xref: /linux/arch/mips/mm/tlbex.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Synthesize TLB refill handlers at runtime.
7  *
8  * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
9  * Copyright (C) 2005, 2007, 2008, 2009  Maciej W. Rozycki
10  * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11  * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12  * Copyright (C) 2011  MIPS Technologies, Inc.
13  *
14  * ... and the days got worse and worse and now you see
15  * I've gone completly out of my mind.
16  *
17  * They're coming to take me a away haha
18  * they're coming to take me a away hoho hihi haha
19  * to the funny farm where code is beautiful all the time ...
20  *
21  * (Condolences to Napoleon XIV)
22  */
23 
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/init.h>
30 #include <linux/cache.h>
31 
32 #include <asm/cacheflush.h>
33 #include <asm/pgtable.h>
34 #include <asm/war.h>
35 #include <asm/uasm.h>
36 #include <asm/setup.h>
37 
38 /*
39  * TLB load/store/modify handlers.
40  *
41  * Only the fastpath gets synthesized at runtime, the slowpath for
42  * do_page_fault remains normal asm.
43  */
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
46 
47 struct work_registers {
48 	int r1;
49 	int r2;
50 	int r3;
51 };
52 
53 struct tlb_reg_save {
54 	unsigned long a;
55 	unsigned long b;
56 } ____cacheline_aligned_in_smp;
57 
58 static struct tlb_reg_save handler_reg_save[NR_CPUS];
59 
60 static inline int r45k_bvahwbug(void)
61 {
62 	/* XXX: We should probe for the presence of this bug, but we don't. */
63 	return 0;
64 }
65 
66 static inline int r4k_250MHZhwbug(void)
67 {
68 	/* XXX: We should probe for the presence of this bug, but we don't. */
69 	return 0;
70 }
71 
72 static inline int __maybe_unused bcm1250_m3_war(void)
73 {
74 	return BCM1250_M3_WAR;
75 }
76 
77 static inline int __maybe_unused r10000_llsc_war(void)
78 {
79 	return R10000_LLSC_WAR;
80 }
81 
82 static int use_bbit_insns(void)
83 {
84 	switch (current_cpu_type()) {
85 	case CPU_CAVIUM_OCTEON:
86 	case CPU_CAVIUM_OCTEON_PLUS:
87 	case CPU_CAVIUM_OCTEON2:
88 		return 1;
89 	default:
90 		return 0;
91 	}
92 }
93 
94 static int use_lwx_insns(void)
95 {
96 	switch (current_cpu_type()) {
97 	case CPU_CAVIUM_OCTEON2:
98 		return 1;
99 	default:
100 		return 0;
101 	}
102 }
103 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
104     CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
105 static bool scratchpad_available(void)
106 {
107 	return true;
108 }
109 static int scratchpad_offset(int i)
110 {
111 	/*
112 	 * CVMSEG starts at address -32768 and extends for
113 	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
114 	 */
115 	i += 1; /* Kernel use starts at the top and works down. */
116 	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
117 }
118 #else
119 static bool scratchpad_available(void)
120 {
121 	return false;
122 }
123 static int scratchpad_offset(int i)
124 {
125 	BUG();
126 	/* Really unreachable, but evidently some GCC want this. */
127 	return 0;
128 }
129 #endif
130 /*
131  * Found by experiment: At least some revisions of the 4kc throw under
132  * some circumstances a machine check exception, triggered by invalid
133  * values in the index register.  Delaying the tlbp instruction until
134  * after the next branch,  plus adding an additional nop in front of
135  * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
136  * why; it's not an issue caused by the core RTL.
137  *
138  */
139 static int __cpuinit m4kc_tlbp_war(void)
140 {
141 	return (current_cpu_data.processor_id & 0xffff00) ==
142 	       (PRID_COMP_MIPS | PRID_IMP_4KC);
143 }
144 
145 /* Handle labels (which must be positive integers). */
146 enum label_id {
147 	label_second_part = 1,
148 	label_leave,
149 	label_vmalloc,
150 	label_vmalloc_done,
151 	label_tlbw_hazard_0,
152 	label_split = label_tlbw_hazard_0 + 8,
153 	label_tlbl_goaround1,
154 	label_tlbl_goaround2,
155 	label_nopage_tlbl,
156 	label_nopage_tlbs,
157 	label_nopage_tlbm,
158 	label_smp_pgtable_change,
159 	label_r3000_write_probe_fail,
160 	label_large_segbits_fault,
161 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
162 	label_tlb_huge_update,
163 #endif
164 };
165 
166 UASM_L_LA(_second_part)
167 UASM_L_LA(_leave)
168 UASM_L_LA(_vmalloc)
169 UASM_L_LA(_vmalloc_done)
170 /* _tlbw_hazard_x is handled differently.  */
171 UASM_L_LA(_split)
172 UASM_L_LA(_tlbl_goaround1)
173 UASM_L_LA(_tlbl_goaround2)
174 UASM_L_LA(_nopage_tlbl)
175 UASM_L_LA(_nopage_tlbs)
176 UASM_L_LA(_nopage_tlbm)
177 UASM_L_LA(_smp_pgtable_change)
178 UASM_L_LA(_r3000_write_probe_fail)
179 UASM_L_LA(_large_segbits_fault)
180 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
181 UASM_L_LA(_tlb_huge_update)
182 #endif
183 
184 static int __cpuinitdata hazard_instance;
185 
186 static void __cpuinit uasm_bgezl_hazard(u32 **p,
187 					struct uasm_reloc **r,
188 					int instance)
189 {
190 	switch (instance) {
191 	case 0 ... 7:
192 		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
193 		return;
194 	default:
195 		BUG();
196 	}
197 }
198 
199 static void __cpuinit uasm_bgezl_label(struct uasm_label **l,
200 				       u32 **p,
201 				       int instance)
202 {
203 	switch (instance) {
204 	case 0 ... 7:
205 		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
206 		break;
207 	default:
208 		BUG();
209 	}
210 }
211 
212 /*
213  * pgtable bits are assigned dynamically depending on processor feature
214  * and statically based on kernel configuration.  This spits out the actual
215  * values the kernel is using.  Required to make sense from disassembled
216  * TLB exception handlers.
217  */
218 static void output_pgtable_bits_defines(void)
219 {
220 #define pr_define(fmt, ...)					\
221 	pr_debug("#define " fmt, ##__VA_ARGS__)
222 
223 	pr_debug("#include <asm/asm.h>\n");
224 	pr_debug("#include <asm/regdef.h>\n");
225 	pr_debug("\n");
226 
227 	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
228 	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
229 	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
230 	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
231 	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
232 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
233 	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
234 	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
235 #endif
236 	if (cpu_has_rixi) {
237 #ifdef _PAGE_NO_EXEC_SHIFT
238 		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
239 #endif
240 #ifdef _PAGE_NO_READ_SHIFT
241 		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
242 #endif
243 	}
244 	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
245 	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
246 	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
247 	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
248 	pr_debug("\n");
249 }
250 
251 static inline void dump_handler(const char *symbol, const u32 *handler, int count)
252 {
253 	int i;
254 
255 	pr_debug("LEAF(%s)\n", symbol);
256 
257 	pr_debug("\t.set push\n");
258 	pr_debug("\t.set noreorder\n");
259 
260 	for (i = 0; i < count; i++)
261 		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
262 
263 	pr_debug("\t.set\tpop\n");
264 
265 	pr_debug("\tEND(%s)\n", symbol);
266 }
267 
268 /* The only general purpose registers allowed in TLB handlers. */
269 #define K0		26
270 #define K1		27
271 
272 /* Some CP0 registers */
273 #define C0_INDEX	0, 0
274 #define C0_ENTRYLO0	2, 0
275 #define C0_TCBIND	2, 2
276 #define C0_ENTRYLO1	3, 0
277 #define C0_CONTEXT	4, 0
278 #define C0_PAGEMASK	5, 0
279 #define C0_BADVADDR	8, 0
280 #define C0_ENTRYHI	10, 0
281 #define C0_EPC		14, 0
282 #define C0_XCONTEXT	20, 0
283 
284 #ifdef CONFIG_64BIT
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
286 #else
287 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 #endif
289 
290 /* The worst case length of the handler is around 18 instructions for
291  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
292  * Maximum space available is 32 instructions for R3000 and 64
293  * instructions for R4000.
294  *
295  * We deliberately chose a buffer size of 128, so we won't scribble
296  * over anything important on overflow before we panic.
