1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 */ 10 #include <linux/cpu_pm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/highmem.h> 14 #include <linux/kernel.h> 15 #include <linux/linkage.h> 16 #include <linux/preempt.h> 17 #include <linux/sched.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/export.h> 21 #include <linux/bitops.h> 22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 23 24 #include <asm/bcache.h> 25 #include <asm/bootinfo.h> 26 #include <asm/cache.h> 27 #include <asm/cacheops.h> 28 #include <asm/cpu.h> 29 #include <asm/cpu-features.h> 30 #include <asm/cpu-type.h> 31 #include <asm/io.h> 32 #include <asm/page.h> 33 #include <asm/r4kcache.h> 34 #include <asm/sections.h> 35 #include <asm/mmu_context.h> 36 #include <asm/war.h> 37 #include <asm/cacheflush.h> /* for run_uncached() */ 38 #include <asm/traps.h> 39 #include <asm/mips-cps.h> 40 41 /* 42 * Bits describing what cache ops an SMP callback function may perform. 43 * 44 * R4K_HIT - Virtual user or kernel address based cache operations. The 45 * active_mm must be checked before using user addresses, falling 46 * back to kmap. 47 * R4K_INDEX - Index based cache operations. 48 */ 49 50 #define R4K_HIT BIT(0) 51 #define R4K_INDEX BIT(1) 52 53 /** 54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. 55 * @type: Type of cache operations (R4K_HIT or R4K_INDEX). 56 * 57 * Decides whether a cache op needs to be performed on every core in the system. 58 * This may change depending on the @type of cache operation, as well as the set 59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU 60 * hotplug from changing the result. 61 * 62 * Returns: 1 if the cache operation @type should be done on every core in 63 * the system. 64 * 0 if the cache operation @type is globalized and only needs to 65 * be performed on a simple CPU. 66 */ 67 static inline bool r4k_op_needs_ipi(unsigned int type) 68 { 69 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ 70 if (type == R4K_HIT && mips_cm_present()) 71 return false; 72 73 /* 74 * Hardware doesn't globalize the required cache ops, so SMP calls may 75 * be needed, but only if there are foreign CPUs (non-siblings with 76 * separate caches). 77 */ 78 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ 79 #ifdef CONFIG_SMP 80 return !cpumask_empty(&cpu_foreign_map[0]); 81 #else 82 return false; 83 #endif 84 } 85 86 /* 87 * Special Variant of smp_call_function for use by cache functions: 88 * 89 * o No return value 90 * o collapses to normal function call on UP kernels 91 * o collapses to normal function call on systems with a single shared 92 * primary cache. 93 * o doesn't disable interrupts on the local CPU 94 */ 95 static inline void r4k_on_each_cpu(unsigned int type, 96 void (*func)(void *info), void *info) 97 { 98 preempt_disable(); 99 if (r4k_op_needs_ipi(type)) 100 smp_call_function_many(&cpu_foreign_map[smp_processor_id()], 101 func, info, 1); 102 func(info); 103 preempt_enable(); 104 } 105 106 /* 107 * Must die. 108 */ 109 static unsigned long icache_size __read_mostly; 110 static unsigned long dcache_size __read_mostly; 111 static unsigned long vcache_size __read_mostly; 112 static unsigned long scache_size __read_mostly; 113 114 /* 115 * Dummy cache handling routines for machines without boardcaches 116 */ 117 static void cache_noop(void) {} 118 119 static struct bcache_ops no_sc_ops = { 120 .bc_enable = (void *)cache_noop, 121 .bc_disable = (void *)cache_noop, 122 .bc_wback_inv = (void *)cache_noop, 123 .bc_inv = (void *)cache_noop 124 }; 125 126 struct bcache_ops *bcops = &no_sc_ops; 127 128 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) 129 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) 130 131 #define R4600_HIT_CACHEOP_WAR_IMPL \ 132 do { \ 133 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \ 134 cpu_is_r4600_v2_x()) \ 135 *(volatile unsigned long *)CKSEG1; \ 136 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \ 137 __asm__ __volatile__("nop;nop;nop;nop"); \ 138 } while (0) 139 140 static void (*r4k_blast_dcache_page)(unsigned long addr); 141 142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr) 143 { 144 R4600_HIT_CACHEOP_WAR_IMPL; 145 blast_dcache32_page(addr); 146 } 147 148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr) 149 { 150 blast_dcache64_page(addr); 151 } 152 153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr) 154 { 155 blast_dcache128_page(addr); 156 } 157 158 static void r4k_blast_dcache_page_setup(void) 159 { 160 unsigned long dc_lsize = cpu_dcache_line_size(); 161 162 switch (dc_lsize) { 163 case 0: 164 r4k_blast_dcache_page = (void *)cache_noop; 165 break; 166 case 16: 167 r4k_blast_dcache_page = blast_dcache16_page; 168 break; 169 case 32: 170 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; 171 break; 172 case 64: 173 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; 174 break; 175 case 128: 176 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; 177 break; 178 default: 179 break; 180 } 181 } 182 183 #ifndef CONFIG_EVA 184 #define r4k_blast_dcache_user_page r4k_blast_dcache_page 185 #else 186 187 static void (*r4k_blast_dcache_user_page)(unsigned long addr); 188 189 static void r4k_blast_dcache_user_page_setup(void) 190 { 191 unsigned long dc_lsize = cpu_dcache_line_size(); 192 193 if (dc_lsize == 0) 194 r4k_blast_dcache_user_page = (void *)cache_noop; 195 else if (dc_lsize == 16) 196 r4k_blast_dcache_user_page = blast_dcache16_user_page; 197 else if (dc_lsize == 32) 198 r4k_blast_dcache_user_page = blast_dcache32_user_page; 199 else if (dc_lsize == 64) 200 r4k_blast_dcache_user_page = blast_dcache64_user_page; 201 } 202 203 #endif 204 205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr); 206 207 static void r4k_blast_dcache_page_indexed_setup(void) 208 { 209 unsigned long dc_lsize = cpu_dcache_line_size(); 210 211 if (dc_lsize == 0) 212 r4k_blast_dcache_page_indexed = (void *)cache_noop; 213 else if (dc_lsize == 16) 214 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed; 215 else if (dc_lsize == 32) 216 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed; 217 else if (dc_lsize == 64) 218 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed; 219 else if (dc_lsize == 128) 220 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed; 221 } 222 223 void (* r4k_blast_dcache)(void); 224 EXPORT_SYMBOL(r4k_blast_dcache); 225 226 static void r4k_blast_dcache_setup(void) 227 { 228 unsigned long dc_lsize = cpu_dcache_line_size(); 229 230 if (dc_lsize == 0) 231 r4k_blast_dcache = (void *)cache_noop; 232 else if (dc_lsize == 16) 233 r4k_blast_dcache = blast_dcache16; 234 else if (dc_lsize == 32) 235 r4k_blast_dcache = blast_dcache32; 236 else if (dc_lsize == 64) 237 r4k_blast_dcache = blast_dcache64; 238 else if (dc_lsize == 128) 239 r4k_blast_dcache = blast_dcache128; 240 } 241 242 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */ 243 #define JUMP_TO_ALIGN(order) \ 244 __asm__ __volatile__( \ 245 "b\t1f\n\t" \ 246 ".align\t" #order "\n\t" \ 247 "1:\n\t" \ 248 ) 249 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ 250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) 251 252 static inline void blast_r4600_v1_icache32(void) 253 { 254 unsigned long flags; 255 256 local_irq_save(flags); 257 blast_icache32(); 258 local_irq_restore(flags); 259 } 260 261 static inline