1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 */ 10 #include <linux/cpu_pm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/highmem.h> 14 #include <linux/kernel.h> 15 #include <linux/linkage.h> 16 #include <linux/preempt.h> 17 #include <linux/sched.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/bitops.h> 22 23 #include <asm/bcache.h> 24 #include <asm/bootinfo.h> 25 #include <asm/cache.h> 26 #include <asm/cacheops.h> 27 #include <asm/cpu.h> 28 #include <asm/cpu-features.h> 29 #include <asm/cpu-type.h> 30 #include <asm/io.h> 31 #include <asm/page.h> 32 #include <asm/pgtable.h> 33 #include <asm/r4kcache.h> 34 #include <asm/sections.h> 35 #include <asm/mmu_context.h> 36 #include <asm/war.h> 37 #include <asm/cacheflush.h> /* for run_uncached() */ 38 #include <asm/traps.h> 39 #include <asm/dma-coherence.h> 40 #include <asm/mips-cm.h> 41 42 /* 43 * Special Variant of smp_call_function for use by cache functions: 44 * 45 * o No return value 46 * o collapses to normal function call on UP kernels 47 * o collapses to normal function call on systems with a single shared 48 * primary cache. 49 * o doesn't disable interrupts on the local CPU 50 */ 51 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info) 52 { 53 preempt_disable(); 54 55 /* 56 * The Coherent Manager propagates address-based cache ops to other 57 * cores but not index-based ops. However, r4k_on_each_cpu is used 58 * in both cases so there is no easy way to tell what kind of op is 59 * executed to the other cores. The best we can probably do is 60 * to restrict that call when a CM is not present because both 61 * CM-based SMP protocols (CMP & CPS) restrict index-based cache ops. 62 */ 63 if (!mips_cm_present()) 64 smp_call_function_many(&cpu_foreign_map, func, info, 1); 65 func(info); 66 preempt_enable(); 67 } 68 69 #if defined(CONFIG_MIPS_CMP) || defined(CONFIG_MIPS_CPS) 70 #define cpu_has_safe_index_cacheops 0 71 #else 72 #define cpu_has_safe_index_cacheops 1 73 #endif 74 75 /* 76 * Must die. 77 */ 78 static unsigned long icache_size __read_mostly; 79 static unsigned long dcache_size __read_mostly; 80 static unsigned long scache_size __read_mostly; 81 82 /* 83 * Dummy cache handling routines for machines without boardcaches 84 */ 85 static void cache_noop(void) {} 86 87 static struct bcache_ops no_sc_ops = { 88 .bc_enable = (void *)cache_noop, 89 .bc_disable = (void *)cache_noop, 90 .bc_wback_inv = (void *)cache_noop, 91 .bc_inv = (void *)cache_noop 92 }; 93 94 struct bcache_ops *bcops = &no_sc_ops; 95 96 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) 97 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) 98 99 #define R4600_HIT_CACHEOP_WAR_IMPL \ 100 do { \ 101 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \ 102 *(volatile unsigned long *)CKSEG1; \ 103 if (R4600_V1_HIT_CACHEOP_WAR) \ 104 __asm__ __volatile__("nop;nop;nop;nop"); \ 105 } while (0) 106 107 static void (*r4k_blast_dcache_page)(unsigned long addr); 108 109 static inline void r4k_blast_dcache_page_dc32(unsigned long addr) 110 { 111 R4600_HIT_CACHEOP_WAR_IMPL; 112 blast_dcache32_page(addr); 113 } 114 115 static inline void r4k_blast_dcache_page_dc64(unsigned long addr) 116 { 117 blast_dcache64_page(addr); 118 } 119 120 static inline void r4k_blast_dcache_page_dc128(unsigned long addr) 121 { 122 blast_dcache128_page(addr); 123 } 124 125 static void r4k_blast_dcache_page_setup(void) 126 { 127 unsigned long dc_lsize = cpu_dcache_line_size(); 128 129 switch (dc_lsize) { 130 case 0: 131 r4k_blast_dcache_page = (void *)cache_noop; 132 break; 133 case 16: 134 r4k_blast_dcache_page = blast_dcache16_page; 135 break; 136 case 32: 137 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; 138 break; 139 case 64: 140 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; 141 break; 142 case 128: 143 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; 144 break; 145 default: 146 break; 147 } 148 } 149 150 #ifndef CONFIG_EVA 151 #define r4k_blast_dcache_user_page r4k_blast_dcache_page 152 #else 153 154 static void (*r4k_blast_dcache_user_page)(unsigned long addr); 155 156 static void r4k_blast_dcache_user_page_setup(void) 157 { 158 unsigned long dc_lsize = cpu_dcache_line_size(); 159 160 if (dc_lsize == 0) 161 r4k_blast_dcache_user_page = (void *)cache_noop; 162 else if (dc_lsize == 16) 163 r4k_blast_dcache_user_page = blast_dcache16_user_page; 164 else if (dc_lsize == 32) 165 r4k_blast_dcache_user_page = blast_dcache32_user_page; 166 else if (dc_lsize == 64) 167 r4k_blast_dcache_user_page = blast_dcache64_user_page; 168 } 169 170 #endif 171 172 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr); 173 174 static void r4k_blast_dcache_page_indexed_setup(void) 175 { 176 unsigned long dc_lsize = cpu_dcache_line_size(); 177 178 if (dc_lsize == 0) 179 r4k_blast_dcache_page_indexed = (void *)cache_noop; 180 else if (dc_lsize == 16) 181 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed; 182 else if (dc_lsize == 32) 183 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed; 184 else if (dc_lsize == 64) 185 r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed; 186 else if (dc_lsize == 128) 187 r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed; 188 } 189 190 void (* r4k_blast_dcache)(void); 191 EXPORT_SYMBOL(r4k_blast_dcache); 192 193 static void r4k_blast_dcache_setup(void) 194 { 195 unsigned long dc_lsize = cpu_dcache_line_size(); 196 197 if (dc_lsize == 0) 198 r4k_blast_dcache = (void *)cache_noop; 199 else if (dc_lsize == 16) 200 r4k_blast_dcache = blast_dcache16; 201 else if (dc_lsize == 32) 202 r4k_blast_dcache = blast_dcache32; 203 else if (dc_lsize == 64) 204 r4k_blast_dcache = blast_dcache64; 205 else if (dc_lsize == 128) 206 r4k_blast_dcache = blast_dcache128; 207 } 208 209 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */ 210 #define JUMP_TO_ALIGN(order) \ 211 __asm__ __volatile__( \ 212 "b\t1f\n\t" \ 213 ".align\t" #order "\n\t" \ 214 "1:\n\t" \ 215 ) 216 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ 217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) 218 219 static inline void blast_r4600_v1_icache32(void) 220 { 221 unsigned long flags; 222 223 local_irq_save(flags); 224 blast_icache32(); 225 local_irq_restore(flags); 226 } 227 228 static inline void tx49_blast_icache32(void) 229 { 230 unsigned long start = INDEX_BASE; 231 unsigned long end = start + current_cpu_data.icache.waysize; 232 