xref: /linux/arch/mips/mm/c-r4k.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
23 
24 #include <asm/bcache.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cacheops.h>
28 #include <asm/cpu.h>
29 #include <asm/cpu-features.h>
30 #include <asm/cpu-type.h>
31 #include <asm/io.h>
32 #include <asm/page.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/mips-cps.h>
39 
40 /*
41  * Bits describing what cache ops an SMP callback function may perform.
42  *
43  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
44  *		active_mm must be checked before using user addresses, falling
45  *		back to kmap.
46  * R4K_INDEX -	Index based cache operations.
47  */
48 
49 #define R4K_HIT		BIT(0)
50 #define R4K_INDEX	BIT(1)
51 
52 /**
53  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
55  *
56  * Decides whether a cache op needs to be performed on every core in the system.
57  * This may change depending on the @type of cache operation, as well as the set
58  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
59  * hotplug from changing the result.
60  *
61  * Returns:	1 if the cache operation @type should be done on every core in
62  *		the system.
63  *		0 if the cache operation @type is globalized and only needs to
64  *		be performed on a simple CPU.
65  */
66 static inline bool r4k_op_needs_ipi(unsigned int type)
67 {
68 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69 	if (type == R4K_HIT && mips_cm_present())
70 		return false;
71 
72 	/*
73 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
74 	 * be needed, but only if there are foreign CPUs (non-siblings with
75 	 * separate caches).
76 	 */
77 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
78 #ifdef CONFIG_SMP
79 	return !cpumask_empty(&cpu_foreign_map[0]);
80 #else
81 	return false;
82 #endif
83 }
84 
85 /*
86  * Special Variant of smp_call_function for use by cache functions:
87  *
88  *  o No return value
89  *  o collapses to normal function call on UP kernels
90  *  o collapses to normal function call on systems with a single shared
91  *    primary cache.
92  *  o doesn't disable interrupts on the local CPU
93  */
94 static inline void r4k_on_each_cpu(unsigned int type,
95 				   void (*func)(void *info), void *info)
96 {
97 	preempt_disable();
98 	if (r4k_op_needs_ipi(type))
99 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
100 				       func, info, 1);
101 	func(info);
102 	preempt_enable();
103 }
104 
105 /*
106  * Must die.
107  */
108 static unsigned long icache_size __read_mostly;
109 static unsigned long dcache_size __read_mostly;
110 static unsigned long vcache_size __read_mostly;
111 static unsigned long scache_size __read_mostly;
112 
113 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
114 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
115 
116 #define R4600_HIT_CACHEOP_WAR_IMPL					\
117 do {									\
118 	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
119 	    cpu_is_r4600_v2_x())					\
120 		*(volatile unsigned long *)CKSEG1;			\
121 	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
122 		__asm__ __volatile__("nop;nop;nop;nop");		\
123 } while (0)
124 
125 static void (*r4k_blast_dcache_page)(unsigned long addr);
126 
127 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
128 {
129 	R4600_HIT_CACHEOP_WAR_IMPL;
130 	blast_dcache32_page(addr);
131 }
132 
133 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
134 {
135 	blast_dcache64_page(addr);
136 }
137 
138 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
139 {
140 	blast_dcache128_page(addr);
141 }
142 
143 static void r4k_blast_dcache_page_setup(void)
144 {
145 	unsigned long  dc_lsize = cpu_dcache_line_size();
146 
147 	switch (dc_lsize) {
148 	case 0:
149 		r4k_blast_dcache_page = (void *)cache_noop;
150 		break;
151 	case 16:
152 		r4k_blast_dcache_page = blast_dcache16_page;
153 		break;
154 	case 32:
155 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
156 		break;
157 	case 64:
158 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
159 		break;
160 	case 128:
161 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
162 		break;
163 	default:
164 		break;
165 	}
166 }
167 
168 #ifndef CONFIG_EVA
169 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
170 #else
171 
172 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
173 
174 static void r4k_blast_dcache_user_page_setup(void)
175 {
176 	unsigned long  dc_lsize = cpu_dcache_line_size();
177 
178 	if (dc_lsize == 0)
179 		r4k_blast_dcache_user_page = (void *)cache_noop;
180 	else if (dc_lsize == 16)
181 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
182 	else if (dc_lsize == 32)
183 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
184 	else if (dc_lsize == 64)
185 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
186 }
187 
188 #endif
189 
190 void (* r4k_blast_dcache)(void);
191 EXPORT_SYMBOL(r4k_blast_dcache);
192 
193 static void r4k_blast_dcache_setup(void)
194 {
195 	unsigned long dc_lsize = cpu_dcache_line_size();
196 
197 	if (dc_lsize == 0)
198 		r4k_blast_dcache = (void *)cache_noop;
199 	else if (dc_lsize == 16)
200 		r4k_blast_dcache = blast_dcache16;
201 	else if (dc_lsize == 32)
202 		r4k_blast_dcache = blast_dcache32;
203 	else if (dc_lsize == 64)
204 		r4k_blast_dcache = blast_dcache64;
205 	else if (dc_lsize == 128)
206 		r4k_blast_dcache = blast_dcache128;
207 }
208 
209 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
210 #define JUMP_TO_ALIGN(order) \
211 	__asm__ __volatile__( \
212 		"b\t1f\n\t" \
213 		".align\t" #order "\n\t" \
214 		"1:\n\t" \
215 		)
216 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
218 
219 static inline void blast_r4600_v1_icache32(void)
220 {
221 	unsigned long flags;
222 
223 	local_irq_save(flags);
224 	blast_icache32();
225 	local_irq_restore(flags);
226 }
227 
228 static inline void tx49_blast_icache32(void)
229 {
230 	unsigned long start = INDEX_BASE;
231 	unsigned long end = start + current_cpu_data.icache.waysize;
232 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
233 	unsigned long ws_end = current_cpu_data.icache.ways <<
234 			       current_cpu_data.icache.waybit;
235 	unsigned long ws, addr;
236 
237 	CACHE32_UNROLL32_ALIGN2;
238 	/* I'm in even chunk.  blast odd chunks */
239 	for (ws = 0; ws < ws_end; ws += ws_inc)
240 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
241 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
242 				     addr | ws, 32);
243 	CACHE32_UNROLL32_ALIGN;
244 	/* I'm in odd chunk.  blast even chunks */
245 	for (ws = 0; ws < ws_end; ws += ws_inc)
246 		for (addr = start; addr < end; addr += 0x400 * 2)
247 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
