xref: /linux/arch/mips/mm/c-r4k.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/war.h>
37 #include <asm/cacheflush.h> /* for run_uncached() */
38 #include <asm/traps.h>
39 #include <asm/dma-coherence.h>
40 #include <asm/mips-cps.h>
41 
42 /*
43  * Bits describing what cache ops an SMP callback function may perform.
44  *
45  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
46  *		active_mm must be checked before using user addresses, falling
47  *		back to kmap.
48  * R4K_INDEX -	Index based cache operations.
49  */
50 
51 #define R4K_HIT		BIT(0)
52 #define R4K_INDEX	BIT(1)
53 
54 /**
55  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
56  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
57  *
58  * Decides whether a cache op needs to be performed on every core in the system.
59  * This may change depending on the @type of cache operation, as well as the set
60  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
61  * hotplug from changing the result.
62  *
63  * Returns:	1 if the cache operation @type should be done on every core in
64  *		the system.
65  *		0 if the cache operation @type is globalized and only needs to
66  *		be performed on a simple CPU.
67  */
68 static inline bool r4k_op_needs_ipi(unsigned int type)
69 {
70 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
71 	if (type == R4K_HIT && mips_cm_present())
72 		return false;
73 
74 	/*
75 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
76 	 * be needed, but only if there are foreign CPUs (non-siblings with
77 	 * separate caches).
78 	 */
79 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
80 #ifdef CONFIG_SMP
81 	return !cpumask_empty(&cpu_foreign_map[0]);
82 #else
83 	return false;
84 #endif
85 }
86 
87 /*
88  * Special Variant of smp_call_function for use by cache functions:
89  *
90  *  o No return value
91  *  o collapses to normal function call on UP kernels
92  *  o collapses to normal function call on systems with a single shared
93  *    primary cache.
94  *  o doesn't disable interrupts on the local CPU
95  */
96 static inline void r4k_on_each_cpu(unsigned int type,
97 				   void (*func)(void *info), void *info)
98 {
99 	preempt_disable();
100 	if (r4k_op_needs_ipi(type))
101 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
102 				       func, info, 1);
103 	func(info);
104 	preempt_enable();
105 }
106 
107 /*
108  * Must die.
109  */
110 static unsigned long icache_size __read_mostly;
111 static unsigned long dcache_size __read_mostly;
112 static unsigned long vcache_size __read_mostly;
113 static unsigned long scache_size __read_mostly;
114 
115 /*
116  * Dummy cache handling routines for machines without boardcaches
117  */
118 static void cache_noop(void) {}
119 
120 static struct bcache_ops no_sc_ops = {
121 	.bc_enable = (void *)cache_noop,
122 	.bc_disable = (void *)cache_noop,
123 	.bc_wback_inv = (void *)cache_noop,
124 	.bc_inv = (void *)cache_noop
125 };
126 
127 struct bcache_ops *bcops = &no_sc_ops;
128 
129 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
130 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
131 
132 #define R4600_HIT_CACHEOP_WAR_IMPL					\
133 do {									\
134 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
135 		*(volatile unsigned long *)CKSEG1;			\
136 	if (R4600_V1_HIT_CACHEOP_WAR)					\
137 		__asm__ __volatile__("nop;nop;nop;nop");		\
138 } while (0)
139 
140 static void (*r4k_blast_dcache_page)(unsigned long addr);
141 
142 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143 {
144 	R4600_HIT_CACHEOP_WAR_IMPL;
145 	blast_dcache32_page(addr);
146 }
147 
148 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149 {
150 	blast_dcache64_page(addr);
151 }
152 
153 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154 {
155 	blast_dcache128_page(addr);
156 }
157 
158 static void r4k_blast_dcache_page_setup(void)
159 {
160 	unsigned long  dc_lsize = cpu_dcache_line_size();
161 
162 	switch (dc_lsize) {
163 	case 0:
164 		r4k_blast_dcache_page = (void *)cache_noop;
165 		break;
166 	case 16:
167 		r4k_blast_dcache_page = blast_dcache16_page;
168 		break;
169 	case 32:
170 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171 		break;
172 	case 64:
173 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174 		break;
175 	case 128:
176 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177 		break;
178 	default:
179 		break;
180 	}
181 }
182 
183 #ifndef CONFIG_EVA
184 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185 #else
186 
187 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188 
189 static void r4k_blast_dcache_user_page_setup(void)
190 {
191 	unsigned long  dc_lsize = cpu_dcache_line_size();
192 
193 	if (dc_lsize == 0)
194 		r4k_blast_dcache_user_page = (void *)cache_noop;
195 	else if (dc_lsize == 16)
196 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197 	else if (dc_lsize == 32)
198 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199 	else if (dc_lsize == 64)
200 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201 }
202 
203 #endif
204 
205 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206 
207 static void r4k_blast_dcache_page_indexed_setup(void)
208 {
209 	unsigned long dc_lsize = cpu_dcache_line_size();
210 
211 	if (dc_lsize == 0)
212 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213 	else if (dc_lsize == 16)
214 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215 	else if (dc_lsize == 32)
216 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217 	else if (dc_lsize == 64)
218 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219 	else if (dc_lsize == 128)
220 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221 }
222 
223 void (* r4k_blast_dcache)(void);
224 EXPORT_SYMBOL(r4k_blast_dcache);
225 
226 static void r4k_blast_dcache_setup(void)
227 {
228 	unsigned long dc_lsize = cpu_dcache_line_size();
229 
230 	if (dc_lsize == 0)
231 		r4k_blast_dcache = (void *)cache_noop;
232 	else if (dc_lsize == 16)
233 		r4k_blast_dcache = blast_dcache16;
234 	else if (dc_lsize == 32)
235 		r4k_blast_dcache = blast_dcache32;
236 	else if (dc_lsize == 64)
237 		r4k_blast_dcache = blast_dcache64;
238 	else if (dc_lsize == 128)
239 		r4k_blast_dcache = blast_dcache128;
240 }
241 
242 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
243 #define JUMP_TO_ALIGN(order) \
244 	__asm__ __volatile__( \
245 		"b\t1f\n\t" \
246 		".align\t" #order "\n\t" \
247 		"1:\n\t" \
248 		)
249 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251 
252 static inline void blast_r4600_v1_icache32(void)
253 {
254 	unsigned long flags;
255 
256 	local_irq_save(flags);
257 	blast_icache32();
258 	local_irq_restore(flags);
259 }
260 
261 static inline void tx49_blast_icache32(void)
262 {
263 	unsigned long start = INDEX_BASE;
264 	unsigned long end = start + current_cpu_data.icache.waysize;
265 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266 	unsigned long ws_end = current_cpu_data.icache.ways <<
267 			       current_cpu_data.icache.waybit;
268 	unsigned long ws, addr;
269 
270 	CACHE32_UNROLL32_ALIGN2;
271 	/* I'm in even chunk.  blast odd chunks */
272 	for (ws = 0; ws < ws_end; ws += ws_inc)
273 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274 			cache32_unroll32(addr|ws, Index_Invalidate_I);
275 	CACHE32_UNROLL32_ALIGN;
276 	/* I'm in odd chunk.  blast even chunks */
277 	for (ws = 0; ws < ws_end; ws += ws_inc)
278 		for (addr = start; addr < end; addr += 0x400 * 2)
279 			cache32_unroll32(addr|ws, Index_Invalidate_I);
280 }
281 
282 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
283 {
284 	unsigned long flags;
285 
286 	local_irq_save(flags);
287 	blast_icache32_page_indexed(page);
288 	local_irq_restore(flags);
289 }
290 
291 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
292 {
293 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
294 	unsigned long start = INDEX_BASE + (page & indexmask);