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 233 unsigned long ws_end = current_cpu_data.icache.ways << 234 current_cpu_data.icache.waybit; 235 unsigned long ws, addr; 236 237 CACHE32_UNROLL32_ALIGN2; 238 /* I'm in even chunk. blast odd chunks */ 239 for (ws = 0; ws < ws_end; ws += ws_inc) 240 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 241 cache32_unroll32(addr|ws, Index_Invalidate_I); 242 CACHE32_UNROLL32_ALIGN; 243 /* I'm in odd chunk. blast even chunks */ 244 for (ws = 0; ws < ws_end; ws += ws_inc) 245 for (addr = start; addr < end; addr += 0x400 * 2) 246 cache32_unroll32(addr|ws, Index_Invalidate_I); 247 } 248 249 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page) 250 { 251 unsigned long flags; 252 253 local_irq_save(flags); 254 blast_icache32_page_indexed(page); 255 local_irq_restore(flags); 256 } 257 258 static inline void tx49_blast_icache32_page_indexed(unsigned long page) 259 { 260 unsigned long indexmask = current_cpu_data.icache.waysize - 1; 261 unsigned long start = INDEX_BASE + (page & indexmask); 262 unsigned long end = start + PAGE_SIZE; 263 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 264 unsigned long ws_end = current_cpu_data.icache.ways << 265 current_cpu_data.icache.waybit; 266 unsigned long ws, addr; 267 268 CACHE32_UNROLL32_ALIGN2; 269 /* I'm in even chunk. blast odd chunks */ 270 for (ws = 0; ws < ws_end; ws += ws_inc) 271 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 272 cache32_unroll32(addr|ws, Index_Invalidate_I); 273 CACHE32_UNROLL32_ALIGN; 274 /* I'm in odd chunk. blast even chunks */ 275 for (ws = 0; ws < ws_end; ws += ws_inc) 276 for (addr = start; addr < end; addr += 0x400 * 2) 277 cache32_unroll32(addr|ws, Index_Invalidate_I); 278 } 279 280 static void (* r4k_blast_icache_page)(unsigned long addr); 281 282 static void r4k_blast_icache_page_setup(void) 283 { 284 unsigned long ic_lsize = cpu_icache_line_size(); 285 286 if (ic_lsize == 0) 287 r4k_blast_icache_page = (void *)cache_noop; 288 else if (ic_lsize == 16) 289 r4k_blast_icache_page = blast_icache16_page; 290 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2) 291 r4k_blast_icache_page = loongson2_blast_icache32_page; 292 else if (ic_lsize == 32) 293 r4k_blast_icache_page = blast_icache32_page; 294 else if (ic_lsize == 64) 295 r4k_blast_icache_page = blast_icache64_page; 296 else if (ic_lsize == 128) 297 r4k_blast_icache_page = blast_icache128_page; 298 } 299 300 #ifndef CONFIG_EVA 301 #define r4k_blast_icache_user_page r4k_blast_icache_page 302 #else 303 304 static void (*r4k_blast_icache_user_page)(unsigned long addr); 305 306 static void r4k_blast_icache_user_page_setup(void) 307 { 308 unsigned long ic_lsize = cpu_icache_line_size(); 309 310 if (ic_lsize == 0) 311 r4k_blast_icache_user_page = (void *)cache_noop; 312 else if (ic_lsize == 16) 313 r4k_blast_icache_user_page = blast_icache16_user_page; 314 else if (ic_lsize == 32) 315 r4k_blast_icache_user_page = blast_icache32_user_page; 316 else if (ic_lsize == 64) 317 r4k_blast_icache_user_page = blast_icache64_user_page; 318 } 319 320 #endif 321 322 static void (* r4k_blast_icache_page_indexed)(unsigned long addr); 323 324 static void r4k_blast_icache_page_indexed_setup(void) 325 { 326 unsigned long ic_lsize = cpu_icache_line_size(); 327 328 if (ic_lsize == 0) 329 r4k_blast_icache_page_indexed = (void *)cache_noop; 330 else if (ic_lsize == 16) 331 r4k_blast_icache_page_indexed = blast_icache16_page_indexed; 332 else if (ic_lsize == 32) { 333 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) 334 r4k_blast_icache_page_indexed = 335 blast_icache32_r4600_v1_page_indexed; 336 else if (TX49XX_ICACHE_INDEX_INV_WAR) 337 r4k_blast_icache_page_indexed = 338 tx49_blast_icache32_page_indexed; 339 else if (current_cpu_type() == CPU_LOONGSON2) 340 r4k_blast_icache_page_indexed = 341 loongson2_blast_icache32_page_indexed; 342 else 343 r4k_blast_icache_page_indexed = 344 blast_icache32_page_indexed; 345 } else if (ic_lsize == 64) 346 r4k_blast_icache_page_indexed = blast_icache64_page_indexed; 347 } 348 349 void (* r4k_blast_icache)(void); 350 EXPORT_SYMBOL(r4k_blast_icache); 351 352 static void r4k_blast_icache_setup(void) 353 { 354 unsigned long ic_lsize = cpu_icache_line_size(); 355 356 if (ic_lsize == 0) 357 r4k_blast_icache = (void *)cache_noop; 358 else if (ic_lsize == 16) 359 r4k_blast_icache = blast_icache16; 360 else if (ic_lsize == 32) { 361 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x()) 362 r4k_blast_icache = blast_r4600_v1_icache32; 363 else if (TX49XX_ICACHE_INDEX_INV_WAR) 364 r4k_blast_icache = tx49_blast_icache32; 365 else if (current_cpu_type() == CPU_LOONGSON2) 366 r4k_blast_icache = loongson2_blast_icache32; 367 else 368 r4k_blast_icache = blast_icache32; 369 } else if (ic_lsize == 64) 370 r4k_blast_icache = blast_icache64; 371 else if (ic_lsize == 128) 372 r4k_blast_icache = blast_icache128; 373 } 374 375 static void (* r4k_blast_scache_page)(unsigned long addr); 376 377 static void r4k_blast_scache_page_setup(void) 378 { 379 unsigned long sc_lsize = cpu_scache_line_size(); 380 381 if (scache_size == 0) 382 r4k_blast_scache_page = (void *)cache_noop; 383 else if (sc_lsize == 16) 384 r4k_blast_scache_page = blast_scache16_page; 385 else if (sc_lsize == 32) 386 r4k_blast_scache_page = blast_scache32_page; 387 else if (sc_lsize == 64) 388 r4k_blast_scache_page = blast_scache64_page; 389 else if (sc_lsize == 128) 390 r4k_blast_scache_page = blast_scache128_page; 391 } 392 393 static void (* r4k_blast_scache_page_indexed)(unsigned long addr); 394 395 static void r4k_blast_scache_page_indexed_setup(void) 396 { 397 unsigned long sc_lsize = cpu_scache_line_size(); 398 399 if (scache_size == 0) 400 r4k_blast_scache_page_indexed = (void *)cache_noop; 401 else if (sc_lsize == 16) 402 r4k_blast_scache_page_indexed = blast_scache16_page_indexed; 403 else if (sc_lsize == 32) 404 r4k_blast_scache_page_indexed = blast_scache32_page_indexed; 405 else if (sc_lsize == 64) 406 r4k_blast_scache_page_indexed = blast_scache64_page_indexed; 407 else if (sc_lsize == 128) 408 r4k_blast_scache_page_indexed = blast_scache128_page_indexed; 409 } 410 411 static void (* r4k_blast_scache)(void); 412 413 static void r4k_blast_scache_setup(void) 414 { 415 unsigned long sc_lsize = cpu_scache_line_size(); 416 417 if (scache_size == 0) 418 r4k_blast_scache = (void *)cache_noop; 419 else if (sc_lsize == 16) 420 r4k_blast_scache = blast_scache16; 421 else if (sc_lsize == 32) 422 r4k_blast_scache = blast_scache32; 423 else if (sc_lsize == 64) 424 r4k_blast_scache = blast_scache64; 425 else if (sc_lsize == 128) 426 r4k_blast_scache = blast_scache128; 427 } 428 429 static inline void local_r4k___flush_cache_all(void * args) 430 { 431 switch (current_cpu_type()) { 432 case CPU_LOONGSON2: 433 case CPU_LOONGSON3: 434 case CPU_R4000SC: 435 case CPU_R4000MC: 436 case CPU_R4400SC: 437 case CPU_R4400MC: 438 case CPU_R10000: 439 case CPU_R12000: 440 case CPU_R14000: 441 case CPU_R16000: 442 /* 443 * These caches are inclusive caches, that is, if something 444 * is not cached in the S-cache, we know it also won't be 445 * in one of the primary caches. 