248 				     addr | ws, 32);
249 }
250 
251 static void (* r4k_blast_icache_page)(unsigned long addr);
252 
253 static void r4k_blast_icache_page_setup(void)
254 {
255 	unsigned long ic_lsize = cpu_icache_line_size();
256 
257 	if (ic_lsize == 0)
258 		r4k_blast_icache_page = (void *)cache_noop;
259 	else if (ic_lsize == 16)
260 		r4k_blast_icache_page = blast_icache16_page;
261 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
262 		r4k_blast_icache_page = loongson2_blast_icache32_page;
263 	else if (ic_lsize == 32)
264 		r4k_blast_icache_page = blast_icache32_page;
265 	else if (ic_lsize == 64)
266 		r4k_blast_icache_page = blast_icache64_page;
267 	else if (ic_lsize == 128)
268 		r4k_blast_icache_page = blast_icache128_page;
269 }
270 
271 #ifndef CONFIG_EVA
272 #define r4k_blast_icache_user_page  r4k_blast_icache_page
273 #else
274 
275 static void (*r4k_blast_icache_user_page)(unsigned long addr);
276 
277 static void r4k_blast_icache_user_page_setup(void)
278 {
279 	unsigned long ic_lsize = cpu_icache_line_size();
280 
281 	if (ic_lsize == 0)
282 		r4k_blast_icache_user_page = (void *)cache_noop;
283 	else if (ic_lsize == 16)
284 		r4k_blast_icache_user_page = blast_icache16_user_page;
285 	else if (ic_lsize == 32)
286 		r4k_blast_icache_user_page = blast_icache32_user_page;
287 	else if (ic_lsize == 64)
288 		r4k_blast_icache_user_page = blast_icache64_user_page;
289 }
290 
291 #endif
292 
293 void (* r4k_blast_icache)(void);
294 EXPORT_SYMBOL(r4k_blast_icache);
295 
296 static void r4k_blast_icache_setup(void)
297 {
298 	unsigned long ic_lsize = cpu_icache_line_size();
299 
300 	if (ic_lsize == 0)
301 		r4k_blast_icache = (void *)cache_noop;
302 	else if (ic_lsize == 16)
303 		r4k_blast_icache = blast_icache16;
304 	else if (ic_lsize == 32) {
305 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
306 		    cpu_is_r4600_v1_x())
307 			r4k_blast_icache = blast_r4600_v1_icache32;
308 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
309 			r4k_blast_icache = tx49_blast_icache32;
310 		else if (current_cpu_type() == CPU_LOONGSON2EF)
311 			r4k_blast_icache = loongson2_blast_icache32;
312 		else
313 			r4k_blast_icache = blast_icache32;
314 	} else if (ic_lsize == 64)
315 		r4k_blast_icache = blast_icache64;
316 	else if (ic_lsize == 128)
317 		r4k_blast_icache = blast_icache128;
318 }
319 
320 static void (* r4k_blast_scache_page)(unsigned long addr);
321 
322 static void r4k_blast_scache_page_setup(void)
323 {
324 	unsigned long sc_lsize = cpu_scache_line_size();
325 
326 	if (scache_size == 0)
327 		r4k_blast_scache_page = (void *)cache_noop;
328 	else if (sc_lsize == 16)
329 		r4k_blast_scache_page = blast_scache16_page;
330 	else if (sc_lsize == 32)
331 		r4k_blast_scache_page = blast_scache32_page;
332 	else if (sc_lsize == 64)
333 		r4k_blast_scache_page = blast_scache64_page;
334 	else if (sc_lsize == 128)
335 		r4k_blast_scache_page = blast_scache128_page;
336 }
337 
338 static void (* r4k_blast_scache)(void);
339 
340 static void r4k_blast_scache_setup(void)
341 {
342 	unsigned long sc_lsize = cpu_scache_line_size();
343 
344 	if (scache_size == 0)
345 		r4k_blast_scache = (void *)cache_noop;
346 	else if (sc_lsize == 16)
347 		r4k_blast_scache = blast_scache16;
348 	else if (sc_lsize == 32)
349 		r4k_blast_scache = blast_scache32;
350 	else if (sc_lsize == 64)
351 		r4k_blast_scache = blast_scache64;
352 	else if (sc_lsize == 128)
353 		r4k_blast_scache = blast_scache128;
354 }
355 
356 static void (*r4k_blast_scache_node)(long node);
357 
358 static void r4k_blast_scache_node_setup(void)
359 {
360 	unsigned long sc_lsize = cpu_scache_line_size();
361 
362 	if (current_cpu_type() != CPU_LOONGSON64)
363 		r4k_blast_scache_node = (void *)cache_noop;
364 	else if (sc_lsize == 16)
365 		r4k_blast_scache_node = blast_scache16_node;
366 	else if (sc_lsize == 32)
367 		r4k_blast_scache_node = blast_scache32_node;
368 	else if (sc_lsize == 64)
369 		r4k_blast_scache_node = blast_scache64_node;
370 	else if (sc_lsize == 128)
371 		r4k_blast_scache_node = blast_scache128_node;
372 }
373 
374 static inline void local_r4k___flush_cache_all(void * args)
375 {
376 	switch (current_cpu_type()) {
377 	case CPU_LOONGSON2EF:
378 	case CPU_R4000SC:
379 	case CPU_R4000MC:
380 	case CPU_R4400SC:
381 	case CPU_R4400MC:
382 	case CPU_R10000:
383 	case CPU_R12000:
384 	case CPU_R14000:
385 	case CPU_R16000:
386 		/*
387 		 * These caches are inclusive caches, that is, if something
388 		 * is not cached in the S-cache, we know it also won't be
389 		 * in one of the primary caches.
390 		 */
391 		r4k_blast_scache();
392 		break;
393 
394 	case CPU_LOONGSON64:
395 		/* Use get_ebase_cpunum() for both NUMA=y/n */
396 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
397 		break;
398 
399 	case CPU_BMIPS5000:
400 		r4k_blast_scache();
401 		__sync();
402 		break;
403 
404 	default:
405 		r4k_blast_dcache();
406 		r4k_blast_icache();
407 		break;
408 	}
409 }
410 
411 static void r4k___flush_cache_all(void)
412 {
413 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
414 }
415 
416 /**
417  * has_valid_asid() - Determine if an mm already has an ASID.
418  * @mm:		Memory map.
419  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
420  *
421  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
422  * of type @type within an r4k_on_each_cpu() call will affect. If
423  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
424  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
425  * will need to be checked.
426  *
427  * Must be called in non-preemptive context.
428  *
429  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
430  *		0 otherwise.
431  */
432 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
433 {
434 	unsigned int i;
435 	const cpumask_t *mask = cpu_present_mask;
436 
437 	if (cpu_has_mmid)
438 		return cpu_context(0, mm) != 0;
439 
440 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
441 #ifdef CONFIG_SMP
442 	/*
443 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
444 	 * each foreign core, so we only need to worry about siblings.
445 	 * Otherwise we need to worry about all present CPUs.
446 	 */
447 	if (r4k_op_needs_ipi(type))
448 		mask = &cpu_sibling_map[smp_processor_id()];
449 #endif
450 	for_each_cpu(i, mask)
451 		if (cpu_context(i, mm))
452 			return 1;
453 	return 0;
454 }
455 
456 static void r4k__flush_cache_vmap(void)
457 {
458 	r4k_blast_dcache();
459 }
460 
461 static void r4k__flush_cache_vunmap(void)
462 {
463 	r4k_blast_dcache();
464 }
465 
466 /*
467  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
468  * whole caches when vma is executable.
