1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 2000 Ralf Baechle 7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. 10 */ 11 #include <linux/bug.h> 12 #include <linux/init.h> 13 #include <linux/export.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/smp.h> 17 #include <linux/kernel.h> 18 #include <linux/errno.h> 19 #include <linux/string.h> 20 #include <linux/types.h> 21 #include <linux/pagemap.h> 22 #include <linux/ptrace.h> 23 #include <linux/mman.h> 24 #include <linux/mm.h> 25 #include <linux/memblock.h> 26 #include <linux/highmem.h> 27 #include <linux/swap.h> 28 #include <linux/proc_fs.h> 29 #include <linux/pfn.h> 30 #include <linux/hardirq.h> 31 #include <linux/gfp.h> 32 #include <linux/kcore.h> 33 #include <linux/initrd.h> 34 #include <linux/execmem.h> 35 36 #include <asm/bootinfo.h> 37 #include <asm/cachectl.h> 38 #include <asm/cpu.h> 39 #include <asm/dma.h> 40 #include <asm/maar.h> 41 #include <asm/mmu_context.h> 42 #include <asm/mmzone.h> 43 #include <asm/sections.h> 44 #include <asm/pgalloc.h> 45 #include <asm/tlb.h> 46 #include <asm/fixmap.h> 47 48 /* 49 * We have up to 8 empty zeroed pages so we can map one of the right colour 50 * when needed. This is necessary only on R4000 / R4400 SC and MC versions 51 * where we have to avoid VCED / VECI exceptions for good performance at 52 * any price. Since page is never written to after the initialization we 53 * don't have to care about aliases on other CPUs. 54 */ 55 unsigned long empty_zero_page, zero_page_mask; 56 EXPORT_SYMBOL_GPL(empty_zero_page); 57 EXPORT_SYMBOL(zero_page_mask); 58 59 /* 60 * Not static inline because used by IP27 special magic initialization code 61 */ 62 void setup_zero_pages(void) 63 { 64 unsigned int order, i; 65 struct page *page; 66 67 if (cpu_has_vce) 68 order = 3; 69 else 70 order = 0; 71 72 empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order); 73 if (!empty_zero_page) 74 panic("Oh boy, that early out of memory?"); 75 76 page = virt_to_page((void *)empty_zero_page); 77 split_page(page, order); 78 for (i = 0; i < (1 << order); i++, page++) 79 mark_page_reserved(page); 80 81 zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK; 82 } 83 84 static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot) 85 { 86 enum fixed_addresses idx; 87 unsigned int old_mmid; 88 unsigned long vaddr, flags, entrylo; 89 unsigned long old_ctx; 90 pte_t pte; 91 int tlbidx; 92 93 BUG_ON(folio_test_dcache_dirty(page_folio(page))); 94 95 preempt_disable(); 96 pagefault_disable(); 97 idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1); 98 idx += in_interrupt() ? FIX_N_COLOURS : 0; 99 vaddr = __fix_to_virt(FIX_CMAP_END - idx); 100 pte = mk_pte(page, prot); 101 #if defined(CONFIG_XPA) 102 entrylo = pte_to_entrylo(pte.pte_high); 103 #elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) 104 entrylo = pte.pte_high; 105 #else 106 entrylo = pte_to_entrylo(pte_val(pte)); 107 #endif 108 109 local_irq_save(flags); 110 old_ctx = read_c0_entryhi(); 111 write_c0_entryhi(vaddr & (PAGE_MASK << 1)); 112 write_c0_entrylo0(entrylo); 113 write_c0_entrylo1(entrylo); 114 if (cpu_has_mmid) { 115 old_mmid = read_c0_memorymapid(); 116 write_c0_memorymapid(MMID_KERNEL_WIRED); 117 } 118 #ifdef CONFIG_XPA 119 if (cpu_has_xpa) { 120 entrylo = (pte.pte_low & _PFNX_MASK); 121 writex_c0_entrylo0(entrylo); 122 writex_c0_entrylo1(entrylo); 123 } 124 #endif 125 tlbidx = num_wired_entries(); 126 write_c0_wired(tlbidx + 1); 127 write_c0_index(tlbidx); 128 mtc0_tlbw_hazard(); 129 tlb_write_indexed(); 130 tlbw_use_hazard(); 131 write_c0_entryhi(old_ctx); 132 if (cpu_has_mmid) 133 write_c0_memorymapid(old_mmid); 134 local_irq_restore(flags); 135 136 return (void*) vaddr; 137 } 138 139 void *kmap_coherent(struct page *page, unsigned long addr) 140 { 141 return __kmap_pgprot(page, addr, PAGE_KERNEL); 142 } 143 144 void *kmap_noncoherent(struct page *page, unsigned long addr) 145 { 146 return __kmap_pgprot(page, addr, PAGE_KERNEL_NC); 147 } 148 149 void kunmap_coherent(void) 150 { 151 unsigned int wired; 152 unsigned long flags, old_ctx; 153 154 local_irq_save(flags); 