295 	unsigned long end = start + PAGE_SIZE;
296 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
297 	unsigned long ws_end = current_cpu_data.icache.ways <<
298 			       current_cpu_data.icache.waybit;
299 	unsigned long ws, addr;
300 
301 	CACHE32_UNROLL32_ALIGN2;
302 	/* I'm in even chunk.  blast odd chunks */
303 	for (ws = 0; ws < ws_end; ws += ws_inc)
304 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
305 			cache32_unroll32(addr|ws, Index_Invalidate_I);
306 	CACHE32_UNROLL32_ALIGN;
307 	/* I'm in odd chunk.  blast even chunks */
308 	for (ws = 0; ws < ws_end; ws += ws_inc)
309 		for (addr = start; addr < end; addr += 0x400 * 2)
310 			cache32_unroll32(addr|ws, Index_Invalidate_I);
311 }
312 
313 static void (* r4k_blast_icache_page)(unsigned long addr);
314 
315 static void r4k_blast_icache_page_setup(void)
316 {
317 	unsigned long ic_lsize = cpu_icache_line_size();
318 
319 	if (ic_lsize == 0)
320 		r4k_blast_icache_page = (void *)cache_noop;
321 	else if (ic_lsize == 16)
322 		r4k_blast_icache_page = blast_icache16_page;
323 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2)
324 		r4k_blast_icache_page = loongson2_blast_icache32_page;
325 	else if (ic_lsize == 32)
326 		r4k_blast_icache_page = blast_icache32_page;
327 	else if (ic_lsize == 64)
328 		r4k_blast_icache_page = blast_icache64_page;
329 	else if (ic_lsize == 128)
330 		r4k_blast_icache_page = blast_icache128_page;
331 }
332 
333 #ifndef CONFIG_EVA
334 #define r4k_blast_icache_user_page  r4k_blast_icache_page
335 #else
336 
337 static void (*r4k_blast_icache_user_page)(unsigned long addr);
338 
339 static void r4k_blast_icache_user_page_setup(void)
340 {
341 	unsigned long ic_lsize = cpu_icache_line_size();
342 
343 	if (ic_lsize == 0)
344 		r4k_blast_icache_user_page = (void *)cache_noop;
345 	else if (ic_lsize == 16)
346 		r4k_blast_icache_user_page = blast_icache16_user_page;
347 	else if (ic_lsize == 32)
348 		r4k_blast_icache_user_page = blast_icache32_user_page;
349 	else if (ic_lsize == 64)
350 		r4k_blast_icache_user_page = blast_icache64_user_page;
351 }
352 
353 #endif
354 
355 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
356 
357 static void r4k_blast_icache_page_indexed_setup(void)
358 {
359 	unsigned long ic_lsize = cpu_icache_line_size();
360 
361 	if (ic_lsize == 0)
362 		r4k_blast_icache_page_indexed = (void *)cache_noop;
363 	else if (ic_lsize == 16)
364 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
365 	else if (ic_lsize == 32) {
366 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
367 			r4k_blast_icache_page_indexed =
368 				blast_icache32_r4600_v1_page_indexed;
369 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
370 			r4k_blast_icache_page_indexed =
371 				tx49_blast_icache32_page_indexed;
372 		else if (current_cpu_type() == CPU_LOONGSON2)
373 			r4k_blast_icache_page_indexed =
374 				loongson2_blast_icache32_page_indexed;
375 		else
376 			r4k_blast_icache_page_indexed =
377 				blast_icache32_page_indexed;
378 	} else if (ic_lsize == 64)
379 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
380 }
381 
382 void (* r4k_blast_icache)(void);
383 EXPORT_SYMBOL(r4k_blast_icache);
384 
385 static void r4k_blast_icache_setup(void)
386 {
387 	unsigned long ic_lsize = cpu_icache_line_size();
388 
389 	if (ic_lsize == 0)
390 		r4k_blast_icache = (void *)cache_noop;
391 	else if (ic_lsize == 16)
392 		r4k_blast_icache = blast_icache16;
393 	else if (ic_lsize == 32) {
394 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
395 			r4k_blast_icache = blast_r4600_v1_icache32;
396 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
397 			r4k_blast_icache = tx49_blast_icache32;
398 		else if (current_cpu_type() == CPU_LOONGSON2)
399 			r4k_blast_icache = loongson2_blast_icache32;
400 		else
401 			r4k_blast_icache = blast_icache32;
402 	} else if (ic_lsize == 64)
403 		r4k_blast_icache = blast_icache64;
404 	else if (ic_lsize == 128)
405 		r4k_blast_icache = blast_icache128;
406 }
407 
408 static void (* r4k_blast_scache_page)(unsigned long addr);
409 
410 static void r4k_blast_scache_page_setup(void)
411 {
412 	unsigned long sc_lsize = cpu_scache_line_size();
413 
414 	if (scache_size == 0)
415 		r4k_blast_scache_page = (void *)cache_noop;
416 	else if (sc_lsize == 16)
417 		r4k_blast_scache_page = blast_scache16_page;
418 	else if (sc_lsize == 32)
419 		r4k_blast_scache_page = blast_scache32_page;
420 	else if (sc_lsize == 64)
421 		r4k_blast_scache_page = blast_scache64_page;
422 	else if (sc_lsize == 128)
423 		r4k_blast_scache_page = blast_scache128_page;
424 }
425 
426 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
427 
428 static void r4k_blast_scache_page_indexed_setup(void)
429 {
430 	unsigned long sc_lsize = cpu_scache_line_size();
431 
432 	if (scache_size == 0)
433 		r4k_blast_scache_page_indexed = (void *)cache_noop;
434 	else if (sc_lsize == 16)
435 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
436 	else if (sc_lsize == 32)
437 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
438 	else if (sc_lsize == 64)
439 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
440 	else if (sc_lsize == 128)
441 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
442 }
443 
444 static void (* r4k_blast_scache)(void);
445 
446 static void r4k_blast_scache_setup(void)
447 {
448 	unsigned long sc_lsize = cpu_scache_line_size();
449 
450 	if (scache_size == 0)
451 		r4k_blast_scache = (void *)cache_noop;
452 	else if (sc_lsize == 16)
453 		r4k_blast_scache = blast_scache16;
454 	else if (sc_lsize == 32)
455 		r4k_blast_scache = blast_scache32;
456 	else if (sc_lsize == 64)
457 		r4k_blast_scache = blast_scache64;
458 	else if (sc_lsize == 128)
459 		r4k_blast_scache = blast_scache128;
460 }
461 
462 static void (*r4k_blast_scache_node)(long node);
463 
464 static void r4k_blast_scache_node_setup(void)
465 {
466 	unsigned long sc_lsize = cpu_scache_line_size();
467 
468 	if (current_cpu_type() != CPU_LOONGSON3)
469 		r4k_blast_scache_node = (void *)cache_noop;
470 	else if (sc_lsize == 16)
471 		r4k_blast_scache_node = blast_scache16_node;
472 	else if (sc_lsize == 32)
473 		r4k_blast_scache_node = blast_scache32_node;
474 	else if (sc_lsize == 64)
475 		r4k_blast_scache_node = blast_scache64_node;
476 	else if (sc_lsize == 128)
477 		r4k_blast_scache_node = blast_scache128_node;
478 }
479 
480 static inline void local_r4k___flush_cache_all(void * args)
481 {
482 	switch (current_cpu_type()) {
483 	case CPU_LOONGSON2:
484 	case CPU_R4000SC:
485 	case CPU_R4000MC:
486 	case CPU_R4400SC:
487 	case CPU_R4400MC:
488 	case CPU_R10000:
489 	case CPU_R12000:
490 	case CPU_R14000:
491 	case CPU_R16000:
492 		/*
493 		 * These caches are inclusive caches, that is, if something
494 		 * is not cached in the S-cache, we know it also won't be
495 		 * in one of the primary caches.
496 		 */
497 		r4k_blast_scache();
498 		break;
499 
500 	case CPU_LOONGSON3:
501 		/* Use get_ebase_cpunum() for both NUMA=y/n */
502 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
503 		break;
504 
505 	case CPU_BMIPS5000:
506 		r4k_blast_scache();
507 		__sync();
508 		break;
509 
510 	default:
511 		r4k_blast_dcache();
512 		r4k_blast_icache();
513 		break;
514 	}
515 }
516 
517 static void r4k___flush_cache_all(void)
518 {
519 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
520 }
521 
522 /**
523  * has_valid_asid() - Determine if an mm already has an ASID.
524  * @mm:		Memory map.
525  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
526  *
527  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
528  * of type @type within an r4k_on_each_cpu() call will affect. If
529  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
530  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
531  * will need to be checked.
532  *
533  * Must be called in non-preemptive context.
534  *
535  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
536  *		0 otherwise.
