1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 2000 Ralf Baechle 7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. 10 */ 11 #include <linux/bug.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/smp.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/highmem.h> 27 #include <linux/swap.h> 28 #include <linux/proc_fs.h> 29 #include <linux/pfn.h> 30 #include <linux/hardirq.h> 31 #include <linux/gfp.h> 32 #include <linux/kcore.h> 33 #include <linux/initrd.h> 34 35 #include <asm/bootinfo.h> 36 #include <asm/cachectl.h> 37 #include <asm/cpu.h> 38 #include <asm/dma.h> 39 #include <asm/maar.h> 40 #include <asm/mmu_context.h> 41 #include <asm/mmzone.h> 42 #include <asm/sections.h> 43 #include <asm/pgalloc.h> 44 #include <asm/tlb.h> 45 #include <asm/fixmap.h> 46 47 /* 48 * We have up to 8 empty zeroed pages so we can map one of the right colour 49 * when needed. This is necessary only on R4000 / R4400 SC and MC versions 50 * where we have to avoid VCED / VECI exceptions for good performance at 51 * any price. Since page is never written to after the initialization we 52 * don't have to care about aliases on other CPUs. 53 */ 54 unsigned long empty_zero_page, zero_page_mask; 55 EXPORT_SYMBOL_GPL(empty_zero_page); 56 EXPORT_SYMBOL(zero_page_mask); 57 58 /* 59 * Not static inline because used by IP27 special magic initialization code 60 */ 61 void setup_zero_pages(void) 62 { 63 unsigned int order, i; 64 struct page *page; 65 66 if (cpu_has_vce) 67 order = 3; 68 else 69 order = 0; 70 71 empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 72 if (!empty_zero_page) 73 panic("Oh boy, that early out of memory?"); 74 75 page = virt_to_page((void *)empty_zero_page); 76 split_page(page, order); 77 for (i = 0; i < (1 << order); i++, page++) 78 mark_page_reserved(page); 79 80 zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; 81 } 82 83 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) 84 { 85 enum fixed_addresses idx; 86 unsigned int old_mmid; 87 unsigned long vaddr, flags, entrylo; 88 unsigned long old_ctx; 89 pte_t pte; 90 int tlbidx; 91 92 BUG_ON(folio_test_dcache_dirty(page_folio(page))); 93 94 preempt_disable(); 95 pagefault_disable(); 96 idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); 97 idx += in_interrupt() ? FIX_N_COLOURS : 0; 98 vaddr = __fix_to_virt(FIX_CMAP_END - idx); 99 pte = mk_pte(page, prot); 100 #if defined(CONFIG_XPA) 101 entrylo = pte_to_entrylo(pte.pte_high); 102 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 103 entrylo = pte.pte_high; 104 #else 105 entrylo = pte_to_entrylo(pte_val(pte)); 106 #endif 107 108 local_irq_save(flags); 109 old_ctx = read_c0_entryhi(); 110 write_c0_entryhi(vaddr & (PAGE_MASK << 1)); 111 write_c0_entrylo0(entrylo); 112 write_c0_entrylo1(entrylo); 113 if (cpu_has_mmid) { 114 old_mmid = read_c0_memorymapid(); 115 write_c0_memorymapid(MMID_KERNEL_WIRED); 116 } 117 #ifdef CONFIG_XPA 118 if (cpu_has_xpa) { 119 entrylo = (pte.pte_low & _PFNX_MASK); 120 writex_c0_entrylo0(entrylo); 121 writex_c0_entrylo1(entrylo); 122 } 123 #endif 124 tlbidx = num_wired_entries(); 125 write_c0_wired(tlbidx + 1); 126 write_c0_index(tlbidx); 127 mtc0_tlbw_hazard(); 128 tlb_write_indexed(); 129 tlbw_use_hazard(); 130 write_c0_entryhi(old_ctx); 131 if (cpu_has_mmid) 132 write_c0_memorymapid(old_mmid); 133 local_irq_restore(flags); 134 135 return (void*) vaddr; 136 } 137 138 void *kmap_coherent(struct page *page, unsigned long addr) 139 { 140 return __kmap_pgprot(page, addr, PAGE_KERNEL); 141 } 142 143 void *kmap_noncoherent(struct page *page, unsigned long addr) 144 { 145 return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); 146 } 147 148 void kunmap_coherent(void) 149 { 150 unsigned int wired; 151 unsigned long flags, old_ctx; 152 153 local_irq_save(flags); 154 old_ctx = read_c0_entryhi(); 155 wired = num_wired_entries() - 1; 156 write_c0_wired(wired); 