297  */
298 static u32 tlb_handler[128] __cpuinitdata;
299 
300 /* simply assume worst case size for labels and relocs */
301 static struct uasm_label labels[128] __cpuinitdata;
302 static struct uasm_reloc relocs[128] __cpuinitdata;
303 
304 #ifdef CONFIG_64BIT
305 static int check_for_high_segbits __cpuinitdata;
306 #endif
307 
308 static int check_for_high_segbits __cpuinitdata;
309 
310 static unsigned int kscratch_used_mask __cpuinitdata;
311 
312 static int __cpuinit allocate_kscratch(void)
313 {
314 	int r;
315 	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
316 
317 	r = ffs(a);
318 
319 	if (r == 0)
320 		return -1;
321 
322 	r--; /* make it zero based */
323 
324 	kscratch_used_mask |= (1 << r);
325 
326 	return r;
327 }
328 
329 static int scratch_reg __cpuinitdata;
330 static int pgd_reg __cpuinitdata;
331 enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
332 
333 static struct work_registers __cpuinit build_get_work_registers(u32 **p)
334 {
335 	struct work_registers r;
336 
337 	int smp_processor_id_reg;
338 	int smp_processor_id_sel;
339 	int smp_processor_id_shift;
340 
341 	if (scratch_reg > 0) {
342 		/* Save in CPU local C0_KScratch? */
343 		UASM_i_MTC0(p, 1, 31, scratch_reg);
344 		r.r1 = K0;
345 		r.r2 = K1;
346 		r.r3 = 1;
347 		return r;
348 	}
349 
350 	if (num_possible_cpus() > 1) {
351 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
352 		smp_processor_id_shift = 51;
353 		smp_processor_id_reg = 20; /* XContext */
354 		smp_processor_id_sel = 0;
355 #else
356 # ifdef CONFIG_32BIT
357 		smp_processor_id_shift = 25;
358 		smp_processor_id_reg = 4; /* Context */
359 		smp_processor_id_sel = 0;
360 # endif
361 # ifdef CONFIG_64BIT
362 		smp_processor_id_shift = 26;
363 		smp_processor_id_reg = 4; /* Context */
364 		smp_processor_id_sel = 0;
365 # endif
366 #endif
367 		/* Get smp_processor_id */
368 		UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
369 		UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
370 
371 		/* handler_reg_save index in K0 */
372 		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
373 
374 		UASM_i_LA(p, K1, (long)&handler_reg_save);
375 		UASM_i_ADDU(p, K0, K0, K1);
376 	} else {
377 		UASM_i_LA(p, K0, (long)&handler_reg_save);
378 	}
379 	/* K0 now points to save area, save $1 and $2  */
380 	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
381 	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
382 
383 	r.r1 = K1;
384 	r.r2 = 1;
385 	r.r3 = 2;
386 	return r;
387 }
388 
389 static void __cpuinit build_restore_work_registers(u32 **p)
390 {
391 	if (scratch_reg > 0) {
392 		UASM_i_MFC0(p, 1, 31, scratch_reg);
393 		return;
394 	}
395 	/* K0 already points to save area, restore $1 and $2  */
396 	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
397 	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
398 }
399 
400 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
401 
402 /*
403  * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
404  * we cannot do r3000 under these circumstances.
405  *
406  * Declare pgd_current here instead of including mmu_context.h to avoid type
407  * conflicts for tlbmiss_handler_setup_pgd
408  */
409 extern unsigned long pgd_current[];
410 
411 /*
412  * The R3000 TLB handler is simple.
413  */
414 static void __cpuinit build_r3000_tlb_refill_handler(void)
415 {
416 	long pgdc = (long)pgd_current;
417 	u32 *p;
418 
419 	memset(tlb_handler, 0, sizeof(tlb_handler));
420 	p = tlb_handler;
421 
422 	uasm_i_mfc0(&p, K0, C0_BADVADDR);
423 	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
424 	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
425 	uasm_i_srl(&p, K0, K0, 22); /* load delay */
426 	uasm_i_sll(&p, K0, K0, 2);
427 	uasm_i_addu(&p, K1, K1, K0);
428 	uasm_i_mfc0(&p, K0, C0_CONTEXT);
429 	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
430 	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
431 	uasm_i_addu(&p, K1, K1, K0);
432 	uasm_i_lw(&p, K0, 0, K1);
433 	uasm_i_nop(&p); /* load delay */
434 	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
435 	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
436 	uasm_i_tlbwr(&p); /* cp0 delay */
437 	uasm_i_jr(&p, K1);
438 	uasm_i_rfe(&p); /* branch delay */
439 
440 	if (p > tlb_handler + 32)
441 		panic("TLB refill handler space exceeded");
442 
443 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
444 		 (unsigned int)(p - tlb_handler));
445 
446 	memcpy((void *)ebase, tlb_handler, 0x80);
447 
448 	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
449 }
450 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
451 
452 /*
453  * The R4000 TLB handler is much more complicated. We have two
454  * consecutive handler areas with 32 instructions space each.
455  * Since they aren't used at the same time, we can overflow in the
456  * other one.To keep things simple, we first assume linear space,
457  * then we relocate it to the final handler layout as needed.
458  */
459 static u32 final_handler[64] __cpuinitdata;
460 
461 /*
462  * Hazards
463  *
464  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
465  * 2. A timing hazard exists for the TLBP instruction.
466  *
467  *      stalling_instruction
468  *      TLBP
469  *
470  * The JTLB is being read for the TLBP throughout the stall generated by the
471  * previous instruction. This is not really correct as the stalling instruction
472  * can modify the address used to access the JTLB.  The failure symptom is that
473  * the TLBP instruction will use an address created for the stalling instruction
474  * and not the address held in C0_ENHI and thus report the wrong results.
475  *
476  * The software work-around is to not allow the instruction preceding the TLBP
477  * to stall - make it an NOP or some other instruction guaranteed not to stall.
478  *
479  * Errata 2 will not be fixed.  This errata is also on the R5000.
480  *
481  * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
482  */
483 static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
484 {
485 	switch (current_cpu_type()) {
486 	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
487 	case CPU_R4600:
488 	case CPU_R4700:
489 	case CPU_R5000:
490 	case CPU_NEVADA:
491 		uasm_i_nop(p);
492 		uasm_i_tlbp(p);
493 		break;
494 
495 	default:
496 		uasm_i_tlbp(p);
497 		break;
498 	}
499 }
500 
501 /*
502  * Write random or indexed TLB entry, and care about the hazards from
503  * the preceding mtc0 and for the following eret.
504  */
505 enum tlb_write_entry { tlb_random, tlb_indexed };
506 
507 static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
508 					 struct uasm_reloc **r,
509 					 enum tlb_write_entry wmode)
510 {
511 	void(*tlbw)(u32 **) = NULL;
512 
513 	switch (wmode) {
514 	case tlb_random: tlbw = uasm_i_tlbwr; break;
515 	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
516 	}
517 
518 	if (cpu_has_mips_r2) {
519 		/*
520 		 * The architecture spec says an ehb is required here,
521 		 * but a number of cores do not have the hazard and
522 		 * using an ehb causes an expensive pipeline stall.
523 		 */
524 		switch (current_cpu_type()) {
525 		case CPU_M14KC:
526 		case CPU_74K:
527 			break;
528 
529 		default:
530 			uasm_i_ehb(p);
531 			break;
532 		}
533 		tlbw(p);
534 		return;
535 	}
536 
537 	switch (current_cpu_type()) {
538 	case CPU_R4000PC:
539 	case CPU_R4000SC:
540 	case CPU_R4000MC:
541 	case CPU_R4400PC:
542 	case CPU_R4400SC:
543 	case CPU_R4400MC:
544 		/*
545 		 * This branch uses up a mtc0 hazard nop slot and saves
546 		 * two nops after the tlbw instruction.