void tx49_blast_icache32(void) 262 { 263 unsigned long start = INDEX_BASE; 264 unsigned long end = start + current_cpu_data.icache.waysize; 265 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 266 unsigned long ws_end = current_cpu_data.icache.ways << 267 current_cpu_data.icache.waybit; 268 unsigned long ws, addr; 269 270 CACHE32_UNROLL32_ALIGN2; 271 /* I'm in even chunk. blast odd chunks */ 272 for (ws = 0; ws < ws_end; ws += ws_inc) 273 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 274 cache_unroll(32, kernel_cache, Index_Invalidate_I, 275 addr | ws, 32); 276 CACHE32_UNROLL32_ALIGN; 277 /* I'm in odd chunk. blast even chunks */ 278 for (ws = 0; ws < ws_end; ws += ws_inc) 279 for (addr = start; addr < end; addr += 0x400 * 2) 280 cache_unroll(32, kernel_cache, Index_Invalidate_I, 281 addr | ws, 32); 282 } 283 284 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page) 285 { 286 unsigned long flags; 287 288 local_irq_save(flags); 289 blast_icache32_page_indexed(page); 290 local_irq_restore(flags); 291 } 292 293 static inline void tx49_blast_icache32_page_indexed(unsigned long page) 294 { 295 unsigned long indexmask = current_cpu_data.icache.waysize - 1; 296 unsigned long start = INDEX_BASE + (page & indexmask); 297 unsigned long end = start + PAGE_SIZE; 298 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 299 unsigned long ws_end = current_cpu_data.icache.ways << 300 current_cpu_data.icache.waybit; 301 unsigned long ws, addr; 302 303 CACHE32_UNROLL32_ALIGN2; 304 /* I'm in even chunk. blast odd chunks */ 305 for (ws = 0; ws < ws_end; ws += ws_inc) 306 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 307 cache_unroll(32, kernel_cache, Index_Invalidate_I, 308 addr | ws, 32); 309 CACHE32_UNROLL32_ALIGN; 310 /* I'm in odd chunk. blast even chunks */ 311 for (ws = 0; ws < ws_end; ws += ws_inc) 312 for (addr = start; addr < end; addr += 0x400 * 2) 313 cache_unroll(32, kernel_cache, Index_Invalidate_I, 314 addr | ws, 32); 315 } 316 317 static void (* r4k_blast_icache_page)(unsigned long addr); 318 319 static void r4k_blast_icache_page_setup(void) 320 { 321 unsigned long ic_lsize = cpu_icache_line_size(); 322 323 if (ic_lsize == 0) 324 r4k_blast_icache_page = (void *)cache_noop; 325 else if (ic_lsize == 16) 326 r4k_blast_icache_page = blast_icache16_page; 327 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) 328 r4k_blast_icache_page = loongson2_blast_icache32_page; 329 else if (ic_lsize == 32) 330 r4k_blast_icache_page = blast_icache32_page; 331 else if (ic_lsize == 64) 332 r4k_blast_icache_page = blast_icache64_page; 333 else if (ic_lsize == 128) 334 r4k_blast_icache_page = blast_icache128_page; 335 } 336 337 #ifndef CONFIG_EVA 338 #define r4k_blast_icache_user_page r4k_blast_icache_page 339 #else 340 341 static void (*r4k_blast_icache_user_page)(unsigned long addr); 342 343 static void r4k_blast_icache_user_page_setup(void) 344 { 345 unsigned long ic_lsize = cpu_icache_line_size(); 346 347 if (ic_lsize == 0) 348 r4k_blast_icache_user_page = (void *)cache_noop; 349 else if (ic_lsize == 16) 350 r4k_blast_icache_user_page = blast_icache16_user_page; 351 else if (ic_lsize == 32) 352 r4k_blast_icache_user_page = blast_icache32_user_page; 353 else if (ic_lsize == 64) 354 r4k_blast_icache_user_page = blast_icache64_user_page; 355 } 356 357 #endif 358 359 static void (* r4k_blast_icache_page_indexed)(unsigned long addr); 360 361 static void r4k_blast_icache_page_indexed_setup(void) 362 { 363 unsigned long ic_lsize = cpu_icache_line_size(); 364 365 if (ic_lsize == 0) 366 r4k_blast_icache_page_indexed = (void *)cache_noop; 367 else if (ic_lsize == 16) 368 r4k_blast_icache_page_indexed = blast_icache16_page_indexed; 369 else if (ic_lsize == 32) { 370 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) && 371 cpu_is_r4600_v1_x()) 372 r4k_blast_icache_page_indexed = 373 blast_icache32_r4600_v1_page_indexed; 374 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV)) 375 r4k_blast_icache_page_indexed = 376 tx49_blast_icache32_page_indexed; 377 else if (current_cpu_type() == CPU_LOONGSON2EF) 378 r4k_blast_icache_page_indexed = 379 loongson2_blast_icache32_page_indexed; 380 else 381 r4k_blast_icache_page_indexed = 382 blast_icache32_page_indexed; 383 } else if (ic_lsize == 64) 384 r4k_blast_icache_page_indexed = blast_icache64_page_indexed; 385 } 386 387 void (* r4k_blast_icache)(void); 388 EXPORT_SYMBOL(r4k_blast_icache); 389 390 static void r4k_blast_icache_setup(void) 391 { 392 unsigned long ic_lsize = cpu_icache_line_size(); 393 394 if (ic_lsize == 0) 395 r4k_blast_icache = (void *)cache_noop; 396 else if (ic_lsize == 16) 397 r4k_blast_icache = blast_icache16; 398 else if (ic_lsize == 32) { 399 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) && 400 cpu_is_r4600_v1_x()) 401 r4k_blast_icache = blast_r4600_v1_icache32; 402 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV)) 403 r4k_blast_icache = tx49_blast_icache32; 404 else if (current_cpu_type() == CPU_LOONGSON2EF) 405 r4k_blast_icache = loongson2_blast_icache32; 406 else 407 r4k_blast_icache = blast_icache32; 408 } else if (ic_lsize == 64) 409 r4k_blast_icache = blast_icache64; 410 else if (ic_lsize == 128) 411 r4k_blast_icache = blast_icache128; 412 } 413 414 static void (* r4k_blast_scache_page)(unsigned long addr); 415 416 static void r4k_blast_scache_page_setup(void) 417 { 418 unsigned long sc_lsize = cpu_scache_line_size(); 419 420 if (scache_size == 0) 421 r4k_blast_scache_page = (void *)cache_noop; 422 else if (sc_lsize == 16) 423 r4k_blast_scache_page = blast_scache16_page; 424 else if (sc_lsize == 32) 425 r4k_blast_scache_page = blast_scache32_page; 426 else if (sc_lsize == 64) 427 r4k_blast_scache_page = blast_scache64_page; 428 else if (sc_lsize == 128) 429 r4k_blast_scache_page = blast_scache128_page; 430 } 431 432 static void (* r4k_blast_scache_page_indexed)(unsigned long addr); 433 434 static void r4k_blast_scache_page_indexed_setup(void) 435 { 436 unsigned long sc_lsize = cpu_scache_line_size(); 437 438 if (scache_size == 0) 439 r4k_blast_scache_page_indexed = (void *)cache_noop; 440 else if (sc_lsize == 16) 441 r4k_blast_scache_page_indexed = blast_scache16_page_indexed; 442 else if (sc_lsize == 32) 443 r4k_blast_scache_page_indexed = blast_scache32_page_indexed; 444 else if (sc_lsize == 64) 445 r4k_blast_scache_page_indexed = blast_scache64_page_indexed; 446 else if (sc_lsize == 128) 447 r4k_blast_scache_page_indexed = blast_scache128_page_indexed; 448 } 449 450 static void (* r4k_blast_scache)(void); 451 452 static void r4k_blast_scache_setup(void) 453 { 454 unsigned long sc_lsize = cpu_scache_line_size(); 455 456 if (scache_size == 0) 457 r4k_blast_scache = (void *)cache_noop; 458 else if (sc_lsize == 16) 459 r4k_blast_scache = blast_scache16; 460 else if (sc_lsize == 32) 461 r4k_blast_scache = blast_scache32; 462 else if (sc_lsize == 64) 463 r4k_blast_scache = blast_scache64; 464 else if (sc_lsize == 128) 465 r4k_blast_scache = blast_scache128; 466 } 467 468 static void (*r4k_blast_scache_node)(long node); 469 470 static void r4k_blast_scache_node_setup(void) 471 { 472 unsigned long sc_lsize = cpu_scache_line_size(); 473 474 if (current_cpu_type() != CPU_LOONGSON64) 475 r4k_blast_scache_node = (void *)cache_noop; 476 else if (sc_lsize == 16) 477 r4k_blast_scache_node = blast_scache16_node; 478 else if (sc_lsize == 32) 479 r4k_blast_scache_node = blast_scache32_node; 480 else if (sc_lsize == 64) 481 r4k_blast_scache_node = blast_scache64_node; 482 else if (sc_lsize == 128) 483 r4k_blast_scache_node = blast_scache128_node; 484 } 485 486 static inline void local_r4k___flush_cache_all(void * args) 487 { 488 switch (current_cpu_type()) { 489 case CPU_LOONGSON2EF: 490 case CPU_R4000SC: 491 case CPU_R4000MC: 492 case CPU_R4400SC: 493 case CPU_R4400MC: 494 case CPU_R10000: 495 case CPU_R12000: 496 case CPU_R14000: 497 case CPU_R16000: 498 /* 499 * These caches are inclusive caches, that is, if something 500 * is not cached in the S-cache, we know it also won't be 501 * in one of the primary caches. 