469  */
470 static inline void local_r4k_flush_cache_range(void * args)
471 {
472 	struct vm_area_struct *vma = args;
473 	int exec = vma->vm_flags & VM_EXEC;
474 
475 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
476 		return;
477 
478 	/*
479 	 * If dcache can alias, we must blast it since mapping is changing.
480 	 * If executable, we must ensure any dirty lines are written back far
481 	 * enough to be visible to icache.
482 	 */
483 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
484 		r4k_blast_dcache();
485 	/* If executable, blast stale lines from icache */
486 	if (exec)
487 		r4k_blast_icache();
488 }
489 
490 static void r4k_flush_cache_range(struct vm_area_struct *vma,
491 	unsigned long start, unsigned long end)
492 {
493 	int exec = vma->vm_flags & VM_EXEC;
494 
495 	if (cpu_has_dc_aliases || exec)
496 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
497 }
498 
499 static inline void local_r4k_flush_cache_mm(void * args)
500 {
501 	struct mm_struct *mm = args;
502 
503 	if (!has_valid_asid(mm, R4K_INDEX))
504 		return;
505 
506 	/*
507 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
508 	 * only flush the primary caches but R1x000 behave sane ...
509 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
510 	 * caches, so we can bail out early.
511 	 */
512 	if (current_cpu_type() == CPU_R4000SC ||
513 	    current_cpu_type() == CPU_R4000MC ||
514 	    current_cpu_type() == CPU_R4400SC ||
515 	    current_cpu_type() == CPU_R4400MC) {
516 		r4k_blast_scache();
517 		return;
518 	}
519 
520 	r4k_blast_dcache();
521 }
522 
523 static void r4k_flush_cache_mm(struct mm_struct *mm)
524 {
525 	if (!cpu_has_dc_aliases)
526 		return;
527 
528 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
529 }
530 
531 struct flush_cache_page_args {
532 	struct vm_area_struct *vma;
533 	unsigned long addr;
534 	unsigned long pfn;
535 };
536 
537 static inline void local_r4k_flush_cache_page(void *args)
538 {
539 	struct flush_cache_page_args *fcp_args = args;
540 	struct vm_area_struct *vma = fcp_args->vma;
541 	unsigned long addr = fcp_args->addr;
542 	struct page *page = pfn_to_page(fcp_args->pfn);
543 	int exec = vma->vm_flags & VM_EXEC;
544 	struct mm_struct *mm = vma->vm_mm;
545 	int map_coherent = 0;
546 	pmd_t *pmdp;
547 	pte_t *ptep;
548 	void *vaddr;
549 
550 	/*
551 	 * If owns no valid ASID yet, cannot possibly have gotten
552 	 * this page into the cache.
553 	 */
554 	if (!has_valid_asid(mm, R4K_HIT))
555 		return;
556 
557 	addr &= PAGE_MASK;
558 	pmdp = pmd_off(mm, addr);
559 	ptep = pte_offset_kernel(pmdp, addr);
560 
561 	/*
562 	 * If the page isn't marked valid, the page cannot possibly be
563 	 * in the cache.
564 	 */
565 	if (!(pte_present(*ptep)))
566 		return;
567 
568 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
569 		vaddr = NULL;
570 	else {
571 		struct folio *folio = page_folio(page);
572 		/*
573 		 * Use kmap_coherent or kmap_atomic to do flushes for
574 		 * another ASID than the current one.
575 		 */
576 		map_coherent = (cpu_has_dc_aliases &&
577 				folio_mapped(folio) &&
578 				!folio_test_dcache_dirty(folio));
579 		if (map_coherent)
580 			vaddr = kmap_coherent(page, addr);
581 		else
582 			vaddr = kmap_atomic(page);
583 		addr = (unsigned long)vaddr;
584 	}
585 
586 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
587 		vaddr ? r4k_blast_dcache_page(addr) :
588 			r4k_blast_dcache_user_page(addr);
589 		if (exec && !cpu_icache_snoops_remote_store)
590 			r4k_blast_scache_page(addr);
591 	}
592 	if (exec) {
593 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
594 			drop_mmu_context(mm);
595 		} else
596 			vaddr ? r4k_blast_icache_page(addr) :
597 				r4k_blast_icache_user_page(addr);
598 	}
599 
600 	if (vaddr) {
601 		if (map_coherent)
602 			kunmap_coherent();
603 		else
604 			kunmap_atomic(vaddr);
605 	}
606 }
607 
608 static void r4k_flush_cache_page(struct vm_area_struct *vma,
609 	unsigned long addr, unsigned long pfn)
610 {
611 	struct flush_cache_page_args args;
612 
613 	args.vma = vma;
614 	args.addr = addr;
615 	args.pfn = pfn;
616 
617 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
618 }
619 
620 static inline void local_r4k_flush_data_cache_page(void * addr)
621 {
622 	r4k_blast_dcache_page((unsigned long) addr);
623 }
624 
625 static void r4k_flush_data_cache_page(unsigned long addr)
626 {
627 	if (in_atomic())
628 		local_r4k_flush_data_cache_page((void *)addr);
629 	else
630 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
631 				(void *) addr);
632 }
633 
634 struct flush_icache_range_args {
635 	unsigned long start;
636 	unsigned long end;
637 	unsigned int type;
638 	bool user;
639 };
640 
641 static inline void __local_r4k_flush_icache_range(unsigned long start,
642 						  unsigned long end,
643 						  unsigned int type,
644 						  bool user)
645 {
646 	if (!cpu_has_ic_fills_f_dc) {
647 		if (type == R4K_INDEX ||
648 		    (type & R4K_INDEX && end - start >= dcache_size)) {
649 			r4k_blast_dcache();
650 		} else {
651 			R4600_HIT_CACHEOP_WAR_IMPL;
652 			if (user)
653 				protected_blast_dcache_range(start, end);
654 			else
655 				blast_dcache_range(start, end);
656 		}
657 	}
658 
659 	if (type == R4K_INDEX ||
660 	    (type & R4K_INDEX && end - start > icache_size))
661 		r4k_blast_icache();
662 	else {
663 		switch (boot_cpu_type()) {
664 		case CPU_LOONGSON2EF:
665 			protected_loongson2_blast_icache_range(start, end);
666 			break;
667 
668 		default:
669 			if (user)
670 				protected_blast_icache_range(start, end);
671 			else
672 				blast_icache_range(start, end);
673 			break;
674 		}
675 	}
676 }
677 
678 static inline void local_r4k_flush_icache_range(unsigned long start,
679 						unsigned long end)
680 {
681 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
682 }
683 
684 static inline void local_r4k_flush_icache_user_range(unsigned long start,
685 						     unsigned long end)
686 {
687 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
688 }
689 
690 static inline void local_r4k_flush_icache_range_ipi(void *args)
691 {
692 	struct flush_icache_range_args *fir_args = args;
693 	unsigned long start = fir_args->start;
694 	unsigned long end = fir_args->end;
695 	unsigned int type = fir_args->type;
696 	bool user = fir_args->user;
697 
698 	__local_r4k_flush_icache_range(start, end, type, user);
699 }
700 
701 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
702 				     bool user)
703 {
704 	struct flush_icache_range_args args;
705 	unsigned long size, cache_size;
706 
707 	args.start = start;
708 	args.end = end;
709 	args.type = R4K_HIT | R4K_INDEX;
710 	args.user = user;
711 
712 	/*
713 	 * Indexed cache ops require an SMP call.