547 		 */
548 		uasm_bgezl_hazard(p, r, hazard_instance);
549 		tlbw(p);
550 		uasm_bgezl_label(l, p, hazard_instance);
551 		hazard_instance++;
552 		uasm_i_nop(p);
553 		break;
554 
555 	case CPU_R4600:
556 	case CPU_R4700:
557 		uasm_i_nop(p);
558 		tlbw(p);
559 		uasm_i_nop(p);
560 		break;
561 
562 	case CPU_R5000:
563 	case CPU_NEVADA:
564 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
565 		uasm_i_nop(p); /* QED specifies 2 nops hazard */
566 		tlbw(p);
567 		break;
568 
569 	case CPU_R4300:
570 	case CPU_5KC:
571 	case CPU_TX49XX:
572 	case CPU_PR4450:
573 	case CPU_XLR:
574 		uasm_i_nop(p);
575 		tlbw(p);
576 		break;
577 
578 	case CPU_R10000:
579 	case CPU_R12000:
580 	case CPU_R14000:
581 	case CPU_4KC:
582 	case CPU_4KEC:
583 	case CPU_M14KC:
584 	case CPU_SB1:
585 	case CPU_SB1A:
586 	case CPU_4KSC:
587 	case CPU_20KC:
588 	case CPU_25KF:
589 	case CPU_BMIPS32:
590 	case CPU_BMIPS3300:
591 	case CPU_BMIPS4350:
592 	case CPU_BMIPS4380:
593 	case CPU_BMIPS5000:
594 	case CPU_LOONGSON2:
595 	case CPU_R5500:
596 		if (m4kc_tlbp_war())
597 			uasm_i_nop(p);
598 	case CPU_ALCHEMY:
599 		tlbw(p);
600 		break;
601 
602 	case CPU_RM7000:
603 		uasm_i_nop(p);
604 		uasm_i_nop(p);
605 		uasm_i_nop(p);
606 		uasm_i_nop(p);
607 		tlbw(p);
608 		break;
609 
610 	case CPU_VR4111:
611 	case CPU_VR4121:
612 	case CPU_VR4122:
613 	case CPU_VR4181:
614 	case CPU_VR4181A:
615 		uasm_i_nop(p);
616 		uasm_i_nop(p);
617 		tlbw(p);
618 		uasm_i_nop(p);
619 		uasm_i_nop(p);
620 		break;
621 
622 	case CPU_VR4131:
623 	case CPU_VR4133:
624 	case CPU_R5432:
625 		uasm_i_nop(p);
626 		uasm_i_nop(p);
627 		tlbw(p);
628 		break;
629 
630 	case CPU_JZRISC:
631 		tlbw(p);
632 		uasm_i_nop(p);
633 		break;
634 
635 	default:
636 		panic("No TLB refill handler yet (CPU type: %d)",
637 		      current_cpu_data.cputype);
638 		break;
639 	}
640 }
641 
642 static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
643 								  unsigned int reg)
644 {
645 	if (cpu_has_rixi) {
646 		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
647 	} else {
648 #ifdef CONFIG_64BIT_PHYS_ADDR
649 		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
650 #else
651 		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
652 #endif
653 	}
654 }
655 
656 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
657 
658 static __cpuinit void build_restore_pagemask(u32 **p,
659 					     struct uasm_reloc **r,
660 					     unsigned int tmp,
661 					     enum label_id lid,
662 					     int restore_scratch)
663 {
664 	if (restore_scratch) {
665 		/* Reset default page size */
666 		if (PM_DEFAULT_MASK >> 16) {
667 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
668 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
669 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
670 			uasm_il_b(p, r, lid);
671 		} else if (PM_DEFAULT_MASK) {
672 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
673 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
674 			uasm_il_b(p, r, lid);
675 		} else {
676 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
677 			uasm_il_b(p, r, lid);
678 		}
679 		if (scratch_reg > 0)
680 			UASM_i_MFC0(p, 1, 31, scratch_reg);
681 		else
682 			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
683 	} else {
684 		/* Reset default page size */
685 		if (PM_DEFAULT_MASK >> 16) {
686 			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
687 			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
688 			uasm_il_b(p, r, lid);
689 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
690 		} else if (PM_DEFAULT_MASK) {
691 			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
692 			uasm_il_b(p, r, lid);
693 			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
694 		} else {
695 			uasm_il_b(p, r, lid);
696 			uasm_i_mtc0(p, 0, C0_PAGEMASK);
697 		}
698 	}
699 }
700 
701 static __cpuinit void build_huge_tlb_write_entry(u32 **p,
702 						 struct uasm_label **l,
703 						 struct uasm_reloc **r,
704 						 unsigned int tmp,
705 						 enum tlb_write_entry wmode,
706 						 int restore_scratch)
707 {
708 	/* Set huge page tlb entry size */
709 	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
710 	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
711 	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
712 
713 	build_tlb_write_entry(p, l, r, wmode);
714 
715 	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
716 }
717 
718 /*
719  * Check if Huge PTE is present, if so then jump to LABEL.
720  */
721 static void __cpuinit
722 build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
723 		unsigned int pmd, int lid)
724 {
725 	UASM_i_LW(p, tmp, 0, pmd);
726 	if (use_bbit_insns()) {
727 		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
728 	} else {
729 		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
730 		uasm_il_bnez(p, r, tmp, lid);
731 	}
732 }
733 
734 static __cpuinit void build_huge_update_entries(u32 **p,
735 						unsigned int pte,
736 						unsigned int tmp)
737 {
738 	int small_sequence;
739 
740 	/*
741 	 * A huge PTE describes an area the size of the
742 	 * configured huge page size. This is twice the
743 	 * of the large TLB entry size we intend to use.
744 	 * A TLB entry half the size of the configured
745 	 * huge page size is configured into entrylo0
746 	 * and entrylo1 to cover the contiguous huge PTE
747 	 * address space.
748 	 */
749 	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
750 
751 	/* We can clobber tmp.  It isn't used after this.*/
752 	if (!small_sequence)
753 		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
754 
755 	build_convert_pte_to_entrylo(p, pte);
756 	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
757 	/* convert to entrylo1 */
758 	if (small_sequence)
759 		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
760 	else
761 		UASM_i_ADDU(p, pte, pte, tmp);
762 
763 	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
764 }
765 
766 static __cpuinit void build_huge_handler_tail(u32 **p,
767 					      struct uasm_reloc **r,
768 					      struct uasm_label **l,
769 					      unsigned int pte,
770 					      unsigned int ptr)
771 {
772 #ifdef CONFIG_SMP
773 	UASM_i_SC(p, pte, 0, ptr);
774 	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
775 	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
776 #else
777 	UASM_i_SW(p, pte, 0, ptr);
778 #endif
779 	build_huge_update_entries(p, pte, ptr);
780 	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
781 }
782 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
783 
784 #ifdef CONFIG_64BIT
785 /*
786  * TMP and PTR are scratch.
787  * TMP will be clobbered, PTR will hold the pmd entry.
788  */
789 static void __cpuinit
790 build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
791 		 unsigned int tmp, unsigned int ptr)
792 {
793 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
794 	long pgdc = (long)pgd_current;
795 #endif
796 	/*
797 	 * The vmalloc handling is not in the hotpath.
798 	 */
799 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
800 
801 	if (check_for_high_segbits) {
802 		/*
803 		 * The kernel currently implicitely assumes that the
804 		 * MIPS SEGBITS parameter for the processor is
805 		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
806 		 * allocate virtual addresses outside the maximum
807 		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
808 		 * that doesn't prevent user code from accessing the
809 		 * higher xuseg addresses.  Here, we make sure that
810 		 * everything but the lower xuseg addresses goes down
811 		 * the module_alloc/vmalloc path.
812 		 */
813 		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
814 		uasm_il_bnez(p, r, ptr, label_vmalloc);
815 	} else {
816 		uasm_il_bltz(p, r, tmp, label_vmalloc);
817 	}
818 	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
819 
820 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
821 	if (pgd_reg != -1) {
822 		/* pgd is in pgd_reg */
823 		UASM_i_MFC0(p, ptr, 31, pgd_reg);
824 	} else {
825 		/*
826 		 * &pgd << 11 stored in CONTEXT [23..63].
827 		 */
828 		UASM_i_MFC0(p, ptr, C0_CONTEXT);
829 
830 		/* Clear lower 23 bits of context. */
831 		uasm_i_dins(p, ptr, 0, 0, 23);
832 
833 		/* 1 0  1 0 1  << 6  xkphys cached */
834 		uasm_i_ori(p, ptr, ptr, 0x540);
835 		uasm_i_drotr(p, ptr, ptr, 11);
836 	}
837 #elif defined(CONFIG_SMP)
838 # ifdef  CONFIG_MIPS_MT_SMTC
839 	/*
840 	 * SMTC uses TCBind value as "CPU" index
841 	 */
842 	uasm_i_mfc0(p, ptr, C0_TCBIND);
843 	uasm_i_dsrl_safe(p, ptr, ptr, 19);
844 # else
845 	/*
846 	 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
847 	 * stored in CONTEXT.
848 	 */
849 	uasm_i_dmfc0(p, ptr, C0_CONTEXT);
850 	uasm_i_dsrl_safe(p, ptr, ptr, 23);
851 # endif
852 	UASM_i_LA_mostly(p, tmp, pgdc);
853 	uasm_i_daddu(p, ptr, ptr, tmp);
854 	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
855 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
856 #else
857 	UASM_i_LA_mostly(p, ptr, pgdc);
858 	uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
859 #endif
860 
861 	uasm_l_vmalloc_done(l, *p);
862 
863 	/* get pgd offset in bytes */
864 	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
865 
866 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
867 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
868 #ifndef __PAGETABLE_PMD_FOLDED
869 	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
870 	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
871 	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
872 	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
873 	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
874 #endif
875 }
876 
877 /*
878  * BVADDR is the faulting address, PTR is scratch.
879  * PTR will hold the pgd for vmalloc.