155 old_ctx = read_c0_entryhi(); 156 wired = num_wired_entries() - 1; 157 write_c0_wired(wired); 158 write_c0_index(wired); 159 write_c0_entryhi(UNIQUE_ENTRYHI(wired)); 160 write_c0_entrylo0(0); 161 write_c0_entrylo1(0); 162 mtc0_tlbw_hazard(); 163 tlb_write_indexed(); 164 tlbw_use_hazard(); 165 write_c0_entryhi(old_ctx); 166 local_irq_restore(flags); 167 pagefault_enable(); 168 preempt_enable(); 169 } 170 171 void copy_user_highpage(struct page *to, struct page *from, 172 unsigned long vaddr, struct vm_area_struct *vma) 173 { 174 struct folio *src = page_folio(from); 175 void *vfrom, *vto; 176 177 vto = kmap_atomic(to); 178 if (cpu_has_dc_aliases && 179 folio_mapped(src) && !folio_test_dcache_dirty(src)) { 180 vfrom = kmap_coherent(from, vaddr); 181 copy_page(vto, vfrom); 182 kunmap_coherent(); 183 } else { 184 vfrom = kmap_atomic(from); 185 copy_page(vto, vfrom); 186 kunmap_atomic(vfrom); 187 } 188 if ((!cpu_has_ic_fills_f_dc) || 189 pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK)) 190 flush_data_cache_page((unsigned long)vto); 191 kunmap_atomic(vto); 192 /* Make sure this page is cleared on other CPU's too before using it */ 193 smp_wmb(); 194 } 195 196 void copy_to_user_page(struct vm_area_struct *vma, 197 struct page *page, unsigned long vaddr, void *dst, const void *src, 198 unsigned long len) 199 { 200 struct folio *folio = page_folio(page); 201 202 if (cpu_has_dc_aliases && 203 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 204 void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 205 memcpy(vto, src, len); 206 kunmap_coherent(); 207 } else { 208 memcpy(dst, src, len); 209 if (cpu_has_dc_aliases) 210 folio_set_dcache_dirty(folio); 211 } 212 if (vma->vm_flags & VM_EXEC) 213 flush_cache_page(vma, vaddr, page_to_pfn(page)); 214 } 215 216 void copy_from_user_page(struct vm_area_struct *vma, 217 struct page *page, unsigned long vaddr, void *dst, const void *src, 218 unsigned long len) 219 { 220 struct folio *folio = page_folio(page); 221 222 if (cpu_has_dc_aliases && 223 folio_mapped(folio) && !folio_test_dcache_dirty(folio)) { 224 void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK); 225 memcpy(dst, vfrom, len); 226 kunmap_coherent(); 227 } else { 228 memcpy(dst, src, len); 229 if (cpu_has_dc_aliases) 230 folio_set_dcache_dirty(folio); 231 } 232 } 233 EXPORT_SYMBOL_GPL(copy_from_user_page); 234 235 void __init fixrange_init(unsigned long start, unsigned long end, 236 pgd_t *pgd_base) 237 { 238 #ifdef CONFIG_HIGHMEM 239 pgd_t *pgd; 240 pud_t *pud; 241 pmd_t *pmd; 242 pte_t *pte; 243 int i, j, k; 244 unsigned long vaddr; 245 246 vaddr = start; 247 i = pgd_index(vaddr); 248 j = pud_index(vaddr); 249 k = pmd_index(vaddr); 250 pgd = pgd_base + i; 251 252 for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) { 253 pud = (pud_t *)pgd; 254 for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) { 255 pmd = (pmd_t *)pud; 256 for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) { 257 if (pmd_none(*pmd)) { 258 pte = (pte_t *) memblock_alloc_low(PAGE_SIZE, 259 PAGE_SIZE); 260 if (!pte) 261 panic("%s: Failed to allocate %lu bytes align=%lx\n", 262 __func__, PAGE_SIZE, 263 PAGE_SIZE); 264 265 set_pmd(pmd, __pmd((unsigned long)pte)); 266 BUG_ON(pte != pte_offset_kernel(pmd, 0)); 267 } 268 vaddr += PMD_SIZE; 269 } 270 k = 0; 271 } 272 j = 0; 273 } 274 #endif 275 } 276 277 struct maar_walk_info { 278 struct maar_config cfg[16]; 279 unsigned int num_cfg; 280 }; 281 282 static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages, 283 void *data) 284 { 285 struct maar_walk_info *wi = data; 286 struct maar_config *cfg = &wi->cfg[wi->num_cfg]; 287 unsigned int maar_align; 288 289 /* MAAR registers hold physical addresses right shifted by 4 bits */ 290 maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4); 291 292 /* Fill in the MAAR config entry */ 293 cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align); 294 cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1; 295 cfg->attrs = MIPS_MAAR_S; 296 297 /* Ensure we don't overflow the cfg array */ 298 if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg))) 