xref: /linux/arch/mips/mm/tlbex.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 		return 1;
89 	default:
90 		return 0;
91 	}
92 }
93 
94 static int use_lwx_insns(void)
95 {
96 	switch (current_cpu_type()) {
97 	case CPU_CAVIUM_OCTEON2:
98 		return 1;
99 	default:
100 		return 0;
101 	}
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 	return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 	/*
112 	 * CVMSEG starts at address -32768 and extends for
113 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 	 */
115 	i += 1; /* Kernel use starts at the top and works down. */
116 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 	return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 	BUG();
126 	/* Really unreachable, but evidently some GCC want this. */
127 	return 0;
128 }
129 #endif
130 /*
131  * Found by experiment: At least some revisions of the 4kc throw under
132  * some circumstances a machine check exception, triggered by invalid
133  * values in the index register.  Delaying the tlbp instruction until
134  * after the next branch,  plus adding an additional nop in front of
135  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136  * why; it's not an issue caused by the core RTL.
137  *
138  */
139 static int m4kc_tlbp_war(void)
140 {
141 	return (current_cpu_data.processor_id & 0xffff00) ==
142 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144 
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 	label_second_part = 1,
148 	label_leave,
149 	label_vmalloc,
150 	label_vmalloc_done,
151 	label_tlbw_hazard_0,
152 	label_split = label_tlbw_hazard_0 + 8,
153 	label_tlbl_goaround1,
154 	label_tlbl_goaround2,
155 	label_nopage_tlbl,
156 	label_nopage_tlbs,
157 	label_nopage_tlbm,
158 	label_smp_pgtable_change,
159 	label_r3000_write_probe_fail,
160 	label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 	label_tlb_huge_update,
163 #endif
164 };
165 
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently.  */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183 
184 static int hazard_instance;
185 
186 static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
187 {
188 	switch (instance) {
189 	case 0 ... 7:
190 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
191 		return;
192 	default:
193 		BUG();
194 	}
195 }
196 
197 static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
198 {
199 	switch (instance) {
200 	case 0 ... 7:
201 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
202 		break;
203 	default:
204 		BUG();
205 	}
206 }
207 
208 /*
209  * pgtable bits are assigned dynamically depending on processor feature
210  * and statically based on kernel configuration.  This spits out the actual
211  * values the kernel is using.	Required to make sense from disassembled
212  * TLB exception handlers.
213  */
214 static void output_pgtable_bits_defines(void)
215 {
216 #define pr_define(fmt, ...)					\
217 	pr_debug("#define " fmt, ##__VA_ARGS__)
218 
219 	pr_debug("#include <asm/asm.h>\n");
220 	pr_debug("#include <asm/regdef.h>\n");
221 	pr_debug("\n");
222 
223 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
224 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
225 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
226 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
227 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
228 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
229 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
230 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
231 #endif
232 	if (cpu_has_rixi) {
233 #ifdef _PAGE_NO_EXEC_SHIFT
234 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
235 #endif
236 #ifdef _PAGE_NO_READ_SHIFT
237 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
238 #endif
239 	}
240 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
241 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
242 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
243 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
244 	pr_debug("\n");
245 }
246 
247 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
248 {
249 	int i;
250 
251 	pr_debug("LEAF(%s)\n", symbol);
252 
253 	pr_debug("\t.set push\n");
254 	pr_debug("\t.set noreorder\n");
255 
256 	for (i = 0; i < count; i++)
257 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
258 
259 	pr_debug("\t.set\tpop\n");
260 
261 	pr_debug("\tEND(%s)\n", symbol);
262 }
263 
264 /* The only general purpose registers allowed in TLB handlers. */
265 #define K0		26
266 #define K1		27
267 
268 /* Some CP0 registers */
269 #define C0_INDEX	0, 0
270 #define C0_ENTRYLO0	2, 0
271 #define C0_TCBIND	2, 2
272 #define C0_ENTRYLO1	3, 0
273 #define C0_CONTEXT	4, 0
274 #define C0_PAGEMASK	5, 0
275 #define C0_BADVADDR	8, 0
276 #define C0_ENTRYHI	10, 0
277 #define C0_EPC		14, 0
278 #define C0_XCONTEXT	20, 0
279 
280 #ifdef CONFIG_64BIT
281 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
282 #else
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
284 #endif
285 
286 /* The worst case length of the handler is around 18 instructions for
287  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
288  * Maximum space available is 32 instructions for R3000 and 64
289  * instructions for R4000.
290  *
291  * We deliberately chose a buffer size of 128, so we won't scribble
292  * over anything important on overflow before we panic.
293  */
294 static u32 tlb_handler[128];
295 
296 /* simply assume worst case size for labels and relocs */
297 static struct uasm_label labels[128];
298 static struct uasm_reloc relocs[128];
299 
300 static int check_for_high_segbits;
301 
302 static unsigned int kscratch_used_mask;
303 
304 static inline int __maybe_unused c0_kscratch(void)
305 {
306 	switch (current_cpu_type()) {
307 	case CPU_XLP:
308 	case CPU_XLR:
309 		return 22;
310 	default:
311 		return 31;
312 	}
313 }
314 
315 static int allocate_kscratch(void)
316 {
317 	int r;
318 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
319 
320 	r = ffs(a);
321 
322 	if (r == 0)
323 		return -1;
324 
325 	r--; /* make it zero based */
326 
327 	kscratch_used_mask |= (1 << r);
328 
329 	return r;
330 }
331 
332 static int scratch_reg;
333 static int pgd_reg;
334 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
335 
336 static struct work_registers build_get_work_registers(u32 **p)
337 {
338 	struct work_registers r;
339 
340 	int smp_processor_id_reg;
341 	int smp_processor_id_sel;
342 	int smp_processor_id_shift;
343 
344 	if (scratch_reg >= 0) {
345 		/* Save in CPU local C0_KScratch? */
346 		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
347 		r.r1 = K0;
348 		r.r2 = K1;
349 		r.r3 = 1;
350 		return r;
351 	}
352 
353 	if (num_possible_cpus() > 1) {
354 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
355 		smp_processor_id_shift = 51;
356 		smp_processor_id_reg = 20; /* XContext */
357 		smp_processor_id_sel = 0;
358 #else
359 # ifdef CONFIG_32BIT
360 		smp_processor_id_shift = 25;
361 		smp_processor_id_reg = 4; /* Context */
362 		smp_processor_id_sel = 0;
363 # endif
364 # ifdef CONFIG_64BIT
365 		smp_processor_id_shift = 26;
366 		smp_processor_id_reg = 4; /* Context */
367 		smp_processor_id_sel = 0;
368 # endif
369 #endif
370 		/* Get smp_processor_id */
371 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
372 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
373 
374 		/* handler_reg_save index in K0 */
375 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
376 
377 		UASM_i_LA(p, K1, (long)&handler_reg_save);
378 		UASM_i_ADDU(p, K0, K0, K1);
379 	} else {
380 		UASM_i_LA(p, K0, (long)&handler_reg_save);
381 	}
382 	/* K0 now points to save area, save $1 and $2  */
383 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
384 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
385 
386 	r.r1 = K1;
387 	r.r2 = 1;
388 	r.r3 = 2;
389 	return r;
390 }
391 
392 static void build_restore_work_registers(u32 **p)
393 {
394 	if (scratch_reg >= 0) {
395 		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
396 		return;
397 	}
398 	/* K0 already points to save area, restore $1 and $2  */
399 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
400 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
401 }
402 
403 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
404 
405 /*
406  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
407  * we cannot do r3000 under these circumstances.
408  *
409  * Declare pgd_current here instead of including mmu_context.h to avoid type
410  * conflicts for tlbmiss_handler_setup_pgd
411  */
412 extern unsigned long pgd_current[];
413 
414 /*
415  * The R3000 TLB handler is simple.