537  */
538 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
539 {
540 	unsigned int i;
541 	const cpumask_t *mask = cpu_present_mask;
542 
543 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
544 #ifdef CONFIG_SMP
545 	/*
546 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
547 	 * each foreign core, so we only need to worry about siblings.
548 	 * Otherwise we need to worry about all present CPUs.
549 	 */
550 	if (r4k_op_needs_ipi(type))
551 		mask = &cpu_sibling_map[smp_processor_id()];
552 #endif
553 	for_each_cpu(i, mask)
554 		if (cpu_context(i, mm))
555 			return 1;
556 	return 0;
557 }
558 
559 static void r4k__flush_cache_vmap(void)
560 {
561 	r4k_blast_dcache();
562 }
563 
564 static void r4k__flush_cache_vunmap(void)
565 {
566 	r4k_blast_dcache();
567 }
568 
569 /*
570  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
571  * whole caches when vma is executable.
572  */
573 static inline void local_r4k_flush_cache_range(void * args)
574 {
575 	struct vm_area_struct *vma = args;
576 	int exec = vma->vm_flags & VM_EXEC;
577 
578 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
579 		return;
580 
581 	/*
582 	 * If dcache can alias, we must blast it since mapping is changing.
583 	 * If executable, we must ensure any dirty lines are written back far
584 	 * enough to be visible to icache.
585 	 */
586 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
587 		r4k_blast_dcache();
588 	/* If executable, blast stale lines from icache */
589 	if (exec)
590 		r4k_blast_icache();
591 }
592 
593 static void r4k_flush_cache_range(struct vm_area_struct *vma,
594 	unsigned long start, unsigned long end)
595 {
596 	int exec = vma->vm_flags & VM_EXEC;
597 
598 	if (cpu_has_dc_aliases || exec)
599 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
600 }
601 
602 static inline void local_r4k_flush_cache_mm(void * args)
603 {
604 	struct mm_struct *mm = args;
605 
606 	if (!has_valid_asid(mm, R4K_INDEX))
607 		return;
608 
609 	/*
610 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
611 	 * only flush the primary caches but R1x000 behave sane ...
612 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
613 	 * caches, so we can bail out early.
614 	 */
615 	if (current_cpu_type() == CPU_R4000SC ||
616 	    current_cpu_type() == CPU_R4000MC ||
617 	    current_cpu_type() == CPU_R4400SC ||
618 	    current_cpu_type() == CPU_R4400MC) {
619 		r4k_blast_scache();
620 		return;
621 	}
622 
623 	r4k_blast_dcache();
624 }
625 
626 static void r4k_flush_cache_mm(struct mm_struct *mm)
627 {
628 	if (!cpu_has_dc_aliases)
629 		return;
630 
631 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
632 }
633 
634 struct flush_cache_page_args {
635 	struct vm_area_struct *vma;
636 	unsigned long addr;
637 	unsigned long pfn;
638 };
639 
640 static inline void local_r4k_flush_cache_page(void *args)
641 {
642 	struct flush_cache_page_args *fcp_args = args;
643 	struct vm_area_struct *vma = fcp_args->vma;
644 	unsigned long addr = fcp_args->addr;
645 	struct page *page = pfn_to_page(fcp_args->pfn);
646 	int exec = vma->vm_flags & VM_EXEC;
647 	struct mm_struct *mm = vma->vm_mm;
648 	int map_coherent = 0;
649 	pgd_t *pgdp;
650 	pud_t *pudp;
651 	pmd_t *pmdp;
652 	pte_t *ptep;
653 	void *vaddr;
654 
655 	/*
656 	 * If owns no valid ASID yet, cannot possibly have gotten
657 	 * this page into the cache.
658 	 */
659 	if (!has_valid_asid(mm, R4K_HIT))
660 		return;
661 
662 	addr &= PAGE_MASK;
663 	pgdp = pgd_offset(mm, addr);
664 	pudp = pud_offset(pgdp, addr);
665 	pmdp = pmd_offset(pudp, addr);
666 	ptep = pte_offset(pmdp, addr);
667 
668 	/*
669 	 * If the page isn't marked valid, the page cannot possibly be
670 	 * in the cache.
671 	 */
672 	if (!(pte_present(*ptep)))
673 		return;
674 
675 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
676 		vaddr = NULL;
677 	else {
678 		/*
679 		 * Use kmap_coherent or kmap_atomic to do flushes for
680 		 * another ASID than the current one.
681 		 */
682 		map_coherent = (cpu_has_dc_aliases &&
683 				page_mapcount(page) &&
684 				!Page_dcache_dirty(page));
685 		if (map_coherent)
686 			vaddr = kmap_coherent(page, addr);
687 		else
688 			vaddr = kmap_atomic(page);
689 		addr = (unsigned long)vaddr;
690 	}
691 
692 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
693 		vaddr ? r4k_blast_dcache_page(addr) :
694 			r4k_blast_dcache_user_page(addr);
695 		if (exec && !cpu_icache_snoops_remote_store)
696 			r4k_blast_scache_page(addr);
697 	}
698 	if (exec) {
699 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
700 			int cpu = smp_processor_id();
701 
702 			if (cpu_context(cpu, mm) != 0)
703 				drop_mmu_context(mm, cpu);
704 		} else
705 			vaddr ? r4k_blast_icache_page(addr) :
706 				r4k_blast_icache_user_page(addr);
707 	}
708 
709 	if (vaddr) {
710 		if (map_coherent)
711 			kunmap_coherent();
712 		else
713 			kunmap_atomic(vaddr);
714 	}
715 }
716 
717 static void r4k_flush_cache_page(struct vm_area_struct *vma,
718 	unsigned long addr, unsigned long pfn)
719 {
720 	struct flush_cache_page_args args;
721 
722 	args.vma = vma;
723 	args.addr = addr;
724 	args.pfn = pfn;
725 
726 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
727 }
728 
729 static inline void local_r4k_flush_data_cache_page(void * addr)
730 {
731 	r4k_blast_dcache_page((unsigned long) addr);
732 }
733 
734 static void r4k_flush_data_cache_page(unsigned long addr)
735 {
736 	if (in_atomic())
737 		local_r4k_flush_data_cache_page((void *)addr);
738 	else
739 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
740 				(void *) addr);
741 }
742 
743 struct flush_icache_range_args {
744 	unsigned long start;
745 	unsigned long end;
746 	unsigned int type;
747 	bool user;
748 };
749 
750 static inline void __local_r4k_flush_icache_range(unsigned long start,
751 						  unsigned long end,
752 						  unsigned int type,
753 						  bool user)
754 {
755 	if (!cpu_has_ic_fills_f_dc) {
756 		if (type == R4K_INDEX ||
757 		    (type & R4K_INDEX && end - start >= dcache_size)) {
758 			r4k_blast_dcache();
759 		} else {
760 			R4600_HIT_CACHEOP_WAR_IMPL;
761 			if (user)
762 				protected_blast_dcache_range(start, end);
763 			else
764 				blast_dcache_range(start, end);
765 		}
766 	}
767 
768 	if (type == R4K_INDEX ||
769 	    (type & R4K_INDEX && end - start > icache_size))
770 		r4k_blast_icache();
771 	else {
772 		switch (boot_cpu_type()) {
773 		case CPU_LOONGSON2:
774 			protected_loongson2_blast_icache_range(start, end);
775 			break;
776 
777 		default:
778 			if (user)
779 				protected_blast_icache_range(start, end);
780 			else
781 				blast_icache_range(start, end);
782 			break;
783 		}
784 	}
785 }
786 
787 static inline void local_r4k_flush_icache_range(unsigned long start,
788 						unsigned long end)
789 {
790 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
791 }
792 
793 static inline void local_r4k_flush_icache_user_range(unsigned long start,
794 						     unsigned long end)
795 {
796 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
797 }
798 
799 static inline void local_r4k_flush_icache_range_ipi(void *args)
800 {
801 	struct flush_icache_range_args *fir_args = args;
802 	unsigned long start = fir_args->start;
803 	unsigned long end = fir_args->end;
804 	unsigned int type = fir_args->type;
805 	bool user = fir_args->user;
806 
807 	__local_r4k_flush_icache_range(start, end, type, user);
808 }
809 
810 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
811 				     bool user)
812 {
813 	struct flush_icache_range_args args;
814 	unsigned long size, cache_size;
815 
816 	args.start = start;
817 	args.end = end;
818 	args.type = R4K_HIT | R4K_INDEX;
819 	args.user = user;
820 
821 	/*
822 	 * Indexed cache ops require an SMP call.