880  */
881 static void __cpuinit
882 build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
883 			unsigned int bvaddr, unsigned int ptr,
884 			enum vmalloc64_mode mode)
885 {
886 	long swpd = (long)swapper_pg_dir;
887 	int single_insn_swpd;
888 	int did_vmalloc_branch = 0;
889 
890 	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
891 
892 	uasm_l_vmalloc(l, *p);
893 
894 	if (mode != not_refill && check_for_high_segbits) {
895 		if (single_insn_swpd) {
896 			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
897 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
898 			did_vmalloc_branch = 1;
899 			/* fall through */
900 		} else {
901 			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
902 		}
903 	}
904 	if (!did_vmalloc_branch) {
905 		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
906 			uasm_il_b(p, r, label_vmalloc_done);
907 			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
908 		} else {
909 			UASM_i_LA_mostly(p, ptr, swpd);
910 			uasm_il_b(p, r, label_vmalloc_done);
911 			if (uasm_in_compat_space_p(swpd))
912 				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
913 			else
914 				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
915 		}
916 	}
917 	if (mode != not_refill && check_for_high_segbits) {
918 		uasm_l_large_segbits_fault(l, *p);
919 		/*
920 		 * We get here if we are an xsseg address, or if we are
921 		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
922 		 *
923 		 * Ignoring xsseg (assume disabled so would generate
924 		 * (address errors?), the only remaining possibility
925 		 * is the upper xuseg addresses.  On processors with
926 		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
927 		 * addresses would have taken an address error. We try
928 		 * to mimic that here by taking a load/istream page
929 		 * fault.
930 		 */
931 		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
932 		uasm_i_jr(p, ptr);
933 
934 		if (mode == refill_scratch) {
935 			if (scratch_reg > 0)
936 				UASM_i_MFC0(p, 1, 31, scratch_reg);
937 			else
938 				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
939 		} else {
940 			uasm_i_nop(p);
941 		}
942 	}
943 }
944 
945 #else /* !CONFIG_64BIT */
946 
947 /*
948  * TMP and PTR are scratch.
949  * TMP will be clobbered, PTR will hold the pgd entry.
950  */
951 static void __cpuinit __maybe_unused
952 build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
953 {
954 	long pgdc = (long)pgd_current;
955 
956 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
957 #ifdef CONFIG_SMP
958 #ifdef  CONFIG_MIPS_MT_SMTC
959 	/*
960 	 * SMTC uses TCBind value as "CPU" index
961 	 */
962 	uasm_i_mfc0(p, ptr, C0_TCBIND);
963 	UASM_i_LA_mostly(p, tmp, pgdc);
964 	uasm_i_srl(p, ptr, ptr, 19);
965 #else
966 	/*
967 	 * smp_processor_id() << 3 is stored in CONTEXT.
968          */
969 	uasm_i_mfc0(p, ptr, C0_CONTEXT);
970 	UASM_i_LA_mostly(p, tmp, pgdc);
971 	uasm_i_srl(p, ptr, ptr, 23);
972 #endif
973 	uasm_i_addu(p, ptr, tmp, ptr);
974 #else
975 	UASM_i_LA_mostly(p, ptr, pgdc);
976 #endif
977 	uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
978 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
979 
980 	if (cpu_has_mips_r2) {
981 		uasm_i_ext(p, tmp, tmp, PGDIR_SHIFT, (32 - PGDIR_SHIFT));
982 		uasm_i_ins(p, ptr, tmp, PGD_T_LOG2, (32 - PGDIR_SHIFT));
983 		return;
984 	}
985 
986 	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
987 	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
988 	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
989 }
990 
991 #endif /* !CONFIG_64BIT */
992 
993 static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
994 {
995 	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
996 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
997 
998 	switch (current_cpu_type()) {
999 	case CPU_VR41XX:
1000 	case CPU_VR4111:
1001 	case CPU_VR4121:
1002 	case CPU_VR4122:
1003 	case CPU_VR4131:
1004 	case CPU_VR4181:
1005 	case CPU_VR4181A:
1006 	case CPU_VR4133:
1007 		shift += 2;
1008 		break;
1009 
1010 	default:
1011 		break;
1012 	}
1013 
1014 	if (shift)
1015 		UASM_i_SRL(p, ctx, ctx, shift);
1016 	uasm_i_andi(p, ctx, ctx, mask);
1017 }
1018 
1019 static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
1020 {
1021 	if (cpu_has_mips_r2) {
1022 		/* PTE ptr offset is obtained from BadVAddr */
1023 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1024 		UASM_i_LW(p, ptr, 0, ptr);
1025 		uasm_i_ext(p, tmp, tmp, PAGE_SHIFT+1, PGDIR_SHIFT-PAGE_SHIFT-1);
1026 		uasm_i_ins(p, ptr, tmp, PTE_T_LOG2+1, PGDIR_SHIFT-PAGE_SHIFT-1);
1027 		return;
1028 	}
1029 
1030 	/*
1031 	 * Bug workaround for the Nevada. It seems as if under certain
1032 	 * circumstances the move from cp0_context might produce a
1033 	 * bogus result when the mfc0 instruction and its consumer are
1034 	 * in a different cacheline or a load instruction, probably any
1035 	 * memory reference, is between them.
1036 	 */
1037 	switch (current_cpu_type()) {
1038 	case CPU_NEVADA:
1039 		UASM_i_LW(p, ptr, 0, ptr);
1040 		GET_CONTEXT(p, tmp); /* get context reg */
1041 		break;
1042 
1043 	default:
1044 		GET_CONTEXT(p, tmp); /* get context reg */
1045 		UASM_i_LW(p, ptr, 0, ptr);
1046 		break;
1047 	}
1048 
1049 	build_adjust_context(p, tmp);
1050 	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1051 }
1052 
1053 static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
1054 					unsigned int ptep)
1055 {
1056 	/*
1057 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1058 	 * Kernel is a special case. Only a few CPUs use it.
1059 	 */
1060 #ifdef CONFIG_64BIT_PHYS_ADDR
1061 	if (cpu_has_64bits) {
1062 		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1063 		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1064 		if (cpu_has_rixi) {
1065 			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1066 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1067 			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1068 		} else {
1069 			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1070 			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1071 			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1072 		}
1073 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1074 	} else {
1075 		int pte_off_even = sizeof(pte_t) / 2;
1076 		int pte_off_odd = pte_off_even + sizeof(pte_t);
1077 
1078 		/* The pte entries are pre-shifted */
1079 		uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
1080 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1081 		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
1082 		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1083 	}
1084 #else
1085 	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1086 	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1087 	if (r45k_bvahwbug())
1088 		build_tlb_probe_entry(p);
1089 	if (cpu_has_rixi) {
1090 		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1091 		if (r4k_250MHZhwbug())
1092 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1093 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1094 		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1095 	} else {
1096 		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1097 		if (r4k_250MHZhwbug())
1098 			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1099 		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1100 		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1101 		if (r45k_bvahwbug())
1102 			uasm_i_mfc0(p, tmp, C0_INDEX);
1103 	}
1104 	if (r4k_250MHZhwbug())
1105 		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1106 	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1107 #endif
1108 }
1109 
1110 struct mips_huge_tlb_info {
1111 	int huge_pte;
1112 	int restore_scratch;
1113 };
1114 
1115 static struct mips_huge_tlb_info __cpuinit
1116 build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1117 			       struct uasm_reloc **r, unsigned int tmp,
1118 			       unsigned int ptr, int c0_scratch)
1119 {
1120 	struct mips_huge_tlb_info rv;
1121 	unsigned int even, odd;
1122 	int vmalloc_branch_delay_filled = 0;
1123 	const int scratch = 1; /* Our extra working register */
1124 
1125 	rv.huge_pte = scratch;
1126 	rv.restore_scratch = 0;
1127 
1128 	if (check_for_high_segbits) {
1129 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1130 
1131 		if (pgd_reg != -1)
1132 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1133 		else
1134 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1135 
1136 		if (c0_scratch >= 0)
1137 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1138 		else
1139 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1140 
1141 		uasm_i_dsrl_safe(p, scratch, tmp,
1142 				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1143 		uasm_il_bnez(p, r, scratch, label_vmalloc);
1144 
1145 		if (pgd_reg == -1) {
1146 			vmalloc_branch_delay_filled = 1;
1147 			/* Clear lower 23 bits of context. */
1148 			uasm_i_dins(p, ptr, 0, 0, 23);
1149 		}
1150 	} else {
1151 		if (pgd_reg != -1)
1152 			UASM_i_MFC0(p, ptr, 31, pgd_reg);
1153 		else
1154 			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1155 
1156 		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1157 
1158 		if (c0_scratch >= 0)
1159 			UASM_i_MTC0(p, scratch, 31, c0_scratch);
1160 		else
1161 			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1162 
1163 		if (pgd_reg == -1)
1164 			/* Clear lower 23 bits of context. */
1165 			uasm_i_dins(p, ptr, 0, 0, 23);
1166 
1167 		uasm_il_bltz(p, r, tmp, label_vmalloc);
1168 	}
1169 
1170 	if (pgd_reg == -1) {
1171 		vmalloc_branch_delay_filled = 1;
1172 		/* 1 0  1 0 1  << 6  xkphys cached */
1173 		uasm_i_ori(p, ptr, ptr, 0x540);
1174 		uasm_i_drotr(p, ptr, ptr, 11);
1175 	}
1176 
1177 #ifdef __PAGETABLE_PMD_FOLDED
1178 #define LOC_PTEP scratch
1179 #else
1180 #define LOC_PTEP ptr
1181 #endif
1182 
1183 	if (!vmalloc_branch_delay_filled)
1184 		/* get pgd offset in bytes */
1185 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1186 
1187 	uasm_l_vmalloc_done(l, *p);
1188 
1189 	/*
1190 	 *                         tmp          ptr
1191 	 * fall-through case =   badvaddr  *pgd_current
1192 	 * vmalloc case      =   badvaddr  swapper_pg_dir
1193 	 */
1194 
1195 	if (vmalloc_branch_delay_filled)
1196 		/* get pgd offset in bytes */
1197 		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1198 
1199 #ifdef __PAGETABLE_PMD_FOLDED
1200 	GET_CONTEXT(p, tmp); /* get context reg */
1201 #endif
1202 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1203 
1204 	if (use_lwx_insns()) {
1205 		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1206 	} else {
1207 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1208 		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1209 	}
1210 
1211 #ifndef __PAGETABLE_PMD_FOLDED
1212 	/* get pmd offset in bytes */
1213 	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1214 	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1215 	GET_CONTEXT(p, tmp); /* get context reg */
1216 
1217 	if (use_lwx_insns()) {
1218 		UASM_i_LWX(p, scratch, scratch, ptr);
1219 	} else {
1220 		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1221 		UASM_i_LW(p, scratch, 0, ptr);
1222 	}
1223 #endif
1224 	/* Adjust the context during the load latency. */
1225 	build_adjust_context(p, tmp);
1226 
1227 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1228 	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1229 	/*
1230 	 * The in the LWX case we don't want to do the load in the
1231 	 * delay slot.  It cannot issue in the same cycle and may be
1232 	 * speculative and unneeded.