714 	 * Consider if that can or should be avoided.
715 	 */
716 	preempt_disable();
717 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
718 		/*
719 		 * If address-based cache ops don't require an SMP call, then
720 		 * use them exclusively for small flushes.
721 		 */
722 		size = end - start;
723 		cache_size = icache_size;
724 		if (!cpu_has_ic_fills_f_dc) {
725 			size *= 2;
726 			cache_size += dcache_size;
727 		}
728 		if (size <= cache_size)
729 			args.type &= ~R4K_INDEX;
730 	}
731 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
732 	preempt_enable();
733 	instruction_hazard();
734 }
735 
736 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
737 {
738 	return __r4k_flush_icache_range(start, end, false);
739 }
740 
741 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
742 {
743 	return __r4k_flush_icache_range(start, end, true);
744 }
745 
746 #ifdef CONFIG_DMA_NONCOHERENT
747 
748 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
749 {
750 	/* Catch bad driver code */
751 	if (WARN_ON(size == 0))
752 		return;
753 
754 	preempt_disable();
755 	if (cpu_has_inclusive_pcaches) {
756 		if (size >= scache_size) {
757 			if (current_cpu_type() != CPU_LOONGSON64)
758 				r4k_blast_scache();
759 			else
760 				r4k_blast_scache_node(pa_to_nid(addr));
761 		} else {
762 			blast_scache_range(addr, addr + size);
763 		}
764 		preempt_enable();
765 		__sync();
766 		return;
767 	}
768 
769 	/*
770 	 * Either no secondary cache or the available caches don't have the
771 	 * subset property so we have to flush the primary caches
772 	 * explicitly.
773 	 * If we would need IPI to perform an INDEX-type operation, then
774 	 * we have to use the HIT-type alternative as IPI cannot be used
775 	 * here due to interrupts possibly being disabled.
776 	 */
777 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
778 		r4k_blast_dcache();
779 	} else {
780 		R4600_HIT_CACHEOP_WAR_IMPL;
781 		blast_dcache_range(addr, addr + size);
782 	}
783 	preempt_enable();
784 
785 	bc_wback_inv(addr, size);
786 	__sync();
787 }
788 
789 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
790 {
791 	unsigned int linesz = cpu_scache_line_size();
792 	unsigned long addr0 = addr, addr1;
793 
794 	addr0 &= ~(linesz - 1);
795 	addr1 = (addr0 + size - 1) & ~(linesz - 1);
796 
797 	protected_writeback_scache_line(addr0);
798 	if (likely(addr1 != addr0))
799 		protected_writeback_scache_line(addr1);
800 	else
801 		return;
802 
803 	addr0 += linesz;
804 	if (likely(addr1 != addr0))
805 		protected_writeback_scache_line(addr0);
806 	else
807 		return;
808 
809 	addr1 -= linesz;
810 	if (likely(addr1 > addr0))
811 		protected_writeback_scache_line(addr0);
812 }
813 
814 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
815 {
816 	/* Catch bad driver code */
817 	if (WARN_ON(size == 0))
818 		return;
819 
820 	preempt_disable();
821 
822 	if (current_cpu_type() == CPU_BMIPS5000)
823 		prefetch_cache_inv(addr, size);
824 
825 	if (cpu_has_inclusive_pcaches) {
826 		if (size >= scache_size) {
827 			if (current_cpu_type() != CPU_LOONGSON64)
828 				r4k_blast_scache();
829 			else
830 				r4k_blast_scache_node(pa_to_nid(addr));
831 		} else {
832 			/*
833 			 * There is no clearly documented alignment requirement
834 			 * for the cache instruction on MIPS processors and
835 			 * some processors, among them the RM5200 and RM7000
836 			 * QED processors will throw an address error for cache
837 			 * hit ops with insufficient alignment.	 Solved by
838 			 * aligning the address to cache line size.
839 			 */
840 			blast_inv_scache_range(addr, addr + size);
841 		}
842 		preempt_enable();
843 		__sync();
844 		return;
845 	}
846 
847 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
848 		r4k_blast_dcache();
849 	} else {
850 		R4600_HIT_CACHEOP_WAR_IMPL;
851 		blast_inv_dcache_range(addr, addr + size);
852 	}
853 	preempt_enable();
854 
855 	bc_inv(addr, size);
856 	__sync();
857 }
858 #endif /* CONFIG_DMA_NONCOHERENT */
859 
860 static void r4k_flush_icache_all(void)
861 {
862 	if (cpu_has_vtag_icache)
863 		r4k_blast_icache();
864 }
865 
866 struct flush_kernel_vmap_range_args {
867 	unsigned long	vaddr;
868 	int		size;
869 };
870 
871 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
872 {
873 	/*
874 	 * Aliases only affect the primary caches so don't bother with
875 	 * S-caches or T-caches.
876 	 */
877 	r4k_blast_dcache();
878 }
879 
880 static inline void local_r4k_flush_kernel_vmap_range(void *args)
881 {
882 	struct flush_kernel_vmap_range_args *vmra = args;
883 	unsigned long vaddr = vmra->vaddr;
884 	int size = vmra->size;
885 
886 	/*
887 	 * Aliases only affect the primary caches so don't bother with
888 	 * S-caches or T-caches.
889 	 */
890 	R4600_HIT_CACHEOP_WAR_IMPL;
891 	blast_dcache_range(vaddr, vaddr + size);
892 }
893 
894 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
895 {
896 	struct flush_kernel_vmap_range_args args;
897 
898 	args.vaddr = (unsigned long) vaddr;
899 	args.size = size;
900 
901 	if (size >= dcache_size)
902 		r4k_on_each_cpu(R4K_INDEX,
903 				local_r4k_flush_kernel_vmap_range_index, NULL);
904 	else
905 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
906 				&args);
907 }
908 
909 static inline void rm7k_erratum31(void)
910 {
911 	const unsigned long ic_lsize = 32;
912 	unsigned long addr;
913 
914 	/* RM7000 erratum #31. The icache is screwed at startup. */
915 	write_c0_taglo(0);
916 	write_c0_taghi(0);
917 
918 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
919 		__asm__ __volatile__ (
920 			".set push\n\t"
921 			".set noreorder\n\t"
922 			".set mips3\n\t"
923 			"cache\t%1, 0(%0)\n\t"
924 			"cache\t%1, 0x1000(%0)\n\t"
925 			"cache\t%1, 0x2000(%0)\n\t"
926 			"cache\t%1, 0x3000(%0)\n\t"
927 			"cache\t%2, 0(%0)\n\t"
928 			"cache\t%2, 0x1000(%0)\n\t"
929 			"cache\t%2, 0x2000(%0)\n\t"
930 			"cache\t%2, 0x3000(%0)\n\t"
931 			"cache\t%1, 0(%0)\n\t"
932 			"cache\t%1, 0x1000(%0)\n\t"
933 			"cache\t%1, 0x2000(%0)\n\t"
934 			"cache\t%1, 0x3000(%0)\n\t"
935 			".set pop\n"
936 			:
937 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
938 	}
939 }
940 
941 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
942 {
943 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
944 	unsigned int rev = c->processor_id & PRID_REV_MASK;
945 	int present = 0;
946 
947 	/*
948 	 * Early versions of the 74K do not update the cache tags on a
949 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
950 	 * aliases.  In this case it is better to treat the cache as always
951 	 * having aliases.  Also disable the synonym tag update feature
952 	 * where available.  In this case no opportunistic tag update will
953 	 * happen where a load causes a virtual address miss but a physical
954 	 * address hit during a D-cache look-up.
