);
1417 }
1418 
1419 /*
1420  * Check if PTE can be written to, if not branch to LABEL. Regardless
1421  * restore PTE with value from PTR when done.
1422  */
1423 static void __init
1424 build_pte_writable(u32 **p, struct label **l, struct reloc **r,
1425 		   unsigned int pte, unsigned int ptr, enum label_id lid)
1426 {
1427 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1428 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE);
1429 	il_bnez(p, r, pte, lid);
1430 	iPTE_LW(p, l, pte, ptr);
1431 }
1432 
1433 /* Make PTE writable, update software status bits as well, then store
1434  * at PTR.
1435  */
1436 static void __init
1437 build_make_write(u32 **p, struct reloc **r, unsigned int pte,
1438 		 unsigned int ptr)
1439 {
1440 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1441 			     | _PAGE_DIRTY);
1442 
1443 	iPTE_SW(p, r, pte, ptr, mode);
1444 }
1445 
1446 /*
1447  * Check if PTE can be modified, if not branch to LABEL. Regardless
1448  * restore PTE with value from PTR when done.
1449  */
1450 static void __init
1451 build_pte_modifiable(u32 **p, struct label **l, struct reloc **r,
1452 		     unsigned int pte, unsigned int ptr, enum label_id lid)
1453 {
1454 	i_andi(p, pte, pte, _PAGE_WRITE);
1455 	il_beqz(p, r, pte, lid);
1456 	iPTE_LW(p, l, pte, ptr);
1457 }
1458 
1459 /*
1460  * R3000 style TLB load/store/modify handlers.
1461  */
1462 
1463 /*
1464  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1465  * Then it returns.
1466  */
1467 static void __init
1468 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1469 {
1470 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1471 	i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1472 	i_tlbwi(p);
1473 	i_jr(p, tmp);
1474 	i_rfe(p); /* branch delay */
1475 }
1476 
1477 /*
1478  * This places the pte into ENTRYLO0 and writes it with tlbwi
1479  * or tlbwr as appropriate.  This is because the index register
1480  * may have the probe fail bit set as a result of a trap on a
1481  * kseg2 access, i.e. without refill.  Then it returns.
1482  */
1483 static void __init
1484 build_r3000_tlb_reload_write(u32 **p, struct label **l, struct reloc **r,
1485 			     unsigned int pte, unsigned int tmp)
1486 {
1487 	i_mfc0(p, tmp, C0_INDEX);
1488 	i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1489 	il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1490 	i_mfc0(p, tmp, C0_EPC); /* branch delay */
1491 	i_tlbwi(p); /* cp0 delay */
1492 	i_jr(p, tmp);
1493 	i_rfe(p); /* branch delay */
1494 	l_r3000_write_probe_fail(l, *p);
1495 	i_tlbwr(p); /* cp0 delay */
1496 	i_jr(p, tmp);
1497 	i_rfe(p); /* branch delay */
1498 }
1499 
1500 static void __init
1501 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1502 				   unsigned int ptr)
1503 {
1504 	long pgdc = (long)pgd_current;
1505 
1506 	i_mfc0(p, pte, C0_BADVADDR);
1507 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */
1508 	i_lw(p, ptr, rel_lo(pgdc), ptr);
1509 	i_srl(p, pte, pte, 22); /* load delay */
1510 	i_sll(p, pte, pte, 2);
1511 	i_addu(p, ptr, ptr, pte);
1512 	i_mfc0(p, pte, C0_CONTEXT);
1513 	i_lw(p, ptr, 0, ptr); /* cp0 delay */
1514 	i_andi(p, pte, pte, 0xffc); /* load delay */
1515 	i_addu(p, ptr, ptr, pte);
1516 	i_lw(p, pte, 0, ptr);
1517 	i_tlbp(p); /* load delay */
1518 }
1519 
1520 static void __init build_r3000_tlb_load_handler(void)
1521 {
1522 	u32 *p = handle_tlbl;
1523 	struct label *l = labels;
1524 	struct reloc *r = relocs;
1525 
1526 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1527 	memset(labels, 0, sizeof(labels));
1528 	memset(relocs, 0, sizeof(relocs));
1529 
1530 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1531 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1532 	i_nop(&p); /* load delay */
1533 	build_make_valid(&p, &r, K0, K1);
1534 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1535 
1536 	l_nopage_tlbl(&l, p);
1537 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1538 	i_nop(&p);
1539 
1540 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1541 		panic("TLB load handler fastpath space exceeded");
1542 
1543 	resolve_relocs(relocs, labels);
1544 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1545 	       (unsigned int)(p - handle_tlbl));
1546 
1547 #ifdef DEBUG_TLB
1548 	{
1549 		int i;
1550 
1551 		for (i = 0; i < (p - handle_tlbl); i++)
1552 			printk("%08x\n", handle_tlbl[i]);
1553 	}
1554 #endif