416  */
417 static void build_r3000_tlb_refill_handler(void)
418 {
419 	long pgdc = (long)pgd_current;
420 	u32 *p;
421 
422 	memset(tlb_handler, 0, sizeof(tlb_handler));
423 	p = tlb_handler;
424 
425 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
426 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
427 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
428 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
429 	uasm_i_sll(&p, K0, K0, 2);
430 	uasm_i_addu(&p, K1, K1, K0);
431 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
432 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
433 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
434 	uasm_i_addu(&p, K1, K1, K0);
435 	uasm_i_lw(&p, K0, 0, K1);
436 	uasm_i_nop(&p); /* load delay */
437 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
438 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
439 	uasm_i_tlbwr(&p); /* cp0 delay */
440 	uasm_i_jr(&p, K1);
441 	uasm_i_rfe(&p); /* branch delay */
442 
443 	if (p > tlb_handler + 32)
444 		panic("TLB refill handler space exceeded");
445 
446 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
447 		 (unsigned int)(p - tlb_handler));
448 
449 	memcpy((void *)ebase, tlb_handler, 0x80);
450 
451 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
452 }
453 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
454 
455 /*
456  * The R4000 TLB handler is much more complicated. We have two
457  * consecutive handler areas with 32 instructions space each.
458  * Since they aren't used at the same time, we can overflow in the
459  * other one.To keep things simple, we first assume linear space,
460  * then we relocate it to the final handler layout as needed.
461  */
462 static u32 final_handler[64];
463 
464 /*
465  * Hazards
466  *
467  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
468  * 2. A timing hazard exists for the TLBP instruction.
469  *
470  *	stalling_instruction
471  *	TLBP
472  *
473  * The JTLB is being read for the TLBP throughout the stall generated by the
474  * previous instruction. This is not really correct as the stalling instruction
475  * can modify the address used to access the JTLB.  The failure symptom is that
476  * the TLBP instruction will use an address created for the stalling instruction
477  * and not the address held in C0_ENHI and thus report the wrong results.
478  *
479  * The software work-around is to not allow the instruction preceding the TLBP
480  * to stall - make it an NOP or some other instruction guaranteed not to stall.
481  *
482  * Errata 2 will not be fixed.	This errata is also on the R5000.
483  *
484  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
485  */
486 static void __maybe_unused build_tlb_probe_entry(u32 **p)
487 {
488 	switch (current_cpu_type()) {
489 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
490 	case CPU_R4600:
491 	case CPU_R4700:
492 	case CPU_R5000:
493 	case CPU_NEVADA:
494 		uasm_i_nop(p);
495 		uasm_i_tlbp(p);
496 		break;
497 
498 	default:
499 		uasm_i_tlbp(p);
500 		break;
501 	}
502 }
503 
504 /*
505  * Write random or indexed TLB entry, and care about the hazards from
506  * the preceding mtc0 and for the following eret.
507  */
508 enum tlb_write_entry { tlb_random, tlb_indexed };
509 
510 static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
511 				  struct uasm_reloc **r,
512 				  enum tlb_write_entry wmode)
513 {
514 	void(*tlbw)(u32 **) = NULL;
515 
516 	switch (wmode) {
517 	case tlb_random: tlbw = uasm_i_tlbwr; break;
518 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
519 	}
520 
521 	if (cpu_has_mips_r2) {
522 		/*
523 		 * The architecture spec says an ehb is required here,
524 		 * but a number of cores do not have the hazard and
525 		 * using an ehb causes an expensive pipeline stall.
526 		 */
527 		switch (current_cpu_type()) {
528 		case CPU_M14KC:
529 		case CPU_74K:
530 			break;
531 
532 		default:
533 			uasm_i_ehb(p);
534 			break;
535 		}
536 		tlbw(p);
537 		return;
538 	}
539 
540 	switch (current_cpu_type()) {
541 	case CPU_R4000PC:
542 	case CPU_R4000SC:
543 	case CPU_R4000MC:
544 	case CPU_R4400PC:
545 	case CPU_R4400SC:
546 	case CPU_R4400MC:
547 		/*
548 		 * This branch uses up a mtc0 hazard nop slot and saves
549 		 * two nops after the tlbw instruction.
550 		 */
551 		uasm_bgezl_hazard(p, r, hazard_instance);
552 		tlbw(p);
553 		uasm_bgezl_label(l, p, hazard_instance);
554 		hazard_instance++;
555 		uasm_i_nop(p);
556 		break;
557 
558 	case CPU_R4600:
559 	case CPU_R4700:
560 		uasm_i_nop(p);
561 		tlbw(p);
562 		uasm_i_nop(p);
563 		break;
564 
565 	case CPU_R5000:
566 	case CPU_NEVADA:
567 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
568 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
569 		tlbw(p);
570 		break;
571 
572 	case CPU_R4300:
573 	case CPU_5KC:
574 	case CPU_TX49XX:
575 	case CPU_PR4450:
576 	case CPU_XLR:
577 		uasm_i_nop(p);
578 		tlbw(p);
579 		break;
580 
581 	case CPU_R10000:
582 	case CPU_R12000:
583 	case CPU_R14000:
584 	case CPU_4KC:
585 	case CPU_4KEC:
586 	case CPU_M14KC:
587 	case CPU_M14KEC:
588 	case CPU_SB1:
589 	case CPU_SB1A:
590 	case CPU_4KSC:
591 	case CPU_20KC:
592 	case CPU_25KF:
593 	case CPU_BMIPS32:
594 	case CPU_BMIPS3300:
595 	case CPU_BMIPS4350:
596 	case CPU_BMIPS4380:
597 	case CPU_BMIPS5000:
598 	case CPU_LOONGSON2:
599 	case CPU_R5500:
600 		if (m4kc_tlbp_war())
601 			uasm_i_nop(p);
602 	case CPU_ALCHEMY:
603 		tlbw(p);
604 		break;
605 
606 	case CPU_RM7000:
607 		uasm_i_nop(p);
608 		uasm_i_nop(p);
609 		uasm_i_nop(p);
610 		uasm_i_nop(p);
611 		tlbw(p);
612 		break;
613 
614 	case CPU_VR4111:
615 	case CPU_VR4121:
616 	case CPU_VR4122:
617 	case CPU_VR4181:
618 	case CPU_VR4181A:
619 		uasm_i_nop(p);
620 		uasm_i_nop(p);
621 		tlbw(p);
622 		uasm_i_nop(p);
623 		uasm_i_nop(p);
624 		break;
625 
626 	case CPU_VR4131:
627 	case CPU_VR4133:
628 	case CPU_R5432:
629 		uasm_i_nop(p);
630 		uasm_i_nop(p);
631 		tlbw(p);
632 		break;
633 
634 	case CPU_JZRISC:
635 		tlbw(p);
636 		uasm_i_nop(p);
637 		break;
638 
639 	default:
640 		panic("No TLB refill handler yet (CPU type: %d)",
641 		      current_cpu_data.cputype);
642 		break;
643 	}
644 }
645 
646 static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
647 							unsigned int reg)
648 {
649 	if (cpu_has_rixi) {
650 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
651 	} else {
652 #ifdef CONFIG_64BIT_PHYS_ADDR
653 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
654 #else
655 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
656 #endif
657 	}
658 }
659 
660 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
661 
662 static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
663 				   unsigned int tmp, enum label_id lid,
664 				   int restore_scratch)
665 {
666 	if (restore_scratch) {
667 		/* Reset default page size */
668 		if (PM_DEFAULT_MASK >> 16) {
669 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
670 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
671 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
672 			uasm_il_b(p, r, lid);
673 		} else if (PM_DEFAULT_MASK) {
674 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
675 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
676 			uasm_il_b(p, r, lid);
677 		} else {
678 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
679 			uasm_il_b(p, r, lid);
680 		}
681 		if (scratch_reg >= 0)
682 			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
683 		else
684 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
685 	} else {
686 		/* Reset default page size */
687 		if (PM_DEFAULT_MASK >> 16) {
688 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
689 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
690 			uasm_il_b(p, r, lid);
691 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
692 		} else if (PM_DEFAULT_MASK) {
693 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
694 			uasm_il_b(p, r, lid);
695 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
696 		} else {
697 			uasm_il_b(p, r, lid);
698 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
699 		}
700 	}
701 }
702 
703 static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
704 				       struct uasm_reloc **r,
705 				       unsigned int tmp,
706 				       enum tlb_write_entry wmode,
707 				       int restore_scratch)
708 {
709 	/* Set huge page tlb entry size */
710 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
711 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
712 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
713 
714 	build_tlb_write_entry(p, l, r, wmode);
715 
716 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
717 }
718 
719 /*
720  * Check if Huge PTE is present, if so then jump to LABEL.