823 	 * Consider if that can or should be avoided.
824 	 */
825 	preempt_disable();
826 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
827 		/*
828 		 * If address-based cache ops don't require an SMP call, then
829 		 * use them exclusively for small flushes.
830 		 */
831 		size = end - start;
832 		cache_size = icache_size;
833 		if (!cpu_has_ic_fills_f_dc) {
834 			size *= 2;
835 			cache_size += dcache_size;
836 		}
837 		if (size <= cache_size)
838 			args.type &= ~R4K_INDEX;
839 	}
840 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
841 	preempt_enable();
842 	instruction_hazard();
843 }
844 
845 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
846 {
847 	return __r4k_flush_icache_range(start, end, false);
848 }
849 
850 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
851 {
852 	return __r4k_flush_icache_range(start, end, true);
853 }
854 
855 #ifdef CONFIG_DMA_NONCOHERENT
856 
857 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
858 {
859 	/* Catch bad driver code */
860 	if (WARN_ON(size == 0))
861 		return;
862 
863 	preempt_disable();
864 	if (cpu_has_inclusive_pcaches) {
865 		if (size >= scache_size) {
866 			if (current_cpu_type() != CPU_LOONGSON3)
867 				r4k_blast_scache();
868 			else
869 				r4k_blast_scache_node(pa_to_nid(addr));
870 		} else {
871 			blast_scache_range(addr, addr + size);
872 		}
873 		preempt_enable();
874 		__sync();
875 		return;
876 	}
877 
878 	/*
879 	 * Either no secondary cache or the available caches don't have the
880 	 * subset property so we have to flush the primary caches
881 	 * explicitly.
882 	 * If we would need IPI to perform an INDEX-type operation, then
883 	 * we have to use the HIT-type alternative as IPI cannot be used
884 	 * here due to interrupts possibly being disabled.
885 	 */
886 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
887 		r4k_blast_dcache();
888 	} else {
889 		R4600_HIT_CACHEOP_WAR_IMPL;
890 		blast_dcache_range(addr, addr + size);
891 	}
892 	preempt_enable();
893 
894 	bc_wback_inv(addr, size);
895 	__sync();
896 }
897 
898 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
899 {
900 	/* Catch bad driver code */
901 	if (WARN_ON(size == 0))
902 		return;
903 
904 	preempt_disable();
905 	if (cpu_has_inclusive_pcaches) {
906 		if (size >= scache_size) {
907 			if (current_cpu_type() != CPU_LOONGSON3)
908 				r4k_blast_scache();
909 			else
910 				r4k_blast_scache_node(pa_to_nid(addr));
911 		} else {
912 			/*
913 			 * There is no clearly documented alignment requirement
914 			 * for the cache instruction on MIPS processors and
915 			 * some processors, among them the RM5200 and RM7000
916 			 * QED processors will throw an address error for cache
917 			 * hit ops with insufficient alignment.	 Solved by
918 			 * aligning the address to cache line size.
919 			 */
920 			blast_inv_scache_range(addr, addr + size);
921 		}
922 		preempt_enable();
923 		__sync();
924 		return;
925 	}
926 
927 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
928 		r4k_blast_dcache();
929 	} else {
930 		R4600_HIT_CACHEOP_WAR_IMPL;
931 		blast_inv_dcache_range(addr, addr + size);
932 	}
933 	preempt_enable();
934 
935 	bc_inv(addr, size);
936 	__sync();
937 }
938 #endif /* CONFIG_DMA_NONCOHERENT */
939 
940 struct flush_cache_sigtramp_args {
941 	struct mm_struct *mm;
942 	struct page *page;
943 	unsigned long addr;
944 };
945 
946 /*
947  * While we're protected against bad userland addresses we don't care
948  * very much about what happens in that case.  Usually a segmentation
949  * fault will dump the process later on anyway ...
950  */
951 static void local_r4k_flush_cache_sigtramp(void *args)
952 {
953 	struct flush_cache_sigtramp_args *fcs_args = args;
954 	unsigned long addr = fcs_args->addr;
955 	struct page *page = fcs_args->page;
956 	struct mm_struct *mm = fcs_args->mm;
957 	int map_coherent = 0;
958 	void *vaddr;
959 
960 	unsigned long ic_lsize = cpu_icache_line_size();
961 	unsigned long dc_lsize = cpu_dcache_line_size();
962 	unsigned long sc_lsize = cpu_scache_line_size();
963 
964 	/*
965 	 * If owns no valid ASID yet, cannot possibly have gotten
966 	 * this page into the cache.
967 	 */
968 	if (!has_valid_asid(mm, R4K_HIT))
969 		return;
970 
971 	if (mm == current->active_mm) {
972 		vaddr = NULL;
973 	} else {
974 		/*
975 		 * Use kmap_coherent or kmap_atomic to do flushes for
976 		 * another ASID than the current one.
977 		 */
978 		map_coherent = (cpu_has_dc_aliases &&
979 				page_mapcount(page) &&
980 				!Page_dcache_dirty(page));
981 		if (map_coherent)
982 			vaddr = kmap_coherent(page, addr);
983 		else
984 			vaddr = kmap_atomic(page);
985 		addr = (unsigned long)vaddr + (addr & ~PAGE_MASK);
986 	}
987 
988 	R4600_HIT_CACHEOP_WAR_IMPL;
989 	if (!cpu_has_ic_fills_f_dc) {
990 		if (dc_lsize)
991 			vaddr ? flush_dcache_line(addr & ~(dc_lsize - 1))
992 			      : protected_writeback_dcache_line(
993 							addr & ~(dc_lsize - 1));
994 		if (!cpu_icache_snoops_remote_store && scache_size)
995 			vaddr ? flush_scache_line(addr & ~(sc_lsize - 1))
996 			      : protected_writeback_scache_line(
997 							addr & ~(sc_lsize - 1));
998 	}
999 	if (ic_lsize)
1000 		vaddr ? flush_icache_line(addr & ~(ic_lsize - 1))
1001 		      : protected_flush_icache_line(addr & ~(ic_lsize - 1));
1002 
1003 	if (vaddr) {
1004 		if (map_coherent)
1005 			kunmap_coherent();
1006 		else
1007 			kunmap_atomic(vaddr);
1008 	}
1009 
1010 	if (MIPS4K_ICACHE_REFILL_WAR) {
1011 		__asm__ __volatile__ (
1012 			".set push\n\t"
1013 			".set noat\n\t"
1014 			".set "MIPS_ISA_LEVEL"\n\t"
1015 #ifdef CONFIG_32BIT
1016 			"la	$at,1f\n\t"
1017 #endif
1018 #ifdef CONFIG_64BIT
1019 			"dla	$at,1f\n\t"
1020 #endif
1021 			"cache	%0,($at)\n\t"
1022 			"nop; nop; nop\n"
1023 			"1:\n\t"
1024 			".set pop"
1025 			:
1026 			: "i" (Hit_Invalidate_I));
1027 	}
1028 	if (MIPS_CACHE_SYNC_WAR)
1029 		__asm__ __volatile__ ("sync");
1030 }
1031 
1032 static void r4k_flush_cache_sigtramp(unsigned long addr)
1033 {
1034 	struct flush_cache_sigtramp_args args;
1035 	int npages;
1036 
1037 	down_read(&current->mm->mmap_sem);
1038 
1039 	npages = get_user_pages_fast(addr, 1, 0, &args.page);
1040 	if (npages < 1)
1041 		goto out;
1042 
1043 	args.mm = current->mm;
1044 	args.addr = addr;
1045 
1046 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_sigtramp, &args);
1047 
1048 	put_page(args.page);
1049 out:
1050 	up_read(&current->mm->mmap_sem);
1051 }
1052 
1053 static void r4k_flush_icache_all(void)
1054 {
1055 	if (cpu_has_vtag_icache)
1056 		r4k_blast_icache();
1057 }
1058 
1059 struct flush_kernel_vmap_range_args {
1060 	unsigned long	vaddr;
1061 	int		size;
1062 };
1063 
1064 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
1065 {
1066 	/*
1067 	 * Aliases only affect the primary caches so don't bother with
1068 	 * S-caches or T-caches.