446 */ 447 r4k_blast_scache(); 448 break; 449 450 default: 451 r4k_blast_dcache(); 452 r4k_blast_icache(); 453 break; 454 } 455 } 456 457 static void r4k___flush_cache_all(void) 458 { 459 r4k_on_each_cpu(local_r4k___flush_cache_all, NULL); 460 } 461 462 static inline int has_valid_asid(const struct mm_struct *mm) 463 { 464 #ifdef CONFIG_MIPS_MT_SMP 465 int i; 466 467 for_each_online_cpu(i) 468 if (cpu_context(i, mm)) 469 return 1; 470 471 return 0; 472 #else 473 return cpu_context(smp_processor_id(), mm); 474 #endif 475 } 476 477 static void r4k__flush_cache_vmap(void) 478 { 479 r4k_blast_dcache(); 480 } 481 482 static void r4k__flush_cache_vunmap(void) 483 { 484 r4k_blast_dcache(); 485 } 486 487 static inline void local_r4k_flush_cache_range(void * args) 488 { 489 struct vm_area_struct *vma = args; 490 int exec = vma->vm_flags & VM_EXEC; 491 492 if (!(has_valid_asid(vma->vm_mm))) 493 return; 494 495 r4k_blast_dcache(); 496 if (exec) 497 r4k_blast_icache(); 498 } 499 500 static void r4k_flush_cache_range(struct vm_area_struct *vma, 501 unsigned long start, unsigned long end) 502 { 503 int exec = vma->vm_flags & VM_EXEC; 504 505 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) 506 r4k_on_each_cpu(local_r4k_flush_cache_range, vma); 507 } 508 509 static inline void local_r4k_flush_cache_mm(void * args) 510 { 511 struct mm_struct *mm = args; 512 513 if (!has_valid_asid(mm)) 514 return; 515 516 /* 517 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we 518 * only flush the primary caches but R1x000 behave sane ... 519 * R4000SC and R4400SC indexed S-cache ops also invalidate primary 520 * caches, so we can bail out early. 521 */ 522 if (current_cpu_type() == CPU_R4000SC || 523 current_cpu_type() == CPU_R4000MC || 524 current_cpu_type() == CPU_R4400SC || 525 current_cpu_type() == CPU_R4400MC) { 526 r4k_blast_scache(); 527 return; 528 } 529 530 r4k_blast_dcache(); 531 } 532 533 static void r4k_flush_cache_mm(struct mm_struct *mm) 534 { 535 if (!cpu_has_dc_aliases) 536 return; 537 538 r4k_on_each_cpu(local_r4k_flush_cache_mm, mm); 539 } 540 541 struct flush_cache_page_args { 542 struct vm_area_struct *vma; 543 unsigned long addr; 544 unsigned long pfn; 545 }; 546 547 static inline void local_r4k_flush_cache_page(void *args) 548 { 549 struct flush_cache_page_args *fcp_args = args; 550 struct vm_area_struct *vma = fcp_args->vma; 551 unsigned long addr = fcp_args->addr; 552 struct page *page = pfn_to_page(fcp_args->pfn); 553 int exec = vma->vm_flags & VM_EXEC; 554 struct mm_struct *mm = vma->vm_mm; 555 int map_coherent = 0; 556 pgd_t *pgdp; 557 pud_t *pudp; 558 pmd_t *pmdp; 559 pte_t *ptep; 560 void *vaddr; 561 562 /* 563 * If ownes no valid ASID yet, cannot possibly have gotten 564 * this page into the cache. 565 */ 566 if (!has_valid_asid(mm)) 567 return; 568 569 addr &= PAGE_MASK; 570 pgdp = pgd_offset(mm, addr); 571 pudp = pud_offset(pgdp, addr); 572 pmdp = pmd_offset(pudp, addr); 573 ptep = pte_offset(pmdp, addr); 574 575 /* 576 * If the page isn't marked valid, the page cannot possibly be 577 * in the cache. 578 */ 579 if (!(pte_present(*ptep))) 580 return; 581 582 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) 583 vaddr = NULL; 584 else { 585 /* 586 * Use kmap_coherent or kmap_atomic to do flushes for 587 * another ASID than the current one. 588 */ 589 map_coherent = (cpu_has_dc_aliases && 590 page_mapped(page) && !Page_dcache_dirty(page)); 591 if (map_coherent) 592 vaddr = kmap_coherent(page, addr); 593 else 594 vaddr = kmap_atomic(page); 595 addr = (unsigned long)vaddr; 596 } 597 598 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { 599 vaddr ? r4k_blast_dcache_page(addr) : 600 r4k_blast_dcache_user_page(addr); 601 if (exec && !cpu_icache_snoops_remote_store) 602 r4k_blast_scache_page(addr); 603 } 604 if (exec) { 605 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { 606 int cpu = smp_processor_id(); 607 608 if (cpu_context(cpu, mm) != 0) 609 drop_mmu_context(mm, cpu); 610 } else 611 vaddr ? r4k_blast_icache_page(addr) : 612 r4k_blast_icache_user_page(addr); 613 } 614 615 if (vaddr) { 616 if (map_coherent) 617 kunmap_coherent(); 618 else 619 kunmap_atomic(vaddr); 620 } 621 } 622 623 static void r4k_flush_cache_page(struct vm_area_struct *vma, 624 unsigned long addr, unsigned long pfn) 625 { 626 struct flush_cache_page_args args; 627 628 args.vma = vma; 629 args.addr = addr; 630 args.pfn = pfn; 631 632 r4k_on_each_cpu(local_r4k_flush_cache_page, &args); 633 } 634 635 static inline void local_r4k_flush_data_cache_page(void * addr) 636 { 637 r4k_blast_dcache_page((unsigned long) addr); 638 } 639 640 static void r4k_flush_data_cache_page(unsigned long addr) 641 { 642 if (in_atomic()) 643 local_r4k_flush_data_cache_page((void *)addr); 644 else 645 r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr); 646 } 647 648 struct flush_icache_range_args { 649 unsigned long start; 650 unsigned long end; 651 }; 652 653 static inline void local_r4k_flush_icache_range(unsigned long start, unsigned long end) 654 { 655 if (!cpu_has_ic_fills_f_dc) { 656 if (end - start >= dcache_size) { 657 r4k_blast_dcache(); 658 } else { 659 R4600_HIT_CACHEOP_WAR_IMPL; 660 protected_blast_dcache_range(start, end); 661 } 662 } 663 664 if (end - start > icache_size) 665 r4k_blast_icache(); 666 else { 667 switch (boot_cpu_type()) { 668 case CPU_LOONGSON2: 669 protected_loongson2_blast_icache_range(start, end); 670 break; 671 672 default: 673 protected_blast_icache_range(start, end); 674 break; 675 } 676 } 677 #ifdef CONFIG_EVA 678 /* 679 * Due to all possible segment mappings, there might cache aliases 680 * caused by the bootloader being in non-EVA mode, and the CPU switching 681 * to EVA during early kernel init. It's best to flush the scache 682 * to avoid having secondary cores fetching stale data and lead to 683 * kernel crashes. 