955 	 */
956 	switch (imp) {
957 	case PRID_IMP_74K:
958 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
959 			present = 1;
960 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
961 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
962 		break;
963 	case PRID_IMP_1074K:
964 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
965 			present = 1;
966 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
967 		}
968 		break;
969 	default:
970 		BUG();
971 	}
972 
973 	return present;
974 }
975 
976 static void b5k_instruction_hazard(void)
977 {
978 	__sync();
979 	__sync();
980 	__asm__ __volatile__(
981 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
982 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
983 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
984 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
985 	: : : "memory");
986 }
987 
988 static char *way_string[] = { NULL, "direct mapped", "2-way",
989 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
990 	"9-way", "10-way", "11-way", "12-way",
991 	"13-way", "14-way", "15-way", "16-way",
992 };
993 
994 static void probe_pcache(void)
995 {
996 	struct cpuinfo_mips *c = &current_cpu_data;
997 	unsigned int config = read_c0_config();
998 	unsigned int prid = read_c0_prid();
999 	int has_74k_erratum = 0;
1000 	unsigned long config1;
1001 	unsigned int lsize;
1002 
1003 	switch (current_cpu_type()) {
1004 	case CPU_R4600:			/* QED style two way caches? */
1005 	case CPU_R4700:
1006 	case CPU_R5000:
1007 	case CPU_NEVADA:
1008 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1009 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1010 		c->icache.ways = 2;
1011 		c->icache.waybit = __ffs(icache_size/2);
1012 
1013 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1014 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1015 		c->dcache.ways = 2;
1016 		c->dcache.waybit= __ffs(dcache_size/2);
1017 
1018 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1019 		break;
1020 
1021 	case CPU_R5500:
1022 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1023 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1024 		c->icache.ways = 2;
1025 		c->icache.waybit= 0;
1026 
1027 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1028 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1029 		c->dcache.ways = 2;
1030 		c->dcache.waybit = 0;
1031 
1032 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1033 		break;
1034 
1035 	case CPU_TX49XX:
1036 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1037 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1038 		c->icache.ways = 4;
1039 		c->icache.waybit= 0;
1040 
1041 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1042 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1043 		c->dcache.ways = 4;
1044 		c->dcache.waybit = 0;
1045 
1046 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1047 		c->options |= MIPS_CPU_PREFETCH;
1048 		break;
1049 
1050 	case CPU_R4000PC:
1051 	case CPU_R4000SC:
1052 	case CPU_R4000MC:
1053 	case CPU_R4400PC:
1054 	case CPU_R4400SC:
1055 	case CPU_R4400MC:
1056 	case CPU_R4300:
1057 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1058 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1059 		c->icache.ways = 1;
1060 		c->icache.waybit = 0;	/* doesn't matter */
1061 
1062 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1063 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1064 		c->dcache.ways = 1;
1065 		c->dcache.waybit = 0;	/* does not matter */
1066 
1067 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1068 		break;
1069 
1070 	case CPU_R10000:
1071 	case CPU_R12000:
1072 	case CPU_R14000:
1073 	case CPU_R16000:
1074 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1075 		c->icache.linesz = 64;
1076 		c->icache.ways = 2;
1077 		c->icache.waybit = 0;
1078 
1079 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1080 		c->dcache.linesz = 32;
1081 		c->dcache.ways = 2;
1082 		c->dcache.waybit = 0;
1083 
1084 		c->options |= MIPS_CPU_PREFETCH;
1085 		break;
1086 
1087 	case CPU_RM7000:
1088 		rm7k_erratum31();
1089 
1090 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1091 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1092 		c->icache.ways = 4;
1093 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1094 
1095 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1096 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1097 		c->dcache.ways = 4;
1098 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1099 
1100 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1101 		c->options |= MIPS_CPU_PREFETCH;
1102 		break;
1103 
1104 	case CPU_LOONGSON2EF:
1105 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1106 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1107 		if (prid & 0x3)
1108 			c->icache.ways = 4;
1109 		else
1110 			c->icache.ways = 2;
1111 		c->icache.waybit = 0;
1112 
1113 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1114 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1115 		if (prid & 0x3)
1116 			c->dcache.ways = 4;
1117 		else
1118 			c->dcache.ways = 2;
1119 		c->dcache.waybit = 0;
1120 		break;
1121 
1122 	case CPU_LOONGSON64:
1123 		config1 = read_c0_config1();
1124 		lsize = (config1 >> 19) & 7;
1125 		if (lsize)
1126 			c->icache.linesz = 2 << lsize;
1127 		else
1128 			c->icache.linesz = 0;
1129 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1130 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1131 		icache_size = c->icache.sets *
1132 					  c->icache.ways *
1133 					  c->icache.linesz;
1134 		c->icache.waybit = 0;
1135 
1136 		lsize = (config1 >> 10) & 7;
1137 		if (lsize)
1138 			c->dcache.linesz = 2 << lsize;
1139 		else
1140 			c->dcache.linesz = 0;
1141 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1142 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1143 		dcache_size = c->dcache.sets *
1144 					  c->dcache.ways *
1145 					  c->dcache.linesz;
1146 		c->dcache.waybit = 0;
1147 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1148 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1149 				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1150 			c->options |= MIPS_CPU_PREFETCH;
1151 		break;
1152 
1153 	case CPU_CAVIUM_OCTEON3:
1154 		/* For now lie about the number of ways. */
1155 		c->icache.linesz = 128;
1156 		c->icache.sets = 16;
1157 		c->icache.ways = 8;
1158 		c->icache.flags |= MIPS_CACHE_VTAG;
1159 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1160 
1161 		c->dcache.linesz = 128;
1162 		c->dcache.ways = 8;
1163 		c->dcache.sets = 8;
1164 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1165 		c->options |= MIPS_CPU_PREFETCH;
1166 		break;
1167 
1168 	default:
1169 		if (!(config & MIPS_CONF_M))
1170 			panic("Don't know how to probe P-caches on this cpu.");
1171 
1172 		/*
1173 		 * So we seem to be a MIPS32 or MIPS64 CPU
1174 		 * So let's probe the I-cache ...