157 write_c0_index(wired); 158 write_c0_entryhi(UNIQUE_ENTRYHI(wired)); 159 write_c0_entrylo0(0); 160 write_c0_entrylo1(0); 161 mtc0_tlbw_hazard(); 162 tlb_write_indexed(); 163 tlbw_use_hazard(); 164 write_c0_entryhi(old_ctx); 165 local_irq_restore(flags); 166 pagefault_enable(); 167 preempt_enable(); 168 } 169 170 void copy_user_highpage(struct page *to, struct page *from, 171 unsigned long vaddr, struct vm_area_struct *vma) 172 { 173 struct folio *src = page_folio(from); 174 void *vfrom, *vto; 175 176 vto = kmap_atomic(to); 177 if (cpu_has_dc_aliases && 178 folio_mapped(src) && !folio_test_dcache_dirty(src)) { 179 vfrom = kmap_coherent(from, vaddr); 180 copy_page(vto, vfrom); 181 kunmap_coherent(); 182 } else { 183 vfrom = kmap_atomic(from); 184 copy_page(vto, vfrom); 185 kunmap_atomic(vfrom); 186 } 187 if ((!cpu_has_ic_fills_f_dc) || 188 pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) 189 flush_data_cache_page((unsigned long)vto); 190 kunmap_atomic(vto); 191 /* Make sure this page is cleared on other CPU's too before using it */ 192 smp_wmb(); 193 } 194 195 void copy_to_user_page(struct vm_area_struct *vma, 196 struct page *page, unsigned long vaddr, void *dst, const void *src, 197 unsigned long len) 198 { 199 struct folio *folio = page_folio(page); 200 201 if (cpu_has_dc_aliases && 202 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 203 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 204 memcpy(vto, src, len); 205 kunmap_coherent(); 206 } else { 207 memcpy(dst, src, len); 208 if (cpu_has_dc_aliases) 209 folio_set_dcache_dirty(folio); 210 } 211 if (vma->vm_flags & VM_EXEC) 212 flush_cache_page(vma, vaddr, page_to_pfn(page)); 213 } 214 215 void copy_from_user_page(struct vm_area_struct *vma, 216 struct page *page, unsigned long vaddr, void *dst, const void *src, 217 unsigned long len) 218 { 219 struct folio *folio = page_folio(page); 220 221 if (cpu_has_dc_aliases && 222 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 223 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 224 memcpy(dst, vfrom, len); 225 kunmap_coherent(); 226 } else { 227 memcpy(dst, src, len); 228 if (cpu_has_dc_aliases) 229 folio_set_dcache_dirty(folio); 230 } 231 } 232 EXPORT_SYMBOL_GPL(copy_from_user_page); 233 234 void __init fixrange_init(unsigned long start, unsigned long end, 235 pgd_t *pgd_base) 236 { 237 #ifdef CONFIG_HIGHMEM 238 pgd_t *pgd; 239 pud_t *pud; 240 pmd_t *pmd; 241 pte_t *pte; 242 int i, j, k; 243 unsigned long vaddr; 244 245 vaddr = start; 246 i = pgd_index(vaddr); 247 j = pud_index(vaddr); 248 k = pmd_index(vaddr); 249 pgd = pgd_base + i; 250 251 for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { 252 pud = (pud_t *)pgd; 253 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { 254 pmd = (pmd_t *)pud; 255 for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { 256 if (pmd_none(*pmd)) { 257 pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, 258 PAGE_SIZE); 259 if (!pte) 260 panic("%s: Failed to allocate %lu bytes align=%lx\n", 261 __func__, PAGE_SIZE, 262 PAGE_SIZE); 263 264 set_pmd(pmd, __pmd((unsigned long)pte)); 265 BUG_ON(pte != pte_offset_kernel(pmd, 0)); 266 } 267 vaddr += PMD_SIZE; 268 } 269 k = 0; 270 } 271 j = 0; 272 } 273 #endif 274 } 275 276 struct maar_walk_info { 277 struct maar_config cfg[16]; 278 unsigned int num_cfg; 279 }; 280 281 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, 282 void *data) 283 { 284 struct maar_walk_info *wi = data; 285 struct maar_config *cfg = &wi->cfg[wi->num_cfg]; 286 unsigned int maar_align; 287 288 /* MAAR registers hold physical addresses right shifted by 4 bits */ 289 maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); 290 291 /* Fill in the MAAR config entry */ 292 cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); 293 cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; 294 cfg->attrs = MIPS_MAAR_S; 