684 */ 685 bc_wback_inv(start, (end - start)); 686 __sync(); 687 #endif 688 } 689 690 static inline void local_r4k_flush_icache_range_ipi(void *args) 691 { 692 struct flush_icache_range_args *fir_args = args; 693 unsigned long start = fir_args->start; 694 unsigned long end = fir_args->end; 695 696 local_r4k_flush_icache_range(start, end); 697 } 698 699 static void r4k_flush_icache_range(unsigned long start, unsigned long end) 700 { 701 struct flush_icache_range_args args; 702 703 args.start = start; 704 args.end = end; 705 706 r4k_on_each_cpu(local_r4k_flush_icache_range_ipi, &args); 707 instruction_hazard(); 708 } 709 710 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT) 711 712 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) 713 { 714 /* Catch bad driver code */ 715 BUG_ON(size == 0); 716 717 preempt_disable(); 718 if (cpu_has_inclusive_pcaches) { 719 if (size >= scache_size) 720 r4k_blast_scache(); 721 else 722 blast_scache_range(addr, addr + size); 723 preempt_enable(); 724 __sync(); 725 return; 726 } 727 728 /* 729 * Either no secondary cache or the available caches don't have the 730 * subset property so we have to flush the primary caches 731 * explicitly 732 */ 733 if (cpu_has_safe_index_cacheops && size >= dcache_size) { 734 r4k_blast_dcache(); 735 } else { 736 R4600_HIT_CACHEOP_WAR_IMPL; 737 blast_dcache_range(addr, addr + size); 738 } 739 preempt_enable(); 740 741 bc_wback_inv(addr, size); 742 __sync(); 743 } 744 745 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) 746 { 747 /* Catch bad driver code */ 748 BUG_ON(size == 0); 749 750 preempt_disable(); 751 if (cpu_has_inclusive_pcaches) { 752 if (size >= scache_size) 753 r4k_blast_scache(); 754 else { 755 /* 756 * There is no clearly documented alignment requirement 757 * for the cache instruction on MIPS processors and 758 * some processors, among them the RM5200 and RM7000 759 * QED processors will throw an address error for cache 760 * hit ops with insufficient alignment. Solved by 761 * aligning the address to cache line size. 762 */ 763 blast_inv_scache_range(addr, addr + size); 764 } 765 preempt_enable(); 766 __sync(); 767 return; 768 } 769 770 if (cpu_has_safe_index_cacheops && size >= dcache_size) { 771 r4k_blast_dcache(); 772 } else { 773 R4600_HIT_CACHEOP_WAR_IMPL; 774 blast_inv_dcache_range(addr, addr + size); 775 } 776 preempt_enable(); 777 778 bc_inv(addr, size); 779 __sync(); 780 } 781 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */ 782 783 /* 784 * While we're protected against bad userland addresses we don't care 785 * very much about what happens in that case. Usually a segmentation 786 * fault will dump the process later on anyway ... 787 */ 788 static void local_r4k_flush_cache_sigtramp(void * arg) 789 { 790 unsigned long ic_lsize = cpu_icache_line_size(); 791 unsigned long dc_lsize = cpu_dcache_line_size(); 792 unsigned long sc_lsize = cpu_scache_line_size(); 793 unsigned long addr = (unsigned long) arg; 794 795 R4600_HIT_CACHEOP_WAR_IMPL; 796 if (dc_lsize) 797 protected_writeback_dcache_line(addr & ~(dc_lsize - 1)); 798 if (!cpu_icache_snoops_remote_store && scache_size) 799 protected_writeback_scache_line(addr & ~(sc_lsize - 1)); 800 if (ic_lsize) 801 protected_flush_icache_line(addr & ~(ic_lsize - 1)); 802 if (MIPS4K_ICACHE_REFILL_WAR) { 803 __asm__ __volatile__ ( 804 ".set push\n\t" 805 ".set noat\n\t" 806 ".set "MIPS_ISA_LEVEL"\n\t" 807 #ifdef CONFIG_32BIT 808 "la $at,1f\n\t" 809 #endif 810 #ifdef CONFIG_64BIT 811 "dla $at,1f\n\t" 812 #endif 813 "cache %0,($at)\n\t" 814 "nop; nop; nop\n" 815 "1:\n\t" 816 ".set pop" 817 : 818 : "i" (Hit_Invalidate_I)); 819 } 820 if (MIPS_CACHE_SYNC_WAR) 821 __asm__ __volatile__ ("sync"); 822 } 823 824 static void r4k_flush_cache_sigtramp(unsigned long addr) 825 { 826 r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr); 827 } 828 829 static void r4k_flush_icache_all(void) 830 { 831 if (cpu_has_vtag_icache) 832 r4k_blast_icache(); 833 } 834 835 struct flush_kernel_vmap_range_args { 836 unsigned long vaddr; 837 int size; 838 }; 839 840 static inline void local_r4k_flush_kernel_vmap_range(void *args) 841 { 842 struct flush_kernel_vmap_range_args *vmra = args; 843 unsigned long vaddr = vmra->vaddr; 844 int size = vmra->size; 845 846 /* 847 * Aliases only affect the primary caches so don't bother with 848 * S-caches or T-caches. 849 */ 850 if (cpu_has_safe_index_cacheops && size >= dcache_size) 851 r4k_blast_dcache(); 852 else { 853 R4600_HIT_CACHEOP_WAR_IMPL; 854 blast_dcache_range(vaddr, vaddr + size); 855 } 856 } 857 858 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) 859 { 860 struct flush_kernel_vmap_range_args args; 861 862 args.vaddr = (unsigned long) vaddr; 863 args.size = size; 864 865 r4k_on_each_cpu(local_r4k_flush_kernel_vmap_range, &args); 866 } 867 868 static inline void rm7k_erratum31(void) 869 { 870 const unsigned long ic_lsize = 32; 871 unsigned long addr; 872 873 /* RM7000 erratum #31. The icache is screwed at startup. */ 874 write_c0_taglo(0); 875 write_c0_taghi(0); 876 877 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { 878 __asm__ __volatile__ ( 879 ".set push\n\t" 880 ".set noreorder\n\t" 881 ".set mips3\n\t" 882 "cache\t%1, 0(%0)\n\t" 883 "cache\t%1, 0x1000(%0)\n\t" 884 "cache\t%1, 0x2000(%0)\n\t" 885 "cache\t%1, 0x3000(%0)\n\t" 886 "cache\t%2, 0(%0)\n\t" 887 "cache\t%2, 0x1000(%0)\n\t" 888 "cache\t%2, 0x2000(%0)\n\t" 889 "cache\t%2, 0x3000(%0)\n\t" 890 "cache\t%1, 0(%0)\n\t" 891 "cache\t%1, 0x1000(%0)\n\t" 892 "cache\t%1, 0x2000(%0)\n\t" 893 "cache\t%1, 0x3000(%0)\n\t" 894 ".set pop\n" 895 : 896 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill)); 897 } 898 } 899 900 static inline int alias_74k_erratum(struct cpuinfo_mips *c) 901 { 902 unsigned int imp = c->processor_id & PRID_IMP_MASK; 903 unsigned int rev = c->processor_id & PRID_REV_MASK; 904 int present = 0; 905 906 /* 907 * Early versions of the 74K do not update the cache tags on a 908 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG 909 * aliases. In this case it is better to treat the cache as always 910 * having aliases. Also disable the synonym tag update feature 911 * where available. In this case no opportunistic tag update will 912 * happen where a load causes a virtual address miss but a physical 913 * address hit during a