1233 	 */
1234 	if (use_lwx_insns())
1235 		uasm_i_nop(p);
1236 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1237 
1238 
1239 	/* build_update_entries */
1240 	if (use_lwx_insns()) {
1241 		even = ptr;
1242 		odd = tmp;
1243 		UASM_i_LWX(p, even, scratch, tmp);
1244 		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1245 		UASM_i_LWX(p, odd, scratch, tmp);
1246 	} else {
1247 		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1248 		even = tmp;
1249 		odd = ptr;
1250 		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1251 		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1252 	}
1253 	if (cpu_has_rixi) {
1254 		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1255 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1256 		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1257 	} else {
1258 		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1259 		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1260 		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1261 	}
1262 	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1263 
1264 	if (c0_scratch >= 0) {
1265 		UASM_i_MFC0(p, scratch, 31, c0_scratch);
1266 		build_tlb_write_entry(p, l, r, tlb_random);
1267 		uasm_l_leave(l, *p);
1268 		rv.restore_scratch = 1;
1269 	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1270 		build_tlb_write_entry(p, l, r, tlb_random);
1271 		uasm_l_leave(l, *p);
1272 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1273 	} else {
1274 		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1275 		build_tlb_write_entry(p, l, r, tlb_random);
1276 		uasm_l_leave(l, *p);
1277 		rv.restore_scratch = 1;
1278 	}
1279 
1280 	uasm_i_eret(p); /* return from trap */
1281 
1282 	return rv;
1283 }
1284 
1285 /*
1286  * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1287  * because EXL == 0.  If we wrap, we can also use the 32 instruction
1288  * slots before the XTLB refill exception handler which belong to the
1289  * unused TLB refill exception.
1290  */
1291 #define MIPS64_REFILL_INSNS 32
1292 
1293 static void __cpuinit build_r4000_tlb_refill_handler(void)
1294 {
1295 	u32 *p = tlb_handler;
1296 	struct uasm_label *l = labels;
1297 	struct uasm_reloc *r = relocs;
1298 	u32 *f;
1299 	unsigned int final_len;
1300 	struct mips_huge_tlb_info htlb_info __maybe_unused;
1301 	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1302 
1303 	memset(tlb_handler, 0, sizeof(tlb_handler));
1304 	memset(labels, 0, sizeof(labels));
1305 	memset(relocs, 0, sizeof(relocs));
1306 	memset(final_handler, 0, sizeof(final_handler));
1307 
1308 	if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
1309 		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1310 							  scratch_reg);
1311 		vmalloc_mode = refill_scratch;
1312 	} else {
1313 		htlb_info.huge_pte = K0;
1314 		htlb_info.restore_scratch = 0;
1315 		vmalloc_mode = refill_noscratch;
1316 		/*
1317 		 * create the plain linear handler
1318 		 */
1319 		if (bcm1250_m3_war()) {
1320 			unsigned int segbits = 44;
1321 
1322 			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1323 			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1324 			uasm_i_xor(&p, K0, K0, K1);
1325 			uasm_i_dsrl_safe(&p, K1, K0, 62);
1326 			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1327 			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1328 			uasm_i_or(&p, K0, K0, K1);
1329 			uasm_il_bnez(&p, &r, K0, label_leave);
1330 			/* No need for uasm_i_nop */
1331 		}
1332 
1333 #ifdef CONFIG_64BIT
1334 		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1335 #else
1336 		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1337 #endif
1338 
1339 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1340 		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1341 #endif
1342 
1343 		build_get_ptep(&p, K0, K1);
1344 		build_update_entries(&p, K0, K1);
1345 		build_tlb_write_entry(&p, &l, &r, tlb_random);
1346 		uasm_l_leave(&l, p);
1347 		uasm_i_eret(&p); /* return from trap */
1348 	}
1349 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1350 	uasm_l_tlb_huge_update(&l, p);
1351 	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1352 	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1353 				   htlb_info.restore_scratch);
1354 #endif
1355 
1356 #ifdef CONFIG_64BIT
1357 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1358 #endif
1359 
1360 	/*
1361 	 * Overflow check: For the 64bit handler, we need at least one
1362 	 * free instruction slot for the wrap-around branch. In worst
1363 	 * case, if the intended insertion point is a delay slot, we
1364 	 * need three, with the second nop'ed and the third being
1365 	 * unused.
1366 	 */
1367 	/* Loongson2 ebase is different than r4k, we have more space */
1368 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1369 	if ((p - tlb_handler) > 64)
1370 		panic("TLB refill handler space exceeded");
1371 #else
1372 	if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1373 	    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1374 		&& uasm_insn_has_bdelay(relocs,
1375 					tlb_handler + MIPS64_REFILL_INSNS - 3)))
1376 		panic("TLB refill handler space exceeded");
1377 #endif
1378 
1379 	/*
1380 	 * Now fold the handler in the TLB refill handler space.
1381 	 */
1382 #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
1383 	f = final_handler;
1384 	/* Simplest case, just copy the handler. */
1385 	uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1386 	final_len = p - tlb_handler;
1387 #else /* CONFIG_64BIT */
1388 	f = final_handler + MIPS64_REFILL_INSNS;
1389 	if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1390 		/* Just copy the handler. */
1391 		uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1392 		final_len = p - tlb_handler;
1393 	} else {
1394 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1395 		const enum label_id ls = label_tlb_huge_update;
1396 #else
1397 		const enum label_id ls = label_vmalloc;
1398 #endif
1399 		u32 *split;
1400 		int ov = 0;
1401 		int i;
1402 
1403 		for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1404 			;
1405 		BUG_ON(i == ARRAY_SIZE(labels));
1406 		split = labels[i].addr;
1407 
1408 		/*
1409 		 * See if we have overflown one way or the other.
1410 		 */
1411 		if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1412 		    split < p - MIPS64_REFILL_INSNS)
1413 			ov = 1;
1414 
1415 		if (ov) {
1416 			/*
1417 			 * Split two instructions before the end.  One
1418 			 * for the branch and one for the instruction
1419 			 * in the delay slot.
1420 			 */
1421 			split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1422 
1423 			/*
1424 			 * If the branch would fall in a delay slot,
1425 			 * we must back up an additional instruction
1426 			 * so that it is no longer in a delay slot.