502 */ 503 r4k_blast_scache(); 504 break; 505 506 case CPU_LOONGSON64: 507 /* Use get_ebase_cpunum() for both NUMA=y/n */ 508 r4k_blast_scache_node(get_ebase_cpunum() >> 2); 509 break; 510 511 case CPU_BMIPS5000: 512 r4k_blast_scache(); 513 __sync(); 514 break; 515 516 default: 517 r4k_blast_dcache(); 518 r4k_blast_icache(); 519 break; 520 } 521 } 522 523 static void r4k___flush_cache_all(void) 524 { 525 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); 526 } 527 528 /** 529 * has_valid_asid() - Determine if an mm already has an ASID. 530 * @mm: Memory map. 531 * @type: R4K_HIT or R4K_INDEX, type of cache op. 532 * 533 * Determines whether @mm already has an ASID on any of the CPUs which cache ops 534 * of type @type within an r4k_on_each_cpu() call will affect. If 535 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the 536 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs 537 * will need to be checked. 538 * 539 * Must be called in non-preemptive context. 540 * 541 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. 542 * 0 otherwise. 543 */ 544 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) 545 { 546 unsigned int i; 547 const cpumask_t *mask = cpu_present_mask; 548 549 if (cpu_has_mmid) 550 return cpu_context(0, mm) != 0; 551 552 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ 553 #ifdef CONFIG_SMP 554 /* 555 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in 556 * each foreign core, so we only need to worry about siblings. 557 * Otherwise we need to worry about all present CPUs. 558 */ 559 if (r4k_op_needs_ipi(type)) 560 mask = &cpu_sibling_map[smp_processor_id()]; 561 #endif 562 for_each_cpu(i, mask) 563 if (cpu_context(i, mm)) 564 return 1; 565 return 0; 566 } 567 568 static void r4k__flush_cache_vmap(void) 569 { 570 r4k_blast_dcache(); 571 } 572 573 static void r4k__flush_cache_vunmap(void) 574 { 575 r4k_blast_dcache(); 576 } 577 578 /* 579 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes 580 * whole caches when vma is executable. 581 */ 582 static inline void local_r4k_flush_cache_range(void * args) 583 { 584 struct vm_area_struct *vma = args; 585 int exec = vma->vm_flags & VM_EXEC; 586 587 if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) 588 return; 589 590 /* 591 * If dcache can alias, we must blast it since mapping is changing. 592 * If executable, we must ensure any dirty lines are written back far 593 * enough to be visible to icache. 594 */ 595 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) 596 r4k_blast_dcache(); 597 /* If executable, blast stale lines from icache */ 598 if (exec) 599 r4k_blast_icache(); 600 } 601 602 static void r4k_flush_cache_range(struct vm_area_struct *vma, 603 unsigned long start, unsigned long end) 604 { 605 int exec = vma->vm_flags & VM_EXEC; 606 607 if (cpu_has_dc_aliases || exec) 608 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); 609 } 610 611 static inline void local_r4k_flush_cache_mm(void * args) 612 { 613 struct mm_struct *mm = args; 614 615 if (!has_valid_asid(mm, R4K_INDEX)) 616 return; 617 618 /* 619 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we 620 * only flush the primary caches but R1x000 behave sane ... 621 * R4000SC and R4400SC indexed S-cache ops also invalidate primary 622 * caches, so we can bail out early. 623 */ 624 if (current_cpu_type() == CPU_R4000SC || 625 current_cpu_type() == CPU_R4000MC || 626 current_cpu_type() == CPU_R4400SC || 627 current_cpu_type() == CPU_R4400MC) { 628 r4k_blast_scache(); 629 return; 630 } 631 632 r4k_blast_dcache(); 633 } 634 635 static void r4k_flush_cache_mm(struct mm_struct *mm) 636 { 637 if (!cpu_has_dc_aliases) 638 return; 639 640 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); 641 } 642 643 struct flush_cache_page_args { 644 struct vm_area_struct *vma; 645 unsigned long addr; 646 unsigned long pfn; 647 }; 648 649 static inline void local_r4k_flush_cache_page(void *args) 650 { 651 struct flush_cache_page_args *fcp_args = args; 652 struct vm_area_struct *vma = fcp_args->vma; 653 unsigned long addr = fcp_args->addr; 654 struct page *page = pfn_to_page(fcp_args->pfn); 655 int exec = vma->vm_flags & VM_EXEC; 656 struct mm_struct *mm = vma->vm_mm; 657 int map_coherent = 0; 658 pmd_t *pmdp; 659 pte_t *ptep; 660 void *vaddr; 661 662 /* 663 * If owns no valid ASID yet, cannot possibly have gotten 664 * this page into the cache. 665 */ 666 if (!has_valid_asid(mm, R4K_HIT)) 667 return; 668 669 addr &= PAGE_MASK; 670 pmdp = pmd_off(mm, addr); 671 ptep = pte_offset_kernel(pmdp, addr); 672 673 /* 674 * If the page isn't marked valid, the page cannot possibly be 675 * in the cache. 676 */ 677 if (!(pte_present(*ptep))) 678 return; 679 680 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) 681 vaddr = NULL; 682 else { 683 /* 684 * Use kmap_coherent or kmap_atomic to do flushes for 685 * another ASID than the current one. 686 */ 687 map_coherent = (cpu_has_dc_aliases && 688 page_mapcount(page) && 689 !Page_dcache_dirty(page)); 690 if (map_coherent) 691 vaddr = kmap_coherent(page, addr); 692 else 693 vaddr = kmap_atomic(page); 694 addr = (unsigned long)vaddr; 695 } 696 697 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { 698 vaddr ? r4k_blast_dcache_page(addr) : 699 r4k_blast_dcache_user_page(addr); 700 if (exec && !cpu_icache_snoops_remote_store) 701 r4k_blast_scache_page(addr); 702 } 703 if (exec) { 704 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { 705 drop_mmu_context(mm); 706 } else 707 vaddr ? r4k_blast_icache_page(addr) : 708 r4k_blast_icache_user_page(addr); 709 } 710 711 if (vaddr) { 712 if (map_coherent) 713 kunmap_coherent(); 714 else 715 kunmap_atomic(vaddr); 716 } 717 } 718 719 static void r4k_flush_cache_page(struct vm_area_struct *vma, 720 unsigned long addr, unsigned long pfn) 721 { 722 struct flush_cache_page_args args; 723 724 args.vma = vma; 725 args.addr = addr; 726 args.pfn = pfn; 727 728 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); 729 } 730 731 static inline void local_r4k_flush_data_cache_page(void * addr) 732 { 733 r4k_blast_dcache_page((unsigned long) addr); 734 } 735 736 static void r4k_flush_data_cache_page(unsigned long addr) 737 { 738 if (in_atomic()) 739 local_r4k_flush_data_cache_page((void *)addr); 740 else 741 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, 742 (void *) addr); 743 } 744 745 struct flush_icache_range_args { 746 unsigned long start; 747 unsigned long end; 748 unsigned int type; 749 bool user; 750 }; 751 752 static inline void __local_r4k_flush_icache_range(unsigned long start, 753 unsigned long end, 754 unsigned int type, 755 bool user) 756 { 757 if (!cpu_has_ic_fills_f_dc) { 758 if (type == R4K_INDEX || 759 (type & R4K_INDEX && end - start >= dcache_size)) { 760 r4k_blast_dcache(); 761 } else { 762 R4600_HIT_CACHEOP_WAR_IMPL; 763 if (user) 764 protected_blast_dcache_range(start, end); 765 else 766 blast_dcache_range(start, end); 767 } 768 } 769 770 if (type == R4K_INDEX || 771 (type & R4K_INDEX && end - start > icache_size)) 772 r4k_blast_icache(); 773 else { 774 switch (boot_cpu_type()) { 775 case CPU_LOONGSON2EF: 776 protected_loongson2_blast_icache_range(start, end); 777 break; 778 779 default: 780 if (user) 781 protected_blast_icache_range(start, end); 782 else 783 blast_icache_range(start, end); 784 break; 785 } 786 } 787 } 788 789 static inline void local_r4k_flush_icache_range(unsigned long start, 790 unsigned long end) 791 { 792 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); 793 } 794 795 static inline void local_r4k_flush_icache_user_range(unsigned long start, 796 unsigned long end) 797 { 798 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); 799 } 800 801 static inline void local_r4k_flush_icache_range_ipi(void *args) 802 { 803 struct flush_icache_range_args *fir_args = args; 804 unsigned long start = fir_args->start; 805 unsigned long end = fir_args->end; 806 unsigned int type = fir_args->type; 807 bool user = fir_args->user; 808 809 __local_r4k_flush_icache_range(start, end, type, user); 810 } 811 812 static void __r4k_flush_icache_range(unsigned long start, unsigned long end, 813 bool user) 814 { 815 struct flush_icache_range_args args; 816 unsigned long size, cache_size; 817 818 args.start = start; 819 args.end = end; 820 args.type = R4K_HIT | R4K_INDEX; 821 args.user = user; 822 823 /* 824 * Indexed cache ops require an SMP call. 825 * Consider if that can or should be avoided. 826 */ 827 preempt_disable(); 828 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { 829 /* 830 * If address-based cache ops don't require an SMP call, then 831 * use them exclusively for small flushes. 832 */ 833 size = end - start; 834 cache_size = icache_size; 835 if (!cpu_has_ic_fills_f_dc) { 836 size *= 2; 837 cache_size += dcache_size; 838 } 839 if (size <= cache_size) 840 args.type &= ~R4K_INDEX; 841 } 842 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); 843 preempt_enable(); 844 instruction_hazard(); 845 } 846 847 static void r4k_flush_icache_range(unsigned long start, unsigned long end) 848 { 849 return __r4k_flush_icache_range(start, end, false); 850 } 851 852 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) 853 { 854 return __r4k_flush_icache_range(start, end, true); 855 } 856 857 #ifdef CONFIG_DMA_NONCOHERENT 858 859 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) 860 { 861 /* Catch bad driver code */ 862 if (WARN_ON(size == 0)) 863 return; 864 865 preempt_disable(); 866 if (cpu_has_inclusive_pcaches) { 867 if (size >= scache_size) { 868 if (current_cpu_type() != CPU_LOONGSON64) 869 r4k_blast_scache(); 870 else 871 r4k_blast_scache_node(pa_to_nid(addr)); 872 } else { 873 blast_scache_range(addr, addr + size); 874 } 875 preempt_enable(); 876 __sync(); 877 return; 878 } 879 880 /* 881 * Either no secondary cache or the available caches don't have the 882 * subset property so we have to flush the primary caches 883 * explicitly. 884 * If we would need IPI to perform an INDEX-type operation, then 885 * we have to use the HIT-type alternative as IPI cannot be used 886 * here due to interrupts possibly being disabled. 887 */ 888 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 889 r4k_blast_dcache(); 890 } else { 891 R4600_HIT_CACHEOP_WAR_IMPL; 892 blast_dcache_range(addr, addr + size); 893 } 894 preempt_enable(); 895 896 bc_wback_inv(addr, size); 897 __sync(); 898 } 899 900 static void prefetch_cache_inv(unsigned long addr, unsigned long size) 901 { 902 unsigned int linesz = cpu_scache_line_size(); 903 unsigned long addr0 = addr, addr1; 904 905 addr0 &= ~(linesz - 1); 906 addr1 = (addr0 + size - 1) & ~(linesz - 1); 907 908 protected_writeback_scache_line(addr0); 909 if (likely(addr1 != addr0)) 910 protected_writeback_scache_line(addr1); 911 else 912 return; 913 914 addr0 += linesz; 915 if (likely(addr1 != addr0)) 916 protected_writeback_scache_line(addr0); 917 else 918 return; 919 920 addr1 -= linesz; 921 if (likely(addr1 > addr0)) 922 protected_writeback_scache_line(addr0); 923 } 924 925 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) 926 { 927 /* Catch bad driver code */ 928 if (WARN_ON(size == 0)) 929 return; 930 931 preempt_disable(); 932 933 if (current_cpu_type() == CPU_BMIPS5000) 934 prefetch_cache_inv(addr, size); 935 936 if (cpu_has_inclusive_pcaches) { 937 if (size >= scache_size) { 938 if (current_cpu_type() != CPU_LOONGSON64) 939 r4k_blast_scache(); 940 else 941 r4k_blast_scache_node(pa_to_nid(addr)); 942 } else { 943 /* 944 * There is no clearly documented alignment requirement 945 * for the cache instruction on MIPS processors and 946 * some processors, among them the RM5200 and RM7000 947 * QED processors will throw an address error for cache 948 * hit ops with insufficient alignment. Solved by 949 * aligning the address to cache line size. 950 */ 951 blast_inv_scache_range(addr, addr + size); 952 } 953 preempt_enable(); 954 __sync(); 955 return; 956 } 957 958 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 959 r4k_blast_dcache(); 960 } else { 961 R4600_HIT_CACHEOP_WAR_IMPL; 962 blast_inv_dcache_range(addr, addr + size); 963 } 964 preempt_enable(); 965 966 bc_inv(addr, size); 967 __sync(); 968 } 969 #endif /* CONFIG_DMA_NONCOHERENT */ 970 971 static void r4k_flush_icache_all(void) 972 { 973 if (cpu_has_vtag_icache) 974 r4k_blast_icache(); 975 } 976 977 struct flush_kernel_vmap_range_args { 978 unsigned long vaddr; 979 int size; 980 }; 981 982 static inline void local_r4k_flush_kernel_vmap_range_index(void *args) 983 { 984 /* 985 * Aliases only affect the primary caches so don't bother with 986 * S-caches or T-caches. 987 */ 988 r4k_blast_dcache(); 989 } 990 991 static inline void local_r4k_flush_kernel_vmap_range(void *args) 992 { 993 struct flush_kernel_vmap_range_args *vmra = args; 994 unsigned long vaddr = vmra->vaddr; 995 int size = vmra->size; 996 997 /* 998 * Aliases only affect the primary caches so don't bother with 999 * S-caches or T-caches. 