1069 	 */
1070 	r4k_blast_dcache();
1071 }
1072 
1073 static inline void local_r4k_flush_kernel_vmap_range(void *args)
1074 {
1075 	struct flush_kernel_vmap_range_args *vmra = args;
1076 	unsigned long vaddr = vmra->vaddr;
1077 	int size = vmra->size;
1078 
1079 	/*
1080 	 * Aliases only affect the primary caches so don't bother with
1081 	 * S-caches or T-caches.
1082 	 */
1083 	R4600_HIT_CACHEOP_WAR_IMPL;
1084 	blast_dcache_range(vaddr, vaddr + size);
1085 }
1086 
1087 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1088 {
1089 	struct flush_kernel_vmap_range_args args;
1090 
1091 	args.vaddr = (unsigned long) vaddr;
1092 	args.size = size;
1093 
1094 	if (size >= dcache_size)
1095 		r4k_on_each_cpu(R4K_INDEX,
1096 				local_r4k_flush_kernel_vmap_range_index, NULL);
1097 	else
1098 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1099 				&args);
1100 }
1101 
1102 static inline void rm7k_erratum31(void)
1103 {
1104 	const unsigned long ic_lsize = 32;
1105 	unsigned long addr;
1106 
1107 	/* RM7000 erratum #31. The icache is screwed at startup. */
1108 	write_c0_taglo(0);
1109 	write_c0_taghi(0);
1110 
1111 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1112 		__asm__ __volatile__ (
1113 			".set push\n\t"
1114 			".set noreorder\n\t"
1115 			".set mips3\n\t"
1116 			"cache\t%1, 0(%0)\n\t"
1117 			"cache\t%1, 0x1000(%0)\n\t"
1118 			"cache\t%1, 0x2000(%0)\n\t"
1119 			"cache\t%1, 0x3000(%0)\n\t"
1120 			"cache\t%2, 0(%0)\n\t"
1121 			"cache\t%2, 0x1000(%0)\n\t"
1122 			"cache\t%2, 0x2000(%0)\n\t"
1123 			"cache\t%2, 0x3000(%0)\n\t"
1124 			"cache\t%1, 0(%0)\n\t"
1125 			"cache\t%1, 0x1000(%0)\n\t"
1126 			"cache\t%1, 0x2000(%0)\n\t"
1127 			"cache\t%1, 0x3000(%0)\n\t"
1128 			".set pop\n"
1129 			:
1130 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
1131 	}
1132 }
1133 
1134 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1135 {
1136 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1137 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1138 	int present = 0;
1139 
1140 	/*
1141 	 * Early versions of the 74K do not update the cache tags on a
1142 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1143 	 * aliases.  In this case it is better to treat the cache as always
1144 	 * having aliases.  Also disable the synonym tag update feature
1145 	 * where available.  In this case no opportunistic tag update will
1146 	 * happen where a load causes a virtual address miss but a physical
1147 	 * address hit during a D-cache look-up.
1148 	 */
1149 	switch (imp) {
1150 	case PRID_IMP_74K:
1151 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1152 			present = 1;
1153 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1154 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1155 		break;
1156 	case PRID_IMP_1074K:
1157 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1158 			present = 1;
1159 			write_c0_config6(read_c0_config6() | MIPS_CONF6_SYND);
1160 		}
1161 		break;
1162 	default:
1163 		BUG();
1164 	}
1165 
1166 	return present;
1167 }
1168 
1169 static void b5k_instruction_hazard(void)
1170 {
1171 	__sync();
1172 	__sync();
1173 	__asm__ __volatile__(
1174 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1175 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1176 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1177 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1178 	: : : "memory");
1179 }
1180 
1181 static char *way_string[] = { NULL, "direct mapped", "2-way",
1182 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1183 	"9-way", "10-way", "11-way", "12-way",
1184 	"13-way", "14-way", "15-way", "16-way",
1185 };
1186 
1187 static void probe_pcache(void)
1188 {
1189 	struct cpuinfo_mips *c = &current_cpu_data;
1190 	unsigned int config = read_c0_config();
1191 	unsigned int prid = read_c0_prid();
1192 	int has_74k_erratum = 0;
1193 	unsigned long config1;
1194 	unsigned int lsize;
1195 
1196 	switch (current_cpu_type()) {
1197 	case CPU_R4600:			/* QED style two way caches? */
1198 	case CPU_R4700:
1199 	case CPU_R5000:
1200 	case CPU_NEVADA:
1201 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1202 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1203 		c->icache.ways = 2;
1204 		c->icache.waybit = __ffs(icache_size/2);
1205 
1206 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1207 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1208 		c->dcache.ways = 2;
1209 		c->dcache.waybit= __ffs(dcache_size/2);
1210 
1211 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1212 		break;
1213 
1214 	case CPU_R5432:
1215 	case CPU_R5500:
1216 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1217 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1218 		c->icache.ways = 2;
1219 		c->icache.waybit= 0;
1220 
1221 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1222 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1223 		c->dcache.ways = 2;
1224 		c->dcache.waybit = 0;
1225 
1226 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1227 		break;
1228 
1229 	case CPU_TX49XX:
1230 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1231 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1232 		c->icache.ways = 4;
1233 		c->icache.waybit= 0;
1234 
1235 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1236 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1237 		c->dcache.ways = 4;
1238 		c->dcache.waybit = 0;
1239 
1240 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1241 		c->options |= MIPS_CPU_PREFETCH;
1242 		break;
1243 
1244 	case CPU_R4000PC:
1245 	case CPU_R4000SC:
1246 	case CPU_R4000MC:
1247 	case CPU_R4400PC:
1248 	case CPU_R4400SC:
1249 	case CPU_R4400MC:
1250 	case CPU_R4300:
1251 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1252 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1253 		c->icache.ways = 1;
1254 		c->icache.waybit = 0;	/* doesn't matter */
1255 
1256 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1257 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1258 		c->dcache.ways = 1;
1259 		c->dcache.waybit = 0;	/* does not matter */
1260 
1261 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1262 		break;
1263 
1264 	case CPU_R10000:
1265 	case CPU_R12000:
1266 	case CPU_R14000:
1267 	case CPU_R16000:
1268 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1269 		c->icache.linesz = 64;
1270 		c->icache.ways = 2;
1271 		c->icache.waybit = 0;
1272 
1273 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1274 		c->dcache.linesz = 32;
1275 		c->dcache.ways = 2;
1276 		c->dcache.waybit = 0;
1277 
1278 		c->options |= MIPS_CPU_PREFETCH;
1279 		break;
1280 
1281 	case CPU_VR4133:
1282 		write_c0_config(config & ~VR41_CONF_P4K);
1283 		/* fall through */
1284 	case CPU_VR4131:
1285 		/* Workaround for cache instruction bug of VR4131 */
1286 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1287 		    c->processor_id == 0x0c82U) {
1288 			config |= 0x00400000U;
1289 			if (c->processor_id == 0x0c80U)
1290 				config |= VR41_CONF_BP;
1291 			write_c0_config(config);
1292 		} else
1293 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1294 
1295 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1296 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1297 		c->icache.ways = 2;
1298 		c->icache.waybit = __ffs(icache_size/2);
1299 
1300 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1301 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1302 		c->dcache.ways = 2;
1303 		c->dcache.waybit = __ffs(dcache_size/2);
1304 		break;
1305 
1306 	case CPU_VR41XX:
1307 	case CPU_VR4111:
1308 	case CPU_VR4121:
1309 	case CPU_VR4122:
1310 	case CPU_VR4181:
1311 	case CPU_VR4181A:
1312 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1313 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1314 		c->icache.ways = 1;
1315 		c->icache.waybit = 0;	/* doesn't matter */
1316 
1317 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1318 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1319 		c->dcache.ways = 1;
1320 		c->dcache.waybit = 0;	/* does not matter */
1321 
1322 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1323 		break;
1324 
1325 	case CPU_RM7000:
1326 		rm7k_erratum31();
1327 
1328 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1329 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1330 		c->icache.ways = 4;
