1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 */ 10 #include <linux/cpu_pm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/highmem.h> 14 #include <linux/kernel.h> 15 #include <linux/linkage.h> 16 #include <linux/preempt.h> 17 #include <linux/sched.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/export.h> 21 #include <linux/bitops.h> 22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 23 24 #include <asm/bcache.h> 25 #include <asm/bootinfo.h> 26 #include <asm/cache.h> 27 #include <asm/cacheops.h> 28 #include <asm/cpu.h> 29 #include <asm/cpu-features.h> 30 #include <asm/cpu-type.h> 31 #include <asm/io.h> 32 #include <asm/page.h> 33 #include <asm/r4kcache.h> 34 #include <asm/sections.h> 35 #include <asm/mmu_context.h> 36 #include <asm/cacheflush.h> /* for run_uncached() */ 37 #include <asm/traps.h> 38 #include <asm/mips-cps.h> 39 40 /* 41 * Bits describing what cache ops an SMP callback function may perform. 42 * 43 * R4K_HIT - Virtual user or kernel address based cache operations. The 44 * active_mm must be checked before using user addresses, falling 45 * back to kmap. 46 * R4K_INDEX - Index based cache operations. 47 */ 48 49 #define R4K_HIT BIT(0) 50 #define R4K_INDEX BIT(1) 51 52 /** 53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. 54 * @type: Type of cache operations (R4K_HIT or R4K_INDEX). 55 * 56 * Decides whether a cache op needs to be performed on every core in the system. 57 * This may change depending on the @type of cache operation, as well as the set 58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU 59 * hotplug from changing the result. 60 * 61 * Returns: 1 if the cache operation @type should be done on every core in 62 * the system. 63 * 0 if the cache operation @type is globalized and only needs to 64 * be performed on a simple CPU. 65 */ 66 static inline bool r4k_op_needs_ipi(unsigned int type) 67 { 68 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ 69 if (type == R4K_HIT && mips_cm_present()) 70 return false; 71 72 /* 73 * Hardware doesn't globalize the required cache ops, so SMP calls may 74 * be needed, but only if there are foreign CPUs (non-siblings with 75 * separate caches). 76 */ 77 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ 78 #ifdef CONFIG_SMP 79 return !cpumask_empty(&cpu_foreign_map[0]); 80 #else 81 return false; 82 #endif 83 } 84 85 /* 86 * Special Variant of smp_call_function for use by cache functions: 87 * 88 * o No return value 89 * o collapses to normal function call on UP kernels 90 * o collapses to normal function call on systems with a single shared 91 * primary cache. 92 * o doesn't disable interrupts on the local CPU 93 */ 94 static inline void r4k_on_each_cpu(unsigned int type, 95 void (*func)(void *info), void *info) 96 { 97 preempt_disable(); 98 if (r4k_op_needs_ipi(type)) 99 smp_call_function_many(&cpu_foreign_map[smp_processor_id()], 100 func, info, 1); 101 func(info); 102 preempt_enable(); 103 } 104 105 /* 106 * Must die. 107 */ 108 static unsigned long icache_size __read_mostly; 109 static unsigned long dcache_size __read_mostly; 110 static unsigned long vcache_size __read_mostly; 111 static unsigned long scache_size __read_mostly; 112 113 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) 114 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) 115 116 #define R4600_HIT_CACHEOP_WAR_IMPL \ 117 do { \ 118 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \ 119 cpu_is_r4600_v2_x()) \ 120 *(volatile unsigned long *)CKSEG1; \ 121 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \ 122 __asm__ __volatile__("nop;nop;nop;nop"); \ 123 } while (0) 124 125 static void (*r4k_blast_dcache_page)(unsigned long addr); 126 127 static inline void r4k_blast_dcache_page_dc32(unsigned long addr) 128 { 129 R4600_HIT_CACHEOP_WAR_IMPL; 130 blast_dcache32_page(addr); 131 } 132 133 static inline void r4k_blast_dcache_page_dc64(unsigned long addr) 134 { 135 blast_dcache64_page(addr); 136 } 137 138 static inline void r4k_blast_dcache_page_dc128(unsigned long addr) 139 { 140 blast_dcache128_page(addr); 141 } 142 143 static void r4k_blast_dcache_page_setup(void) 144 { 145 unsigned long dc_lsize = cpu_dcache_line_size(); 146 147 switch (dc_lsize) { 148 case 0: 149 r4k_blast_dcache_page = (void *)cache_noop; 150 break; 151 case 16: 152 r4k_blast_dcache_page = blast_dcache16_page; 153 break; 154 case 32: 155 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; 156 break; 157 case 64: 158 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; 159 break; 160 case 128: 161 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; 162 break; 163 default: 164 break; 165 } 166 } 167 168 #ifndef CONFIG_EVA 169 #define r4k_blast_dcache_user_page r4k_blast_dcache_page 170 #else 171 172 static void (*r4k_blast_dcache_user_page)(unsigned long addr); 173 174 static void r4k_blast_dcache_user_page_setup(void) 175 { 176 unsigned long dc_lsize = cpu_dcache_line_size(); 177 178 if (dc_lsize == 0) 179 r4k_blast_dcache_user_page = (void *)cache_noop; 180 else if (dc_lsize == 16) 181 r4k_blast_dcache_user_page = blast_dcache16_user_page; 182 else if (dc_lsize == 32) 183 r4k_blast_dcache_user_page = blast_dcache32_user_page; 184 else if (dc_lsize == 64) 185 r4k_blast_dcache_user_page = blast_dcache64_user_page; 186 } 187 188 #endif 189 190 void (* r4k_blast_dcache)(void); 191 EXPORT_SYMBOL(r4k_blast_dcache); 192 