1000 */ 1001 R4600_HIT_CACHEOP_WAR_IMPL; 1002 blast_dcache_range(vaddr, vaddr + size); 1003 } 1004 1005 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) 1006 { 1007 struct flush_kernel_vmap_range_args args; 1008 1009 args.vaddr = (unsigned long) vaddr; 1010 args.size = size; 1011 1012 if (size >= dcache_size) 1013 r4k_on_each_cpu(R4K_INDEX, 1014 local_r4k_flush_kernel_vmap_range_index, NULL); 1015 else 1016 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, 1017 &args); 1018 } 1019 1020 static inline void rm7k_erratum31(void) 1021 { 1022 const unsigned long ic_lsize = 32; 1023 unsigned long addr; 1024 1025 /* RM7000 erratum #31. The icache is screwed at startup. */ 1026 write_c0_taglo(0); 1027 write_c0_taghi(0); 1028 1029 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { 1030 __asm__ __volatile__ ( 1031 ".set push\n\t" 1032 ".set noreorder\n\t" 1033 ".set mips3\n\t" 1034 "cache\t%1, 0(%0)\n\t" 1035 "cache\t%1, 0x1000(%0)\n\t" 1036 "cache\t%1, 0x2000(%0)\n\t" 1037 "cache\t%1, 0x3000(%0)\n\t" 1038 "cache\t%2, 0(%0)\n\t" 1039 "cache\t%2, 0x1000(%0)\n\t" 1040 "cache\t%2, 0x2000(%0)\n\t" 1041 "cache\t%2, 0x3000(%0)\n\t" 1042 "cache\t%1, 0(%0)\n\t" 1043 "cache\t%1, 0x1000(%0)\n\t" 1044 "cache\t%1, 0x2000(%0)\n\t" 1045 "cache\t%1, 0x3000(%0)\n\t" 1046 ".set pop\n" 1047 : 1048 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); 1049 } 1050 } 1051 1052 static inline int alias_74k_erratum(struct cpuinfo_mips *c) 1053 { 1054 unsigned int imp = c->processor_id & PRID_IMP_MASK; 1055 unsigned int rev = c->processor_id & PRID_REV_MASK; 1056 int present = 0; 1057 1058 /* 1059 * Early versions of the 74K do not update the cache tags on a 1060 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG 1061 * aliases. In this case it is better to treat the cache as always 1062 * having aliases. Also disable the synonym tag update feature 1063 * where available. In this case no opportunistic tag update will 1064 * happen where a load causes a virtual address miss but a physical 1065 * address hit during a D-cache look-up. 1066 */ 1067 switch (imp) { 1068 case PRID_IMP_74K: 1069 if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) 1070 present = 1; 1071 if (rev == PRID_REV_ENCODE_332(2, 4, 0)) 1072 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 1073 break; 1074 case PRID_IMP_1074K: 1075 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { 1076 present = 1; 1077 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 1078 } 1079 break; 1080 default: 1081 BUG(); 1082 } 1083 1084 return present; 1085 } 1086 1087 static void b5k_instruction_hazard(void) 1088 { 1089 __sync(); 1090 __sync(); 1091 __asm__ __volatile__( 1092 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1093 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1094 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1095 " nop; nop; nop; nop; nop; nop; nop; nop\n" 1096 : : : "memory"); 1097 } 1098 1099 static char *way_string[] = { NULL, "direct mapped", "2-way", 1100 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", 1101 "9-way", "10-way", "11-way", "12-way", 1102 "13-way", "14-way", "15-way", "16-way", 1103 }; 1104 1105 static void probe_pcache(void) 1106 { 1107 struct cpuinfo_mips *c = ¤t_cpu_data; 1108 unsigned int config = read_c0_config(); 1109 unsigned int prid = read_c0_prid(); 1110 int has_74k_erratum = 0; 1111 unsigned long config1; 1112 unsigned int lsize; 1113 1114 switch (current_cpu_type()) { 1115 case CPU_R4600: /* QED style two way caches? */ 1116 case CPU_R4700: 1117 case CPU_R5000: 1118 case CPU_NEVADA: 1119 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1120 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1121 c->icache.ways = 2; 1122 c->icache.waybit = __ffs(icache_size/2); 1123 1124 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1125 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1126 c->dcache.ways = 2; 1127 c->dcache.waybit= __ffs(dcache_size/2); 1128 1129 c->options |= MIPS_CPU_CACHE_CDEX_P; 1130 break; 1131 1132 case CPU_R5500: 1133 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1134 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1135 c->icache.ways = 2; 1136 c->icache.waybit= 0; 1137 1138 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1139 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1140 c->dcache.ways = 2; 1141 c->dcache.waybit = 0; 1142 1143 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; 1144 break; 1145 1146 case CPU_TX49XX: 1147 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1148 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1149 c->icache.ways = 4; 1150 c->icache.waybit= 0; 1151 1152 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1153 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1154 c->dcache.ways = 4; 1155 c->dcache.waybit = 0; 1156 1157 c->options |= MIPS_CPU_CACHE_CDEX_P; 1158 c->options |= MIPS_CPU_PREFETCH; 1159 break; 1160 1161 case CPU_R4000PC: 1162 case CPU_R4000SC: 1163 case CPU_R4000MC: 1164 case CPU_R4400PC: 1165 case CPU_R4400SC: 1166 case CPU_R4400MC: 1167 case CPU_R4300: 1168 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1169 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1170 c->icache.ways = 1; 1171 c->icache.waybit = 0; /* doesn't matter */ 1172 1173 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1174 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1175 c->dcache.ways = 1; 1176 c->dcache.waybit = 0; /* does not matter */ 1177 1178 c->options |= MIPS_CPU_CACHE_CDEX_P; 1179 break; 1180 1181 case CPU_R10000: 1182 case CPU_R12000: 1183 case CPU_R14000: 1184 case CPU_R16000: 1185 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); 1186 c->icache.linesz = 64; 1187 c->icache.ways = 2; 1188 c->icache.waybit = 0; 1189 1190 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); 1191 c->dcache.linesz = 32; 1192 c->dcache.ways = 2; 1193 c->dcache.waybit = 0; 1194 1195 c->options |= MIPS_CPU_PREFETCH; 1196 break; 1197 1198 case CPU_VR4133: 1199 write_c0_config(config & ~VR41_CONF_P4K); 1200 fallthrough; 1201 case CPU_VR4131: 1202 /* Workaround for cache instruction bug of VR4131 */ 1203 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U || 1204 c->processor_id == 0x0c82U) { 1205 config |= 0x00400000U; 1206 if (c->processor_id == 0x0c80U) 1207 config |= VR41_CONF_BP; 1208 write_c0_config(config); 1209 } else 1210 c->options |= MIPS_CPU_CACHE_CDEX_P; 1211 1212 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1213 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1214 c->icache.ways = 2; 1215 c->icache.waybit = __ffs(icache_size/2); 1216 1217 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1218 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1219 c->dcache.ways = 2; 1220 c->dcache.waybit = __ffs(dcache_size/2); 1221 break; 1222 1223 case CPU_VR41XX: 1224 case CPU_VR4111: 1225 case CPU_VR4121: 1226 case CPU_VR4122: 1227 case CPU_VR4181: 1228 case CPU_VR4181A: 1229 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1230 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1231 c->icache.ways = 1; 1232 c->icache.waybit = 0; /* doesn't matter */ 1233 1234 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1235 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1236 c->dcache.ways = 1; 1237 c->dcache.waybit = 0; /* does not matter */ 1238 1239 c->options |= MIPS_CPU_CACHE_CDEX_P; 1240 break; 1241 1242 case CPU_RM7000: 1243 rm7k_erratum31(); 1244 1245 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1246 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1247 c->icache.ways = 4; 1248 c->icache.waybit = __ffs(icache_size / c->icache.ways); 1249 1250 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1251 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1252 c->dcache.ways = 4; 1253 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); 1254 1255 c->options |= MIPS_CPU_CACHE_CDEX_P; 1256 c->options |= MIPS_CPU_PREFETCH; 1257 break; 1258 1259 case CPU_LOONGSON2EF: 1260 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1261 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1262 if (prid & 0x3) 1263 c->icache.ways = 4; 1264 else 1265 c->icache.ways = 2; 1266 c->icache.waybit = 0; 1267 1268 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1269 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1270 if (prid & 0x3) 1271 c->dcache.ways = 4; 1272 else 1273 c->dcache.ways = 2; 