721  */
722 static void
723 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
724 		  unsigned int pmd, int lid)
725 {
726 	UASM_i_LW(p, tmp, 0, pmd);
727 	if (use_bbit_insns()) {
728 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
729 	} else {
730 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
731 		uasm_il_bnez(p, r, tmp, lid);
732 	}
733 }
734 
735 static void build_huge_update_entries(u32 **p, unsigned int pte,
736 				      unsigned int tmp)
737 {
738 	int small_sequence;
739 
740 	/*
741 	 * A huge PTE describes an area the size of the
742 	 * configured huge page size. This is twice the
743 	 * of the large TLB entry size we intend to use.
744 	 * A TLB entry half the size of the configured
745 	 * huge page size is configured into entrylo0
746 	 * and entrylo1 to cover the contiguous huge PTE
747 	 * address space.
748 	 */
749 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
750 
751 	/* We can clobber tmp.	It isn't used after this.*/
752 	if (!small_sequence)
753 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
754 
755 	build_convert_pte_to_entrylo(p, pte);
756 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
757 	/* convert to entrylo1 */
758 	if (small_sequence)
759 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
760 	else
761 		UASM_i_ADDU(p, pte, pte, tmp);
762 
763 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
764 }
765 
766 static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
767 				    struct uasm_label **l,
768 				    unsigned int pte,
769 				    unsigned int ptr)
770 {
771 #ifdef CONFIG_SMP
772 	UASM_i_SC(p, pte, 0, ptr);
773 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
774 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
775 #else
776 	UASM_i_SW(p, pte, 0, ptr);
777 #endif
778 	build_huge_update_entries(p, pte, ptr);
779 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
780 }
781 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
782 
783 #ifdef CONFIG_64BIT
784 /*
785  * TMP and PTR are scratch.
786  * TMP will be clobbered, PTR will hold the pmd entry.
787  */
788 static void
789 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
790 		 unsigned int tmp, unsigned int ptr)
791 {
792 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
793 	long pgdc = (long)pgd_current;
794 #endif
795 	/*
796 	 * The vmalloc handling is not in the hotpath.
797 	 */
798 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
799 
800 	if (check_for_high_segbits) {
801 		/*
802 		 * The kernel currently implicitely assumes that the
803 		 * MIPS SEGBITS parameter for the processor is
804 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
805 		 * allocate virtual addresses outside the maximum
806 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
807 		 * that doesn't prevent user code from accessing the
808 		 * higher xuseg addresses.  Here, we make sure that
809 		 * everything but the lower xuseg addresses goes down
810 		 * the module_alloc/vmalloc path.
811 		 */
812 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
813 		uasm_il_bnez(p, r, ptr, label_vmalloc);
814 	} else {
815 		uasm_il_bltz(p, r, tmp, label_vmalloc);
816 	}
817 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
818 
819 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
820 	if (pgd_reg != -1) {
821 		/* pgd is in pgd_reg */
822 		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
823 	} else {
824 		/*
825 		 * &pgd << 11 stored in CONTEXT [23..63].
826 		 */
827 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
828 
829 		/* Clear lower 23 bits of context. */
830 		uasm_i_dins(p, ptr, 0, 0, 23);
831 
832 		/* 1 0	1 0 1  << 6  xkphys cached */
833 		uasm_i_ori(p, ptr, ptr, 0x540);
834 		uasm_i_drotr(p, ptr, ptr, 11);
835 	}
836 #elif defined(CONFIG_SMP)
837 # ifdef	 CONFIG_MIPS_MT_SMTC
838 	/*
839 	 * SMTC uses TCBind value as "CPU" index
840 	 */
841 	uasm_i_mfc0(p, ptr, C0_TCBIND);
842 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
843 # else
844 	/*
845 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
846 	 * stored in CONTEXT.
847 	 */
848 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
849 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
850 # endif
851 	UASM_i_LA_mostly(p, tmp, pgdc);
852 	uasm_i_daddu(p, ptr, ptr, tmp);
853 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
854 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
855 #else
856 	UASM_i_LA_mostly(p, ptr, pgdc);
857 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
858 #endif
859 
860 	uasm_l_vmalloc_done(l, *p);
861 
862 	/* get pgd offset in bytes */
863 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
864 
865 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
866 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
867 #ifndef __PAGETABLE_PMD_FOLDED
868 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
869 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
870 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
871 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
872 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
873 #endif
874 }
875 
876 /*
877  * BVADDR is the faulting address, PTR is scratch.
878  * PTR will hold the pgd for vmalloc.
879  */
880 static void
881 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
882 			unsigned int bvaddr, unsigned int ptr,
883 			enum vmalloc64_mode mode)
884 {
885 	long swpd = (long)swapper_pg_dir;
886 	int single_insn_swpd;
887 	int did_vmalloc_branch = 0;
888 
889 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
890 
891 	uasm_l_vmalloc(l, *p);
892 
893 	if (mode != not_refill && check_for_high_segbits) {
894 		if (single_insn_swpd) {
895 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
896 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
897 			did_vmalloc_branch = 1;
898 			/* fall through */
899 		} else {
900 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
901 		}
902 	}
903 	if (!did_vmalloc_branch) {
904 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
905 			uasm_il_b(p, r, label_vmalloc_done);
906 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
907 		} else {
908 			UASM_i_LA_mostly(p, ptr, swpd);
909 			uasm_il_b(p, r, label_vmalloc_done);
910 			if (uasm_in_compat_space_p(swpd))
911 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
912 			else
913 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
914 		}
915 	}
916 	if (mode != not_refill && check_for_high_segbits) {
917 		uasm_l_large_segbits_fault(l, *p);
918 		/*
919 		 * We get here if we are an xsseg address, or if we are
920 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
921 		 *
922 		 * Ignoring xsseg (assume disabled so would generate
923 		 * (address errors?), the only remaining possibility
924 		 * is the upper xuseg addresses.  On processors with
925 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
926 		 * addresses would have taken an address error. We try
927 		 * to mimic that here by taking a load/istream page
928 		 * fault.
929 		 */
930 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
931 		uasm_i_jr(p, ptr);
932 
933 		if (mode == refill_scratch) {
934 			if (scratch_reg >= 0)
935 				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
936 			else
937 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
938 		} else {
939 			uasm_i_nop(p);
940 		}
941 	}
942 }
943 
944 #else /* !CONFIG_64BIT */
945 
946 /*
947  * TMP and PTR are scratch.
948  * TMP will be clobbered, PTR will hold the pgd entry.
949  */
950 static void __maybe_unused
951 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
952 {
953 	long pgdc = (long)pgd_current;
954 
955 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
956 #ifdef CONFIG_SMP
957 #ifdef	CONFIG_MIPS_MT_SMTC
958 	/*
959 	 * SMTC uses TCBind value as "CPU" index
960 	 */
961 	uasm_i_mfc0(p, ptr, C0_TCBIND);
962 	UASM_i_LA_mostly(p, tmp, pgdc);
963 	uasm_i_srl(p, ptr, ptr, 19);
964 #else
965 	/*
966 	 * smp_processor_id() << 2 is stored in CONTEXT.