D-cache look-up. 914 */ 915 switch (imp) { 916 case PRID_IMP_74K: 917 if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) 918 present = 1; 919 if (rev == PRID_REV_ENCODE_332(2, 4, 0)) 920 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND); 921 break; 922 case PRID_IMP_1074K: 923 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { 924 present = 1; 925 write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND); 926 } 927 break; 928 default: 929 BUG(); 930 } 931 932 return present; 933 } 934 935 static void b5k_instruction_hazard(void) 936 { 937 __sync(); 938 __sync(); 939 __asm__ __volatile__( 940 " nop; nop; nop; nop; nop; nop; nop; nop\n" 941 " nop; nop; nop; nop; nop; nop; nop; nop\n" 942 " nop; nop; nop; nop; nop; nop; nop; nop\n" 943 " nop; nop; nop; nop; nop; nop; nop; nop\n" 944 : : : "memory"); 945 } 946 947 static char *way_string[] = { NULL, "direct mapped", "2-way", 948 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", 949 "9-way", "10-way", "11-way", "12-way", 950 "13-way", "14-way", "15-way", "16-way", 951 }; 952 953 static void probe_pcache(void) 954 { 955 struct cpuinfo_mips *c = ¤t_cpu_data; 956 unsigned int config = read_c0_config(); 957 unsigned int prid = read_c0_prid(); 958 int has_74k_erratum = 0; 959 unsigned long config1; 960 unsigned int lsize; 961 962 switch (current_cpu_type()) { 963 case CPU_R4600: /* QED style two way caches? */ 964 case CPU_R4700: 965 case CPU_R5000: 966 case CPU_NEVADA: 967 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 968 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 969 c->icache.ways = 2; 970 c->icache.waybit = __ffs(icache_size/2); 971 972 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 973 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 974 c->dcache.ways = 2; 975 c->dcache.waybit= __ffs(dcache_size/2); 976 977 c->options |= MIPS_CPU_CACHE_CDEX_P; 978 break; 979 980 case CPU_R5432: 981 case CPU_R5500: 982 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 983 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 984 c->icache.ways = 2; 985 c->icache.waybit= 0; 986 987 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 988 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 989 c->dcache.ways = 2; 990 c->dcache.waybit = 0; 991 992 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; 993 break; 994 995 case CPU_TX49XX: 996 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 997 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 998 c->icache.ways = 4; 999 c->icache.waybit= 0; 1000 1001 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1002 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1003 c->dcache.ways = 4; 1004 c->dcache.waybit = 0; 1005 1006 c->options |= MIPS_CPU_CACHE_CDEX_P; 1007 c->options |= MIPS_CPU_PREFETCH; 1008 break; 1009 1010 case CPU_R4000PC: 1011 case CPU_R4000SC: 1012 case CPU_R4000MC: 1013 case CPU_R4400PC: 1014 case CPU_R4400SC: 1015 case CPU_R4400MC: 1016 case CPU_R4300: 1017 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1018 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1019 c->icache.ways = 1; 1020 c->icache.waybit = 0; /* doesn't matter */ 1021 1022 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1023 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1024 c->dcache.ways = 1; 1025 c->dcache.waybit = 0; /* does not matter */ 1026 1027 c->options |= MIPS_CPU_CACHE_CDEX_P; 1028 break; 1029 1030 case CPU_R10000: 1031 case CPU_R12000: 1032 case CPU_R14000: 1033 case CPU_R16000: 1034 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); 1035 c->icache.linesz = 64; 1036 c->icache.ways = 2; 1037 c->icache.waybit = 0; 1038 1039 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); 1040 c->dcache.linesz = 32; 1041 c->dcache.ways = 2; 1042 c->dcache.waybit = 0; 1043 1044 c->options |= MIPS_CPU_PREFETCH; 1045 break; 1046 1047 case CPU_VR4133: 1048 write_c0_config(config & ~VR41_CONF_P4K); 1049 case CPU_VR4131: 1050 /* Workaround for cache instruction bug of VR4131 */ 1051 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U || 1052 c->processor_id == 0x0c82U) { 1053 config |= 0x00400000U; 1054 if (c->processor_id == 0x0c80U) 1055 config |= VR41_CONF_BP; 1056 write_c0_config(config); 1057 } else 1058 c->options |= MIPS_CPU_CACHE_CDEX_P; 1059 1060 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1061 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1062 c->icache.ways = 2; 1063 c->icache.waybit = __ffs(icache_size/2); 1064 1065 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1066 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1067 c->dcache.ways = 2; 1068 c->dcache.waybit = __ffs(dcache_size/2); 1069 break; 1070 1071 case CPU_VR41XX: 1072 case CPU_VR4111: 1073 case CPU_VR4121: 1074 case CPU_VR4122: 1075 case CPU_VR4181: 1076 case CPU_VR4181A: 1077 icache_size = 1 << (10 + ((config & CONF_IC) >> 9)); 1078 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1079 c->icache.ways = 1; 1080 c->icache.waybit = 0; /* doesn't matter */ 1081 1082 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6)); 1083 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1084 c->dcache.ways = 1; 1085 c->dcache.waybit = 0; /* does not matter */ 1086 1087 c->options |= MIPS_CPU_CACHE_CDEX_P; 1088 break; 1089 1090 case CPU_RM7000: 1091 rm7k_erratum31(); 1092 1093 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1094 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1095 c->icache.ways = 4; 1096 c->icache.waybit = __ffs(icache_size / c->icache.ways); 1097 1098 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1099 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1100 c->dcache.ways = 4; 1101 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); 1102 1103 c->options |= MIPS_CPU_CACHE_CDEX_P; 1104 c->options |= MIPS_CPU_PREFETCH; 1105 break; 1106 1107 case CPU_LOONGSON2: 1108 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1109 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1110 if (prid & 0x3) 1111 c->icache.ways = 4; 1112 else 1113 c->icache.ways = 2; 1114 c->icache.waybit = 0; 1115 1116 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1117 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1118 if (prid & 0x3) 1119 c->dcache.ways = 4; 1120 else 1121 c->dcache.ways = 2; 1122 c->dcache.waybit = 0; 1123 break; 1124 1125 case CPU_LOONGSON3: 1126 config1 = read_c0_config1(); 1127 lsize = (config1 >> 19) & 7; 1128 if (lsize) 1129 c->icache.linesz = 2 << lsize; 1130 else 1131 c->icache.linesz = 0; 1132 c->icache.sets = 64 << ((config1 >> 22) & 7); 1133 c->icache.ways = 1 + ((config1 >> 16) & 7); 1134 icache_size = c->icache.sets * 1135 c->icache.ways * 1136 c->icache.linesz; 1137 c->icache.waybit = 0; 1138 1139 lsize = (config1 >> 10) & 7; 1140 if (lsize) 1141 c->dcache.linesz = 2 << lsize; 1142 else 1143 c->dcache.linesz = 0; 1144 c->dcache.sets = 64 << ((config1 >> 13) & 7); 1145 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1146 dcache_size = c->dcache.sets * 1147 c->dcache.ways * 1148 c->dcache.linesz; 1149 c->dcache.waybit = 0; 1150 break; 1151 1152 case CPU_CAVIUM_OCTEON3: 1153 /* For now lie about the number of ways. */ 1154 c->icache.linesz = 128; 1155 c->icache.sets = 16; 1156 c->icache.ways = 8; 1157 c->icache.flags |= MIPS_CACHE_VTAG; 1158 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; 1159 1160 c->dcache.linesz = 128; 1161 c->dcache.ways = 8; 1162 c->dcache.sets = 8; 1163 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; 1164 c->options |= MIPS_CPU_PREFETCH; 1165 break; 1166 1167 default: 1168 if (!(config & MIPS_CONF_M)) 1169 panic("Don't know how to probe P-caches on this cpu."); 1170 1171 /* 1172 * So we seem to be a MIPS32 or MIPS64 CPU 1173 * So let's probe the I-cache ... 1174 */ 1175 config1 = read_c0_config1(); 1176 1177 lsize = (config1 >> 19) & 7; 1178 1179 /* IL == 7 is reserved */ 1180 if (lsize == 7) 1181 panic("Invalid icache line size"); 1182 1183 c->icache.linesz = lsize ? 2 << lsize : 0; 1184 1185 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); 1186 c->icache.ways = 1 + ((config1 >> 16) & 7); 1187 1188 icache_size = c->icache.sets * 1189 c->icache.ways * 1190 c->icache.linesz; 1191 c->icache.waybit = __ffs(icache_size/c->icache.ways); 1192 1193 if (config & 0x8) /* VI bit */ 1194 c->icache.flags |= MIPS_CACHE_VTAG; 1195 1196 /* 1197 * Now probe the MIPS32 / MIPS64 data cache. 1198 */ 1199 c->dcache.flags = 0; 1200 1201 lsize = (config1 >> 10) & 7; 1202 1203 /* DL == 7 is reserved */ 1204 if (lsize == 7) 1205 panic("Invalid dcache line size"); 1206 1207 c->dcache.linesz = lsize ? 2 << lsize : 0; 1208 1209 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); 1210 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1211 1212 dcache_size = c->dcache.sets * 1213 c->dcache.ways * 1214 c->dcache.linesz; 1215 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); 1216 1217 c->options |= MIPS_CPU_PREFETCH; 1218 break; 1219 } 1220 1221 /* 1222 * Processor configuration sanity check for the R4000SC erratum 1223 * #5. With page sizes larger than 32kB there is no possibility 1224 * to get a VCE exception anymore so we don't care about this 1225 * misconfiguration. The case is rather theoretical anyway; 1226 * presumably no vendor is shipping his hardware in the "bad" 1227 * configuration. 1228 */ 1229 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && 1230 (prid & PRID_REV_MASK) < PRID_REV_R4400 && 1231 !(config & CONF_SC) && c->icache.linesz != 16 && 1232 PAGE_SIZE <= 0x8000) 1233 panic("Improper R4000SC processor configuration detected"); 1234 1235 /* compute a couple of other cache variables */ 1236 c->icache.waysize = icache_size / c->icache.ways; 1237 c->dcache.waysize = dcache_size / c->dcache.ways; 1238 1239 c->icache.sets = c->icache.linesz ? 1240 icache_size / (c->icache.linesz * c->icache.ways) : 0; 1241 c->dcache.sets = c->dcache.linesz ? 1242 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; 1243 1244 /* 1245 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way 1246 * virtually indexed so normally would suffer from aliases. So 1247 * normally they'd suffer from aliases but magic in the hardware deals 1248 * with that for us so we don't need to take care ourselves. 1249 */ 1250 switch (current_cpu_type()) { 1251 case CPU_20KC: 1252 case CPU_25KF: 1253 case CPU_SB1: 1254 case CPU_SB1A: 1255 case CPU_XLR: 1256 c->dcache.flags |= MIPS_CACHE_PINDEX; 1257 break; 1258 1259 case CPU_R10000: 1260 case CPU_R12000: 1261 case CPU_R14000: 1262 case CPU_R16000: 1263 break; 1264 1265 case CPU_74K: 1266 case CPU_1074K: 1267 has_74k_erratum = alias_74k_erratum(c); 1268 /* Fall through. */ 1269 case CPU_M14KC: 1270 case CPU_M14KEC: 1271 case CPU_24K: 1272 case CPU_34K: 1273 case CPU_1004K: 1274 case CPU_INTERAPTIV: 1275 case CPU_P5600: 1276 case CPU_PROAPTIV: 1277 case CPU_M5150: 1278 case CPU_QEMU_GENERIC: 1279 if (!(read_c0_config7() & MIPS_CONF7_IAR) && 1280 (c->icache.waysize > PAGE_SIZE)) 1281 c->icache.flags |= MIPS_CACHE_ALIASES; 1282 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { 1283 /* 1284 * Effectively physically indexed dcache, 1285 * thus no virtual aliases. 1286 */ 1287 c->dcache.flags |= MIPS_CACHE_PINDEX; 1288 break; 1289 } 1290 default: 1291 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) 1292 c->dcache.flags |= MIPS_CACHE_ALIASES; 1293 } 1294 1295 switch (current_cpu_type()) { 1296 case CPU_20KC: 1297 /* 1298 * Some older 20Kc chips doesn't have the 'VI' bit in 1299 * the config register. 1300 */ 1301 c->icache.flags |= MIPS_CACHE_VTAG; 1302 break; 1303 1304 case CPU_ALCHEMY: 1305 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1306 break; 1307 1308 case CPU_LOONGSON2: 1309 /* 1310 * LOONGSON2 has 4 way icache, but when using indexed cache op, 1311 * one op will act on all 4 ways 1312 */ 1313 c->icache.ways = 1; 1314 } 1315 1316 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", 1317 icache_size >> 10, 1318 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", 1319 way_string[c->icache.ways], c->icache.linesz); 1320 1321 printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", 1322 dcache_size >> 10, way_string[c->dcache.ways], 1323 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", 1324 (c->dcache.flags & MIPS_CACHE_ALIASES) ? 1325 "cache aliases" : "no aliases", 1326 c->dcache.linesz); 1327 } 1328 1329 /* 1330 * If you even _breathe_ on this function, look at the gcc output and make sure 1331 * it does not pop things on and off the stack for the cache sizing loop that 1332 * executes in KSEG1 space or else you will crash and burn badly. You have 1333 * been warned. 