1555 }
1556 
1557 static void __init build_r3000_tlb_store_handler(void)
1558 {
1559 	u32 *p = handle_tlbs;
1560 	struct label *l = labels;
1561 	struct reloc *r = relocs;
1562 
1563 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1564 	memset(labels, 0, sizeof(labels));
1565 	memset(relocs, 0, sizeof(relocs));
1566 
1567 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1568 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1569 	i_nop(&p); /* load delay */
1570 	build_make_write(&p, &r, K0, K1);
1571 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1572 
1573 	l_nopage_tlbs(&l, p);
1574 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1575 	i_nop(&p);
1576 
1577 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1578 		panic("TLB store handler fastpath space exceeded");
1579 
1580 	resolve_relocs(relocs, labels);
1581 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1582 	       (unsigned int)(p - handle_tlbs));
1583 
1584 #ifdef DEBUG_TLB
1585 	{
1586 		int i;
1587 
1588 		for (i = 0; i < (p - handle_tlbs); i++)
1589 			printk("%08x\n", handle_tlbs[i]);
1590 	}
1591 #endif
1592 }
1593 
1594 static void __init build_r3000_tlb_modify_handler(void)
1595 {
1596 	u32 *p = handle_tlbm;
1597 	struct label *l = labels;
1598 	struct reloc *r = relocs;
1599 
1600 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1601 	memset(labels, 0, sizeof(labels));
1602 	memset(relocs, 0, sizeof(relocs));
1603 
1604 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1605 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1606 	i_nop(&p); /* load delay */
1607 	build_make_write(&p, &r, K0, K1);
1608 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1609 
1610 	l_nopage_tlbm(&l, p);
1611 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1612 	i_nop(&p);
1613 
1614 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1615 		panic("TLB modify handler fastpath space exceeded");
1616 
1617 	resolve_relocs(relocs, labels);
1618 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1619 	       (unsigned int)(p - handle_tlbm));
1620 
1621 #ifdef DEBUG_TLB
1622 	{
1623 		int i;
1624 
1625 		for (i = 0; i < (p - handle_tlbm); i++)
1626 			printk("%08x\n", handle_tlbm[i]);
1627 	}
1628 #endif
1629 }
1630 
1631 /*
1632  * R4000 style TLB load/store/modify handlers.
1633  */
1634 static void __init
1635 build_r4000_tlbchange_handler_head(u32 **p, struct label **l,
1636 				   struct reloc **r, unsigned int pte,
1637 				   unsigned int ptr)
1638 {
1639 #ifdef CONFIG_64BIT
1640 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */
1641 #else
1642 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */
1643 #endif
1644 
1645 	i_MFC0(p, pte, C0_BADVADDR);
1646 	i_LW(p, ptr, 0, ptr);
1647 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1648 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1649 	i_ADDU(p, ptr, ptr, pte);
1650 
1651 #ifdef CONFIG_SMP
1652 	l_smp_pgtable_change(l, *p);
1653 # endif
1654 	iPTE_LW(p, l, pte, ptr); /* get even pte */
1655 	build_tlb_probe_entry(p);
1656 }
1657 
1658 static void __init
1659 build_r4000_tlbchange_handler_tail(u32 **p, struct label **l,
1660 				   struct reloc **r, unsigned int tmp,
1661 				   unsigned int ptr)
1662 {
1663 	i_ori(p, ptr, ptr, sizeof(pte_t));
1664 	i_xori(p, ptr, ptr, sizeof(pte_t));
1665 	build_update_entries(p, tmp, ptr);
1666 	build_tlb_write_entry(p, l, r, tlb_indexed);
1667 	l_leave(l, *p);
1668 	i_eret(p); /* return from trap */
1669 
1670 #ifdef CONFIG_64BIT
1671 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr);
1672 #endif
1673 }
1674 
1675 static void __init build_r4000_tlb_load_handler(void)
1676 {
1677 	u32 *p = handle_tlbl;
1678 	struct label *l = labels;
1679 	struct reloc *r = relocs;
1680 
1681 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1682 	memset(labels, 0, sizeof(labels));
1683 	memset(relocs, 0, sizeof(relocs));
1684 
1685 	if (bcm1250_m3_war()) {
1686 		i_MFC0(&p, K0, C0_BADVADDR);
1687 		i_MFC0(&p, K1, C0_ENTRYHI);
1688 		i_xor(&p, K0, K0, K1);
1689 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1);
1690 		il_bnez(&p, &r, K0, label_leave);
1691 		/* No need for i_nop */
1692 	}
1693 
1694 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1695 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl);
1696 	build_make_valid(&p, &r, K0, K1);
1697 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1698 