967 	 */
968 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
969 	UASM_i_LA_mostly(p, tmp, pgdc);
970 	uasm_i_srl(p, ptr, ptr, 23);
971 #endif
972 	uasm_i_addu(p, ptr, tmp, ptr);
973 #else
974 	UASM_i_LA_mostly(p, ptr, pgdc);
975 #endif
976 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
977 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
978 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
979 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
980 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
981 }
982 
983 #endif /* !CONFIG_64BIT */
984 
985 static void build_adjust_context(u32 **p, unsigned int ctx)
986 {
987 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
988 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
989 
990 	switch (current_cpu_type()) {
991 	case CPU_VR41XX:
992 	case CPU_VR4111:
993 	case CPU_VR4121:
994 	case CPU_VR4122:
995 	case CPU_VR4131:
996 	case CPU_VR4181:
997 	case CPU_VR4181A:
998 	case CPU_VR4133:
999 		shift += 2;
1000 		break;
1001 
1002 	default:
1003 		break;
1004 	}
1005 
1006 	if (shift)
1007 		UASM_i_SRL(p, ctx, ctx, shift);
1008 	uasm_i_andi(p, ctx, ctx, mask);
1009 }
1010 
1011 static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1012 {
1013 	/*
1014 	 * Bug workaround for the Nevada. It seems as if under certain
1015 	 * circumstances the move from cp0_context might produce a
1016 	 * bogus result when the mfc0 instruction and its consumer are
1017 	 * in a different cacheline or a load instruction, probably any
1018 	 * memory reference, is between them.
1019 	 */
1020 	switch (current_cpu_type()) {
1021 	case CPU_NEVADA:
1022 		UASM_i_LW(p, ptr, 0, ptr);
1023 		GET_CONTEXT(p, tmp); /* get context reg */
1024 		break;
1025 
1026 	default:
1027 		GET_CONTEXT(p, tmp); /* get context reg */
1028 		UASM_i_LW(p, ptr, 0, ptr);
1029 		break;
1030 	}
1031 
1032 	build_adjust_context(p, tmp);
1033 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1034 }
1035 
1036 static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1037 {
1038 	/*
1039 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1040 	 * Kernel is a special case. Only a few CPUs use it.
1041 	 */
1042 #ifdef CONFIG_64BIT_PHYS_ADDR
1043 	if (cpu_has_64bits) {
1044 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1045 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1046 		if (cpu_has_rixi) {
1047 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1048 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1049 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1050 		} else {
1051 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1052 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1053 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1054 		}
1055 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1056 	} else {
1057 		int pte_off_even = sizeof(pte_t) / 2;
1058 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1059 
1060 		/* The pte entries are pre-shifted */
1061 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1062 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1063 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1064 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1065 	}
1066 #else
1067 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1068 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1069 	if (r45k_bvahwbug())
1070 		build_tlb_probe_entry(p);
1071 	if (cpu_has_rixi) {
1072 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1073 		if (r4k_250MHZhwbug())
1074 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1075 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1076 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1077 	} else {
1078 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1079 		if (r4k_250MHZhwbug())
1080 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1081 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1082 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1083 		if (r45k_bvahwbug())
1084 			uasm_i_mfc0(p, tmp, C0_INDEX);
1085 	}
1086 	if (r4k_250MHZhwbug())
1087 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1088 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1089 #endif
1090 }
1091 
1092 struct mips_huge_tlb_info {
1093 	int huge_pte;
1094 	int restore_scratch;
1095 };
1096 
1097 static struct mips_huge_tlb_info
1098 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1099 			       struct uasm_reloc **r, unsigned int tmp,
1100 			       unsigned int ptr, int c0_scratch_reg)
1101 {
1102 	struct mips_huge_tlb_info rv;
1103 	unsigned int even, odd;
1104 	int vmalloc_branch_delay_filled = 0;
1105 	const int scratch = 1; /* Our extra working register */
1106 
1107 	rv.huge_pte = scratch;
1108 	rv.restore_scratch = 0;
1109 
1110 	if (check_for_high_segbits) {
1111 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1112 
1113 		if (pgd_reg != -1)
1114 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1115 		else
1116 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1117 
1118 		if (c0_scratch_reg >= 0)
1119 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1120 		else
1121 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1122 
1123 		uasm_i_dsrl_safe(p, scratch, tmp,
1124 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1125 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1126 
1127 		if (pgd_reg == -1) {
1128 			vmalloc_branch_delay_filled = 1;
1129 			/* Clear lower 23 bits of context. */
1130 			uasm_i_dins(p, ptr, 0, 0, 23);
1131 		}
1132 	} else {
1133 		if (pgd_reg != -1)
1134 			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1135 		else
1136 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1137 
1138 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1139 
1140 		if (c0_scratch_reg >= 0)
1141 			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1142 		else
1143 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1144 
1145 		if (pgd_reg == -1)
1146 			/* Clear lower 23 bits of context. */
1147 			uasm_i_dins(p, ptr, 0, 0, 23);
1148 
1149 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1150 	}
1151 
1152 	if (pgd_reg == -1) {
1153 		vmalloc_branch_delay_filled = 1;
1154 		/* 1 0	1 0 1  << 6  xkphys cached */
1155 		uasm_i_ori(p, ptr, ptr, 0x540);
1156 		uasm_i_drotr(p, ptr, ptr, 11);
1157 	}
1158 
1159 #ifdef __PAGETABLE_PMD_FOLDED
1160 #define LOC_PTEP scratch
1161 #else
1162 #define LOC_PTEP ptr
1163 #endif
1164 
1165 	if (!vmalloc_branch_delay_filled)
1166 		/* get pgd offset in bytes */
1167 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1168 
1169 	uasm_l_vmalloc_done(l, *p);
1170 
1171 	/*
1172 	 *			   tmp		ptr
1173 	 * fall-through case =	 badvaddr  *pgd_current
1174 	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1175 	 */
1176 
1177 	if (vmalloc_branch_delay_filled)
1178 		/* get pgd offset in bytes */
1179 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1180 
1181 #ifdef __PAGETABLE_PMD_FOLDED
1182 	GET_CONTEXT(p, tmp); /* get context reg */
1183 #endif
1184 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1185 
1186 	if (use_lwx_insns()) {
1187 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1188 	} else {
1189 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1190 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1191 	}
1192 
1193 #ifndef __PAGETABLE_PMD_FOLDED
1194 	/* get pmd offset in bytes */
1195 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1196 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1197 	GET_CONTEXT(p, tmp); /* get context reg */
1198 
1199 	if (use_lwx_insns()) {
1200 		UASM_i_LWX(p, scratch, scratch, ptr);
1201 	} else {
1202 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1203 		UASM_i_LW(p, scratch, 0, ptr);
1204 	}
1205 #endif
1206 	/* Adjust the context during the load latency. */
1207 	build_adjust_context(p, tmp);
1208 
1209 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1210 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1211 	/*
1212 	 * The in the LWX case we don't want to do the load in the
1213 	 * delay slot.	It cannot issue in the same cycle and may be
1214 	 * speculative and unneeded.
1215 	 */
1216 	if (use_lwx_insns())
1217 		uasm_i_nop(p);
1218 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1219 
1220 
1221 	/* build_update_entries */
1222 	if (use_lwx_insns()) {
1223 		even = ptr;
1224 		odd = tmp;
1225 		UASM_i_LWX(p, even, scratch, tmp);
1226 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1227 		UASM_i_LWX(p, odd, scratch, tmp);
1228 	} else {
1229 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1230 		even = tmp;
1231 		odd = ptr;
1232 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1233 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1234 	}
1235 	if (cpu_has_rixi) {
1236 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1237 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1238 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1239 	} else {
1240 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1241 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1242 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1243 	}
1244 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1245 
1246 	if (c0_scratch_reg >= 0) {
1247 		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1248 		build_tlb_write_entry(p, l, r, tlb_random);
1249 		uasm_l_leave(l, *p);
1250 		rv.restore_scratch = 1;
1251 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1252 		build_tlb_write_entry(p, l, r, tlb_random);
1253 		uasm_l_leave(l, *p);
1254 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1255 	} else {
1256 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1257 		build_tlb_write_entry(p, l, r, tlb_random);
1258 		uasm_l_leave(l, *p);
1259 		rv.restore_scratch = 1;
1260 	}
1261 
1262 	uasm_i_eret(p); /* return from trap */
1263 
1264 	return rv;
1265 }
1266 
1267 /*
1268  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1269  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1270  * slots before the XTLB refill exception handler which belong to the
1271  * unused TLB refill exception.