1427 			 */
1428 			if (uasm_insn_has_bdelay(relocs, split - 1))
1429 				split--;
1430 		}
1431 		/* Copy first part of the handler. */
1432 		uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1433 		f += split - tlb_handler;
1434 
1435 		if (ov) {
1436 			/* Insert branch. */
1437 			uasm_l_split(&l, final_handler);
1438 			uasm_il_b(&f, &r, label_split);
1439 			if (uasm_insn_has_bdelay(relocs, split))
1440 				uasm_i_nop(&f);
1441 			else {
1442 				uasm_copy_handler(relocs, labels,
1443 						  split, split + 1, f);
1444 				uasm_move_labels(labels, f, f + 1, -1);
1445 				f++;
1446 				split++;
1447 			}
1448 		}
1449 
1450 		/* Copy the rest of the handler. */
1451 		uasm_copy_handler(relocs, labels, split, p, final_handler);
1452 		final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1453 			    (p - split);
1454 	}
1455 #endif /* CONFIG_64BIT */
1456 
1457 	uasm_resolve_relocs(relocs, labels);
1458 	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1459 		 final_len);
1460 
1461 	memcpy((void *)ebase, final_handler, 0x100);
1462 
1463 	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1464 }
1465 
1466 /*
1467  * 128 instructions for the fastpath handler is generous and should
1468  * never be exceeded.
1469  */
1470 #define FASTPATH_SIZE 128
1471 
1472 u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
1473 u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
1474 u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
1475 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1476 u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
1477 
1478 static void __cpuinit build_r4000_setup_pgd(void)
1479 {
1480 	const int a0 = 4;
1481 	const int a1 = 5;
1482 	u32 *p = tlbmiss_handler_setup_pgd;
1483 	struct uasm_label *l = labels;
1484 	struct uasm_reloc *r = relocs;
1485 
1486 	memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
1487 	memset(labels, 0, sizeof(labels));
1488 	memset(relocs, 0, sizeof(relocs));
1489 
1490 	pgd_reg = allocate_kscratch();
1491 
1492 	if (pgd_reg == -1) {
1493 		/* PGD << 11 in c0_Context */
1494 		/*
1495 		 * If it is a ckseg0 address, convert to a physical
1496 		 * address.  Shifting right by 29 and adding 4 will
1497 		 * result in zero for these addresses.
1498 		 *
1499 		 */
1500 		UASM_i_SRA(&p, a1, a0, 29);
1501 		UASM_i_ADDIU(&p, a1, a1, 4);
1502 		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1503 		uasm_i_nop(&p);
1504 		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1505 		uasm_l_tlbl_goaround1(&l, p);
1506 		UASM_i_SLL(&p, a0, a0, 11);
1507 		uasm_i_jr(&p, 31);
1508 		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1509 	} else {
1510 		/* PGD in c0_KScratch */
1511 		uasm_i_jr(&p, 31);
1512 		UASM_i_MTC0(&p, a0, 31, pgd_reg);
1513 	}
1514 	if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
1515 		panic("tlbmiss_handler_setup_pgd space exceeded");
1516 	uasm_resolve_relocs(relocs, labels);
1517 	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1518 		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1519 
1520 	dump_handler("tlbmiss_handler",
1521 		     tlbmiss_handler_setup_pgd,
1522 		     ARRAY_SIZE(tlbmiss_handler_setup_pgd));
1523 }
1524 #endif
1525 
1526 static void __cpuinit
1527 iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1528 {
1529 #ifdef CONFIG_SMP
1530 # ifdef CONFIG_64BIT_PHYS_ADDR
1531 	if (cpu_has_64bits)
1532 		uasm_i_lld(p, pte, 0, ptr);
1533 	else
1534 # endif
1535 		UASM_i_LL(p, pte, 0, ptr);
1536 #else
1537 # ifdef CONFIG_64BIT_PHYS_ADDR
1538 	if (cpu_has_64bits)
1539 		uasm_i_ld(p, pte, 0, ptr);
1540 	else
1541 # endif
1542 		UASM_i_LW(p, pte, 0, ptr);
1543 #endif
1544 }
1545 
1546 static void __cpuinit
1547 iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1548 	unsigned int mode)
1549 {
1550 #ifdef CONFIG_64BIT_PHYS_ADDR
1551 	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1552 #endif
1553 
1554 	uasm_i_ori(p, pte, pte, mode);
1555 #ifdef CONFIG_SMP
1556 # ifdef CONFIG_64BIT_PHYS_ADDR
1557 	if (cpu_has_64bits)
1558 		uasm_i_scd(p, pte, 0, ptr);
1559 	else
1560 # endif
1561 		UASM_i_SC(p, pte, 0, ptr);
1562 
1563 	if (r10000_llsc_war())
1564 		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1565 	else
1566 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1567 
1568 # ifdef CONFIG_64BIT_PHYS_ADDR
1569 	if (!cpu_has_64bits) {
1570 		/* no uasm_i_nop needed */
1571 		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1572 		uasm_i_ori(p, pte, pte, hwmode);
1573 		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1574 		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1575 		/* no uasm_i_nop needed */
1576 		uasm_i_lw(p, pte, 0, ptr);
1577 	} else
1578 		uasm_i_nop(p);
1579 # else
1580 	uasm_i_nop(p);
1581 # endif
1582 #else
1583 # ifdef CONFIG_64BIT_PHYS_ADDR
1584 	if (cpu_has_64bits)
1585 		uasm_i_sd(p, pte, 0, ptr);
1586 	else
1587 # endif
1588 		UASM_i_SW(p, pte, 0, ptr);
1589 
1590 # ifdef CONFIG_64BIT_PHYS_ADDR
1591 	if (!cpu_has_64bits) {
1592 		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1593 		uasm_i_ori(p, pte, pte, hwmode);
1594 		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1595 		uasm_i_lw(p, pte, 0, ptr);
1596 	}
1597 # endif
1598 #endif
1599 }
1600 
1601 /*
1602  * Check if PTE is present, if not then jump to LABEL. PTR points to
1603  * the page table where this PTE is located, PTE will be re-loaded
1604  * with it's original value.
1605  */
1606 static void __cpuinit
1607 build_pte_present(u32 **p, struct uasm_reloc **r,
1608 		  int pte, int ptr, int scratch, enum label_id lid)
1609 {
1610 	int t = scratch >= 0 ? scratch : pte;
1611 
1612 	if (cpu_has_rixi) {
1613 		if (use_bbit_insns()) {
1614 			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1615 			uasm_i_nop(p);
1616 		} else {
1617 			uasm_i_andi(p, t, pte, _PAGE_PRESENT);
1618 			uasm_il_beqz(p, r, t, lid);
1619 			if (pte == t)
1620 				/* You lose the SMP race :-(*/
1621 				iPTE_LW(p, pte, ptr);
1622 		}
1623 	} else {
1624 		uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
1625 		uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
1626 		uasm_il_bnez(p, r, t, lid);
1627 		if (pte == t)
1628 			/* You lose the SMP race :-(*/
1629 			iPTE_LW(p, pte, ptr);
1630 	}
1631 }
1632 
1633 /* Make PTE valid, store result in PTR. */
1634 static void __cpuinit
1635 build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1636 		 unsigned int ptr)
1637 {
1638 	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1639 
1640 	iPTE_SW(p, r, pte, ptr, mode);
1641 }
1642 
1643 /*
1644  * Check if PTE can be written to, if not branch to LABEL. Regardless
1645  * restore PTE with value from PTR when done.
1646  */
1647 static void __cpuinit
1648 build_pte_writable(u32 **p, struct uasm_reloc **r,
1649 		   unsigned int pte, unsigned int ptr, int scratch,
1650 		   enum label_id lid)
1651 {
1652 	int t = scratch >= 0 ? scratch : pte;
1653 
1654 	uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
1655 	uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
1656 	uasm_il_bnez(p, r, t, lid);
1657 	if (pte == t)
1658 		/* You lose the SMP race :-(*/
1659 		iPTE_LW(p, pte, ptr);
1660 	else
1661 		uasm_i_nop(p);
1662 }
1663 
1664 /* Make PTE writable, update software status bits as well, then store
1665  * at PTR.
1666  */
1667 static void __cpuinit
1668 build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1669 		 unsigned int ptr)
1670 {
1671 	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1672 			     | _PAGE_DIRTY);
1673 
1674 	iPTE_SW(p, r, pte, ptr, mode);
1675 }
1676 
1677 /*
1678  * Check if PTE can be modified, if not branch to LABEL. Regardless
1679  * restore PTE with value from PTR when done.
1680  */
1681 static void __cpuinit
1682 build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1683 		     unsigned int pte, unsigned int ptr, int scratch,
1684 		     enum label_id lid)
1685 {
1686 	if (use_bbit_insns()) {
1687 		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1688 		uasm_i_nop(p);
1689 	} else {
1690 		int t = scratch >= 0 ? scratch : pte;
1691 		uasm_i_andi(p, t, pte, _PAGE_WRITE);
1692 		uasm_il_beqz(p, r, t, lid);
1693 		if (pte == t)
1694 			/* You lose the SMP race :-(*/
1695 			iPTE_LW(p, pte, ptr);
1696 	}
1697 }
1698 
1699 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1700 
1701 
1702 /*
1703  * R3000 style TLB load/store/modify handlers.