193 static void r4k_blast_dcache_setup(void) 194 { 195 unsigned long dc_lsize = cpu_dcache_line_size(); 196 197 if (dc_lsize == 0) 198 r4k_blast_dcache = (void *)cache_noop; 199 else if (dc_lsize == 16) 200 r4k_blast_dcache = blast_dcache16; 201 else if (dc_lsize == 32) 202 r4k_blast_dcache = blast_dcache32; 203 else if (dc_lsize == 64) 204 r4k_blast_dcache = blast_dcache64; 205 else if (dc_lsize == 128) 206 r4k_blast_dcache = blast_dcache128; 207 } 208 209 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */ 210 #define JUMP_TO_ALIGN(order) \ 211 __asm__ __volatile__( \ 212 "b\t1f\n\t" \ 213 ".align\t" #order "\n\t" \ 214 "1:\n\t" \ 215 ) 216 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ 217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) 218 219 static inline void blast_r4600_v1_icache32(void) 220 { 221 unsigned long flags; 222 223 local_irq_save(flags); 224 blast_icache32(); 225 local_irq_restore(flags); 226 } 227 228 static inline void tx49_blast_icache32(void) 229 { 230 unsigned long start = INDEX_BASE; 231 unsigned long end = start + current_cpu_data.icache.waysize; 232 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 233 unsigned long ws_end = current_cpu_data.icache.ways << 234 current_cpu_data.icache.waybit; 235 unsigned long ws, addr; 236 237 CACHE32_UNROLL32_ALIGN2; 238 /* I'm in even chunk. blast odd chunks */ 239 for (ws = 0; ws < ws_end; ws += ws_inc) 240 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 241 cache_unroll(32, kernel_cache, Index_Invalidate_I, 242 addr | ws, 32); 243 CACHE32_UNROLL32_ALIGN; 244 /* I'm in odd chunk. blast even chunks */ 245 for (ws = 0; ws < ws_end; ws += ws_inc) 246 for (addr = start; addr < end; addr += 0x400 * 2) 247 cache_unroll(32, kernel_cache, Index_Invalidate_I, 248 addr | ws, 32); 249 } 250 251 static void (* r4k_blast_icache_page)(unsigned long addr); 252 253 static void r4k_blast_icache_page_setup(void) 254 { 255 unsigned long ic_lsize = cpu_icache_line_size(); 256 257 if (ic_lsize == 0) 258 r4k_blast_icache_page = (void *)cache_noop; 259 else if (ic_lsize == 16) 260 r4k_blast_icache_page = blast_icache16_page; 261 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) 262 r4k_blast_icache_page = loongson2_blast_icache32_page; 263 else if (ic_lsize == 32) 264 r4k_blast_icache_page = blast_icache32_page; 265 else if (ic_lsize == 64) 266 r4k_blast_icache_page = blast_icache64_page; 267 else if (ic_lsize == 128) 268 r4k_blast_icache_page = blast_icache128_page; 269 } 270 271 #ifndef CONFIG_EVA 272 #define r4k_blast_icache_user_page r4k_blast_icache_page 273 #else 274 275 static void (*r4k_blast_icache_user_page)(unsigned long addr); 276 277 static void r4k_blast_icache_user_page_setup(void) 278 { 279 unsigned long ic_lsize = cpu_icache_line_size(); 280 281 if (ic_lsize == 0) 282 r4k_blast_icache_user_page = (void *)cache_noop; 283 else if (ic_lsize == 16) 284 r4k_blast_icache_user_page = blast_icache16_user_page; 285 else if (ic_lsize == 32) 286 r4k_blast_icache_user_page = blast_icache32_user_page; 287 else if (ic_lsize == 64) 288 r4k_blast_icache_user_page = blast_icache64_user_page; 289 } 290 291 #endif 292 293 void (* r4k_blast_icache)(void); 294 EXPORT_SYMBOL(r4k_blast_icache); 295 296 static void r4k_blast_icache_setup(void) 297 { 298 unsigned long ic_lsize = cpu_icache_line_size(); 299 300 if (ic_lsize == 0) 301 r4k_blast_icache = (void *)cache_noop; 302 else if (ic_lsize == 16) 303 r4k_blast_icache = blast_icache16; 304 else if (ic_lsize == 32) { 305 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) && 306 cpu_is_r4600_v1_x()) 307 r4k_blast_icache = blast_r4600_v1_icache32; 308 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV)) 309 r4k_blast_icache = tx49_blast_icache32; 310 else if (current_cpu_type() == CPU_LOONGSON2EF) 311 r4k_blast_icache = loongson2_blast_icache32; 312 else 313 r4k_blast_icache = blast_icache32; 314 } else if (ic_lsize == 64) 315 r4k_blast_icache = blast_icache64; 316 else if (ic_lsize == 128) 317 r4k_blast_icache = blast_icache128; 318 } 319 320 static void (* r4k_blast_scache_page)(unsigned long addr); 321 322 static void r4k_blast_scache_page_setup(void) 323 { 324 unsigned long sc_lsize = cpu_scache_line_size(); 325 326 if (scache_size == 0) 327 r4k_blast_scache_page = (void *)cache_noop; 328 else if (sc_lsize == 16) 329 r4k_blast_scache_page = blast_scache16_page; 330 else if (sc_lsize == 32) 331 r4k_blast_scache_page = blast_scache32_page; 332 else if (sc_lsize == 64) 333 r4k_blast_scache_page = blast_scache64_page; 334 else if (sc_lsize == 128) 335 r4k_blast_scache_page = blast_scache128_page; 336 } 337 338 static void (* r4k_blast_scache)(void); 339 340 static void r4k_blast_scache_setup(void) 341 { 342 unsigned long sc_lsize = cpu_scache_line_size(); 343 344 if (scache_size == 0) 345 r4k_blast_scache = (void *)cache_noop; 346 else if (sc_lsize == 16) 347 r4k_blast_scache = blast_scache16; 348 else if (sc_lsize == 32) 349 r4k_blast_scache = blast_scache32; 350 else if (sc_lsize == 64) 351 r4k_blast_scache = blast_scache64; 352 else if (sc_lsize == 128) 353 r4k_blast_scache = blast_scache128; 354 } 355 356 static void (*r4k_blast_scache_node)(long node); 357 358 static void r4k_blast_scache_node_setup(void) 359 { 360 unsigned long sc_lsize = cpu_scache_line_size(); 361 362 if (current_cpu_type() != CPU_LOONGSON64) 363 r4k_blast_scache_node = (void *)cache_noop; 364 else if (sc_lsize == 16) 365 r4k_blast_scache_node = blast_scache16_node; 366 else if (sc_lsize == 32) 367 r4k_blast_scache_node = blast_scache32_node; 368 else if (sc_lsize == 64) 369 r4k_blast_scache_node = blast_scache64_node; 370 else if (sc_lsize == 128) 371 r4k_blast_scache_node = blast_scache128_node; 372 } 373 374 static inline void local_r4k___flush_cache_all(void * args) 375 { 376 switch (current_cpu_type()) { 377 case CPU_LOONGSON2EF: 378 case CPU_R4000SC: 379 case CPU_R4000MC: 380 case CPU_R4400SC: 381 case CPU_R4400MC: 382 case CPU_R10000: 383 case CPU_R12000: 384 case CPU_R14000: 385 case CPU_R16000: 386 /* 387 * These caches are inclusive caches, that is, if something 388 * is not cached in the S-cache, we know it also won't be 389 * in one of the primary caches. 390 */ 391 r4k_blast_scache(); 392 break; 393 394 case CPU_LOONGSON64: 395 /* Use get_ebase_cpunum() for both NUMA=y/n */ 396 r4k_blast_scache_node(get_ebase_cpunum() >> 2); 397 break; 398 399 case CPU_BMIPS5000: 400 r4k_blast_scache(); 401 __sync(); 402 break; 403 404 default: 405 r4k_blast_dcache(); 406 r4k_blast_icache(); 407 break; 408 } 409 } 410 411 static void r4k___flush_cache_all(void) 412 { 413 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); 414 } 415 416 /** 417 * has_valid_asid() - Determine if an mm already has an ASID. 418 * @mm: Memory map. 419 * @type: R4K_HIT or R4K_INDEX, type of cache op. 420 * 421 * Determines whether @mm already has an ASID on any of the CPUs which cache ops 422 * of type @type within an r4k_on_each_cpu() call will affect. If 423 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the 424 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs 425 * will need to be checked. 426 * 427 * Must be called in non-preemptive context. 428 * 429 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. 430 * 0 otherwise. 431 */ 432 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) 433 { 434 unsigned int i; 435 const cpumask_t *mask = cpu_present_mask; 436 437 if (cpu_has_mmid) 438 return cpu_context(0, mm) != 0; 439 440 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ 441 #ifdef CONFIG_SMP 442 /* 443 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in 444 * each foreign core, so we only need to worry about siblings. 445 * Otherwise we need to worry about all present CPUs. 446 */ 447 if (r4k_op_needs_ipi(type)) 448 mask = &cpu_sibling_map[smp_processor_id()]; 449 #endif 450 for_each_cpu(i, mask) 451 if (cpu_context(i, mm)) 452 return 1; 453 return 0; 454 } 455 456 static void r4k__flush_cache_vmap(void) 457 { 458 r4k_blast_dcache(); 459 } 460 461 static void r4k__flush_cache_vunmap(void) 462 { 463 r4k_blast_dcache(); 464 } 465 466 /* 467 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes 468 * whole caches when vma is executable. 469 */ 470 static inline void local_r4k_flush_cache_range(void * args) 471 { 472 struct vm_area_struct *vma = args; 473 int exec = vma->vm_flags & VM_EXEC; 474 475 if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) 476 return; 477 478 /* 479 * If dcache can alias, we must blast it since mapping is changing. 480 * If executable, we must ensure any dirty lines are written back far 481 * enough to be visible to icache. 482 */ 483 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) 484 r4k_blast_dcache(); 485 /* If executable, blast stale lines from icache */ 486 if (exec) 487 r4k_blast_icache(); 488 } 489 490 static void r4k_flush_cache_range(struct vm_area_struct *vma, 491 unsigned long start, unsigned long end) 492 { 493 int exec = vma->vm_flags & VM_EXEC; 494 495 if (cpu_has_dc_aliases || exec) 496 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); 497 } 498 499 static inline void local_r4k_flush_cache_mm(void * args) 500 { 501 struct mm_struct *mm = args; 502 503 if (!has_valid_asid(mm, R4K_INDEX)) 504 return; 505 506 /* 507 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we 508 * only flush the primary caches but R1x000 behave sane ... 509 * R4000SC and R4400SC indexed S-cache ops also invalidate primary 510 * caches, so we can bail out early. 511 */ 512 if (current_cpu_type() == CPU_R4000SC || 513 current_cpu_type() == CPU_R4000MC || 514 current_cpu_type() == CPU_R4400SC || 515 current_cpu_type() == CPU_R4400MC) { 516 r4k_blast_scache(); 517 return; 518 } 519 520 r4k_blast_dcache(); 521 } 522 523 static void r4k_flush_cache_mm(struct mm_struct *mm) 524 { 525 if (!cpu_has_dc_aliases) 526 return; 527 528 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); 529 } 530 531 struct flush_cache_page_args { 532 struct vm_area_struct *vma; 533 unsigned long addr; 534 unsigned long pfn; 535 }; 536 537 static inline void local_r4k_flush_cache_page(void *args) 538 { 539 struct flush_cache_page_args *fcp_args = args; 540 struct vm_area_struct *vma = fcp_args->vma; 541 unsigned long addr = fcp_args->addr; 542 struct page *page = pfn_to_page(fcp_args->pfn); 543 int exec = vma->vm_flags & VM_EXEC; 544 struct mm_struct *mm = vma->vm_mm; 545 int map_coherent = 0; 546 pmd_t *pmdp; 547 pte_t *ptep; 548 void *vaddr; 549 550 /* 551 * If owns no valid ASID yet, cannot possibly have gotten 552 * this page into the cache. 553 */ 554 if (!has_valid_asid(mm, R4K_HIT)) 555 return; 556 557 addr &= PAGE_MASK; 558 pmdp = pmd_off(mm, addr); 559 ptep = pte_offset_kernel(pmdp, addr); 560 561 /* 562 * If the page isn't marked valid, the page cannot possibly be 563 * in the cache. 