1272  */
1273 #define MIPS64_REFILL_INSNS 32
1274 
1275 static void build_r4000_tlb_refill_handler(void)
1276 {
1277 	u32 *p = tlb_handler;
1278 	struct uasm_label *l = labels;
1279 	struct uasm_reloc *r = relocs;
1280 	u32 *f;
1281 	unsigned int final_len;
1282 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1283 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1284 
1285 	memset(tlb_handler, 0, sizeof(tlb_handler));
1286 	memset(labels, 0, sizeof(labels));
1287 	memset(relocs, 0, sizeof(relocs));
1288 	memset(final_handler, 0, sizeof(final_handler));
1289 
1290 	if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1291 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1292 							  scratch_reg);
1293 		vmalloc_mode = refill_scratch;
1294 	} else {
1295 		htlb_info.huge_pte = K0;
1296 		htlb_info.restore_scratch = 0;
1297 		vmalloc_mode = refill_noscratch;
1298 		/*
1299 		 * create the plain linear handler
1300 		 */
1301 		if (bcm1250_m3_war()) {
1302 			unsigned int segbits = 44;
1303 
1304 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1305 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1306 			uasm_i_xor(&p, K0, K0, K1);
1307 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1308 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1309 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1310 			uasm_i_or(&p, K0, K0, K1);
1311 			uasm_il_bnez(&p, &r, K0, label_leave);
1312 			/* No need for uasm_i_nop */
1313 		}
1314 
1315 #ifdef CONFIG_64BIT
1316 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1317 #else
1318 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1319 #endif
1320 
1321 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1322 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1323 #endif
1324 
1325 		build_get_ptep(&p, K0, K1);
1326 		build_update_entries(&p, K0, K1);
1327 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1328 		uasm_l_leave(&l, p);
1329 		uasm_i_eret(&p); /* return from trap */
1330 	}
1331 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1332 	uasm_l_tlb_huge_update(&l, p);
1333 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1334 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1335 				   htlb_info.restore_scratch);
1336 #endif
1337 
1338 #ifdef CONFIG_64BIT
1339 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1340 #endif
1341 
1342 	/*
1343 	 * Overflow check: For the 64bit handler, we need at least one
1344 	 * free instruction slot for the wrap-around branch. In worst
1345 	 * case, if the intended insertion point is a delay slot, we
1346 	 * need three, with the second nop'ed and the third being
1347 	 * unused.
1348 	 */
1349 	/* Loongson2 ebase is different than r4k, we have more space */
1350 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1351 	if ((p - tlb_handler) > 64)
1352 		panic("TLB refill handler space exceeded");
1353 #else
1354 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1355 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1356 		&& uasm_insn_has_bdelay(relocs,
1357 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1358 		panic("TLB refill handler space exceeded");
1359 #endif
1360 
1361 	/*
1362 	 * Now fold the handler in the TLB refill handler space.
1363 	 */
1364 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1365 	f = final_handler;
1366 	/* Simplest case, just copy the handler. */
1367 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1368 	final_len = p - tlb_handler;
1369 #else /* CONFIG_64BIT */
1370 	f = final_handler + MIPS64_REFILL_INSNS;
1371 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1372 		/* Just copy the handler. */
1373 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1374 		final_len = p - tlb_handler;
1375 	} else {
1376 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1377 		const enum label_id ls = label_tlb_huge_update;
1378 #else
1379 		const enum label_id ls = label_vmalloc;
1380 #endif
1381 		u32 *split;
1382 		int ov = 0;
1383 		int i;
1384 
1385 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1386 			;
1387 		BUG_ON(i == ARRAY_SIZE(labels));
1388 		split = labels[i].addr;
1389 
1390 		/*
1391 		 * See if we have overflown one way or the other.
1392 		 */
1393 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1394 		    split < p - MIPS64_REFILL_INSNS)
1395 			ov = 1;
1396 
1397 		if (ov) {
1398 			/*
1399 			 * Split two instructions before the end.  One
1400 			 * for the branch and one for the instruction
1401 			 * in the delay slot.
1402 			 */
1403 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1404 
1405 			/*
1406 			 * If the branch would fall in a delay slot,
1407 			 * we must back up an additional instruction
1408 			 * so that it is no longer in a delay slot.
1409 			 */
1410 			if (uasm_insn_has_bdelay(relocs, split - 1))
1411 				split--;
1412 		}
1413 		/* Copy first part of the handler. */
1414 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1415 		f += split - tlb_handler;
1416 
1417 		if (ov) {
1418 			/* Insert branch. */
1419 			uasm_l_split(&l, final_handler);
1420 			uasm_il_b(&f, &r, label_split);
1421 			if (uasm_insn_has_bdelay(relocs, split))
1422 				uasm_i_nop(&f);
1423 			else {
1424 				uasm_copy_handler(relocs, labels,
1425 						  split, split + 1, f);
1426 				uasm_move_labels(labels, f, f + 1, -1);
1427 				f++;
1428 				split++;
1429 			}
1430 		}
1431 
1432 		/* Copy the rest of the handler. */
1433 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1434 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1435 			    (p - split);
1436 	}
1437 #endif /* CONFIG_64BIT */
1438 
1439 	uasm_resolve_relocs(relocs, labels);
1440 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1441 		 final_len);
1442 
1443 	memcpy((void *)ebase, final_handler, 0x100);
1444 
1445 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1446 }
1447 
1448 extern u32 handle_tlbl[], handle_tlbl_end[];
1449 extern u32 handle_tlbs[], handle_tlbs_end[];
1450 extern u32 handle_tlbm[], handle_tlbm_end[];
1451 
1452 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1453 extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
1454 
1455 static void build_r4000_setup_pgd(void)
1456 {
1457 	const int a0 = 4;
1458 	const int a1 = 5;
1459 	u32 *p = tlbmiss_handler_setup_pgd_array;
1460 	const int tlbmiss_handler_setup_pgd_size =
1461 		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
1462 	struct uasm_label *l = labels;
1463 	struct uasm_reloc *r = relocs;
1464 
1465 	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1466 					sizeof(tlbmiss_handler_setup_pgd[0]));
1467 	memset(labels, 0, sizeof(labels));
1468 	memset(relocs, 0, sizeof(relocs));
1469 
1470 	pgd_reg = allocate_kscratch();
1471 
1472 	if (pgd_reg == -1) {
1473 		/* PGD << 11 in c0_Context */
1474 		/*
1475 		 * If it is a ckseg0 address, convert to a physical
1476 		 * address.  Shifting right by 29 and adding 4 will
1477 		 * result in zero for these addresses.