1699 	l_nopage_tlbl(&l, p);
1700 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1701 	i_nop(&p);
1702 
1703 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1704 		panic("TLB load handler fastpath space exceeded");
1705 
1706 	resolve_relocs(relocs, labels);
1707 	printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1708 	       (unsigned int)(p - handle_tlbl));
1709 
1710 #ifdef DEBUG_TLB
1711 	{
1712 		int i;
1713 
1714 		for (i = 0; i < (p - handle_tlbl); i++)
1715 			printk("%08x\n", handle_tlbl[i]);
1716 	}
1717 #endif
1718 }
1719 
1720 static void __init build_r4000_tlb_store_handler(void)
1721 {
1722 	u32 *p = handle_tlbs;
1723 	struct label *l = labels;
1724 	struct reloc *r = relocs;
1725 
1726 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1727 	memset(labels, 0, sizeof(labels));
1728 	memset(relocs, 0, sizeof(relocs));
1729 
1730 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1731 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs);
1732 	build_make_write(&p, &r, K0, K1);
1733 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1734 
1735 	l_nopage_tlbs(&l, p);
1736 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1737 	i_nop(&p);
1738 
1739 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1740 		panic("TLB store handler fastpath space exceeded");
1741 
1742 	resolve_relocs(relocs, labels);
1743 	printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1744 	       (unsigned int)(p - handle_tlbs));
1745 
1746 #ifdef DEBUG_TLB
1747 	{
1748 		int i;
1749 
1750 		for (i = 0; i < (p - handle_tlbs); i++)
1751 			printk("%08x\n", handle_tlbs[i]);
1752 	}
1753 #endif
1754 }
1755 
1756 static void __init build_r4000_tlb_modify_handler(void)
1757 {
1758 	u32 *p = handle_tlbm;
1759 	struct label *l = labels;
1760 	struct reloc *r = relocs;
1761 
1762 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1763 	memset(labels, 0, sizeof(labels));
1764 	memset(relocs, 0, sizeof(relocs));
1765 
1766 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1);
1767 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm);
1768 	/* Present and writable bits set, set accessed and dirty bits. */
1769 	build_make_write(&p, &r, K0, K1);
1770 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1);
1771 
1772 	l_nopage_tlbm(&l, p);
1773 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1774 	i_nop(&p);
1775 
1776 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1777 		panic("TLB modify handler fastpath space exceeded");
1778 
1779 	resolve_relocs(relocs, labels);
1780 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1781 	       (unsigned int)(p - handle_tlbm));
1782 
1783 #ifdef DEBUG_TLB
1784 	{
1785 		int i;
1786 
1787 		for (i = 0; i < (p - handle_tlbm); i++)
1788 			printk("%08x\n", handle_tlbm[i]);
1789 	}
1790 #endif
1791 }
1792 
1793 void __init build_tlb_refill_handler(void)
1794 {
1795 	/*
1796 	 * The refill handler is generated per-CPU, multi-node systems
1797 	 * may have local storage for it. The other handlers are only
1798 	 * needed once.
1799 	 */
1800 	static int run_once = 0;
1801 
1802 	switch (current_cpu_data.cputype) {
1803 	case CPU_R2000:
1804 	case CPU_R3000:
1805 	case CPU_R3000A:
1806 	case CPU_R3081E:
1807 	case CPU_TX3912:
1808 	case CPU_TX3922:
1809 	case CPU_TX3927:
1810 		build_r3000_tlb_refill_handler();
1811 		if (!run_once) {
1812 			build_r3000_tlb_load_handler();
1813 			build_r3000_tlb_store_handler();
1814 			build_r3000_tlb_modify_handler();
1815 			run_once++;
1816 		}
1817 		break;
1818 
1819 	case CPU_R6000:
1820 	case CPU_R6000A:
1821 		panic("No R6000 TLB refill handler yet");
1822 		break;
1823 
1824 	case CPU_R8000:
1825 		panic("No R8000 TLB refill handler yet");
1826 		break;
1827 
1828 	default:
1829 		build_r4000_tlb_refill_handler();
1830 		if (!run_once) {
1831 			build_r4000_tlb_load_handler();
1832 			build_r4000_tlb_store_handler();
1833 			build_r4000_tlb_modify_handler();
1834 			run_once++;
1835 		}
1836 	}
1837 }
1838 
1839 void __init flush_tlb_handlers(void)
1840 {
1841 	flush_icache_range((unsigned long)handle_tlbl,
1842 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
1843 	flush_icache_range((unsigned long)handle_tlbs,
1844 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
1845 	flush_icache_range((unsigned long)handle_tlbm,
1846 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
1847 }
1848