1334 */ 1335 static int probe_scache(void) 1336 { 1337 unsigned long flags, addr, begin, end, pow2; 1338 unsigned int config = read_c0_config(); 1339 struct cpuinfo_mips *c = ¤t_cpu_data; 1340 1341 if (config & CONF_SC) 1342 return 0; 1343 1344 begin = (unsigned long) &_stext; 1345 begin &= ~((4 * 1024 * 1024) - 1); 1346 end = begin + (4 * 1024 * 1024); 1347 1348 /* 1349 * This is such a bitch, you'd think they would make it easy to do 1350 * this. Away you daemons of stupidity! 1351 */ 1352 local_irq_save(flags); 1353 1354 /* Fill each size-multiple cache line with a valid tag. */ 1355 pow2 = (64 * 1024); 1356 for (addr = begin; addr < end; addr = (begin + pow2)) { 1357 unsigned long *p = (unsigned long *) addr; 1358 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ 1359 pow2 <<= 1; 1360 } 1361 1362 /* Load first line with zero (therefore invalid) tag. */ 1363 write_c0_taglo(0); 1364 write_c0_taghi(0); 1365 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ 1366 cache_op(Index_Store_Tag_I, begin); 1367 cache_op(Index_Store_Tag_D, begin); 1368 cache_op(Index_Store_Tag_SD, begin); 1369 1370 /* Now search for the wrap around point. */ 1371 pow2 = (128 * 1024); 1372 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { 1373 cache_op(Index_Load_Tag_SD, addr); 1374 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ 1375 if (!read_c0_taglo()) 1376 break; 1377 pow2 <<= 1; 1378 } 1379 local_irq_restore(flags); 1380 addr -= begin; 1381 1382 scache_size = addr; 1383 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); 1384 c->scache.ways = 1; 1385 c->scache.waybit = 0; /* does not matter */ 1386 1387 return 1; 1388 } 1389 1390 static void __init loongson2_sc_init(void) 1391 { 1392 struct cpuinfo_mips *c = ¤t_cpu_data; 1393 1394 scache_size = 512*1024; 1395 c->scache.linesz = 32; 1396 c->scache.ways = 4; 1397 c->scache.waybit = 0; 1398 c->scache.waysize = scache_size / (c->scache.ways); 1399 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1400 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1401 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1402 1403 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1404 } 1405 1406 static void __init loongson3_sc_init(void) 1407 { 1408 struct cpuinfo_mips *c = ¤t_cpu_data; 1409 unsigned int config2, lsize; 1410 1411 config2 = read_c0_config2(); 1412 lsize = (config2 >> 4) & 15; 1413 if (lsize) 1414 c->scache.linesz = 2 << lsize; 1415 else 1416 c->scache.linesz = 0; 1417 c->scache.sets = 64 << ((config2 >> 8) & 15); 1418 c->scache.ways = 1 + (config2 & 15); 1419 1420 scache_size = c->scache.sets * 1421 c->scache.ways * 1422 c->scache.linesz; 1423 /* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */ 1424 scache_size *= 4; 1425 c->scache.waybit = 0; 1426 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1427 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1428 if (scache_size) 1429 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1430 return; 1431 } 1432 1433 extern int r5k_sc_init(void); 1434 extern int rm7k_sc_init(void); 1435 extern int mips_sc_init(void); 1436 1437 static void setup_scache(void) 1438 { 1439 struct cpuinfo_mips *c = ¤t_cpu_data; 1440 unsigned int config = read_c0_config(); 1441 int sc_present = 0; 1442 1443 /* 1444 * Do the probing thing on R4000SC and R4400SC processors. Other 1445 * processors don't have a S-cache that would be relevant to the 1446 * Linux memory management. 1447 */ 1448 switch (current_cpu_type()) { 1449 case CPU_R4000SC: 1450 case CPU_R4000MC: 1451 case CPU_R4400SC: 1452 case CPU_R4400MC: 1453 sc_present = run_uncached(probe_scache); 1454 if (sc_present) 1455 c->options |= MIPS_CPU_CACHE_CDEX_S; 1456 break; 1457 1458 case CPU_R10000: 1459 case CPU_R12000: 1460 case CPU_R14000: 1461 case CPU_R16000: 1462 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); 1463 c->scache.linesz = 64 << ((config >> 13) & 1); 1464 c->scache.ways = 2; 1465 c->scache.waybit= 0; 1466 sc_present = 1; 1467 break; 1468 1469 case CPU_R5000: 1470 case CPU_NEVADA: 1471 #ifdef CONFIG_R5000_CPU_SCACHE 1472 r5k_sc_init(); 1473 #endif 1474 return; 1475 1476 case CPU_RM7000: 1477 #ifdef CONFIG_RM7000_CPU_SCACHE 1478 rm7k_sc_init(); 1479 #endif 1480 return; 1481 1482 case CPU_LOONGSON2: 1483 loongson2_sc_init(); 1484 return; 1485 1486 case CPU_LOONGSON3: 1487 loongson3_sc_init(); 1488 return; 1489 1490 case CPU_CAVIUM_OCTEON3: 1491 case CPU_XLP: 1492 /* don't need to worry about L2, fully coherent */ 1493 return; 1494 1495 default: 1496 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 | 1497 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 | 1498 MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) { 1499 #ifdef CONFIG_MIPS_CPU_SCACHE 1500 if (mips_sc_init ()) { 1501 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; 1502 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", 1503 scache_size >> 10, 1504 way_string[c->scache.ways], c->scache.linesz); 1505 } 1506 #else 1507 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) 1508 panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); 1509 #endif 1510 return; 1511 } 1512 sc_present = 0; 1513 } 1514 1515 if (!sc_present) 1516 return; 1517 1518 /* compute a couple of other cache variables */ 1519 c->scache.waysize = scache_size / c->scache.ways; 1520 1521 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1522 1523 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1524 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1525 1526 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1527 } 1528 1529 void au1x00_fixup_config_od(void) 1530 { 1531 /* 1532 * c0_config.od (bit 19) was write only (and read as 0) 1533 * on the early revisions of Alchemy SOCs. It disables the bus 1534 * transaction overlapping and needs to be set to fix various errata. 1535 */ 1536 switch (read_c0_prid()) { 1537 case 0x00030100: /* Au1000 DA */ 1538 case 0x00030201: /* Au1000 HA */ 1539 case 0x00030202: /* Au1000 HB */ 1540 case 0x01030200: /* Au1500 AB */ 1541 /* 1542 * Au1100 errata actually keeps silence about this bit, so we set it 1543 * just in case for those revisions that require it to be set according 1544 * to the (now gone) cpu table. 