1274 c->dcache.waybit = 0; 1275 break; 1276 1277 case CPU_LOONGSON64: 1278 config1 = read_c0_config1(); 1279 lsize = (config1 >> 19) & 7; 1280 if (lsize) 1281 c->icache.linesz = 2 << lsize; 1282 else 1283 c->icache.linesz = 0; 1284 c->icache.sets = 64 << ((config1 >> 22) & 7); 1285 c->icache.ways = 1 + ((config1 >> 16) & 7); 1286 icache_size = c->icache.sets * 1287 c->icache.ways * 1288 c->icache.linesz; 1289 c->icache.waybit = 0; 1290 1291 lsize = (config1 >> 10) & 7; 1292 if (lsize) 1293 c->dcache.linesz = 2 << lsize; 1294 else 1295 c->dcache.linesz = 0; 1296 c->dcache.sets = 64 << ((config1 >> 13) & 7); 1297 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1298 dcache_size = c->dcache.sets * 1299 c->dcache.ways * 1300 c->dcache.linesz; 1301 c->dcache.waybit = 0; 1302 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= 1303 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || 1304 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1305 c->options |= MIPS_CPU_PREFETCH; 1306 break; 1307 1308 case CPU_CAVIUM_OCTEON3: 1309 /* For now lie about the number of ways. */ 1310 c->icache.linesz = 128; 1311 c->icache.sets = 16; 1312 c->icache.ways = 8; 1313 c->icache.flags |= MIPS_CACHE_VTAG; 1314 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; 1315 1316 c->dcache.linesz = 128; 1317 c->dcache.ways = 8; 1318 c->dcache.sets = 8; 1319 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; 1320 c->options |= MIPS_CPU_PREFETCH; 1321 break; 1322 1323 default: 1324 if (!(config & MIPS_CONF_M)) 1325 panic("Don't know how to probe P-caches on this cpu."); 1326 1327 /* 1328 * So we seem to be a MIPS32 or MIPS64 CPU 1329 * So let's probe the I-cache ... 1330 */ 1331 config1 = read_c0_config1(); 1332 1333 lsize = (config1 >> 19) & 7; 1334 1335 /* IL == 7 is reserved */ 1336 if (lsize == 7) 1337 panic("Invalid icache line size"); 1338 1339 c->icache.linesz = lsize ? 2 << lsize : 0; 1340 1341 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); 1342 c->icache.ways = 1 + ((config1 >> 16) & 7); 1343 1344 icache_size = c->icache.sets * 1345 c->icache.ways * 1346 c->icache.linesz; 1347 c->icache.waybit = __ffs(icache_size/c->icache.ways); 1348 1349 if (config & MIPS_CONF_VI) 1350 c->icache.flags |= MIPS_CACHE_VTAG; 1351 1352 /* 1353 * Now probe the MIPS32 / MIPS64 data cache. 1354 */ 1355 c->dcache.flags = 0; 1356 1357 lsize = (config1 >> 10) & 7; 1358 1359 /* DL == 7 is reserved */ 1360 if (lsize == 7) 1361 panic("Invalid dcache line size"); 1362 1363 c->dcache.linesz = lsize ? 2 << lsize : 0; 1364 1365 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); 1366 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1367 1368 dcache_size = c->dcache.sets * 1369 c->dcache.ways * 1370 c->dcache.linesz; 1371 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); 1372 1373 c->options |= MIPS_CPU_PREFETCH; 1374 break; 1375 } 1376 1377 /* 1378 * Processor configuration sanity check for the R4000SC erratum 1379 * #5. With page sizes larger than 32kB there is no possibility 1380 * to get a VCE exception anymore so we don't care about this 1381 * misconfiguration. The case is rather theoretical anyway; 1382 * presumably no vendor is shipping his hardware in the "bad" 1383 * configuration. 1384 */ 1385 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && 1386 (prid & PRID_REV_MASK) < PRID_REV_R4400 && 1387 !(config & CONF_SC) && c->icache.linesz != 16 && 1388 PAGE_SIZE <= 0x8000) 1389 panic("Improper R4000SC processor configuration detected"); 1390 1391 /* compute a couple of other cache variables */ 1392 c->icache.waysize = icache_size / c->icache.ways; 1393 c->dcache.waysize = dcache_size / c->dcache.ways; 1394 1395 c->icache.sets = c->icache.linesz ? 1396 icache_size / (c->icache.linesz * c->icache.ways) : 0; 1397 c->dcache.sets = c->dcache.linesz ? 1398 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; 1399 1400 /* 1401 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way 1402 * virtually indexed so normally would suffer from aliases. So 1403 * normally they'd suffer from aliases but magic in the hardware deals 1404 * with that for us so we don't need to take care ourselves. 1405 */ 1406 switch (current_cpu_type()) { 1407 case CPU_20KC: 1408 case CPU_25KF: 1409 case CPU_I6400: 1410 case CPU_I6500: 1411 case CPU_SB1: 1412 case CPU_SB1A: 1413 case CPU_XLR: 1414 c->dcache.flags |= MIPS_CACHE_PINDEX; 1415 break; 1416 1417 case CPU_R10000: 1418 case CPU_R12000: 1419 case CPU_R14000: 1420 case CPU_R16000: 1421 break; 1422 1423 case CPU_74K: 1424 case CPU_1074K: 1425 has_74k_erratum = alias_74k_erratum(c); 1426 fallthrough; 1427 case CPU_M14KC: 1428 case CPU_M14KEC: 1429 case CPU_24K: 1430 case CPU_34K: 1431 case CPU_1004K: 1432 case CPU_INTERAPTIV: 1433 case CPU_P5600: 1434 case CPU_PROAPTIV: 1435 case CPU_M5150: 1436 case CPU_QEMU_GENERIC: 1437 case CPU_P6600: 1438 case CPU_M6250: 1439 if (!(read_c0_config7() & MIPS_CONF7_IAR) && 1440 (c->icache.waysize > PAGE_SIZE)) 1441 c->icache.flags |= MIPS_CACHE_ALIASES; 1442 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { 1443 /* 1444 * Effectively physically indexed dcache, 1445 * thus no virtual aliases. 1446 */ 1447 c->dcache.flags |= MIPS_CACHE_PINDEX; 1448 break; 1449 } 1450 fallthrough; 1451 default: 1452 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) 1453 c->dcache.flags |= MIPS_CACHE_ALIASES; 1454 } 1455 1456 /* Physically indexed caches don't suffer from virtual aliasing */ 1457 if (c->dcache.flags & MIPS_CACHE_PINDEX) 1458 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1459 1460 /* 1461 * In systems with CM the icache fills from L2 or closer caches, and 1462 * thus sees remote stores without needing to write them back any 1463 * further than that. 1464 */ 1465 if (mips_cm_present()) 1466 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; 1467 1468 switch (current_cpu_type()) { 1469 case CPU_20KC: 1470 /* 1471 * Some older 20Kc chips doesn't have the 'VI' bit in 1472 * the config register. 1473 */ 1474 c->icache.flags |= MIPS_CACHE_VTAG; 1475 break; 1476 1477 case CPU_ALCHEMY: 1478 case CPU_I6400: 1479 case CPU_I6500: 1480 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1481 break; 1482 1483 case CPU_BMIPS5000: 1484 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1485 /* Cache aliases are handled in hardware; allow HIGHMEM */ 1486 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1487 break; 1488 1489 case CPU_LOONGSON2EF: 1490 /* 1491 * LOONGSON2 has 4 way icache, but when using indexed cache op, 1492 * one op will act on all 4 ways 1493 */ 1494 c->icache.ways = 1; 1495 } 1496 1497 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", 1498 icache_size >> 10, 1499 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", 1500 way_string[c->icache.ways], c->icache.linesz); 1501 1502 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", 1503 dcache_size >> 10, way_string[c->dcache.ways], 1504 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", 1505 (c->dcache.flags & MIPS_CACHE_ALIASES) ? 