295 296 /* Ensure we don't overflow the cfg array */ 297 if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) 298 wi->num_cfg++; 299 300 return 0; 301 } 302 303 304 unsigned __weak platform_maar_init(unsigned num_pairs) 305 { 306 unsigned int num_configured; 307 struct maar_walk_info wi; 308 309 wi.num_cfg = 0; 310 walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); 311 312 num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); 313 if (num_configured < wi.num_cfg) 314 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", 315 num_pairs, wi.num_cfg); 316 317 return num_configured; 318 } 319 320 void maar_init(void) 321 { 322 unsigned num_maars, used, i; 323 phys_addr_t lower, upper, attr; 324 static struct { 325 struct maar_config cfgs[3]; 326 unsigned used; 327 } recorded = { { { 0 } }, 0 }; 328 329 if (!cpu_has_maar) 330 return; 331 332 /* Detect the number of MAARs */ 333 write_c0_maari(~0); 334 back_to_back_c0_hazard(); 335 num_maars = read_c0_maari() + 1; 336 337 /* MAARs should be in pairs */ 338 WARN_ON(num_maars % 2); 339 340 /* Set MAARs using values we recorded already */ 341 if (recorded.used) { 342 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); 343 BUG_ON(used != recorded.used); 344 } else { 345 /* Configure the required MAARs */ 346 used = platform_maar_init(num_maars / 2); 347 } 348 349 /* Disable any further MAARs */ 350 for (i = (used * 2); i < num_maars; i++) { 351 write_c0_maari(i); 352 back_to_back_c0_hazard(); 353 write_c0_maar(0); 354 back_to_back_c0_hazard(); 355 } 356 357 if (recorded.used) 358 return; 359 360 pr_info("MAAR configuration:\n"); 361 for (i = 0; i < num_maars; i += 2) { 362 write_c0_maari(i); 363 back_to_back_c0_hazard(); 364 upper = read_c0_maar(); 365 #ifdef CONFIG_XPA 366 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 367 #endif 368 369 write_c0_maari(i + 1); 370 back_to_back_c0_hazard(); 371 lower = read_c0_maar(); 372 #ifdef CONFIG_XPA 373 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 374 #endif 375 376 attr = lower & upper; 377 lower = (lower & MIPS_MAAR_ADDR) << 4; 378 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; 379 380 pr_info(" [%d]: ", i / 2); 381 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) { 382 pr_cont("disabled\n"); 383 continue; 384 } 385 386 pr_cont("%pa-%pa", &lower, &upper); 387 388 if (attr & MIPS_MAAR_S) 389 pr_cont(" speculate"); 390 391 pr_cont("\n"); 392 393 /* Record the setup for use on secondary CPUs */ 394 if (used <= ARRAY_SIZE(recorded.cfgs)) { 395 recorded.cfgs[recorded.used].lower = lower; 396 recorded.cfgs[recorded.used].upper = upper; 397 recorded.cfgs[recorded.used].attrs = attr; 398 recorded.used++; 399 } 400 } 401 } 402 403 #ifndef CONFIG_NUMA 404 void __init paging_init(void) 405 { 406 unsigned long max_zone_pfns[MAX_NR_ZONES]; 407 408 pagetable_init(); 409 410 #ifdef CONFIG_ZONE_DMA 411 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 412 #endif 413 #ifdef CONFIG_ZONE_DMA32 414 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 415 #endif 416 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 417 #ifdef CONFIG_HIGHMEM 418 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; 419 420 if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { 421 printk(KERN_WARNING "This processor doesn't support highmem." 422 " %ldk highmem ignored\n", 423 (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); 424 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; 425 426 max_mapnr = max_low_pfn; 427 } else if (highend_pfn) { 428 max_mapnr = highend_pfn; 429 } else { 430 max_mapnr = max_low_pfn; 431 } 432 #else 433 max_mapnr = max_low_pfn; 434 #endif 435 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); 436 437 free_area_init(max_zone_pfns); 438 } 439 440 #ifdef CONFIG_64BIT 441 static struct kcore_list kcore_kseg0; 442 #endif 443 444 static inline void __init mem_init_free_highmem(void) 445 { 446 #ifdef CONFIG_HIGHMEM 447 unsigned long tmp; 448 449 if (cpu_has_dc_aliases) 450 return; 451 452 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { 453 struct page *page = pfn_to_page(tmp); 454 455 if (!memblock_is_memory(PFN_PHYS(tmp))) 456 SetPageReserved(page); 457 else 458 free_highmem_page(page); 459 } 460 #endif 461 } 462 463 void __init mem_init(void) 464 { 465 /* 466 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE 467 * bits to hold a full 32b physical address on MIPS32 systems. 