564 */ 565 if (!(pte_present(*ptep))) 566 return; 567 568 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) 569 vaddr = NULL; 570 else { 571 struct folio *folio = page_folio(page); 572 /* 573 * Use kmap_coherent or kmap_atomic to do flushes for 574 * another ASID than the current one. 575 */ 576 map_coherent = (cpu_has_dc_aliases && 577 folio_mapped(folio) && 578 !folio_test_dcache_dirty(folio)); 579 if (map_coherent) 580 vaddr = kmap_coherent(page, addr); 581 else 582 vaddr = kmap_atomic(page); 583 addr = (unsigned long)vaddr; 584 } 585 586 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { 587 vaddr ? r4k_blast_dcache_page(addr) : 588 r4k_blast_dcache_user_page(addr); 589 if (exec && !cpu_icache_snoops_remote_store) 590 r4k_blast_scache_page(addr); 591 } 592 if (exec) { 593 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { 594 drop_mmu_context(mm); 595 } else 596 vaddr ? r4k_blast_icache_page(addr) : 597 r4k_blast_icache_user_page(addr); 598 } 599 600 if (vaddr) { 601 if (map_coherent) 602 kunmap_coherent(); 603 else 604 kunmap_atomic(vaddr); 605 } 606 } 607 608 static void r4k_flush_cache_page(struct vm_area_struct *vma, 609 unsigned long addr, unsigned long pfn) 610 { 611 struct flush_cache_page_args args; 612 613 args.vma = vma; 614 args.addr = addr; 615 args.pfn = pfn; 616 617 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); 618 } 619 620 static inline void local_r4k_flush_data_cache_page(void * addr) 621 { 622 r4k_blast_dcache_page((unsigned long) addr); 623 } 624 625 static void r4k_flush_data_cache_page(unsigned long addr) 626 { 627 if (in_atomic()) 628 local_r4k_flush_data_cache_page((void *)addr); 629 else 630 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, 631 (void *) addr); 632 } 633 634 struct flush_icache_range_args { 635 unsigned long start; 636 unsigned long end; 637 unsigned int type; 638 bool user; 639 }; 640 641 static inline void __local_r4k_flush_icache_range(unsigned long start, 642 unsigned long end, 643 unsigned int type, 644 bool user) 645 { 646 if (!cpu_has_ic_fills_f_dc) { 647 if (type == R4K_INDEX || 648 (type & R4K_INDEX && end - start >= dcache_size)) { 649 r4k_blast_dcache(); 650 } else { 651 R4600_HIT_CACHEOP_WAR_IMPL; 652 if (user) 653 protected_blast_dcache_range(start, end); 654 else 655 blast_dcache_range(start, end); 656 } 657 } 658 659 if (type == R4K_INDEX || 660 (type & R4K_INDEX && end - start > icache_size)) 661 r4k_blast_icache(); 662 else { 663 switch (boot_cpu_type()) { 664 case CPU_LOONGSON2EF: 665 protected_loongson2_blast_icache_range(start, end); 666 break; 667 668 default: 669 if (user) 670 protected_blast_icache_range(start, end); 671 else 672 blast_icache_range(start, end); 673 break; 674 } 675 } 676 } 677 678 static inline void local_r4k_flush_icache_range(unsigned long start, 679 unsigned long end) 680 { 681 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); 682 } 683 684 static inline void local_r4k_flush_icache_user_range(unsigned long start, 685 unsigned long end) 686 { 687 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); 688 } 689 690 static inline void local_r4k_flush_icache_range_ipi(void *args) 691 { 692 struct flush_icache_range_args *fir_args = args; 693 unsigned long start = fir_args->start; 694 unsigned long end = fir_args->end; 695 unsigned int type = fir_args->type; 696 bool user = fir_args->user; 697 698 __local_r4k_flush_icache_range(start, end, type, user); 699 } 700 701 static void __r4k_flush_icache_range(unsigned long start, unsigned long end, 702 bool user) 703 { 704 struct flush_icache_range_args args; 705 unsigned long size, cache_size; 706 707 args.start = start; 708 args.end = end; 709 args.type = R4K_HIT | R4K_INDEX; 710 args.user = user; 711 712 /* 713 * Indexed cache ops require an SMP call. 714 * Consider if that can or should be avoided. 715 */ 716 preempt_disable(); 717 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { 718 /* 719 * If address-based cache ops don't require an SMP call, then 720 * use them exclusively for small flushes. 721 */ 722 size = end - start; 723 cache_size = icache_size; 724 if (!cpu_has_ic_fills_f_dc) { 725 size *= 2; 726 cache_size += dcache_size; 727 } 728 if (size <= cache_size) 729 args.type &= ~R4K_INDEX; 730 } 731 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); 732 preempt_enable(); 733 instruction_hazard(); 734 } 735 736 static void r4k_flush_icache_range(unsigned long start, unsigned long end) 737 { 738 return __r4k_flush_icache_range(start, end, false); 739 } 740 741 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) 742 { 743 return __r4k_flush_icache_range(start, end, true); 744 } 745 746 #ifdef CONFIG_DMA_NONCOHERENT 747 748 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) 749 { 750 /* Catch bad driver code */ 751 if (WARN_ON(size == 0)) 752 return; 753 754 preempt_disable(); 755 if (cpu_has_inclusive_pcaches) { 756 if (size >= scache_size) { 757 if (current_cpu_type() != CPU_LOONGSON64) 758 r4k_blast_scache(); 759 else 760 r4k_blast_scache_node(pa_to_nid(addr)); 761 } else { 762 blast_scache_range(addr, addr + size); 763 } 764 preempt_enable(); 765 __sync(); 766 return; 767 } 768 769 /* 770 * Either no secondary cache or the available caches don't have the 771 * subset property so we have to flush the primary caches 772 * explicitly. 