1478 		 *
1479 		 */
1480 		UASM_i_SRA(&p, a1, a0, 29);
1481 		UASM_i_ADDIU(&p, a1, a1, 4);
1482 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1483 		uasm_i_nop(&p);
1484 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1485 		uasm_l_tlbl_goaround1(&l, p);
1486 		UASM_i_SLL(&p, a0, a0, 11);
1487 		uasm_i_jr(&p, 31);
1488 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1489 	} else {
1490 		/* PGD in c0_KScratch */
1491 		uasm_i_jr(&p, 31);
1492 		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1493 	}
1494 	if (p >= tlbmiss_handler_setup_pgd_end)
1495 		panic("tlbmiss_handler_setup_pgd space exceeded");
1496 
1497 	uasm_resolve_relocs(relocs, labels);
1498 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1499 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1500 
1501 	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1502 					tlbmiss_handler_setup_pgd_size);
1503 }
1504 #endif
1505 
1506 static void
1507 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1508 {
1509 #ifdef CONFIG_SMP
1510 # ifdef CONFIG_64BIT_PHYS_ADDR
1511 	if (cpu_has_64bits)
1512 		uasm_i_lld(p, pte, 0, ptr);
1513 	else
1514 # endif
1515 		UASM_i_LL(p, pte, 0, ptr);
1516 #else
1517 # ifdef CONFIG_64BIT_PHYS_ADDR
1518 	if (cpu_has_64bits)
1519 		uasm_i_ld(p, pte, 0, ptr);
1520 	else
1521 # endif
1522 		UASM_i_LW(p, pte, 0, ptr);
1523 #endif
1524 }
1525 
1526 static void
1527 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1528 	unsigned int mode)
1529 {
1530 #ifdef CONFIG_64BIT_PHYS_ADDR
1531 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1532 #endif
1533 
1534 	uasm_i_ori(p, pte, pte, mode);
1535 #ifdef CONFIG_SMP
1536 # ifdef CONFIG_64BIT_PHYS_ADDR
1537 	if (cpu_has_64bits)
1538 		uasm_i_scd(p, pte, 0, ptr);
1539 	else
1540 # endif
1541 		UASM_i_SC(p, pte, 0, ptr);
1542 
1543 	if (r10000_llsc_war())
1544 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1545 	else
1546 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1547 
1548 # ifdef CONFIG_64BIT_PHYS_ADDR
1549 	if (!cpu_has_64bits) {
1550 		/* no uasm_i_nop needed */
1551 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1552 		uasm_i_ori(p, pte, pte, hwmode);
1553 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1554 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1555 		/* no uasm_i_nop needed */
1556 		uasm_i_lw(p, pte, 0, ptr);
1557 	} else
1558 		uasm_i_nop(p);
1559 # else
1560 	uasm_i_nop(p);
1561 # endif
1562 #else
1563 # ifdef CONFIG_64BIT_PHYS_ADDR
1564 	if (cpu_has_64bits)
1565 		uasm_i_sd(p, pte, 0, ptr);
1566 	else
1567 # endif
1568 		UASM_i_SW(p, pte, 0, ptr);
1569 
1570 # ifdef CONFIG_64BIT_PHYS_ADDR
1571 	if (!cpu_has_64bits) {
1572 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1573 		uasm_i_ori(p, pte, pte, hwmode);
1574 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1575 		uasm_i_lw(p, pte, 0, ptr);
1576 	}
1577 # endif
1578 #endif
1579 }
1580 
1581 /*
1582  * Check if PTE is present, if not then jump to LABEL. PTR points to
1583  * the page table where this PTE is located, PTE will be re-loaded
1584  * with it's original value.
1585  */
1586 static void
1587 build_pte_present(u32 **p, struct uasm_reloc **r,
1588 		  int pte, int ptr, int scratch, enum label_id lid)
1589 {
1590 	int t = scratch >= 0 ? scratch : pte;
1591 
1592 	if (cpu_has_rixi) {
1593 		if (use_bbit_insns()) {
1594 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1595 			uasm_i_nop(p);
1596 		} else {
1597 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1598 			uasm_il_beqz(p, r, t, lid);
1599 			if (pte == t)
1600 				/* You lose the SMP race :-(*/
1601 				iPTE_LW(p, pte, ptr);
1602 		}
1603 	} else {
1604 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1605 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1606 		uasm_il_bnez(p, r, t, lid);
1607 		if (pte == t)
1608 			/* You lose the SMP race :-(*/
1609 			iPTE_LW(p, pte, ptr);
1610 	}
1611 }
1612 
1613 /* Make PTE valid, store result in PTR. */
1614 static void
1615 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1616 		 unsigned int ptr)
1617 {
1618 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1619 
1620 	iPTE_SW(p, r, pte, ptr, mode);
1621 }
1622 
1623 /*
1624  * Check if PTE can be written to, if not branch to LABEL. Regardless
1625  * restore PTE with value from PTR when done.
1626  */
1627 static void
1628 build_pte_writable(u32 **p, struct uasm_reloc **r,
1629 		   unsigned int pte, unsigned int ptr, int scratch,
1630 		   enum label_id lid)
1631 {
1632 	int t = scratch >= 0 ? scratch : pte;
1633 
1634 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1635 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1636 	uasm_il_bnez(p, r, t, lid);
1637 	if (pte == t)
1638 		/* You lose the SMP race :-(*/
1639 		iPTE_LW(p, pte, ptr);
1640 	else
1641 		uasm_i_nop(p);
1642 }
1643 
1644 /* Make PTE writable, update software status bits as well, then store
1645  * at PTR.
1646  */
1647 static void
1648 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1649 		 unsigned int ptr)
1650 {
1651 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1652 			     | _PAGE_DIRTY);
1653 
1654 	iPTE_SW(p, r, pte, ptr, mode);
1655 }
1656 
1657 /*
1658  * Check if PTE can be modified, if not branch to LABEL. Regardless
1659  * restore PTE with value from PTR when done.
1660  */
1661 static void
1662 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1663 		     unsigned int pte, unsigned int ptr, int scratch,
1664 		     enum label_id lid)
1665 {
1666 	if (use_bbit_insns()) {
1667 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1668 		uasm_i_nop(p);
1669 	} else {
1670 		int t = scratch >= 0 ? scratch : pte;
1671 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1672 		uasm_il_beqz(p, r, t, lid);
1673 		if (pte == t)
1674 			/* You lose the SMP race :-(*/
1675 			iPTE_LW(p, pte, ptr);
1676 	}
1677 }
1678 
1679 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1680 
1681 
1682 /*
1683  * R3000 style TLB load/store/modify handlers.
1684  */
1685 
1686 /*
1687  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1688  * Then it returns.
1689  */
1690 static void
1691 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1692 {
1693 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1694 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1695 	uasm_i_tlbwi(p);
1696 	uasm_i_jr(p, tmp);
1697 	uasm_i_rfe(p); /* branch delay */
1698 }
1699 
1700 /*
1701  * This places the pte into ENTRYLO0 and writes it with tlbwi
1702  * or tlbwr as appropriate.  This is because the index register
1703  * may have the probe fail bit set as a result of a trap on a
1704  * kseg2 access, i.e. without refill.  Then it returns.