1175 		 */
1176 		config1 = read_c0_config1();
1177 
1178 		lsize = (config1 >> 19) & 7;
1179 
1180 		/* IL == 7 is reserved */
1181 		if (lsize == 7)
1182 			panic("Invalid icache line size");
1183 
1184 		c->icache.linesz = lsize ? 2 << lsize : 0;
1185 
1186 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1187 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1188 
1189 		icache_size = c->icache.sets *
1190 			      c->icache.ways *
1191 			      c->icache.linesz;
1192 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1193 
1194 		if (config & MIPS_CONF_VI)
1195 			c->icache.flags |= MIPS_CACHE_VTAG;
1196 
1197 		/*
1198 		 * Now probe the MIPS32 / MIPS64 data cache.
1199 		 */
1200 		c->dcache.flags = 0;
1201 
1202 		lsize = (config1 >> 10) & 7;
1203 
1204 		/* DL == 7 is reserved */
1205 		if (lsize == 7)
1206 			panic("Invalid dcache line size");
1207 
1208 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1209 
1210 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1211 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1212 
1213 		dcache_size = c->dcache.sets *
1214 			      c->dcache.ways *
1215 			      c->dcache.linesz;
1216 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1217 
1218 		c->options |= MIPS_CPU_PREFETCH;
1219 		break;
1220 	}
1221 
1222 	/*
1223 	 * Processor configuration sanity check for the R4000SC erratum
1224 	 * #5.	With page sizes larger than 32kB there is no possibility
1225 	 * to get a VCE exception anymore so we don't care about this
1226 	 * misconfiguration.  The case is rather theoretical anyway;
1227 	 * presumably no vendor is shipping his hardware in the "bad"
1228 	 * configuration.
1229 	 */
1230 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1231 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1232 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1233 	    PAGE_SIZE <= 0x8000)
1234 		panic("Improper R4000SC processor configuration detected");
1235 
1236 	/* compute a couple of other cache variables */
1237 	c->icache.waysize = icache_size / c->icache.ways;
1238 	c->dcache.waysize = dcache_size / c->dcache.ways;
1239 
1240 	c->icache.sets = c->icache.linesz ?
1241 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1242 	c->dcache.sets = c->dcache.linesz ?
1243 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1244 
1245 	/*
1246 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1247 	 * virtually indexed so normally would suffer from aliases.  So
1248 	 * normally they'd suffer from aliases but magic in the hardware deals
1249 	 * with that for us so we don't need to take care ourselves.
1250 	 */
1251 	switch (current_cpu_type()) {
1252 	case CPU_20KC:
1253 	case CPU_25KF:
1254 	case CPU_I6400:
1255 	case CPU_I6500:
1256 	case CPU_SB1:
1257 	case CPU_SB1A:
1258 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1259 		break;
1260 
1261 	case CPU_R10000:
1262 	case CPU_R12000:
1263 	case CPU_R14000:
1264 	case CPU_R16000:
1265 		break;
1266 
1267 	case CPU_74K:
1268 	case CPU_1074K:
1269 		has_74k_erratum = alias_74k_erratum(c);
1270 		fallthrough;
1271 	case CPU_M14KC:
1272 	case CPU_M14KEC:
1273 	case CPU_24K:
1274 	case CPU_34K:
1275 	case CPU_1004K:
1276 	case CPU_INTERAPTIV:
1277 	case CPU_P5600:
1278 	case CPU_PROAPTIV:
1279 	case CPU_M5150:
1280 	case CPU_QEMU_GENERIC:
1281 	case CPU_P6600:
1282 	case CPU_M6250:
1283 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1284 		    (c->icache.waysize > PAGE_SIZE))
1285 			c->icache.flags |= MIPS_CACHE_ALIASES;
1286 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1287 			/*
1288 			 * Effectively physically indexed dcache,
1289 			 * thus no virtual aliases.
1290 			*/
1291 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1292 			break;
1293 		}
1294 		fallthrough;
1295 	default:
1296 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1297 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1298 	}
1299 
1300 	/* Physically indexed caches don't suffer from virtual aliasing */
1301 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1302 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1303 
1304 	/*
1305 	 * In systems with CM the icache fills from L2 or closer caches, and
1306 	 * thus sees remote stores without needing to write them back any
1307 	 * further than that.
1308 	 */
1309 	if (mips_cm_present())
1310 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1311 
1312 	switch (current_cpu_type()) {
1313 	case CPU_20KC:
1314 		/*
1315 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1316 		 * the config register.
1317 		 */
1318 		c->icache.flags |= MIPS_CACHE_VTAG;
1319 		break;
1320 
1321 	case CPU_ALCHEMY:
1322 	case CPU_I6400:
1323 	case CPU_I6500:
1324 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1325 		break;
1326 
1327 	case CPU_BMIPS5000:
1328 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1329 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1330 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1331 		break;
1332 
1333 	case CPU_LOONGSON2EF:
1334 		/*
1335 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1336 		 * one op will act on all 4 ways
1337 		 */
1338 		c->icache.ways = 1;
1339 	}
1340 
1341 	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1342 		icache_size >> 10,
1343 		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1344 		way_string[c->icache.ways], c->icache.linesz);
1345 
1346 	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1347 		dcache_size >> 10, way_string[c->dcache.ways],
1348 		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1349 		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1350 			"cache aliases" : "no aliases",
1351 		c->dcache.linesz);
1352 }
1353 
1354 static void probe_vcache(void)
1355 {
1356 	struct cpuinfo_mips *c = &current_cpu_data;
1357 	unsigned int config2, lsize;
1358 
1359 	if (current_cpu_type() != CPU_LOONGSON64)
1360 		return;
1361 
1362 	config2 = read_c0_config2();
1363 	if ((lsize = ((config2 >> 20) & 15)))
1364 		c->vcache.linesz = 2 << lsize;
1365 	else
1366 		c->vcache.linesz = lsize;
1367 
1368 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1369 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1370 
1371 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1372 
1373 	c->vcache.waybit = 0;
1374 	c->vcache.waysize = vcache_size / c->vcache.ways;
1375 
1376 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1377 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1378 }
1379 
1380 /*
1381  * If you even _breathe_ on this function, look at the gcc output and make sure
1382  * it does not pop things on and off the stack for the cache sizing loop that
1383  * executes in KSEG1 space or else you will crash and burn badly.  You have
1384  * been warned.
1385  */
1386 static int probe_scache(void)
1387 {
1388 	unsigned long flags, addr, begin, end, pow2;
1389 	unsigned int config = read_c0_config();
1390 	struct cpuinfo_mips *c = &current_cpu_data;
1391 
1392 	if (config & CONF_SC)
1393 		return 0;
1394 
1395 	begin = (unsigned long) &_stext;
1396 	begin &= ~((4 * 1024 * 1024) - 1);
1397 	end = begin + (4 * 1024 * 1024);
1398 
1399 	/*
1400 	 * This is such a bitch, you'd think they would make it easy to do
1401 	 * this.  Away you daemons of stupidity!