1545 */ 1546 case 0x02030200: /* Au1100 AB */ 1547 case 0x02030201: /* Au1100 BA */ 1548 case 0x02030202: /* Au1100 BC */ 1549 set_c0_config(1 << 19); 1550 break; 1551 } 1552 } 1553 1554 /* CP0 hazard avoidance. */ 1555 #define NXP_BARRIER() \ 1556 __asm__ __volatile__( \ 1557 ".set noreorder\n\t" \ 1558 "nop; nop; nop; nop; nop; nop;\n\t" \ 1559 ".set reorder\n\t") 1560 1561 static void nxp_pr4450_fixup_config(void) 1562 { 1563 unsigned long config0; 1564 1565 config0 = read_c0_config(); 1566 1567 /* clear all three cache coherency fields */ 1568 config0 &= ~(0x7 | (7 << 25) | (7 << 28)); 1569 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | 1570 ((_page_cachable_default >> _CACHE_SHIFT) << 25) | 1571 ((_page_cachable_default >> _CACHE_SHIFT) << 28)); 1572 write_c0_config(config0); 1573 NXP_BARRIER(); 1574 } 1575 1576 static int cca = -1; 1577 1578 static int __init cca_setup(char *str) 1579 { 1580 get_option(&str, &cca); 1581 1582 return 0; 1583 } 1584 1585 early_param("cca", cca_setup); 1586 1587 static void coherency_setup(void) 1588 { 1589 if (cca < 0 || cca > 7) 1590 cca = read_c0_config() & CONF_CM_CMASK; 1591 _page_cachable_default = cca << _CACHE_SHIFT; 1592 1593 pr_debug("Using cache attribute %d\n", cca); 1594 change_c0_config(CONF_CM_CMASK, cca); 1595 1596 /* 1597 * c0_status.cu=0 specifies that updates by the sc instruction use 1598 * the coherency mode specified by the TLB; 1 means cachable 1599 * coherent update on write will be used. Not all processors have 1600 * this bit and; some wire it to zero, others like Toshiba had the 1601 * silly idea of putting something else there ... 1602 */ 1603 switch (current_cpu_type()) { 1604 case CPU_R4000PC: 1605 case CPU_R4000SC: 1606 case CPU_R4000MC: 1607 case CPU_R4400PC: 1608 case CPU_R4400SC: 1609 case CPU_R4400MC: 1610 clear_c0_config(CONF_CU); 1611 break; 1612 /* 1613 * We need to catch the early Alchemy SOCs with 1614 * the write-only co_config.od bit and set it back to one on: 1615 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB 1616 */ 1617 case CPU_ALCHEMY: 1618 au1x00_fixup_config_od(); 1619 break; 1620 1621 case PRID_IMP_PR4450: 1622 nxp_pr4450_fixup_config(); 1623 break; 1624 } 1625 } 1626 1627 static void r4k_cache_error_setup(void) 1628 { 1629 extern char __weak except_vec2_generic; 1630 extern char __weak except_vec2_sb1; 1631 1632 switch (current_cpu_type()) { 1633 case CPU_SB1: 1634 case CPU_SB1A: 1635 set_uncached_handler(0x100, &except_vec2_sb1, 0x80); 1636 break; 1637 1638 default: 1639 set_uncached_handler(0x100, &except_vec2_generic, 0x80); 1640 break; 1641 } 1642 } 1643 1644 void r4k_cache_init(void) 1645 { 1646 extern void build_clear_page(void); 1647 extern void build_copy_page(void); 1648 struct cpuinfo_mips *c = ¤t_cpu_data; 1649 1650 probe_pcache(); 1651 setup_scache(); 1652 1653 r4k_blast_dcache_page_setup(); 1654 r4k_blast_dcache_page_indexed_setup(); 1655 r4k_blast_dcache_setup(); 1656 r4k_blast_icache_page_setup(); 1657 r4k_blast_icache_page_indexed_setup(); 1658 r4k_blast_icache_setup(); 1659 r4k_blast_scache_page_setup(); 1660 r4k_blast_scache_page_indexed_setup(); 1661 r4k_blast_scache_setup(); 1662 #ifdef CONFIG_EVA 1663 r4k_blast_dcache_user_page_setup(); 1664 r4k_blast_icache_user_page_setup(); 1665 #endif 1666 1667 /* 1668 * Some MIPS32 and MIPS64 processors have physically indexed caches. 1669 * This code supports virtually indexed processors and will be 1670 * unnecessarily inefficient on physically indexed processors. 1671 */ 1672 if (c->dcache.linesz) 1673 shm_align_mask = max_t( unsigned long, 1674 c->dcache.sets * c->dcache.linesz - 1, 1675 PAGE_SIZE - 1); 1676 else 1677 shm_align_mask = PAGE_SIZE-1; 1678 1679 __flush_cache_vmap = r4k__flush_cache_vmap; 1680 __flush_cache_vunmap = r4k__flush_cache_vunmap; 1681 1682 flush_cache_all = cache_noop; 1683 __flush_cache_all = r4k___flush_cache_all; 1684 flush_cache_mm = r4k_flush_cache_mm; 1685 flush_cache_page = r4k_flush_cache_page; 1686 flush_cache_range = r4k_flush_cache_range; 1687 1688 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; 1689 1690 flush_cache_sigtramp = r4k_flush_cache_sigtramp; 1691 flush_icache_all = r4k_flush_icache_all; 1692 local_flush_data_cache_page = local_r4k_flush_data_cache_page; 1693 flush_data_cache_page = r4k_flush_data_cache_page; 1694 flush_icache_range = r4k_flush_icache_range; 1695 local_flush_icache_range = local_r4k_flush_icache_range; 1696 1697 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT) 1698 if (coherentio) { 1699 _dma_cache_wback_inv = (void *)cache_noop; 1700 _dma_cache_wback = (void *)cache_noop; 1701 _dma_cache_inv = (void *)cache_noop; 1702 } else { 1703 _dma_cache_wback_inv = r4k_dma_cache_wback_inv; 1704 _dma_cache_wback = r4k_dma_cache_wback_inv; 1705 _dma_cache_inv = r4k_dma_cache_inv; 1706 } 1707 #endif 1708 1709 build_clear_page(); 1710 build_copy_page(); 1711 1712 /* 1713 * We want to run CMP kernels on core with and without coherent 1714 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether 1715 * or not to flush caches. 1716 */ 1717 local_r4k___flush_cache_all(NULL); 1718 1719 coherency_setup(); 1720 board_cache_error_setup = r4k_cache_error_setup; 1721 1722 /* 1723 * Per-CPU overrides 1724 */ 1725 switch (current_cpu_type()) { 1726 case CPU_BMIPS4350: 1727 case CPU_BMIPS4380: 1728 /* No IPI is needed because all CPUs share the same D$ */ 1729 flush_data_cache_page = r4k_blast_dcache_page; 1730 break; 1731 case CPU_BMIPS5000: 1732 /* We lose our superpowers if L2 is disabled */ 1733 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) 1734 break; 1735 1736 /* I$ fills from D$ just by emptying the write buffers */ 1737 flush_cache_page = (void *)b5k_instruction_hazard; 1738 flush_cache_range = (void *)b5k_instruction_hazard; 1739 flush_cache_sigtramp = (void *)b5k_instruction_hazard; 1740 local_flush_data_cache_page = (void *)b5k_instruction_hazard; 1741 flush_data_cache_page = (void *)b5k_instruction_hazard; 1742 flush_icache_range = (void *)b5k_instruction_hazard; 1743 local_flush_icache_range = (void *)b5k_instruction_hazard; 1744 1745 /* Cache aliases are handled in hardware; allow HIGHMEM */ 1746 current_cpu_data.dcache.flags &= ~MIPS_CACHE_ALIASES; 1747 1748 /* Optimization: an L2 flush implicitly flushes the L1 */ 1749 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; 1750 break; 1751 } 1752 } 1753 1754 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, 1755 void *v) 1756 { 1757 switch (cmd) { 1758 case CPU_PM_ENTER_FAILED: 1759 case CPU_PM_EXIT: 1760 coherency_setup(); 1761 break; 1762 } 1763 1764 return NOTIFY_OK; 1765 } 1766 1767 static struct notifier_block r4k_cache_pm_notifier_block = { 1768 .notifier_call = r4k_cache_pm_notifier, 1769 }; 1770 1771 int __init r4k_cache_init_pm(void) 1772 { 1773 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); 1774 } 1775 arch_initcall(r4k_cache_init_pm); 1776