1705  */
1706 static void
1707 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1708 			     struct uasm_reloc **r, unsigned int pte,
1709 			     unsigned int tmp)
1710 {
1711 	uasm_i_mfc0(p, tmp, C0_INDEX);
1712 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1713 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1714 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1715 	uasm_i_tlbwi(p); /* cp0 delay */
1716 	uasm_i_jr(p, tmp);
1717 	uasm_i_rfe(p); /* branch delay */
1718 	uasm_l_r3000_write_probe_fail(l, *p);
1719 	uasm_i_tlbwr(p); /* cp0 delay */
1720 	uasm_i_jr(p, tmp);
1721 	uasm_i_rfe(p); /* branch delay */
1722 }
1723 
1724 static void
1725 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1726 				   unsigned int ptr)
1727 {
1728 	long pgdc = (long)pgd_current;
1729 
1730 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1731 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1732 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1733 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1734 	uasm_i_sll(p, pte, pte, 2);
1735 	uasm_i_addu(p, ptr, ptr, pte);
1736 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1737 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1738 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1739 	uasm_i_addu(p, ptr, ptr, pte);
1740 	uasm_i_lw(p, pte, 0, ptr);
1741 	uasm_i_tlbp(p); /* load delay */
1742 }
1743 
1744 static void build_r3000_tlb_load_handler(void)
1745 {
1746 	u32 *p = handle_tlbl;
1747 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1748 	struct uasm_label *l = labels;
1749 	struct uasm_reloc *r = relocs;
1750 
1751 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1752 	memset(labels, 0, sizeof(labels));
1753 	memset(relocs, 0, sizeof(relocs));
1754 
1755 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1756 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1757 	uasm_i_nop(&p); /* load delay */
1758 	build_make_valid(&p, &r, K0, K1);
1759 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1760 
1761 	uasm_l_nopage_tlbl(&l, p);
1762 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1763 	uasm_i_nop(&p);
1764 
1765 	if (p >= handle_tlbl_end)
1766 		panic("TLB load handler fastpath space exceeded");
1767 
1768 	uasm_resolve_relocs(relocs, labels);
1769 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1770 		 (unsigned int)(p - handle_tlbl));
1771 
1772 	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1773 }
1774 
1775 static void build_r3000_tlb_store_handler(void)
1776 {
1777 	u32 *p = handle_tlbs;
1778 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1779 	struct uasm_label *l = labels;
1780 	struct uasm_reloc *r = relocs;
1781 
1782 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1783 	memset(labels, 0, sizeof(labels));
1784 	memset(relocs, 0, sizeof(relocs));
1785 
1786 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1787 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1788 	uasm_i_nop(&p); /* load delay */
1789 	build_make_write(&p, &r, K0, K1);
1790 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1791 
1792 	uasm_l_nopage_tlbs(&l, p);
1793 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1794 	uasm_i_nop(&p);
1795 
1796 	if (p >= handle_tlbs)
1797 		panic("TLB store handler fastpath space exceeded");
1798 
1799 	uasm_resolve_relocs(relocs, labels);
1800 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1801 		 (unsigned int)(p - handle_tlbs));
1802 
1803 	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1804 }
1805 
1806 static void build_r3000_tlb_modify_handler(void)
1807 {
1808 	u32 *p = handle_tlbm;
1809 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1810 	struct uasm_label *l = labels;
1811 	struct uasm_reloc *r = relocs;
1812 
1813 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1814 	memset(labels, 0, sizeof(labels));
1815 	memset(relocs, 0, sizeof(relocs));
1816 
1817 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1818 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1819 	uasm_i_nop(&p); /* load delay */
1820 	build_make_write(&p, &r, K0, K1);
1821 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1822 
1823 	uasm_l_nopage_tlbm(&l, p);
1824 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1825 	uasm_i_nop(&p);
1826 
1827 	if (p >= handle_tlbm_end)
1828 		panic("TLB modify handler fastpath space exceeded");
1829 
1830 	uasm_resolve_relocs(relocs, labels);
1831 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1832 		 (unsigned int)(p - handle_tlbm));
1833 
1834 	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1835 }
1836 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1837 
1838 /*
1839  * R4000 style TLB load/store/modify handlers.
1840  */
1841 static struct work_registers
1842 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1843 				   struct uasm_reloc **r)
1844 {
1845 	struct work_registers wr = build_get_work_registers(p);
1846 
1847 #ifdef CONFIG_64BIT
1848 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1849 #else
1850 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1851 #endif
1852 
1853 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1854 	/*
1855 	 * For huge tlb entries, pmd doesn't contain an address but
1856 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1857 	 * see if we need to jump to huge tlb processing.
1858 	 */
1859 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1860 #endif
1861 
1862 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1863 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1864 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1865 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1866 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1867 
1868 #ifdef CONFIG_SMP
1869 	uasm_l_smp_pgtable_change(l, *p);
1870 #endif
1871 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1872 	if (!m4kc_tlbp_war())
1873 		build_tlb_probe_entry(p);
1874 	return wr;
1875 }
1876 
1877 static void
1878 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1879 				   struct uasm_reloc **r, unsigned int tmp,
1880 				   unsigned int ptr)
1881 {
1882 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1883 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1884 	build_update_entries(p, tmp, ptr);
1885 	build_tlb_write_entry(p, l, r, tlb_indexed);
1886 	uasm_l_leave(l, *p);
1887 	build_restore_work_registers(p);
1888 	uasm_i_eret(p); /* return from trap */
1889 
1890 #ifdef CONFIG_64BIT
1891 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1892 #endif
1893 }
1894 
1895 static void build_r4000_tlb_load_handler(void)
1896 {
1897 	u32 *p = handle_tlbl;
1898 	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1899 	struct uasm_label *l = labels;
1900 	struct uasm_reloc *r = relocs;
1901 	struct work_registers wr;
1902 
1903 	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1904 	memset(labels, 0, sizeof(labels));
1905 	memset(relocs, 0, sizeof(relocs));
1906 
1907 	if (bcm1250_m3_war()) {
1908 		unsigned int segbits = 44;
1909 
1910 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1911 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1912 		uasm_i_xor(&p, K0, K0, K1);
1913 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1914 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1915 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1916 		uasm_i_or(&p, K0, K0, K1);
1917 		uasm_il_bnez(&p, &r, K0, label_leave);
1918 		/* No need for uasm_i_nop */
1919 	}
1920 
1921 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1922 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1923 	if (m4kc_tlbp_war())
1924 		build_tlb_probe_entry(&p);
1925 
1926 	if (cpu_has_rixi) {
1927 		/*
1928 		 * If the page is not _PAGE_VALID, RI or XI could not
1929 		 * have triggered it.  Skip the expensive test..
1930 		 */
1931 		if (use_bbit_insns()) {
1932 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1933 				      label_tlbl_goaround1);
1934 		} else {
1935 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1936 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1937 		}
1938 		uasm_i_nop(&p);
1939 
1940 		uasm_i_tlbr(&p);
1941 
1942 		switch (current_cpu_type()) {
1943 		default:
1944 			if (cpu_has_mips_r2) {
1945 				uasm_i_ehb(&p);
1946 
1947 		case CPU_CAVIUM_OCTEON:
1948 		case CPU_CAVIUM_OCTEON_PLUS:
1949 		case CPU_CAVIUM_OCTEON2:
1950 				break;
1951 			}
1952 		}
1953 
1954 		/* Examine  entrylo 0 or 1 based on ptr. */
1955 		if (use_bbit_insns()) {
1956 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1957 		} else {
1958 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1959 			uasm_i_beqz(&p, wr.r3, 8);
1960 		}
1961 		/* load it in the delay slot*/
1962 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1963 		/* load it if ptr is odd */
1964 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1965 		/*
1966 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1967 		 * XI must have triggered it.
1968 		 */
1969 		if (use_bbit_insns()) {
1970 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1971 			uasm_i_nop(&p);
1972 			uasm_l_tlbl_goaround1(&l, p);
1973 		} else {
1974 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1975 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1976 			uasm_i_nop(&p);
1977 		}
1978 		uasm_l_tlbl_goaround1(&l, p);
1979 	}
1980 	build_make_valid(&p, &r, wr.r1, wr.r2);
1981 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1982 
1983 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1984 	/*
1985 	 * This is the entry point when build_r4000_tlbchange_handler_head
1986 	 * spots a huge page.
1987 	 */
1988 	uasm_l_tlb_huge_update(&l, p);
1989 	iPTE_LW(&p, wr.r1, wr.r2);
1990 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1991 	build_tlb_probe_entry(&p);
1992 
1993 	if (cpu_has_rixi) {
1994 		/*
1995 		 * If the page is not _PAGE_VALID, RI or XI could not
1996 		 * have triggered it.  Skip the expensive test..
1997 		 */
1998 		if (use_bbit_insns()) {
1999 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2000 				      label_tlbl_goaround2);
2001 		} else {
2002 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2003 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2004 		}
2005 		uasm_i_nop(&p);
2006 
2007 		uasm_i_tlbr(&p);
2008 
2009 		switch (current_cpu_type()) {
2010 		default:
2011 			if (cpu_has_mips_r2) {
2012 				uasm_i_ehb(&p);
2013 
2014 		case CPU_CAVIUM_OCTEON:
2015 		case CPU_CAVIUM_OCTEON_PLUS:
2016 		case CPU_CAVIUM_OCTEON2:
2017 				break;
2018 			}
2019 		}
2020 
2021 		/* Examine  entrylo 0 or 1 based on ptr. */
2022 		if (use_bbit_insns()) {
2023 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2024 		} else {
2025 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2026 			uasm_i_beqz(&p, wr.r3, 8);
2027 		}
2028 		/* load it in the delay slot*/
2029 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2030 		/* load it if ptr is odd */
2031 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2032 		/*
2033 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2034 		 * XI must have triggered it.