299 wi->num_cfg++; 300 301 return 0; 302 } 303 304 305 unsigned __weak platform_maar_init(unsigned num_pairs) 306 { 307 unsigned int num_configured; 308 struct maar_walk_info wi; 309 310 wi.num_cfg = 0; 311 walk_system_ram_range(0, max_pfn, &wi, maar_res_walk); 312 313 num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs); 314 if (num_configured < wi.num_cfg) 315 pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n", 316 num_pairs, wi.num_cfg); 317 318 return num_configured; 319 } 320 321 void maar_init(void) 322 { 323 unsigned num_maars, used, i; 324 phys_addr_t lower, upper, attr; 325 static struct { 326 struct maar_config cfgs[3]; 327 unsigned used; 328 } recorded = { { { 0 } }, 0 }; 329 330 if (!cpu_has_maar) 331 return; 332 333 /* Detect the number of MAARs */ 334 write_c0_maari(~0); 335 back_to_back_c0_hazard(); 336 num_maars = read_c0_maari() + 1; 337 338 /* MAARs should be in pairs */ 339 WARN_ON(num_maars % 2); 340 341 /* Set MAARs using values we recorded already */ 342 if (recorded.used) { 343 used = maar_config(recorded.cfgs, recorded.used, num_maars / 2); 344 BUG_ON(used != recorded.used); 345 } else { 346 /* Configure the required MAARs */ 347 used = platform_maar_init(num_maars / 2); 348 } 349 350 /* Disable any further MAARs */ 351 for (i = (used * 2); i < num_maars; i++) { 352 write_c0_maari(i); 353 back_to_back_c0_hazard(); 354 write_c0_maar(0); 355 back_to_back_c0_hazard(); 356 } 357 358 if (recorded.used) 359 return; 360 361 pr_info("MAAR configuration:\n"); 362 for (i = 0; i < num_maars; i += 2) { 363 write_c0_maari(i); 364 back_to_back_c0_hazard(); 365 upper = read_c0_maar(); 366 #ifdef CONFIG_XPA 367 upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 368 #endif 369 370 write_c0_maari(i + 1); 371 back_to_back_c0_hazard(); 372 lower = read_c0_maar(); 373 #ifdef CONFIG_XPA 374 lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT; 375 #endif 376 377 attr = lower & upper; 378 lower = (lower & MIPS_MAAR_ADDR) << 4; 379 upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff; 380 381 pr_info(" [%d]: ", i / 2); 382 if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) { 383 pr_cont("disabled\n"); 384 continue; 385 } 386 387 pr_cont("%pa-%pa", &lower, &upper); 388 389 if (attr & MIPS_MAAR_S) 390 pr_cont(" speculate"); 391 392 pr_cont("\n"); 393 394 /* Record the setup for use on secondary CPUs */ 395 if (used <= ARRAY_SIZE(recorded.cfgs)) { 396 recorded.cfgs[recorded.used].lower = lower; 397 recorded.cfgs[recorded.used].upper = upper; 398 recorded.cfgs[recorded.used].attrs = attr; 399 recorded.used++; 400 } 401 } 402 } 403 404 #ifndef CONFIG_NUMA 405 void __init paging_init(void) 406 { 407 unsigned long max_zone_pfns[MAX_NR_ZONES]; 408 409 pagetable_init(); 410 411 #ifdef CONFIG_ZONE_DMA 412 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; 413 #endif 414 #ifdef CONFIG_ZONE_DMA32 415 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; 416 #endif 417 max_zone_pfns[ZONE_NORMAL] = max_low_pfn; 418 #ifdef CONFIG_HIGHMEM 419 max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; 420 421 if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) { 422 printk(KERN_WARNING "This processor doesn't support highmem." 423 " %ldk highmem ignored\n", 424 (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10)); 425 max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn; 426 427 max_mapnr = max_low_pfn; 428 } else if (highend_pfn) { 429 max_mapnr = highend_pfn; 430 } else { 431 max_mapnr = max_low_pfn; 432 } 433 #else 434 max_mapnr = max_low_pfn; 435 #endif 436 high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT); 437 438 free_area_init(max_zone_pfns); 439 } 440 441 #ifdef CONFIG_64BIT 442 static struct kcore_list kcore_kseg0; 443 #endif 444 445 static inline void __init mem_init_free_highmem(void) 446 { 447 #ifdef CONFIG_HIGHMEM 448 unsigned long tmp; 449 450 if (cpu_has_dc_aliases) 451 return; 452 453 for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) { 454 struct page *page = pfn_to_page(tmp); 455 456 if (!memblock_is_memory(PFN_PHYS(tmp))) 457 SetPageReserved(page); 458 else 459 free_highmem_page(page); 460 } 461 #endif 462 } 463 464 void __init mem_init(void) 465 { 466 /* 467 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE 468 * bits to hold a full 32b physical address on MIPS32 systems. 