1506 "cache aliases" : "no aliases", 1507 c->dcache.linesz); 1508 } 1509 1510 static void probe_vcache(void) 1511 { 1512 struct cpuinfo_mips *c = ¤t_cpu_data; 1513 unsigned int config2, lsize; 1514 1515 if (current_cpu_type() != CPU_LOONGSON64) 1516 return; 1517 1518 config2 = read_c0_config2(); 1519 if ((lsize = ((config2 >> 20) & 15))) 1520 c->vcache.linesz = 2 << lsize; 1521 else 1522 c->vcache.linesz = lsize; 1523 1524 c->vcache.sets = 64 << ((config2 >> 24) & 15); 1525 c->vcache.ways = 1 + ((config2 >> 16) & 15); 1526 1527 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; 1528 1529 c->vcache.waybit = 0; 1530 c->vcache.waysize = vcache_size / c->vcache.ways; 1531 1532 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", 1533 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); 1534 } 1535 1536 /* 1537 * If you even _breathe_ on this function, look at the gcc output and make sure 1538 * it does not pop things on and off the stack for the cache sizing loop that 1539 * executes in KSEG1 space or else you will crash and burn badly. You have 1540 * been warned. 1541 */ 1542 static int probe_scache(void) 1543 { 1544 unsigned long flags, addr, begin, end, pow2; 1545 unsigned int config = read_c0_config(); 1546 struct cpuinfo_mips *c = ¤t_cpu_data; 1547 1548 if (config & CONF_SC) 1549 return 0; 1550 1551 begin = (unsigned long) &_stext; 1552 begin &= ~((4 * 1024 * 1024) - 1); 1553 end = begin + (4 * 1024 * 1024); 1554 1555 /* 1556 * This is such a bitch, you'd think they would make it easy to do 1557 * this. Away you daemons of stupidity! 1558 */ 1559 local_irq_save(flags); 1560 1561 /* Fill each size-multiple cache line with a valid tag. */ 1562 pow2 = (64 * 1024); 1563 for (addr = begin; addr < end; addr = (begin + pow2)) { 1564 unsigned long *p = (unsigned long *) addr; 1565 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ 1566 pow2 <<= 1; 1567 } 1568 1569 /* Load first line with zero (therefore invalid) tag. */ 1570 write_c0_taglo(0); 1571 write_c0_taghi(0); 1572 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ 1573 cache_op(Index_Store_Tag_I, begin); 1574 cache_op(Index_Store_Tag_D, begin); 1575 cache_op(Index_Store_Tag_SD, begin); 1576 1577 /* Now search for the wrap around point. */ 1578 pow2 = (128 * 1024); 1579 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { 1580 cache_op(Index_Load_Tag_SD, addr); 1581 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ 1582 if (!read_c0_taglo()) 1583 break; 1584 pow2 <<= 1; 1585 } 1586 local_irq_restore(flags); 1587 addr -= begin; 1588 1589 scache_size = addr; 1590 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); 1591 c->scache.ways = 1; 1592 c->scache.waybit = 0; /* does not matter */ 1593 1594 return 1; 1595 } 1596 1597 static void loongson2_sc_init(void) 1598 { 1599 struct cpuinfo_mips *c = ¤t_cpu_data; 1600 1601 scache_size = 512*1024; 1602 c->scache.linesz = 32; 1603 c->scache.ways = 4; 1604 c->scache.waybit = 0; 1605 c->scache.waysize = scache_size / (c->scache.ways); 1606 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1607 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1608 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1609 1610 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1611 } 1612 1613 static void loongson3_sc_init(void) 1614 { 1615 struct cpuinfo_mips *c = ¤t_cpu_data; 1616 unsigned int config2, lsize; 1617 1618 config2 = read_c0_config2(); 1619 lsize = (config2 >> 4) & 15; 1620 if (lsize) 1621 c->scache.linesz = 2 << lsize; 1622 else 1623 c->scache.linesz = 0; 1624 c->scache.sets = 64 << ((config2 >> 8) & 15); 1625 c->scache.ways = 1 + (config2 & 15); 1626 1627 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ 1628 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1629 c->scache.sets *= 2; 1630 else 1631 c->scache.sets *= 4; 1632 1633 scache_size = c->scache.sets * c->scache.ways * c->scache.linesz; 1634 1635 c->scache.waybit = 0; 1636 c->scache.waysize = scache_size / c->scache.ways; 1637 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1638 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1639 if (scache_size) 1640 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1641 return; 1642 } 1643 1644 extern int r5k_sc_init(void); 1645 extern int rm7k_sc_init(void); 1646 extern int mips_sc_init(void); 1647 1648 static void setup_scache(void) 1649 { 1650 struct cpuinfo_mips *c = ¤t_cpu_data; 1651 unsigned int config = read_c0_config(); 1652 int sc_present = 0; 1653 1654 /* 1655 * Do the probing thing on R4000SC and R4400SC processors. Other 1656 * processors don't have a S-cache that would be relevant to the 1657 * Linux memory management. 1658 */ 1659 switch (current_cpu_type()) { 1660 case CPU_R4000SC: 1661 case CPU_R4000MC: 1662 case CPU_R4400SC: 1663 case CPU_R4400MC: 1664 sc_present = run_uncached(probe_scache); 1665 if (sc_present) 1666 c->options |= MIPS_CPU_CACHE_CDEX_S; 1667 break; 1668 1669 case CPU_R10000: 1670 case CPU_R12000: 1671 case CPU_R14000: 1672 case CPU_R16000: 1673 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); 1674 c->scache.linesz = 64 << ((config >> 13) & 1); 1675 c->scache.ways = 2; 1676 c->scache.waybit= 0; 1677 sc_present = 1; 1678 break; 1679 1680 case CPU_R5000: 1681 case CPU_NEVADA: 1682 #ifdef CONFIG_R5000_CPU_SCACHE 1683 r5k_sc_init(); 1684 #endif 1685 return; 1686 1687 case CPU_RM7000: 1688 #ifdef CONFIG_RM7000_CPU_SCACHE 1689 rm7k_sc_init(); 1690 #endif 1691 return; 1692 1693 case CPU_LOONGSON2EF: 1694 loongson2_sc_init(); 1695 return; 1696 1697 case CPU_LOONGSON64: 1698 loongson3_sc_init(); 1699 return; 1700 1701 case CPU_CAVIUM_OCTEON3: 1702 case CPU_XLP: 1703 /* don't need to worry about L2, fully coherent */ 1704 return; 1705 1706 default: 1707 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 1708 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 1709 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 1710 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 1711 #ifdef CONFIG_MIPS_CPU_SCACHE 1712 if (mips_sc_init ()) { 1713 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; 1714 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", 1715 scache_size >> 10, 1716 way_string[c->scache.ways], c->scache.linesz); 1717 1718 if (current_cpu_type() == CPU_BMIPS5000) 1719 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1720 } 1721 1722 #else 1723 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) 1724 panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); 1725 #endif 1726 return; 1727 } 1728 sc_present = 0; 1729 } 1730 1731 if (!sc_present) 1732 return; 1733 1734 /* compute a couple of other cache variables */ 1735 c->scache.waysize = scache_size / c->scache.ways; 1736 1737 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1738 1739 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1740 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1741 1742 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1743 } 1744 1745 void au1x00_fixup_config_od(void) 1746 { 1747 /* 1748 * c0_config.od (bit 19) was write only (and read as 0) 1749 * on the early revisions of Alchemy SOCs. It disables the bus 1750 * transaction overlapping and needs to be set to fix various errata. 1751 */ 1752 switch (read_c0_prid()) { 1753 case 0x00030100: /* Au1000 DA */ 1754 case 0x00030201: /* Au1000 HA */ 1755 case 0x00030202: /* Au1000 HB */ 1756 case 0x01030200: /* Au1500 AB */ 1757 /* 1758 * Au1100 errata actually keeps silence about this bit, so we set it 1759 * just in case for those revisions that require it to be set according 1760 * to the (now gone) cpu table. 