2035 		 */
2036 		if (use_bbit_insns()) {
2037 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2038 		} else {
2039 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2040 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2041 		}
2042 		if (PM_DEFAULT_MASK == 0)
2043 			uasm_i_nop(&p);
2044 		/*
2045 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2046 		 * it is restored in build_huge_tlb_write_entry.
2047 		 */
2048 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2049 
2050 		uasm_l_tlbl_goaround2(&l, p);
2051 	}
2052 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2053 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2054 #endif
2055 
2056 	uasm_l_nopage_tlbl(&l, p);
2057 	build_restore_work_registers(&p);
2058 #ifdef CONFIG_CPU_MICROMIPS
2059 	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2060 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2061 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2062 		uasm_i_jr(&p, K0);
2063 	} else
2064 #endif
2065 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2066 	uasm_i_nop(&p);
2067 
2068 	if (p >= handle_tlbl_end)
2069 		panic("TLB load handler fastpath space exceeded");
2070 
2071 	uasm_resolve_relocs(relocs, labels);
2072 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2073 		 (unsigned int)(p - handle_tlbl));
2074 
2075 	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2076 }
2077 
2078 static void build_r4000_tlb_store_handler(void)
2079 {
2080 	u32 *p = handle_tlbs;
2081 	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2082 	struct uasm_label *l = labels;
2083 	struct uasm_reloc *r = relocs;
2084 	struct work_registers wr;
2085 
2086 	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2087 	memset(labels, 0, sizeof(labels));
2088 	memset(relocs, 0, sizeof(relocs));
2089 
2090 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2091 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2092 	if (m4kc_tlbp_war())
2093 		build_tlb_probe_entry(&p);
2094 	build_make_write(&p, &r, wr.r1, wr.r2);
2095 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2096 
2097 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2098 	/*
2099 	 * This is the entry point when
2100 	 * build_r4000_tlbchange_handler_head spots a huge page.
2101 	 */
2102 	uasm_l_tlb_huge_update(&l, p);
2103 	iPTE_LW(&p, wr.r1, wr.r2);
2104 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2105 	build_tlb_probe_entry(&p);
2106 	uasm_i_ori(&p, wr.r1, wr.r1,
2107 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2108 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2109 #endif
2110 
2111 	uasm_l_nopage_tlbs(&l, p);
2112 	build_restore_work_registers(&p);
2113 #ifdef CONFIG_CPU_MICROMIPS
2114 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2115 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2116 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2117 		uasm_i_jr(&p, K0);
2118 	} else
2119 #endif
2120 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2121 	uasm_i_nop(&p);
2122 
2123 	if (p >= handle_tlbs_end)
2124 		panic("TLB store handler fastpath space exceeded");
2125 
2126 	uasm_resolve_relocs(relocs, labels);
2127 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2128 		 (unsigned int)(p - handle_tlbs));
2129 
2130 	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2131 }
2132 
2133 static void build_r4000_tlb_modify_handler(void)
2134 {
2135 	u32 *p = handle_tlbm;
2136 	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2137 	struct uasm_label *l = labels;
2138 	struct uasm_reloc *r = relocs;
2139 	struct work_registers wr;
2140 
2141 	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2142 	memset(labels, 0, sizeof(labels));
2143 	memset(relocs, 0, sizeof(relocs));
2144 
2145 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2146 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2147 	if (m4kc_tlbp_war())
2148 		build_tlb_probe_entry(&p);
2149 	/* Present and writable bits set, set accessed and dirty bits. */
2150 	build_make_write(&p, &r, wr.r1, wr.r2);
2151 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2152 
2153 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2154 	/*
2155 	 * This is the entry point when
2156 	 * build_r4000_tlbchange_handler_head spots a huge page.
2157 	 */
2158 	uasm_l_tlb_huge_update(&l, p);
2159 	iPTE_LW(&p, wr.r1, wr.r2);
2160 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2161 	build_tlb_probe_entry(&p);
2162 	uasm_i_ori(&p, wr.r1, wr.r1,
2163 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2164 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2165 #endif
2166 
2167 	uasm_l_nopage_tlbm(&l, p);
2168 	build_restore_work_registers(&p);
2169 #ifdef CONFIG_CPU_MICROMIPS
2170 	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2171 		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2172 		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2173 		uasm_i_jr(&p, K0);
2174 	} else
2175 #endif
2176 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2177 	uasm_i_nop(&p);
2178 
2179 	if (p >= handle_tlbm_end)
2180 		panic("TLB modify handler fastpath space exceeded");
2181 
2182 	uasm_resolve_relocs(relocs, labels);
2183 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2184 		 (unsigned int)(p - handle_tlbm));
2185 
2186 	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2187 }
2188 
2189 static void flush_tlb_handlers(void)
2190 {
2191 	local_flush_icache_range((unsigned long)handle_tlbl,
2192 			   (unsigned long)handle_tlbl_end);
2193 	local_flush_icache_range((unsigned long)handle_tlbs,
2194 			   (unsigned long)handle_tlbs_end);
2195 	local_flush_icache_range((unsigned long)handle_tlbm,
2196 			   (unsigned long)handle_tlbm_end);
2197 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2198 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2199 			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2200 #endif
2201 }
2202 
2203 void build_tlb_refill_handler(void)
2204 {
2205 	/*
2206 	 * The refill handler is generated per-CPU, multi-node systems
2207 	 * may have local storage for it. The other handlers are only
2208 	 * needed once.
2209 	 */
2210 	static int run_once = 0;
2211 
2212 	output_pgtable_bits_defines();
2213 
2214 #ifdef CONFIG_64BIT
2215 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2216 #endif
2217 
2218 	switch (current_cpu_type()) {
2219 	case CPU_R2000:
2220 	case CPU_R3000:
2221 	case CPU_R3000A:
2222 	case CPU_R3081E:
2223 	case CPU_TX3912:
2224 	case CPU_TX3922:
2225 	case CPU_TX3927:
2226 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2227 		if (cpu_has_local_ebase)
2228 			build_r3000_tlb_refill_handler();
2229 		if (!run_once) {
2230 			if (!cpu_has_local_ebase)
2231 				build_r3000_tlb_refill_handler();
2232 			build_r3000_tlb_load_handler();
2233 			build_r3000_tlb_store_handler();
2234 			build_r3000_tlb_modify_handler();
2235 			flush_tlb_handlers();
2236 			run_once++;
2237 		}
2238 #else
2239 		panic("No R3000 TLB refill handler");
2240 #endif
2241 		break;
2242 
2243 	case CPU_R6000:
2244 	case CPU_R6000A:
2245 		panic("No R6000 TLB refill handler yet");
2246 		break;
2247 
2248 	case CPU_R8000:
2249 		panic("No R8000 TLB refill handler yet");
2250 		break;
2251 
2252 	default:
2253 		if (!run_once) {
2254 			scratch_reg = allocate_kscratch();
2255 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2256 			build_r4000_setup_pgd();
2257 #endif
2258 			build_r4000_tlb_load_handler();
2259 			build_r4000_tlb_store_handler();
2260 			build_r4000_tlb_modify_handler();
2261 			if (!cpu_has_local_ebase)
2262 				build_r4000_tlb_refill_handler();
2263 			flush_tlb_handlers();
2264 			run_once++;
2265 		}
2266 		if (cpu_has_local_ebase)
2267 			build_r4000_tlb_refill_handler();
2268 	}
2269 }
2270