773 * If we would need IPI to perform an INDEX-type operation, then 774 * we have to use the HIT-type alternative as IPI cannot be used 775 * here due to interrupts possibly being disabled. 776 */ 777 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 778 r4k_blast_dcache(); 779 } else { 780 R4600_HIT_CACHEOP_WAR_IMPL; 781 blast_dcache_range(addr, addr + size); 782 } 783 preempt_enable(); 784 785 bc_wback_inv(addr, size); 786 __sync(); 787 } 788 789 static void prefetch_cache_inv(unsigned long addr, unsigned long size) 790 { 791 unsigned int linesz = cpu_scache_line_size(); 792 unsigned long addr0 = addr, addr1; 793 794 addr0 &= ~(linesz - 1); 795 addr1 = (addr0 + size - 1) & ~(linesz - 1); 796 797 protected_writeback_scache_line(addr0); 798 if (likely(addr1 != addr0)) 799 protected_writeback_scache_line(addr1); 800 else 801 return; 802 803 addr0 += linesz; 804 if (likely(addr1 != addr0)) 805 protected_writeback_scache_line(addr0); 806 else 807 return; 808 809 addr1 -= linesz; 810 if (likely(addr1 > addr0)) 811 protected_writeback_scache_line(addr0); 812 } 813 814 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) 815 { 816 /* Catch bad driver code */ 817 if (WARN_ON(size == 0)) 818 return; 819 820 preempt_disable(); 821 822 if (current_cpu_type() == CPU_BMIPS5000) 823 prefetch_cache_inv(addr, size); 824 825 if (cpu_has_inclusive_pcaches) { 826 if (size >= scache_size) { 827 if (current_cpu_type() != CPU_LOONGSON64) 828 r4k_blast_scache(); 829 else 830 r4k_blast_scache_node(pa_to_nid(addr)); 831 } else { 832 /* 833 * There is no clearly documented alignment requirement 834 * for the cache instruction on MIPS processors and 835 * some processors, among them the RM5200 and RM7000 836 * QED processors will throw an address error for cache 837 * hit ops with insufficient alignment. Solved by 838 * aligning the address to cache line size. 839 */ 840 blast_inv_scache_range(addr, addr + size); 841 } 842 preempt_enable(); 843 __sync(); 844 return; 845 } 846 847 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 848 r4k_blast_dcache(); 849 } else { 850 R4600_HIT_CACHEOP_WAR_IMPL; 851 blast_inv_dcache_range(addr, addr + size); 852 } 853 preempt_enable(); 854 855 bc_inv(addr, size); 856 __sync(); 857 } 858 #endif /* CONFIG_DMA_NONCOHERENT */ 859 860 static void r4k_flush_icache_all(void) 861 { 862 if (cpu_has_vtag_icache) 863 r4k_blast_icache(); 864 } 865 866 struct flush_kernel_vmap_range_args { 867 unsigned long vaddr; 868 int size; 869 }; 870 871 static inline void local_r4k_flush_kernel_vmap_range_index(void *args) 872 { 873 /* 874 * Aliases only affect the primary caches so don't bother with 875 * S-caches or T-caches. 876 */ 877 r4k_blast_dcache(); 878 } 879 880 static inline void local_r4k_flush_kernel_vmap_range(void *args) 881 { 882 struct flush_kernel_vmap_range_args *vmra = args; 883 unsigned long vaddr = vmra->vaddr; 884 int size = vmra->size; 885 886 /* 887 * Aliases only affect the primary caches so don't bother with 888 * S-caches or T-caches. 889 */ 890 R4600_HIT_CACHEOP_WAR_IMPL; 891 blast_dcache_range(vaddr, vaddr + size); 892 } 893 894 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) 895 { 896 struct flush_kernel_vmap_range_args args; 897 898 args.vaddr = (unsigned long) vaddr; 899 args.size = size; 900 901 if (size >= dcache_size) 902 r4k_on_each_cpu(R4K_INDEX, 903 local_r4k_flush_kernel_vmap_range_index, NULL); 904 else 905 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, 906 &args); 907 } 908 909 static inline void rm7k_erratum31(void) 910 { 911 const unsigned long ic_lsize = 32; 912 unsigned long addr; 913 914 /* RM7000 erratum #31. The icache is screwed at startup. */ 915 write_c0_taglo(0); 916 write_c0_taghi(0); 917 918 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { 919 __asm__ __volatile__ ( 920 ".set push\n\t" 921 ".set noreorder\n\t" 922 ".set mips3\n\t" 923 "cache\t%1, 0(%0)\n\t" 924 "cache\t%1, 0x1000(%0)\n\t" 925 "cache\t%1, 0x2000(%0)\n\t" 926 "cache\t%1, 0x3000(%0)\n\t" 927 "cache\t%2, 0(%0)\n\t" 928 "cache\t%2, 0x1000(%0)\n\t" 929 "cache\t%2, 0x2000(%0)\n\t" 930 "cache\t%2, 0x3000(%0)\n\t" 931 "cache\t%1, 0(%0)\n\t" 932 "cache\t%1, 0x1000(%0)\n\t" 933 "cache\t%1, 0x2000(%0)\n\t" 934 "cache\t%1, 0x3000(%0)\n\t" 935 ".set pop\n" 936 : 937 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); 938 } 939 } 940 941 static inline int alias_74k_erratum(struct cpuinfo_mips *c) 942 { 943 unsigned int imp = c->processor_id & PRID_IMP_MASK; 944 unsigned int rev = c->processor_id & PRID_REV_MASK; 945 int present = 0; 946 947 /* 948 * Early versions of the 74K do not update the cache tags on a 949 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG 950 * aliases. In this case it is better to treat the cache as always 951 * having aliases. Also disable the synonym tag update feature 952 * where available. In this case no opportunistic tag update will 953 * happen where a load causes a virtual address miss but a physical 954 * address hit during a D-cache look-up. 955 */ 956 switch (imp) { 957 case PRID_IMP_74K: 958 if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) 959 present = 1; 960 if (rev == PRID_REV_ENCODE_332(2, 4, 0)) 961 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 962 break; 963 case PRID_IMP_1074K: 964 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { 965 present = 1; 966 