1402 	 */
1403 	local_irq_save(flags);
1404 
1405 	/* Fill each size-multiple cache line with a valid tag. */
1406 	pow2 = (64 * 1024);
1407 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1408 		unsigned long *p = (unsigned long *) addr;
1409 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1410 		pow2 <<= 1;
1411 	}
1412 
1413 	/* Load first line with zero (therefore invalid) tag. */
1414 	write_c0_taglo(0);
1415 	write_c0_taghi(0);
1416 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1417 	cache_op(Index_Store_Tag_I, begin);
1418 	cache_op(Index_Store_Tag_D, begin);
1419 	cache_op(Index_Store_Tag_SD, begin);
1420 
1421 	/* Now search for the wrap around point. */
1422 	pow2 = (128 * 1024);
1423 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1424 		cache_op(Index_Load_Tag_SD, addr);
1425 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1426 		if (!read_c0_taglo())
1427 			break;
1428 		pow2 <<= 1;
1429 	}
1430 	local_irq_restore(flags);
1431 	addr -= begin;
1432 
1433 	scache_size = addr;
1434 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1435 	c->scache.ways = 1;
1436 	c->scache.waybit = 0;		/* does not matter */
1437 
1438 	return 1;
1439 }
1440 
1441 static void loongson2_sc_init(void)
1442 {
1443 	struct cpuinfo_mips *c = &current_cpu_data;
1444 
1445 	scache_size = 512*1024;
1446 	c->scache.linesz = 32;
1447 	c->scache.ways = 4;
1448 	c->scache.waybit = 0;
1449 	c->scache.waysize = scache_size / (c->scache.ways);
1450 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1451 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1452 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1453 
1454 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1455 }
1456 
1457 static void loongson3_sc_init(void)
1458 {
1459 	struct cpuinfo_mips *c = &current_cpu_data;
1460 	unsigned int config2, lsize;
1461 
1462 	config2 = read_c0_config2();
1463 	lsize = (config2 >> 4) & 15;
1464 	if (lsize)
1465 		c->scache.linesz = 2 << lsize;
1466 	else
1467 		c->scache.linesz = 0;
1468 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1469 	c->scache.ways = 1 + (config2 & 15);
1470 
1471 	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1472 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1473 		c->scache.sets *= 2;
1474 	else
1475 		c->scache.sets *= 4;
1476 
1477 	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1478 
1479 	c->scache.waybit = 0;
1480 	c->scache.waysize = scache_size / c->scache.ways;
1481 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1482 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1483 	if (scache_size)
1484 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1485 	return;
1486 }
1487 
1488 static void setup_scache(void)
1489 {
1490 	struct cpuinfo_mips *c = &current_cpu_data;
1491 	unsigned int config = read_c0_config();
1492 	int sc_present = 0;
1493 
1494 	/*
1495 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1496 	 * processors don't have a S-cache that would be relevant to the
1497 	 * Linux memory management.
1498 	 */
1499 	switch (current_cpu_type()) {
1500 	case CPU_R4000SC:
1501 	case CPU_R4000MC:
1502 	case CPU_R4400SC:
1503 	case CPU_R4400MC:
1504 		sc_present = run_uncached(probe_scache);
1505 		if (sc_present)
1506 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1507 		break;
1508 
1509 	case CPU_R10000:
1510 	case CPU_R12000:
1511 	case CPU_R14000:
1512 	case CPU_R16000:
1513 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1514 		c->scache.linesz = 64 << ((config >> 13) & 1);
1515 		c->scache.ways = 2;
1516 		c->scache.waybit= 0;
1517 		sc_present = 1;
1518 		break;
1519 
1520 	case CPU_R5000:
1521 	case CPU_NEVADA:
1522 #ifdef CONFIG_R5000_CPU_SCACHE
1523 		r5k_sc_init();
1524 #endif
1525 		return;
1526 
1527 	case CPU_RM7000:
1528 #ifdef CONFIG_RM7000_CPU_SCACHE
1529 		rm7k_sc_init();
1530 #endif
1531 		return;
1532 
1533 	case CPU_LOONGSON2EF:
1534 		loongson2_sc_init();
1535 		return;
1536 
1537 	case CPU_LOONGSON64:
1538 		loongson3_sc_init();
1539 		return;
1540 
1541 	case CPU_CAVIUM_OCTEON3:
1542 		/* don't need to worry about L2, fully coherent */
1543 		return;
1544 
1545 	default:
1546 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1547 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1548 				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1549 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1550 #ifdef CONFIG_MIPS_CPU_SCACHE
1551 			if (mips_sc_init ()) {
1552 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1553 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1554 				       scache_size >> 10,
1555 				       way_string[c->scache.ways], c->scache.linesz);
1556 
1557 				if (current_cpu_type() == CPU_BMIPS5000)
1558 					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1559 			}
1560 
1561 #else
1562 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1563 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1564 #endif
1565 			return;
1566 		}
1567 		sc_present = 0;
1568 	}
1569 
1570 	if (!sc_present)
1571 		return;
1572 
1573 	/* compute a couple of other cache variables */
1574 	c->scache.waysize = scache_size / c->scache.ways;
1575 
1576 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1577 
1578 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1579 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1580 
1581 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1582 }
1583 
1584 void au1x00_fixup_config_od(void)
1585 {
1586 	/*
1587 	 * c0_config.od (bit 19) was write only (and read as 0)
1588 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1589 	 * transaction overlapping and needs to be set to fix various errata.
1590 	 */
1591 	switch (read_c0_prid()) {
1592 	case 0x00030100: /* Au1000 DA */
1593 	case 0x00030201: /* Au1000 HA */
1594 	case 0x00030202: /* Au1000 HB */
1595 	case 0x01030200: /* Au1500 AB */
1596 	/*
1597 	 * Au1100 errata actually keeps silence about this bit, so we set it
1598 	 * just in case for those revisions that require it to be set according
1599 	 * to the (now gone) cpu table.
1600 	 */
1601 	case 0x02030200: /* Au1100 AB */
1602 	case 0x02030201: /* Au1100 BA */
1603 	case 0x02030202: /* Au1100 BC */
1604 		set_c0_config(1 << 19);
1605 		break;
1606 	}
1607 }
1608 
1609 /* CP0 hazard avoidance. */
1610 #define NXP_BARRIER()							\
1611 	 __asm__ __volatile__(						\
1612 	".set noreorder\n\t"						\
1613 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1614 	".set reorder\n\t")
1615 
1616 static void nxp_pr4450_fixup_config(void)
1617 {
1618 	unsigned long config0;
1619 
1620 	config0 = read_c0_config();
1621 
1622 	/* clear all three cache coherency fields */
1623 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1624 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1625 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1626 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1627 	write_c0_config(config0);
1628 	NXP_BARRIER();
1629 }
1630 
1631 static int cca = -1;
1632 
1633 static int __init cca_setup(char *str)
1634 {
1635 	get_option(&str, &cca);
1636 
1637 	return 0;
1638 }
1639 
1640 early_param("cca", cca_setup);
1641 
1642 static void coherency_setup(void)
1643 {
1644 	if (cca < 0 || cca > 7)
1645 		cca = read_c0_config() & CONF_CM_CMASK;
1646 	_page_cachable_default = cca << _CACHE_SHIFT;
1647 
1648 	pr_debug("Using cache attribute %d\n", cca);
1649 	change_c0_config(CONF_CM_CMASK, cca);
1650 
1651 	/*
1652 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1653 	 * the coherency mode specified by the TLB; 1 means cacheable
1654 	 * coherent update on write will be used.  Not all processors have
1655 	 * this bit and; some wire it to zero, others like Toshiba had the
1656 	 * silly idea of putting something else there ...