1331 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1332 
1333 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1334 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1335 		c->dcache.ways = 4;
1336 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1337 
1338 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1339 		c->options |= MIPS_CPU_PREFETCH;
1340 		break;
1341 
1342 	case CPU_LOONGSON2:
1343 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1344 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1345 		if (prid & 0x3)
1346 			c->icache.ways = 4;
1347 		else
1348 			c->icache.ways = 2;
1349 		c->icache.waybit = 0;
1350 
1351 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1352 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1353 		if (prid & 0x3)
1354 			c->dcache.ways = 4;
1355 		else
1356 			c->dcache.ways = 2;
1357 		c->dcache.waybit = 0;
1358 		break;
1359 
1360 	case CPU_LOONGSON3:
1361 		config1 = read_c0_config1();
1362 		lsize = (config1 >> 19) & 7;
1363 		if (lsize)
1364 			c->icache.linesz = 2 << lsize;
1365 		else
1366 			c->icache.linesz = 0;
1367 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1368 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1369 		icache_size = c->icache.sets *
1370 					  c->icache.ways *
1371 					  c->icache.linesz;
1372 		c->icache.waybit = 0;
1373 
1374 		lsize = (config1 >> 10) & 7;
1375 		if (lsize)
1376 			c->dcache.linesz = 2 << lsize;
1377 		else
1378 			c->dcache.linesz = 0;
1379 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1380 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1381 		dcache_size = c->dcache.sets *
1382 					  c->dcache.ways *
1383 					  c->dcache.linesz;
1384 		c->dcache.waybit = 0;
1385 		if ((prid & PRID_REV_MASK) >= PRID_REV_LOONGSON3A_R2_0)
1386 			c->options |= MIPS_CPU_PREFETCH;
1387 		break;
1388 
1389 	case CPU_CAVIUM_OCTEON3:
1390 		/* For now lie about the number of ways. */
1391 		c->icache.linesz = 128;
1392 		c->icache.sets = 16;
1393 		c->icache.ways = 8;
1394 		c->icache.flags |= MIPS_CACHE_VTAG;
1395 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1396 
1397 		c->dcache.linesz = 128;
1398 		c->dcache.ways = 8;
1399 		c->dcache.sets = 8;
1400 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1401 		c->options |= MIPS_CPU_PREFETCH;
1402 		break;
1403 
1404 	default:
1405 		if (!(config & MIPS_CONF_M))
1406 			panic("Don't know how to probe P-caches on this cpu.");
1407 
1408 		/*
1409 		 * So we seem to be a MIPS32 or MIPS64 CPU
1410 		 * So let's probe the I-cache ...
1411 		 */
1412 		config1 = read_c0_config1();
1413 
1414 		lsize = (config1 >> 19) & 7;
1415 
1416 		/* IL == 7 is reserved */
1417 		if (lsize == 7)
1418 			panic("Invalid icache line size");
1419 
1420 		c->icache.linesz = lsize ? 2 << lsize : 0;
1421 
1422 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1423 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1424 
1425 		icache_size = c->icache.sets *
1426 			      c->icache.ways *
1427 			      c->icache.linesz;
1428 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1429 
1430 		if (config & MIPS_CONF_VI)
1431 			c->icache.flags |= MIPS_CACHE_VTAG;
1432 
1433 		/*
1434 		 * Now probe the MIPS32 / MIPS64 data cache.
1435 		 */
1436 		c->dcache.flags = 0;
1437 
1438 		lsize = (config1 >> 10) & 7;
1439 
1440 		/* DL == 7 is reserved */
1441 		if (lsize == 7)
1442 			panic("Invalid dcache line size");
1443 
1444 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1445 
1446 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1447 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1448 
1449 		dcache_size = c->dcache.sets *
1450 			      c->dcache.ways *
1451 			      c->dcache.linesz;
1452 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1453 
1454 		c->options |= MIPS_CPU_PREFETCH;
1455 		break;
1456 	}
1457 
1458 	/*
1459 	 * Processor configuration sanity check for the R4000SC erratum
1460 	 * #5.	With page sizes larger than 32kB there is no possibility
1461 	 * to get a VCE exception anymore so we don't care about this
1462 	 * misconfiguration.  The case is rather theoretical anyway;
1463 	 * presumably no vendor is shipping his hardware in the "bad"
1464 	 * configuration.
1465 	 */
1466 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1467 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1468 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1469 	    PAGE_SIZE <= 0x8000)
1470 		panic("Improper R4000SC processor configuration detected");
1471 
1472 	/* compute a couple of other cache variables */
1473 	c->icache.waysize = icache_size / c->icache.ways;
1474 	c->dcache.waysize = dcache_size / c->dcache.ways;
1475 
1476 	c->icache.sets = c->icache.linesz ?
1477 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1478 	c->dcache.sets = c->dcache.linesz ?
1479 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1480 
1481 	/*
1482 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1483 	 * virtually indexed so normally would suffer from aliases.  So
1484 	 * normally they'd suffer from aliases but magic in the hardware deals
1485 	 * with that for us so we don't need to take care ourselves.
1486 	 */
1487 	switch (current_cpu_type()) {
1488 	case CPU_20KC:
1489 	case CPU_25KF:
1490 	case CPU_I6400:
1491 	case CPU_I6500:
1492 	case CPU_SB1:
1493 	case CPU_SB1A:
1494 	case CPU_XLR:
1495 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1496 		break;
1497 
1498 	case CPU_R10000:
1499 	case CPU_R12000:
1500 	case CPU_R14000:
1501 	case CPU_R16000:
1502 		break;
1503 
1504 	case CPU_74K:
1505 	case CPU_1074K:
1506 		has_74k_erratum = alias_74k_erratum(c);
1507 		/* Fall through. */
1508 	case CPU_M14KC:
1509 	case CPU_M14KEC:
1510 	case CPU_24K:
1511 	case CPU_34K:
1512 	case CPU_1004K:
1513 	case CPU_INTERAPTIV:
1514 	case CPU_P5600:
1515 	case CPU_PROAPTIV:
1516 	case CPU_M5150:
1517 	case CPU_QEMU_GENERIC:
1518 	case CPU_P6600:
1519 	case CPU_M6250:
1520 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1521 		    (c->icache.waysize > PAGE_SIZE))
1522 			c->icache.flags |= MIPS_CACHE_ALIASES;
1523 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1524 			/*
1525 			 * Effectively physically indexed dcache,
1526 			 * thus no virtual aliases.
1527 			*/
1528 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1529 			break;
1530 		}
1531 		/* fall through */
1532 	default:
1533 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1534 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1535 	}
1536 
1537 	/* Physically indexed caches don't suffer from virtual aliasing */
1538 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1539 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1540 
1541 	/*
1542 	 * In systems with CM the icache fills from L2 or closer caches, and
1543 	 * thus sees remote stores without needing to write them back any
1544 	 * further than that.
1545 	 */
1546 	if (mips_cm_present())
1547 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1548 
1549 	switch (current_cpu_type()) {
1550 	case CPU_20KC:
1551 		/*
1552 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1553 		 * the config register.
1554 		 */
1555 		c->icache.flags |= MIPS_CACHE_VTAG;
1556 		break;
1557 
1558 	case CPU_ALCHEMY:
1559 	case CPU_I6400:
1560 	case CPU_I6500:
1561 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1562 		break;
1563 
1564 	case CPU_BMIPS5000:
1565 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1566 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1567 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1568 		break;
1569 
1570 	case CPU_LOONGSON2:
1571 		/*
1572 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1573 		 * one op will act on all 4 ways
1574 		 */
1575 		c->icache.ways = 1;
1576 	}
1577 
1578 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1579 	       icache_size >> 10,
1580 	       c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1581 	       way_string[c->icache.ways], c->icache.linesz);
1582 
1583 	printk("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1584 	       dcache_size >> 10, way_string[c->dcache.ways],
1585 	       (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1586 	       (c->dcache.flags & MIPS_CACHE_ALIASES) ?