1704  */
1705 
1706 /*
1707  * This places the pte into ENTRYLO0 and writes it with tlbwi.
1708  * Then it returns.
1709  */
1710 static void __cpuinit
1711 build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1712 {
1713 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1714 	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1715 	uasm_i_tlbwi(p);
1716 	uasm_i_jr(p, tmp);
1717 	uasm_i_rfe(p); /* branch delay */
1718 }
1719 
1720 /*
1721  * This places the pte into ENTRYLO0 and writes it with tlbwi
1722  * or tlbwr as appropriate.  This is because the index register
1723  * may have the probe fail bit set as a result of a trap on a
1724  * kseg2 access, i.e. without refill.  Then it returns.
1725  */
1726 static void __cpuinit
1727 build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1728 			     struct uasm_reloc **r, unsigned int pte,
1729 			     unsigned int tmp)
1730 {
1731 	uasm_i_mfc0(p, tmp, C0_INDEX);
1732 	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1733 	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1734 	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1735 	uasm_i_tlbwi(p); /* cp0 delay */
1736 	uasm_i_jr(p, tmp);
1737 	uasm_i_rfe(p); /* branch delay */
1738 	uasm_l_r3000_write_probe_fail(l, *p);
1739 	uasm_i_tlbwr(p); /* cp0 delay */
1740 	uasm_i_jr(p, tmp);
1741 	uasm_i_rfe(p); /* branch delay */
1742 }
1743 
1744 static void __cpuinit
1745 build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1746 				   unsigned int ptr)
1747 {
1748 	long pgdc = (long)pgd_current;
1749 
1750 	uasm_i_mfc0(p, pte, C0_BADVADDR);
1751 	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1752 	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1753 	uasm_i_srl(p, pte, pte, 22); /* load delay */
1754 	uasm_i_sll(p, pte, pte, 2);
1755 	uasm_i_addu(p, ptr, ptr, pte);
1756 	uasm_i_mfc0(p, pte, C0_CONTEXT);
1757 	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1758 	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1759 	uasm_i_addu(p, ptr, ptr, pte);
1760 	uasm_i_lw(p, pte, 0, ptr);
1761 	uasm_i_tlbp(p); /* load delay */
1762 }
1763 
1764 static void __cpuinit build_r3000_tlb_load_handler(void)
1765 {
1766 	u32 *p = handle_tlbl;
1767 	struct uasm_label *l = labels;
1768 	struct uasm_reloc *r = relocs;
1769 
1770 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1771 	memset(labels, 0, sizeof(labels));
1772 	memset(relocs, 0, sizeof(relocs));
1773 
1774 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1775 	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1776 	uasm_i_nop(&p); /* load delay */
1777 	build_make_valid(&p, &r, K0, K1);
1778 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1779 
1780 	uasm_l_nopage_tlbl(&l, p);
1781 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1782 	uasm_i_nop(&p);
1783 
1784 	if ((p - handle_tlbl) > FASTPATH_SIZE)
1785 		panic("TLB load handler fastpath space exceeded");
1786 
1787 	uasm_resolve_relocs(relocs, labels);
1788 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1789 		 (unsigned int)(p - handle_tlbl));
1790 
1791 	dump_handler("r3000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
1792 }
1793 
1794 static void __cpuinit build_r3000_tlb_store_handler(void)
1795 {
1796 	u32 *p = handle_tlbs;
1797 	struct uasm_label *l = labels;
1798 	struct uasm_reloc *r = relocs;
1799 
1800 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
1801 	memset(labels, 0, sizeof(labels));
1802 	memset(relocs, 0, sizeof(relocs));
1803 
1804 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1805 	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1806 	uasm_i_nop(&p); /* load delay */
1807 	build_make_write(&p, &r, K0, K1);
1808 	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1809 
1810 	uasm_l_nopage_tlbs(&l, p);
1811 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1812 	uasm_i_nop(&p);
1813 
1814 	if ((p - handle_tlbs) > FASTPATH_SIZE)
1815 		panic("TLB store handler fastpath space exceeded");
1816 
1817 	uasm_resolve_relocs(relocs, labels);
1818 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1819 		 (unsigned int)(p - handle_tlbs));
1820 
1821 	dump_handler("r3000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
1822 }
1823 
1824 static void __cpuinit build_r3000_tlb_modify_handler(void)
1825 {
1826 	u32 *p = handle_tlbm;
1827 	struct uasm_label *l = labels;
1828 	struct uasm_reloc *r = relocs;
1829 
1830 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
1831 	memset(labels, 0, sizeof(labels));
1832 	memset(relocs, 0, sizeof(relocs));
1833 
1834 	build_r3000_tlbchange_handler_head(&p, K0, K1);
1835 	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1836 	uasm_i_nop(&p); /* load delay */
1837 	build_make_write(&p, &r, K0, K1);
1838 	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1839 
1840 	uasm_l_nopage_tlbm(&l, p);
1841 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1842 	uasm_i_nop(&p);
1843 
1844 	if ((p - handle_tlbm) > FASTPATH_SIZE)
1845 		panic("TLB modify handler fastpath space exceeded");
1846 
1847 	uasm_resolve_relocs(relocs, labels);
1848 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1849 		 (unsigned int)(p - handle_tlbm));
1850 
1851 	dump_handler("r3000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
1852 }
1853 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1854 
1855 /*
1856  * R4000 style TLB load/store/modify handlers.
1857  */
1858 static struct work_registers __cpuinit
1859 build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1860 				   struct uasm_reloc **r)
1861 {
1862 	struct work_registers wr = build_get_work_registers(p);
1863 
1864 #ifdef CONFIG_64BIT
1865 	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1866 #else
1867 	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1868 #endif
1869 
1870 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1871 	/*
1872 	 * For huge tlb entries, pmd doesn't contain an address but
1873 	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1874 	 * see if we need to jump to huge tlb processing.
1875 	 */
1876 	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1877 #endif
1878 
1879 	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1880 	UASM_i_LW(p, wr.r2, 0, wr.r2);
1881 	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1882 	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1883 	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1884 
1885 #ifdef CONFIG_SMP
1886 	uasm_l_smp_pgtable_change(l, *p);
1887 #endif
1888 	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1889 	if (!m4kc_tlbp_war())
1890 		build_tlb_probe_entry(p);
1891 	return wr;
1892 }
1893 
1894 static void __cpuinit
1895 build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1896 				   struct uasm_reloc **r, unsigned int tmp,
1897 				   unsigned int ptr)
1898 {
1899 	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1900 	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1901 	build_update_entries(p, tmp, ptr);
1902 	build_tlb_write_entry(p, l, r, tlb_indexed);
1903 	uasm_l_leave(l, *p);
1904 	build_restore_work_registers(p);
1905 	uasm_i_eret(p); /* return from trap */
1906 
1907 #ifdef CONFIG_64BIT
1908 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1909 #endif
1910 }
1911 
1912 static void __cpuinit build_r4000_tlb_load_handler(void)
1913 {
1914 	u32 *p = handle_tlbl;
1915 	struct uasm_label *l = labels;
1916 	struct uasm_reloc *r = relocs;
1917 	struct work_registers wr;
1918 
1919 	memset(handle_tlbl, 0, sizeof(handle_tlbl));
1920 	memset(labels, 0, sizeof(labels));
1921 	memset(relocs, 0, sizeof(relocs));
1922 
1923 	if (bcm1250_m3_war()) {
1924 		unsigned int segbits = 44;
1925 
1926 		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1927 		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1928 		uasm_i_xor(&p, K0, K0, K1);
1929 		uasm_i_dsrl_safe(&p, K1, K0, 62);
1930 		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1931 		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1932 		uasm_i_or(&p, K0, K0, K1);
1933 		uasm_il_bnez(&p, &r, K0, label_leave);
1934 		/* No need for uasm_i_nop */
1935 	}
1936 
1937 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1938 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1939 	if (m4kc_tlbp_war())
1940 		build_tlb_probe_entry(&p);
1941 
1942 	if (cpu_has_rixi) {
1943 		/*
1944 		 * If the page is not _PAGE_VALID, RI or XI could not
1945 		 * have triggered it.  Skip the expensive test..
1946 		 */
1947 		if (use_bbit_insns()) {
1948 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1949 				      label_tlbl_goaround1);
1950 		} else {
1951 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1952 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1953 		}
1954 		uasm_i_nop(&p);
1955 
1956 		uasm_i_tlbr(&p);
1957 		/* Examine  entrylo 0 or 1 based on ptr. */
1958 		if (use_bbit_insns()) {
1959 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1960 		} else {
1961 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1962 			uasm_i_beqz(&p, wr.r3, 8);
1963 		}
1964 		/* load it in the delay slot*/
1965 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1966 		/* load it if ptr is odd */
1967 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1968 		/*
1969 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1970 		 * XI must have triggered it.