1657 	 */
1658 	switch (current_cpu_type()) {
1659 	case CPU_R4000PC:
1660 	case CPU_R4000SC:
1661 	case CPU_R4000MC:
1662 	case CPU_R4400PC:
1663 	case CPU_R4400SC:
1664 	case CPU_R4400MC:
1665 		clear_c0_config(CONF_CU);
1666 		break;
1667 	/*
1668 	 * We need to catch the early Alchemy SOCs with
1669 	 * the write-only co_config.od bit and set it back to one on:
1670 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1671 	 */
1672 	case CPU_ALCHEMY:
1673 		au1x00_fixup_config_od();
1674 		break;
1675 
1676 	case PRID_IMP_PR4450:
1677 		nxp_pr4450_fixup_config();
1678 		break;
1679 	}
1680 }
1681 
1682 static void r4k_cache_error_setup(void)
1683 {
1684 	extern char __weak except_vec2_generic;
1685 	extern char __weak except_vec2_sb1;
1686 
1687 	switch (current_cpu_type()) {
1688 	case CPU_SB1:
1689 	case CPU_SB1A:
1690 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1691 		break;
1692 
1693 	default:
1694 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1695 		break;
1696 	}
1697 }
1698 
1699 void r4k_cache_init(void)
1700 {
1701 	extern void build_clear_page(void);
1702 	extern void build_copy_page(void);
1703 	struct cpuinfo_mips *c = &current_cpu_data;
1704 
1705 	probe_pcache();
1706 	probe_vcache();
1707 	setup_scache();
1708 
1709 	r4k_blast_dcache_page_setup();
1710 	r4k_blast_dcache_setup();
1711 	r4k_blast_icache_page_setup();
1712 	r4k_blast_icache_setup();
1713 	r4k_blast_scache_page_setup();
1714 	r4k_blast_scache_setup();
1715 	r4k_blast_scache_node_setup();
1716 #ifdef CONFIG_EVA
1717 	r4k_blast_dcache_user_page_setup();
1718 	r4k_blast_icache_user_page_setup();
1719 #endif
1720 
1721 	/*
1722 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1723 	 * This code supports virtually indexed processors and will be
1724 	 * unnecessarily inefficient on physically indexed processors.
1725 	 */
1726 	if (c->dcache.linesz && cpu_has_dc_aliases)
1727 		shm_align_mask = max_t( unsigned long,
1728 					c->dcache.sets * c->dcache.linesz - 1,
1729 					PAGE_SIZE - 1);
1730 	else
1731 		shm_align_mask = PAGE_SIZE-1;
1732 
1733 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1734 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1735 
1736 	flush_cache_all		= cache_noop;
1737 	__flush_cache_all	= r4k___flush_cache_all;
1738 	flush_cache_mm		= r4k_flush_cache_mm;
1739 	flush_cache_page	= r4k_flush_cache_page;
1740 	flush_cache_range	= r4k_flush_cache_range;
1741 
1742 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1743 
1744 	flush_icache_all	= r4k_flush_icache_all;
1745 	flush_data_cache_page	= r4k_flush_data_cache_page;
1746 	flush_icache_range	= r4k_flush_icache_range;
1747 	local_flush_icache_range	= local_r4k_flush_icache_range;
1748 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1749 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1750 
1751 #ifdef CONFIG_DMA_NONCOHERENT
1752 	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1753 	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1754 	_dma_cache_inv		= r4k_dma_cache_inv;
1755 #endif /* CONFIG_DMA_NONCOHERENT */
1756 
1757 	build_clear_page();
1758 	build_copy_page();
1759 
1760 	/*
1761 	 * We want to run CMP kernels on core with and without coherent
1762 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1763 	 * or not to flush caches.
1764 	 */
1765 	local_r4k___flush_cache_all(NULL);
1766 
1767 	coherency_setup();
1768 	board_cache_error_setup = r4k_cache_error_setup;
1769 
1770 	/*
1771 	 * Per-CPU overrides
1772 	 */
1773 	switch (current_cpu_type()) {
1774 	case CPU_BMIPS4350:
1775 	case CPU_BMIPS4380:
1776 		/* No IPI is needed because all CPUs share the same D$ */
1777 		flush_data_cache_page = r4k_blast_dcache_page;
1778 		break;
1779 	case CPU_BMIPS5000:
1780 		/* We lose our superpowers if L2 is disabled */
1781 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1782 			break;
1783 
1784 		/* I$ fills from D$ just by emptying the write buffers */
1785 		flush_cache_page = (void *)b5k_instruction_hazard;
1786 		flush_cache_range = (void *)b5k_instruction_hazard;
1787 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1788 		flush_icache_range = (void *)b5k_instruction_hazard;
1789 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1790 
1791 
1792 		/* Optimization: an L2 flush implicitly flushes the L1 */
1793 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1794 		break;
1795 	case CPU_LOONGSON64:
1796 		/* Loongson-3 maintains cache coherency by hardware */
1797 		__flush_cache_all	= cache_noop;
1798 		__flush_cache_vmap	= cache_noop;
1799 		__flush_cache_vunmap	= cache_noop;
1800 		__flush_kernel_vmap_range = (void *)cache_noop;
1801 		flush_cache_mm		= (void *)cache_noop;
1802 		flush_cache_page	= (void *)cache_noop;
1803 		flush_cache_range	= (void *)cache_noop;
1804 		flush_icache_all	= (void *)cache_noop;
1805 		flush_data_cache_page	= (void *)cache_noop;
1806 		break;
1807 	}
1808 }
1809 
1810 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1811 			       void *v)
1812 {
1813 	switch (cmd) {
1814 	case CPU_PM_ENTER_FAILED:
1815 	case CPU_PM_EXIT:
1816 		coherency_setup();
1817 		break;
1818 	}
1819 
1820 	return NOTIFY_OK;
1821 }
1822 
1823 static struct notifier_block r4k_cache_pm_notifier_block = {
1824 	.notifier_call = r4k_cache_pm_notifier,
1825 };
1826 
1827 static int __init r4k_cache_init_pm(void)
1828 {
1829 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1830 }
1831 arch_initcall(r4k_cache_init_pm);
1832