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 967 } 968 break; 969 default: 970 BUG(); 971 } 972 973 return present; 974 } 975 976 static void b5k_instruction_hazard(void) 977 { 978 __sync(); 979 __sync(); 980 __asm__ __volatile__( 981 " nop; nop; nop; nop; nop; nop; nop; nop\n" 982 " nop; nop; nop; nop; nop; nop; nop; nop\n" 983 " nop; nop; nop; nop; nop; nop; nop; nop\n" 984 " nop; nop; nop; nop; nop; nop; nop; nop\n" 985 : : : "memory"); 986 } 987 988 static char *way_string[] = { NULL, "direct mapped", "2-way", 989 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", 990 "9-way", "10-way", "11-way", "12-way", 991 "13-way", "14-way", "15-way", "16-way", 992 }; 993 994 static void probe_pcache(void) 995 { 996 struct cpuinfo_mips *c = ¤t_cpu_data; 997 unsigned int config = read_c0_config(); 998 unsigned int prid = read_c0_prid(); 999 int has_74k_erratum = 0; 1000 unsigned long config1; 1001 unsigned int lsize; 1002 1003 switch (current_cpu_type()) { 1004 case CPU_R4600: /* QED style two way caches? */ 1005 case CPU_R4700: 1006 case CPU_R5000: 1007 case CPU_NEVADA: 1008 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1009 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1010 c->icache.ways = 2; 1011 c->icache.waybit = __ffs(icache_size/2); 1012 1013 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1014 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1015 c->dcache.ways = 2; 1016 c->dcache.waybit= __ffs(dcache_size/2); 1017 1018 c->options |= MIPS_CPU_CACHE_CDEX_P; 1019 break; 1020 1021 case CPU_R5500: 1022 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1023 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1024 c->icache.ways = 2; 1025 c->icache.waybit= 0; 1026 1027 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1028 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1029 c->dcache.ways = 2; 1030 c->dcache.waybit = 0; 1031 1032 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; 1033 break; 1034 1035 case CPU_TX49XX: 1036 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1037 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1038 c->icache.ways = 4; 1039 c->icache.waybit= 0; 1040 1041 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1042 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1043 c->dcache.ways = 4; 1044 c->dcache.waybit = 0; 1045 1046 c->options |= MIPS_CPU_CACHE_CDEX_P; 1047 c->options |= MIPS_CPU_PREFETCH; 1048 break; 1049 1050 case CPU_R4000PC: 1051 case CPU_R4000SC: 1052 case CPU_R4000MC: 1053 case CPU_R4400PC: 1054 case CPU_R4400SC: 1055 case CPU_R4400MC: 1056 case CPU_R4300: 1057 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1058 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1059 c->icache.ways = 1; 1060 c->icache.waybit = 0; /* doesn't matter */ 1061 1062 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1063 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1064 c->dcache.ways = 1; 1065 c->dcache.waybit = 0; /* does not matter */ 1066 1067 c->options |= MIPS_CPU_CACHE_CDEX_P; 1068 break; 1069 1070 case CPU_R10000: 1071 case CPU_R12000: 1072 case CPU_R14000: 1073 case CPU_R16000: 1074 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); 1075 c->icache.linesz = 64; 1076 c->icache.ways = 2; 1077 c->icache.waybit = 0; 1078 1079 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); 1080 c->dcache.linesz = 32; 1081 c->dcache.ways = 2; 1082 c->dcache.waybit = 0; 1083 1084 c->options |= MIPS_CPU_PREFETCH; 1085 break; 1086 1087 case CPU_RM7000: 1088 rm7k_erratum31(); 1089 1090 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1091 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1092 c->icache.ways = 4; 1093 c->icache.waybit = __ffs(icache_size / c->icache.ways); 1094 1095 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1096 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1097 c->dcache.ways = 4; 1098 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); 1099 1100 c->options |= MIPS_CPU_CACHE_CDEX_P; 1101 c->options |= MIPS_CPU_PREFETCH; 1102 break; 1103 1104 case CPU_LOONGSON2EF: 1105 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1106 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1107 if (prid & 0x3) 1108 c->icache.ways = 4; 1109 else 1110 c->icache.ways = 2; 1111 c->icache.waybit = 0; 1112 1113 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1114 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1115 if (prid & 0x3) 1116 c->dcache.ways = 4; 1117 else 1118 c->dcache.ways = 2; 1119 c->dcache.waybit = 0; 1120 break; 1121 1122 case CPU_LOONGSON64: 1123 config1 = read_c0_config1(); 1124 lsize = (config1 >> 19) & 7; 1125 if (lsize) 1126 c->icache.linesz = 2 << lsize; 1127 else 1128 c->icache.linesz = 0; 1129 c->icache.sets = 64 << ((config1 >> 22) & 7); 1130 c->icache.ways = 1 + ((config1 >> 16) & 7); 1131 icache_size = c->icache.sets * 1132 c->icache.ways * 1133 c->icache.linesz; 1134 c->icache.waybit = 0; 1135 1136 lsize = (config1 >> 10) & 7; 1137 if (lsize) 1138 c->dcache.linesz = 2 << lsize; 1139 else 1140 c->dcache.linesz = 0; 1141 c->dcache.sets = 64 << ((config1 >> 13) & 7); 1142 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1143 dcache_size = c->dcache.sets * 1144 c->dcache.ways * 1145 c->dcache.linesz; 1146 c->dcache.waybit = 0; 1147 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= 1148 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || 1149 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1150 c->options |= MIPS_CPU_PREFETCH; 1151 break; 1152 1153 case CPU_CAVIUM_OCTEON3: 1154 /* For now lie about the number of ways. */ 1155 c->icache.linesz = 128; 1156 c->icache.sets = 16; 1157 c->icache.ways = 8; 1158 c->icache.flags |= MIPS_CACHE_VTAG; 1159 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; 1160 1161 c->dcache.linesz = 128; 1162 c->dcache.ways = 8; 1163 c->dcache.sets = 8; 1164 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; 1165 c->options |= MIPS_CPU_PREFETCH; 1166 break; 1167 1168 default: 1169 if (!