468 */ 469 BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT)); 470 471 maar_init(); 472 memblock_free_all(); 473 setup_zero_pages(); /* Setup zeroed pages. */ 474 mem_init_free_highmem(); 475 476 #ifdef CONFIG_64BIT 477 if ((unsigned long) &_text > (unsigned long) CKSEG0) 478 /* The -4 is a hack so that user tools don't have to handle 479 the overflow. */ 480 kclist_add(&kcore_kseg0, (void *) CKSEG0, 481 0x80000000 - 4, KCORE_TEXT); 482 #endif 483 } 484 #endif /* !CONFIG_NUMA */ 485 486 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 487 { 488 unsigned long pfn; 489 490 for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { 491 struct page *page = pfn_to_page(pfn); 492 void *addr = phys_to_virt(PFN_PHYS(pfn)); 493 494 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); 495 free_reserved_page(page); 496 } 497 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 498 } 499 500 void (*free_init_pages_eva)(void *begin, void *end) = NULL; 501 502 void __weak __init prom_free_prom_memory(void) 503 { 504 /* nothing to do */ 505 } 506 507 void __ref free_initmem(void) 508 { 509 prom_free_prom_memory(); 510 /* 511 * Let the platform define a specific function to free the 512 * init section since EVA may have used any possible mapping 513 * between virtual and physical addresses. 514 */ 515 if (free_init_pages_eva) 516 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); 517 else 518 free_initmem_default(POISON_FREE_INITMEM); 519 } 520 521 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA 522 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 523 EXPORT_SYMBOL(__per_cpu_offset); 524 525 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 526 { 527 return node_distance(cpu_to_node(from), cpu_to_node(to)); 528 } 529 530 static int __init pcpu_cpu_to_node(int cpu) 531 { 532 return cpu_to_node(cpu); 533 } 534 535 void __init setup_per_cpu_areas(void) 536 { 537 unsigned long delta; 538 unsigned int cpu; 539 int rc; 540 541 /* 542 * Always reserve area for module percpu variables. That's 543 * what the legacy allocator did. 544 */ 545 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 546 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, 547 pcpu_cpu_distance, 548 pcpu_cpu_to_node); 549 if (rc < 0) 550 panic("Failed to initialize percpu areas."); 551 552 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 553 for_each_possible_cpu(cpu) 554 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 555 } 556 #endif 557 558 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 559 unsigned long pgd_current[NR_CPUS]; 560 #endif 561 562 /* 563 * Align swapper_pg_dir in to 64K, allows its address to be loaded 564 * with a single LUI instruction in the TLB handlers. If we used 565 * __aligned(64K), its size would get rounded up to the alignment 566 * size, and waste space. So we place it in its own section and align 567 * it in the linker script. 568 */ 569 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir"); 570 #ifndef __PAGETABLE_PUD_FOLDED 571 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; 572 #endif 573 #ifndef __PAGETABLE_PMD_FOLDED 574 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; 575 EXPORT_SYMBOL_GPL(invalid_pmd_table); 576 #endif 577 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; 578 EXPORT_SYMBOL(invalid_pte_table); 579