1587 			"cache aliases" : "no aliases",
1588 	       c->dcache.linesz);
1589 }
1590 
1591 static void probe_vcache(void)
1592 {
1593 	struct cpuinfo_mips *c = &current_cpu_data;
1594 	unsigned int config2, lsize;
1595 
1596 	if (current_cpu_type() != CPU_LOONGSON3)
1597 		return;
1598 
1599 	config2 = read_c0_config2();
1600 	if ((lsize = ((config2 >> 20) & 15)))
1601 		c->vcache.linesz = 2 << lsize;
1602 	else
1603 		c->vcache.linesz = lsize;
1604 
1605 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1606 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1607 
1608 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1609 
1610 	c->vcache.waybit = 0;
1611 	c->vcache.waysize = vcache_size / c->vcache.ways;
1612 
1613 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1614 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1615 }
1616 
1617 /*
1618  * If you even _breathe_ on this function, look at the gcc output and make sure
1619  * it does not pop things on and off the stack for the cache sizing loop that
1620  * executes in KSEG1 space or else you will crash and burn badly.  You have
1621  * been warned.
1622  */
1623 static int probe_scache(void)
1624 {
1625 	unsigned long flags, addr, begin, end, pow2;
1626 	unsigned int config = read_c0_config();
1627 	struct cpuinfo_mips *c = &current_cpu_data;
1628 
1629 	if (config & CONF_SC)
1630 		return 0;
1631 
1632 	begin = (unsigned long) &_stext;
1633 	begin &= ~((4 * 1024 * 1024) - 1);
1634 	end = begin + (4 * 1024 * 1024);
1635 
1636 	/*
1637 	 * This is such a bitch, you'd think they would make it easy to do
1638 	 * this.  Away you daemons of stupidity!
1639 	 */
1640 	local_irq_save(flags);
1641 
1642 	/* Fill each size-multiple cache line with a valid tag. */
1643 	pow2 = (64 * 1024);
1644 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1645 		unsigned long *p = (unsigned long *) addr;
1646 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1647 		pow2 <<= 1;
1648 	}
1649 
1650 	/* Load first line with zero (therefore invalid) tag. */
1651 	write_c0_taglo(0);
1652 	write_c0_taghi(0);
1653 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1654 	cache_op(Index_Store_Tag_I, begin);
1655 	cache_op(Index_Store_Tag_D, begin);
1656 	cache_op(Index_Store_Tag_SD, begin);
1657 
1658 	/* Now search for the wrap around point. */
1659 	pow2 = (128 * 1024);
1660 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1661 		cache_op(Index_Load_Tag_SD, addr);
1662 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1663 		if (!read_c0_taglo())
1664 			break;
1665 		pow2 <<= 1;
1666 	}
1667 	local_irq_restore(flags);
1668 	addr -= begin;
1669 
1670 	scache_size = addr;
1671 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1672 	c->scache.ways = 1;
1673 	c->scache.waybit = 0;		/* does not matter */
1674 
1675 	return 1;
1676 }
1677 
1678 static void __init loongson2_sc_init(void)
1679 {
1680 	struct cpuinfo_mips *c = &current_cpu_data;
1681 
1682 	scache_size = 512*1024;
1683 	c->scache.linesz = 32;
1684 	c->scache.ways = 4;
1685 	c->scache.waybit = 0;
1686 	c->scache.waysize = scache_size / (c->scache.ways);
1687 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1688 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1689 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1690 
1691 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1692 }
1693 
1694 static void __init loongson3_sc_init(void)
1695 {
1696 	struct cpuinfo_mips *c = &current_cpu_data;
1697 	unsigned int config2, lsize;
1698 
1699 	config2 = read_c0_config2();
1700 	lsize = (config2 >> 4) & 15;
1701 	if (lsize)
1702 		c->scache.linesz = 2 << lsize;
1703 	else
1704 		c->scache.linesz = 0;
1705 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1706 	c->scache.ways = 1 + (config2 & 15);
1707 
1708 	scache_size = c->scache.sets *
1709 				  c->scache.ways *
1710 				  c->scache.linesz;
1711 	/* Loongson-3 has 4 cores, 1MB scache for each. scaches are shared */
1712 	scache_size *= 4;
1713 	c->scache.waybit = 0;
1714 	c->scache.waysize = scache_size / c->scache.ways;
1715 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1716 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1717 	if (scache_size)
1718 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1719 	return;
1720 }
1721 
1722 extern int r5k_sc_init(void);
1723 extern int rm7k_sc_init(void);
1724 extern int mips_sc_init(void);
1725 
1726 static void setup_scache(void)
1727 {
1728 	struct cpuinfo_mips *c = &current_cpu_data;
1729 	unsigned int config = read_c0_config();
1730 	int sc_present = 0;
1731 
1732 	/*
1733 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1734 	 * processors don't have a S-cache that would be relevant to the
1735 	 * Linux memory management.
1736 	 */
1737 	switch (current_cpu_type()) {
1738 	case CPU_R4000SC:
1739 	case CPU_R4000MC:
1740 	case CPU_R4400SC:
1741 	case CPU_R4400MC:
1742 		sc_present = run_uncached(probe_scache);
1743 		if (sc_present)
1744 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1745 		break;
1746 
1747 	case CPU_R10000:
1748 	case CPU_R12000:
1749 	case CPU_R14000:
1750 	case CPU_R16000:
1751 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1752 		c->scache.linesz = 64 << ((config >> 13) & 1);
1753 		c->scache.ways = 2;
1754 		c->scache.waybit= 0;
1755 		sc_present = 1;
1756 		break;
1757 
1758 	case CPU_R5000:
1759 	case CPU_NEVADA:
1760 #ifdef CONFIG_R5000_CPU_SCACHE
1761 		r5k_sc_init();
1762 #endif
1763 		return;
1764 
1765 	case CPU_RM7000:
1766 #ifdef CONFIG_RM7000_CPU_SCACHE
1767 		rm7k_sc_init();
1768 #endif
1769 		return;
1770 
1771 	case CPU_LOONGSON2:
1772 		loongson2_sc_init();
1773 		return;
1774 
1775 	case CPU_LOONGSON3:
1776 		loongson3_sc_init();
1777 		return;
1778 
1779 	case CPU_CAVIUM_OCTEON3:
1780 	case CPU_XLP:
1781 		/* don't need to worry about L2, fully coherent */
1782 		return;
1783 
1784 	default:
1785 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
1786 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
1787 				    MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)) {
1788 #ifdef CONFIG_MIPS_CPU_SCACHE
1789 			if (mips_sc_init ()) {
1790 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1791 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1792 				       scache_size >> 10,
1793 				       way_string[c->scache.ways], c->scache.linesz);
1794 			}
1795 #else
1796 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1797 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1798 #endif
1799 			return;
1800 		}
1801 		sc_present = 0;
1802 	}
1803 
1804 	if (!sc_present)
1805 		return;
1806 
1807 	/* compute a couple of other cache variables */
1808 	c->scache.waysize = scache_size / c->scache.ways;
1809 
1810 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1811 
1812 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1813 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1814 
1815 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1816 }
1817 
1818 void au1x00_fixup_config_od(void)
1819 {
1820 	/*
1821 	 * c0_config.od (bit 19) was write only (and read as 0)
1822 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1823 	 * transaction overlapping and needs to be set to fix various errata.
1824 	 */
1825 	switch (read_c0_prid()) {
1826 	case 0x00030100: /* Au1000 DA */
1827 	case 0x00030201: /* Au1000 HA */
1828 	case 0x00030202: /* Au1000 HB */
1829 	case 0x01030200: /* Au1500 AB */
1830 	/*
1831 	 * Au1100 errata actually keeps silence about this bit, so we set it
1832 	 * just in case for those revisions that require it to be set according
1833 	 * to the (now gone) cpu table.