(config & MIPS_CONF_M)) 1170 panic("Don't know how to probe P-caches on this cpu."); 1171 1172 /* 1173 * So we seem to be a MIPS32 or MIPS64 CPU 1174 * So let's probe the I-cache ... 1175 */ 1176 config1 = read_c0_config1(); 1177 1178 lsize = (config1 >> 19) & 7; 1179 1180 /* IL == 7 is reserved */ 1181 if (lsize == 7) 1182 panic("Invalid icache line size"); 1183 1184 c->icache.linesz = lsize ? 2 << lsize : 0; 1185 1186 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); 1187 c->icache.ways = 1 + ((config1 >> 16) & 7); 1188 1189 icache_size = c->icache.sets * 1190 c->icache.ways * 1191 c->icache.linesz; 1192 c->icache.waybit = __ffs(icache_size/c->icache.ways); 1193 1194 if (config & MIPS_CONF_VI) 1195 c->icache.flags |= MIPS_CACHE_VTAG; 1196 1197 /* 1198 * Now probe the MIPS32 / MIPS64 data cache. 1199 */ 1200 c->dcache.flags = 0; 1201 1202 lsize = (config1 >> 10) & 7; 1203 1204 /* DL == 7 is reserved */ 1205 if (lsize == 7) 1206 panic("Invalid dcache line size"); 1207 1208 c->dcache.linesz = lsize ? 2 << lsize : 0; 1209 1210 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); 1211 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1212 1213 dcache_size = c->dcache.sets * 1214 c->dcache.ways * 1215 c->dcache.linesz; 1216 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); 1217 1218 c->options |= MIPS_CPU_PREFETCH; 1219 break; 1220 } 1221 1222 /* 1223 * Processor configuration sanity check for the R4000SC erratum 1224 * #5. With page sizes larger than 32kB there is no possibility 1225 * to get a VCE exception anymore so we don't care about this 1226 * misconfiguration. The case is rather theoretical anyway; 1227 * presumably no vendor is shipping his hardware in the "bad" 1228 * configuration. 1229 */ 1230 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && 1231 (prid & PRID_REV_MASK) < PRID_REV_R4400 && 1232 !(config & CONF_SC) && c->icache.linesz != 16 && 1233 PAGE_SIZE <= 0x8000) 1234 panic("Improper R4000SC processor configuration detected"); 1235 1236 /* compute a couple of other cache variables */ 1237 c->icache.waysize = icache_size / c->icache.ways; 1238 c->dcache.waysize = dcache_size / c->dcache.ways; 1239 1240 c->icache.sets = c->icache.linesz ? 1241 icache_size / (c->icache.linesz * c->icache.ways) : 0; 1242 c->dcache.sets = c->dcache.linesz ? 1243 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; 1244 1245 /* 1246 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way 1247 * virtually indexed so normally would suffer from aliases. So 1248 * normally they'd suffer from aliases but magic in the hardware deals 1249 * with that for us so we don't need to take care ourselves. 1250 */ 1251 switch (current_cpu_type()) { 1252 case CPU_20KC: 1253 case CPU_25KF: 1254 case CPU_I6400: 1255 case CPU_I6500: 1256 case CPU_SB1: 1257 case CPU_SB1A: 1258 c->dcache.flags |= MIPS_CACHE_PINDEX; 1259 break; 1260 1261 case CPU_R10000: 1262 case CPU_R12000: 1263 case CPU_R14000: 1264 case CPU_R16000: 1265 break; 1266 1267 case CPU_74K: 1268 case CPU_1074K: 1269 has_74k_erratum = alias_74k_erratum(c); 1270 fallthrough; 1271 case CPU_M14KC: 1272 case CPU_M14KEC: 1273 case CPU_24K: 1274 case CPU_34K: 1275 case CPU_1004K: 1276 case CPU_INTERAPTIV: 1277 case CPU_P5600: 1278 case CPU_PROAPTIV: 1279 case CPU_M5150: 1280 case CPU_QEMU_GENERIC: 1281 case CPU_P6600: 1282 case CPU_M6250: 1283 if (!(read_c0_config7() & MIPS_CONF7_IAR) && 1284 (c->icache.waysize > PAGE_SIZE)) 1285 c->icache.flags |= MIPS_CACHE_ALIASES; 1286 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { 1287 /* 1288 * Effectively physically indexed dcache, 1289 * thus no virtual aliases. 1290 */ 1291 c->dcache.flags |= MIPS_CACHE_PINDEX; 1292 break; 1293 } 1294 fallthrough; 1295 default: 1296 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) 1297 c->dcache.flags |= MIPS_CACHE_ALIASES; 1298 } 1299 1300 /* Physically indexed caches don't suffer from virtual aliasing */ 1301 if (c->dcache.flags & MIPS_CACHE_PINDEX) 1302 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1303 1304 /* 1305 * In systems with CM the icache fills from L2 or closer caches, and 1306 * thus sees remote stores without needing to write them back any 1307 * further than that. 1308 */ 1309 if (mips_cm_present()) 1310 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; 1311 1312 switch (current_cpu_type()) { 1313 case CPU_20KC: 1314 /* 1315 * Some older 20Kc chips doesn't have the 'VI' bit in 1316 * the config register. 