1971 		 */
1972 		if (use_bbit_insns()) {
1973 			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
1974 			uasm_i_nop(&p);
1975 			uasm_l_tlbl_goaround1(&l, p);
1976 		} else {
1977 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
1978 			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
1979 			uasm_i_nop(&p);
1980 		}
1981 		uasm_l_tlbl_goaround1(&l, p);
1982 	}
1983 	build_make_valid(&p, &r, wr.r1, wr.r2);
1984 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
1985 
1986 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1987 	/*
1988 	 * This is the entry point when build_r4000_tlbchange_handler_head
1989 	 * spots a huge page.
1990 	 */
1991 	uasm_l_tlb_huge_update(&l, p);
1992 	iPTE_LW(&p, wr.r1, wr.r2);
1993 	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1994 	build_tlb_probe_entry(&p);
1995 
1996 	if (cpu_has_rixi) {
1997 		/*
1998 		 * If the page is not _PAGE_VALID, RI or XI could not
1999 		 * have triggered it.  Skip the expensive test..
2000 		 */
2001 		if (use_bbit_insns()) {
2002 			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2003 				      label_tlbl_goaround2);
2004 		} else {
2005 			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2006 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2007 		}
2008 		uasm_i_nop(&p);
2009 
2010 		uasm_i_tlbr(&p);
2011 		/* Examine  entrylo 0 or 1 based on ptr. */
2012 		if (use_bbit_insns()) {
2013 			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2014 		} else {
2015 			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2016 			uasm_i_beqz(&p, wr.r3, 8);
2017 		}
2018 		/* load it in the delay slot*/
2019 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2020 		/* load it if ptr is odd */
2021 		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2022 		/*
2023 		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2024 		 * XI must have triggered it.
2025 		 */
2026 		if (use_bbit_insns()) {
2027 			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2028 		} else {
2029 			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2030 			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2031 		}
2032 		if (PM_DEFAULT_MASK == 0)
2033 			uasm_i_nop(&p);
2034 		/*
2035 		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2036 		 * it is restored in build_huge_tlb_write_entry.
2037 		 */
2038 		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2039 
2040 		uasm_l_tlbl_goaround2(&l, p);
2041 	}
2042 	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2043 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2044 #endif
2045 
2046 	uasm_l_nopage_tlbl(&l, p);
2047 	build_restore_work_registers(&p);
2048 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2049 	uasm_i_nop(&p);
2050 
2051 	if ((p - handle_tlbl) > FASTPATH_SIZE)
2052 		panic("TLB load handler fastpath space exceeded");
2053 
2054 	uasm_resolve_relocs(relocs, labels);
2055 	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2056 		 (unsigned int)(p - handle_tlbl));
2057 
2058 	dump_handler("r4000_tlb_load", handle_tlbl, ARRAY_SIZE(handle_tlbl));
2059 }
2060 
2061 static void __cpuinit build_r4000_tlb_store_handler(void)
2062 {
2063 	u32 *p = handle_tlbs;
2064 	struct uasm_label *l = labels;
2065 	struct uasm_reloc *r = relocs;
2066 	struct work_registers wr;
2067 
2068 	memset(handle_tlbs, 0, sizeof(handle_tlbs));
2069 	memset(labels, 0, sizeof(labels));
2070 	memset(relocs, 0, sizeof(relocs));
2071 
2072 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2073 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2074 	if (m4kc_tlbp_war())
2075 		build_tlb_probe_entry(&p);
2076 	build_make_write(&p, &r, wr.r1, wr.r2);
2077 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2078 
2079 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2080 	/*
2081 	 * This is the entry point when
2082 	 * build_r4000_tlbchange_handler_head spots a huge page.
2083 	 */
2084 	uasm_l_tlb_huge_update(&l, p);
2085 	iPTE_LW(&p, wr.r1, wr.r2);
2086 	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2087 	build_tlb_probe_entry(&p);
2088 	uasm_i_ori(&p, wr.r1, wr.r1,
2089 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2090 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2091 #endif
2092 
2093 	uasm_l_nopage_tlbs(&l, p);
2094 	build_restore_work_registers(&p);
2095 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2096 	uasm_i_nop(&p);
2097 
2098 	if ((p - handle_tlbs) > FASTPATH_SIZE)
2099 		panic("TLB store handler fastpath space exceeded");
2100 
2101 	uasm_resolve_relocs(relocs, labels);
2102 	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2103 		 (unsigned int)(p - handle_tlbs));
2104 
2105 	dump_handler("r4000_tlb_store", handle_tlbs, ARRAY_SIZE(handle_tlbs));
2106 }
2107 
2108 static void __cpuinit build_r4000_tlb_modify_handler(void)
2109 {
2110 	u32 *p = handle_tlbm;
2111 	struct uasm_label *l = labels;
2112 	struct uasm_reloc *r = relocs;
2113 	struct work_registers wr;
2114 
2115 	memset(handle_tlbm, 0, sizeof(handle_tlbm));
2116 	memset(labels, 0, sizeof(labels));
2117 	memset(relocs, 0, sizeof(relocs));
2118 
2119 	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2120 	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2121 	if (m4kc_tlbp_war())
2122 		build_tlb_probe_entry(&p);
2123 	/* Present and writable bits set, set accessed and dirty bits. */
2124 	build_make_write(&p, &r, wr.r1, wr.r2);
2125 	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2126 
2127 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2128 	/*
2129 	 * This is the entry point when
2130 	 * build_r4000_tlbchange_handler_head spots a huge page.
2131 	 */
2132 	uasm_l_tlb_huge_update(&l, p);
2133 	iPTE_LW(&p, wr.r1, wr.r2);
2134 	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2135 	build_tlb_probe_entry(&p);
2136 	uasm_i_ori(&p, wr.r1, wr.r1,
2137 		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2138 	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2139 #endif
2140 
2141 	uasm_l_nopage_tlbm(&l, p);
2142 	build_restore_work_registers(&p);
2143 	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2144 	uasm_i_nop(&p);
2145 
2146 	if ((p - handle_tlbm) > FASTPATH_SIZE)
2147 		panic("TLB modify handler fastpath space exceeded");
2148 
2149 	uasm_resolve_relocs(relocs, labels);
2150 	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2151 		 (unsigned int)(p - handle_tlbm));
2152 
2153 	dump_handler("r4000_tlb_modify", handle_tlbm, ARRAY_SIZE(handle_tlbm));
2154 }
2155 
2156 void __cpuinit build_tlb_refill_handler(void)
2157 {
2158 	/*
2159 	 * The refill handler is generated per-CPU, multi-node systems
2160 	 * may have local storage for it. The other handlers are only
2161 	 * needed once.
2162 	 */
2163 	static int run_once = 0;
2164 
2165 	output_pgtable_bits_defines();
2166 
2167 #ifdef CONFIG_64BIT
2168 	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2169 #endif
2170 
2171 	switch (current_cpu_type()) {
2172 	case CPU_R2000:
2173 	case CPU_R3000:
2174 	case CPU_R3000A:
2175 	case CPU_R3081E:
2176 	case CPU_TX3912:
2177 	case CPU_TX3922:
2178 	case CPU_TX3927:
2179 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2180 		build_r3000_tlb_refill_handler();
2181 		if (!run_once) {
2182 			build_r3000_tlb_load_handler();
2183 			build_r3000_tlb_store_handler();
2184 			build_r3000_tlb_modify_handler();
2185 			run_once++;
2186 		}
2187 #else
2188 		panic("No R3000 TLB refill handler");
2189 #endif
2190 		break;
2191 
2192 	case CPU_R6000:
2193 	case CPU_R6000A:
2194 		panic("No R6000 TLB refill handler yet");
2195 		break;
2196 
2197 	case CPU_R8000:
2198 		panic("No R8000 TLB refill handler yet");
2199 		break;
2200 
2201 	default:
2202 		if (!run_once) {
2203 			scratch_reg = allocate_kscratch();
2204 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2205 			build_r4000_setup_pgd();
2206 #endif
2207 			build_r4000_tlb_load_handler();
2208 			build_r4000_tlb_store_handler();
2209 			build_r4000_tlb_modify_handler();
2210 			run_once++;
2211 		}
2212 		build_r4000_tlb_refill_handler();
2213 	}
2214 }
2215 
2216 void __cpuinit flush_tlb_handlers(void)
2217 {
2218 	local_flush_icache_range((unsigned long)handle_tlbl,
2219 			   (unsigned long)handle_tlbl + sizeof(handle_tlbl));
2220 	local_flush_icache_range((unsigned long)handle_tlbs,
2221 			   (unsigned long)handle_tlbs + sizeof(handle_tlbs));
2222 	local_flush_icache_range((unsigned long)handle_tlbm,
2223 			   (unsigned long)handle_tlbm + sizeof(handle_tlbm));
2224 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
2225 	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2226 			   (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
2227 #endif
2228 }
2229