1834 	 */
1835 	case 0x02030200: /* Au1100 AB */
1836 	case 0x02030201: /* Au1100 BA */
1837 	case 0x02030202: /* Au1100 BC */
1838 		set_c0_config(1 << 19);
1839 		break;
1840 	}
1841 }
1842 
1843 /* CP0 hazard avoidance. */
1844 #define NXP_BARRIER()							\
1845 	 __asm__ __volatile__(						\
1846 	".set noreorder\n\t"						\
1847 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1848 	".set reorder\n\t")
1849 
1850 static void nxp_pr4450_fixup_config(void)
1851 {
1852 	unsigned long config0;
1853 
1854 	config0 = read_c0_config();
1855 
1856 	/* clear all three cache coherency fields */
1857 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1858 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1859 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1860 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1861 	write_c0_config(config0);
1862 	NXP_BARRIER();
1863 }
1864 
1865 static int cca = -1;
1866 
1867 static int __init cca_setup(char *str)
1868 {
1869 	get_option(&str, &cca);
1870 
1871 	return 0;
1872 }
1873 
1874 early_param("cca", cca_setup);
1875 
1876 static void coherency_setup(void)
1877 {
1878 	if (cca < 0 || cca > 7)
1879 		cca = read_c0_config() & CONF_CM_CMASK;
1880 	_page_cachable_default = cca << _CACHE_SHIFT;
1881 
1882 	pr_debug("Using cache attribute %d\n", cca);
1883 	change_c0_config(CONF_CM_CMASK, cca);
1884 
1885 	/*
1886 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1887 	 * the coherency mode specified by the TLB; 1 means cachable
1888 	 * coherent update on write will be used.  Not all processors have
1889 	 * this bit and; some wire it to zero, others like Toshiba had the
1890 	 * silly idea of putting something else there ...
1891 	 */
1892 	switch (current_cpu_type()) {
1893 	case CPU_R4000PC:
1894 	case CPU_R4000SC:
1895 	case CPU_R4000MC:
1896 	case CPU_R4400PC:
1897 	case CPU_R4400SC:
1898 	case CPU_R4400MC:
1899 		clear_c0_config(CONF_CU);
1900 		break;
1901 	/*
1902 	 * We need to catch the early Alchemy SOCs with
1903 	 * the write-only co_config.od bit and set it back to one on:
1904 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1905 	 */
1906 	case CPU_ALCHEMY:
1907 		au1x00_fixup_config_od();
1908 		break;
1909 
1910 	case PRID_IMP_PR4450:
1911 		nxp_pr4450_fixup_config();
1912 		break;
1913 	}
1914 }
1915 
1916 static void r4k_cache_error_setup(void)
1917 {
1918 	extern char __weak except_vec2_generic;
1919 	extern char __weak except_vec2_sb1;
1920 
1921 	switch (current_cpu_type()) {
1922 	case CPU_SB1:
1923 	case CPU_SB1A:
1924 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1925 		break;
1926 
1927 	default:
1928 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1929 		break;
1930 	}
1931 }
1932 
1933 void r4k_cache_init(void)
1934 {
1935 	extern void build_clear_page(void);
1936 	extern void build_copy_page(void);
1937 	struct cpuinfo_mips *c = &current_cpu_data;
1938 
1939 	probe_pcache();
1940 	probe_vcache();
1941 	setup_scache();
1942 
1943 	r4k_blast_dcache_page_setup();
1944 	r4k_blast_dcache_page_indexed_setup();
1945 	r4k_blast_dcache_setup();
1946 	r4k_blast_icache_page_setup();
1947 	r4k_blast_icache_page_indexed_setup();
1948 	r4k_blast_icache_setup();
1949 	r4k_blast_scache_page_setup();
1950 	r4k_blast_scache_page_indexed_setup();
1951 	r4k_blast_scache_setup();
1952 	r4k_blast_scache_node_setup();
1953 #ifdef CONFIG_EVA
1954 	r4k_blast_dcache_user_page_setup();
1955 	r4k_blast_icache_user_page_setup();
1956 #endif
1957 
1958 	/*
1959 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1960 	 * This code supports virtually indexed processors and will be
1961 	 * unnecessarily inefficient on physically indexed processors.
1962 	 */
1963 	if (c->dcache.linesz && cpu_has_dc_aliases)
1964 		shm_align_mask = max_t( unsigned long,
1965 					c->dcache.sets * c->dcache.linesz - 1,
1966 					PAGE_SIZE - 1);
1967 	else
1968 		shm_align_mask = PAGE_SIZE-1;
1969 
1970 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1971 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1972 
1973 	flush_cache_all		= cache_noop;
1974 	__flush_cache_all	= r4k___flush_cache_all;
1975 	flush_cache_mm		= r4k_flush_cache_mm;
1976 	flush_cache_page	= r4k_flush_cache_page;
1977 	flush_cache_range	= r4k_flush_cache_range;
1978 
1979 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1980 
1981 	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1982 	flush_icache_all	= r4k_flush_icache_all;
1983 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1984 	flush_data_cache_page	= r4k_flush_data_cache_page;
1985 	flush_icache_range	= r4k_flush_icache_range;
1986 	local_flush_icache_range	= local_r4k_flush_icache_range;
1987 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1988 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1989 
1990 #ifdef CONFIG_DMA_NONCOHERENT
1991 #ifdef CONFIG_DMA_MAYBE_COHERENT
1992 	if (coherentio == IO_COHERENCE_ENABLED ||
1993 	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1994 		_dma_cache_wback_inv	= (void *)cache_noop;
1995 		_dma_cache_wback	= (void *)cache_noop;
1996 		_dma_cache_inv		= (void *)cache_noop;
1997 	} else
1998 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1999 	{
2000 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
2001 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
2002 		_dma_cache_inv		= r4k_dma_cache_inv;
2003 	}
2004 #endif /* CONFIG_DMA_NONCOHERENT */
2005 
2006 	build_clear_page();
2007 	build_copy_page();
2008 
2009 	/*
2010 	 * We want to run CMP kernels on core with and without coherent
2011 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
2012 	 * or not to flush caches.
2013 	 */
2014 	local_r4k___flush_cache_all(NULL);
2015 
2016 	coherency_setup();
2017 	board_cache_error_setup = r4k_cache_error_setup;
2018 
2019 	/*
2020 	 * Per-CPU overrides
2021 	 */
2022 	switch (current_cpu_type()) {
2023 	case CPU_BMIPS4350:
2024 	case CPU_BMIPS4380:
2025 		/* No IPI is needed because all CPUs share the same D$ */
2026 		flush_data_cache_page = r4k_blast_dcache_page;
2027 		break;
2028 	case CPU_BMIPS5000:
2029 		/* We lose our superpowers if L2 is disabled */
2030 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
2031 			break;
2032 
2033 		/* I$ fills from D$ just by emptying the write buffers */
2034 		flush_cache_page = (void *)b5k_instruction_hazard;
2035 		flush_cache_range = (void *)b5k_instruction_hazard;
2036 		flush_cache_sigtramp = (void *)b5k_instruction_hazard;
2037 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
2038 		flush_data_cache_page = (void *)b5k_instruction_hazard;
2039 		flush_icache_range = (void *)b5k_instruction_hazard;
2040 		local_flush_icache_range = (void *)b5k_instruction_hazard;
2041 
2042 
2043 		/* Optimization: an L2 flush implicitly flushes the L1 */
2044 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
2045 		break;
2046 	case CPU_LOONGSON3:
2047 		/* Loongson-3 maintains cache coherency by hardware */
2048 		__flush_cache_all	= cache_noop;
2049 		__flush_cache_vmap	= cache_noop;
2050 		__flush_cache_vunmap	= cache_noop;
2051 		__flush_kernel_vmap_range = (void *)cache_noop;
2052 		flush_cache_mm		= (void *)cache_noop;
2053 		flush_cache_page	= (void *)cache_noop;
2054 		flush_cache_range	= (void *)cache_noop;
2055 		flush_cache_sigtramp	= (void *)cache_noop;
2056 		flush_icache_all	= (void *)cache_noop;
2057 		flush_data_cache_page	= (void *)cache_noop;
2058 		local_flush_data_cache_page	= (void *)cache_noop;
2059 		break;
2060 	}
2061 }
2062 
2063 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
2064 			       void *v)
2065 {
2066 	switch (cmd) {
2067 	case CPU_PM_ENTER_FAILED:
2068 	case CPU_PM_EXIT:
2069 		coherency_setup();
2070 		break;
2071 	}
2072 
2073 	return NOTIFY_OK;
2074 }
2075 
2076 static struct notifier_block r4k_cache_pm_notifier_block = {
2077 	.notifier_call = r4k_cache_pm_notifier,
2078 };
2079 
2080 int __init r4k_cache_init_pm(void)
2081 {
2082 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2083 }
2084 arch_initcall(r4k_cache_init_pm);
2085