1761 */ 1762 case 0x02030200: /* Au1100 AB */ 1763 case 0x02030201: /* Au1100 BA */ 1764 case 0x02030202: /* Au1100 BC */ 1765 set_c0_config(1 << 19); 1766 break; 1767 } 1768 } 1769 1770 /* CP0 hazard avoidance. */ 1771 #define NXP_BARRIER() \ 1772 __asm__ __volatile__( \ 1773 ".set noreorder\n\t" \ 1774 "nop; nop; nop; nop; nop; nop;\n\t" \ 1775 ".set reorder\n\t") 1776 1777 static void nxp_pr4450_fixup_config(void) 1778 { 1779 unsigned long config0; 1780 1781 config0 = read_c0_config(); 1782 1783 /* clear all three cache coherency fields */ 1784 config0 &= ~(0x7 | (7 << 25) | (7 << 28)); 1785 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | 1786 ((_page_cachable_default >> _CACHE_SHIFT) << 25) | 1787 ((_page_cachable_default >> _CACHE_SHIFT) << 28)); 1788 write_c0_config(config0); 1789 NXP_BARRIER(); 1790 } 1791 1792 static int cca = -1; 1793 1794 static int __init cca_setup(char *str) 1795 { 1796 get_option(&str, &cca); 1797 1798 return 0; 1799 } 1800 1801 early_param("cca", cca_setup); 1802 1803 static void coherency_setup(void) 1804 { 1805 if (cca < 0 || cca > 7) 1806 cca = read_c0_config() & CONF_CM_CMASK; 1807 _page_cachable_default = cca << _CACHE_SHIFT; 1808 1809 pr_debug("Using cache attribute %d\n", cca); 1810 change_c0_config(CONF_CM_CMASK, cca); 1811 1812 /* 1813 * c0_status.cu=0 specifies that updates by the sc instruction use 1814 * the coherency mode specified by the TLB; 1 means cachable 1815 * coherent update on write will be used. Not all processors have 1816 * this bit and; some wire it to zero, others like Toshiba had the 1817 * silly idea of putting something else there ... 1818 */ 1819 switch (current_cpu_type()) { 1820 case CPU_R4000PC: 1821 case CPU_R4000SC: 1822 case CPU_R4000MC: 1823 case CPU_R4400PC: 1824 case CPU_R4400SC: 1825 case CPU_R4400MC: 1826 clear_c0_config(CONF_CU); 1827 break; 1828 /* 1829 * We need to catch the early Alchemy SOCs with 1830 * the write-only co_config.od bit and set it back to one on: 1831 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB 1832 */ 1833 case CPU_ALCHEMY: 1834 au1x00_fixup_config_od(); 1835 break; 1836 1837 case PRID_IMP_PR4450: 1838 nxp_pr4450_fixup_config(); 1839 break; 1840 } 1841 } 1842 1843 static void r4k_cache_error_setup(void) 1844 { 1845 extern char __weak except_vec2_generic; 1846 extern char __weak except_vec2_sb1; 1847 1848 switch (current_cpu_type()) { 1849 case CPU_SB1: 1850 case CPU_SB1A: 1851 set_uncached_handler(0x100, &except_vec2_sb1, 0x80); 1852 break; 1853 1854 default: 1855 set_uncached_handler(0x100, &except_vec2_generic, 0x80); 1856 break; 1857 } 1858 } 1859 1860 void r4k_cache_init(void) 1861 { 1862 extern void build_clear_page(void); 1863 extern void build_copy_page(void); 1864 struct cpuinfo_mips *c = ¤t_cpu_data; 1865 1866 probe_pcache(); 1867 probe_vcache(); 1868 setup_scache(); 1869 1870 r4k_blast_dcache_page_setup(); 1871 r4k_blast_dcache_page_indexed_setup(); 1872 r4k_blast_dcache_setup(); 1873 r4k_blast_icache_page_setup(); 1874 r4k_blast_icache_page_indexed_setup(); 1875 r4k_blast_icache_setup(); 1876 r4k_blast_scache_page_setup(); 1877 r4k_blast_scache_page_indexed_setup(); 1878 r4k_blast_scache_setup(); 1879 r4k_blast_scache_node_setup(); 1880 #ifdef CONFIG_EVA 1881 r4k_blast_dcache_user_page_setup(); 1882 r4k_blast_icache_user_page_setup(); 1883 #endif 1884 1885 /* 1886 * Some MIPS32 and MIPS64 processors have physically indexed caches. 1887 * This code supports virtually indexed processors and will be 1888 * unnecessarily inefficient on physically indexed processors. 1889 */ 1890 if (c->dcache.linesz && cpu_has_dc_aliases) 1891 shm_align_mask = max_t( unsigned long, 1892 c->dcache.sets * c->dcache.linesz - 1, 1893 PAGE_SIZE - 1); 1894 else 1895 shm_align_mask = PAGE_SIZE-1; 1896 1897 __flush_cache_vmap = r4k__flush_cache_vmap; 1898 __flush_cache_vunmap = r4k__flush_cache_vunmap; 1899 1900 flush_cache_all = cache_noop; 1901 __flush_cache_all = r4k___flush_cache_all; 1902 flush_cache_mm = r4k_flush_cache_mm; 1903 flush_cache_page = r4k_flush_cache_page; 1904 flush_cache_range = r4k_flush_cache_range; 1905 1906 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; 1907 1908 flush_icache_all = r4k_flush_icache_all; 1909 local_flush_data_cache_page = local_r4k_flush_data_cache_page; 1910 flush_data_cache_page = r4k_flush_data_cache_page; 1911 flush_icache_range = r4k_flush_icache_range; 1912 local_flush_icache_range = local_r4k_flush_icache_range; 1913 __flush_icache_user_range = r4k_flush_icache_user_range; 1914 __local_flush_icache_user_range = local_r4k_flush_icache_user_range; 1915 1916 #ifdef CONFIG_DMA_NONCOHERENT 1917 if (dma_default_coherent) { 1918 _dma_cache_wback_inv = (void *)cache_noop; 1919 _dma_cache_wback = (void *)cache_noop; 1920 _dma_cache_inv = (void *)cache_noop; 1921 } else { 1922 _dma_cache_wback_inv = r4k_dma_cache_wback_inv; 1923 _dma_cache_wback = r4k_dma_cache_wback_inv; 1924 _dma_cache_inv = r4k_dma_cache_inv; 1925 } 1926 #endif /* CONFIG_DMA_NONCOHERENT */ 1927 1928 build_clear_page(); 1929 build_copy_page(); 1930 1931 /* 1932 * We want to run CMP kernels on core with and without coherent 1933 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether 1934 * or not to flush caches. 1935 */ 1936 local_r4k___flush_cache_all(NULL); 1937 1938 coherency_setup(); 1939 board_cache_error_setup = r4k_cache_error_setup; 1940 1941 /* 1942 * Per-CPU overrides 1943 */ 1944 switch (current_cpu_type()) { 1945 case CPU_BMIPS4350: 1946 case CPU_BMIPS4380: 1947 /* No IPI is needed because all CPUs share the same D$ */ 1948 flush_data_cache_page = r4k_blast_dcache_page; 1949 break; 1950 case CPU_BMIPS5000: 1951 /* We lose our superpowers if L2 is disabled */ 1952 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) 1953 break; 1954 1955 /* I$ fills from D$ just by emptying the write buffers */ 1956 flush_cache_page = (void *)b5k_instruction_hazard; 1957 flush_cache_range = (void *)b5k_instruction_hazard; 1958 local_flush_data_cache_page = (void *)b5k_instruction_hazard; 1959 flush_data_cache_page = (void *)b5k_instruction_hazard; 1960 flush_icache_range = (void *)b5k_instruction_hazard; 1961 local_flush_icache_range = (void *)b5k_instruction_hazard; 1962 1963 1964 /* Optimization: an L2 flush implicitly flushes the L1 */ 1965 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; 1966 break; 1967 case CPU_LOONGSON64: 1968 /* Loongson-3 maintains cache coherency by hardware */ 1969 __flush_cache_all = cache_noop; 1970 __flush_cache_vmap = cache_noop; 1971 __flush_cache_vunmap = cache_noop; 1972 __flush_kernel_vmap_range = (void *)cache_noop; 1973 flush_cache_mm = (void *)cache_noop; 1974 flush_cache_page = (void *)cache_noop; 1975 flush_cache_range = (void *)cache_noop; 1976 flush_icache_all = (void *)cache_noop; 1977 flush_data_cache_page = (void *)cache_noop; 1978 local_flush_data_cache_page = (void *)cache_noop; 1979 break; 1980 } 1981 } 1982 1983 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, 1984 void *v) 1985 { 1986 switch (cmd) { 1987 case CPU_PM_ENTER_FAILED: 1988 case CPU_PM_EXIT: 1989 coherency_setup(); 1990 break; 1991 } 1992 1993 return NOTIFY_OK; 1994 } 1995 1996 static struct notifier_block r4k_cache_pm_notifier_block = { 1997 .notifier_call = r4k_cache_pm_notifier, 1998 }; 1999 2000 int __init r4k_cache_init_pm(void) 2001 { 2002 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); 2003 } 2004 arch_initcall(r4k_cache_init_pm); 2005