469 */ 470 BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT)); 471 472 maar_init(); 473 memblock_free_all(); 474 setup_zero_pages(); /* Setup zeroed pages. */ 475 mem_init_free_highmem(); 476 477 #ifdef CONFIG_64BIT 478 if ((unsigned long) &_text > (unsigned long) CKSEG0) 479 /* The -4 is a hack so that user tools don't have to handle 480 the overflow. */ 481 kclist_add(&kcore_kseg0, (void *) CKSEG0, 482 0x80000000 - 4, KCORE_TEXT); 483 #endif 484 } 485 #endif /* !CONFIG_NUMA */ 486 487 void free_init_pages(const char *what, unsigned long begin, unsigned long end) 488 { 489 unsigned long pfn; 490 491 for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) { 492 struct page *page = pfn_to_page(pfn); 493 void *addr = phys_to_virt(PFN_PHYS(pfn)); 494 495 memset(addr, POISON_FREE_INITMEM, PAGE_SIZE); 496 free_reserved_page(page); 497 } 498 printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 499 } 500 501 void (*free_init_pages_eva)(void *begin, void *end) = NULL; 502 503 void __weak __init prom_free_prom_memory(void) 504 { 505 /* nothing to do */ 506 } 507 508 void __ref free_initmem(void) 509 { 510 prom_free_prom_memory(); 511 /* 512 * Let the platform define a specific function to free the 513 * init section since EVA may have used any possible mapping 514 * between virtual and physical addresses. 515 */ 516 if (free_init_pages_eva) 517 free_init_pages_eva((void *)&__init_begin, (void *)&__init_end); 518 else 519 free_initmem_default(POISON_FREE_INITMEM); 520 } 521 522 #ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA 523 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 524 EXPORT_SYMBOL(__per_cpu_offset); 525 526 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) 527 { 528 return node_distance(cpu_to_node(from), cpu_to_node(to)); 529 } 530 531 static int __init pcpu_cpu_to_node(int cpu) 532 { 533 return cpu_to_node(cpu); 534 } 535 536 void __init setup_per_cpu_areas(void) 537 { 538 unsigned long delta; 539 unsigned int cpu; 540 int rc; 541 542 /* 543 * Always reserve area for module percpu variables. That's 544 * what the legacy allocator did. 545 */ 546 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, 547 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, 548 pcpu_cpu_distance, 549 pcpu_cpu_to_node); 550 if (rc < 0) 551 panic("Failed to initialize percpu areas."); 552 553 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 554 for_each_possible_cpu(cpu) 555 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 556 } 557 #endif 558 559 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT 560 unsigned long pgd_current[NR_CPUS]; 561 #endif 562 563 /* 564 * Align swapper_pg_dir in to 64K, allows its address to be loaded 565 * with a single LUI instruction in the TLB handlers. If we used 566 * __aligned(64K), its size would get rounded up to the alignment 567 * size, and waste space. So we place it in its own section and align 568 * it in the linker script. 569 */ 570 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir"); 571 #ifndef __PAGETABLE_PUD_FOLDED 572 pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss; 573 #endif 574 #ifndef __PAGETABLE_PMD_FOLDED 575 pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss; 576 EXPORT_SYMBOL_GPL(invalid_pmd_table); 577 #endif 578 pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss; 579 EXPORT_SYMBOL(invalid_pte_table); 580 581 #ifdef CONFIG_EXECMEM 582 #ifdef MODULES_VADDR 583 static struct execmem_info execmem_info __ro_after_init; 584 585 struct execmem_info __init *execmem_arch_setup(void) 586 { 587 execmem_info = (struct execmem_info){ 588 .ranges = { 589 [EXECMEM_DEFAULT] = { 590 .start = MODULES_VADDR, 591 .end = MODULES_END, 592 .pgprot = PAGE_KERNEL, 593 .alignment = 1, 594 }, 595 }, 596 }; 597 598 return &execmem_info; 599 } 600 #endif 601 #endif /* CONFIG_EXECMEM */ 602