1317 */ 1318 c->icache.flags |= MIPS_CACHE_VTAG; 1319 break; 1320 1321 case CPU_ALCHEMY: 1322 case CPU_I6400: 1323 case CPU_I6500: 1324 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1325 break; 1326 1327 case CPU_BMIPS5000: 1328 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1329 /* Cache aliases are handled in hardware; allow HIGHMEM */ 1330 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1331 break; 1332 1333 case CPU_LOONGSON2EF: 1334 /* 1335 * LOONGSON2 has 4 way icache, but when using indexed cache op, 1336 * one op will act on all 4 ways 1337 */ 1338 c->icache.ways = 1; 1339 } 1340 1341 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", 1342 icache_size >> 10, 1343 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", 1344 way_string[c->icache.ways], c->icache.linesz); 1345 1346 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", 1347 dcache_size >> 10, way_string[c->dcache.ways], 1348 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", 1349 (c->dcache.flags & MIPS_CACHE_ALIASES) ? 1350 "cache aliases" : "no aliases", 1351 c->dcache.linesz); 1352 } 1353 1354 static void probe_vcache(void) 1355 { 1356 struct cpuinfo_mips *c = ¤t_cpu_data; 1357 unsigned int config2, lsize; 1358 1359 if (current_cpu_type() != CPU_LOONGSON64) 1360 return; 1361 1362 config2 = read_c0_config2(); 1363 if ((lsize = ((config2 >> 20) & 15))) 1364 c->vcache.linesz = 2 << lsize; 1365 else 1366 c->vcache.linesz = lsize; 1367 1368 c->vcache.sets = 64 << ((config2 >> 24) & 15); 1369 c->vcache.ways = 1 + ((config2 >> 16) & 15); 1370 1371 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; 1372 1373 c->vcache.waybit = 0; 1374 c->vcache.waysize = vcache_size / c->vcache.ways; 1375 1376 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", 1377 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); 1378 } 1379 1380 /* 1381 * If you even _breathe_ on this function, look at the gcc output and make sure 1382 * it does not pop things on and off the stack for the cache sizing loop that 1383 * executes in KSEG1 space or else you will crash and burn badly. You have 1384 * been warned. 1385 */ 1386 static int probe_scache(void) 1387 { 1388 unsigned long flags, addr, begin, end, pow2; 1389 unsigned int config = read_c0_config(); 1390 struct cpuinfo_mips *c = ¤t_cpu_data; 1391 1392 if (config & CONF_SC) 1393 return 0; 1394 1395 begin = (unsigned long) &_stext; 1396 begin &= ~((4 * 1024 * 1024) - 1); 1397 end = begin + (4 * 1024 * 1024); 1398 1399 /* 1400 * This is such a bitch, you'd think they would make it easy to do 1401 * this. Away you daemons of stupidity! 1402 */ 1403 local_irq_save(flags); 1404 1405 /* Fill each size-multiple cache line with a valid tag. */ 1406 pow2 = (64 * 1024); 1407 for (addr = begin; addr < end; addr = (begin + pow2)) { 1408 unsigned long *p = (unsigned long *) addr; 1409 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ 1410 pow2 <<= 1; 1411 } 1412 1413 /* Load first line with zero (therefore invalid) tag. */ 1414 write_c0_taglo(0); 1415 write_c0_taghi(0); 1416 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ 1417 cache_op(Index_Store_Tag_I, begin); 1418 cache_op(Index_Store_Tag_D, begin); 1419 cache_op(Index_Store_Tag_SD, begin); 1420 1421 /* Now search for the wrap around point. */ 1422 pow2 = (128 * 1024); 1423 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { 1424 cache_op(Index_Load_Tag_SD, addr); 1425 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ 1426 if (!read_c0_taglo()) 1427 break; 1428 pow2 <<= 1; 1429 } 1430 local_irq_restore(flags); 1431 addr -= begin; 1432 1433 scache_size = addr; 1434 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); 1435 c->scache.ways = 1; 1436 c->scache.waybit = 0; /* does not matter */ 1437 1438 return 1; 1439 } 1440 1441 static void loongson2_sc_init(void) 1442 { 1443 struct cpuinfo_mips *c = ¤t_cpu_data; 1444 1445 scache_size = 512*1024; 1446 c->scache.linesz = 32; 1447 c->scache.ways = 4; 1448 c->scache.waybit = 0; 1449 c->scache.waysize = scache_size / (c->scache.ways); 1450 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1451 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1452 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1453 1454 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1455 } 1456 1457 static void loongson3_sc_init(void) 1458 { 1459 struct cpuinfo_mips *c = ¤t_cpu_data; 1460 unsigned int config2, lsize; 1461 1462 config2 = read_c0_config2(); 1463 lsize = (config2 >> 4) & 15; 1464 if (lsize) 1465 c->scache.linesz = 2 << lsize; 1466 else 1467 c->scache.linesz = 0; 1468 c->scache.sets = 64 << ((config2 >> 8) & 15); 1469 c->scache.ways = 1 + (config2 & 15); 1470 1471 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ 1472 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1473 c->scache.sets *= 2; 1474 else 1475 c->scache.sets *= 4; 1476 1477 scache_size = c->scache.sets * c->scache.ways * c->scache.linesz; 1478 1479 c->scache.waybit = 0; 1480 c->scache.waysize = scache_size / c->scache.ways; 1481 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1482 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1483 if (scache_size) 1484 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1485 return; 1486 } 1487 1488 static void setup_scache(void) 1489 { 1490 struct cpuinfo_mips *c = ¤t_cpu_data; 1491 unsigned int config = read_c0_config(); 1492 int sc_present = 0; 1493 1494 /* 1495 * Do the probing thing on R4000SC and R4400SC processors. Other 1496 * processors don't have a S-cache that would be relevant to the 1497 * Linux memory management. 1498 */ 1499 switch (current_cpu_type()) { 1500 case CPU_R4000SC: 1501 case CPU_R4000MC: 1502 case CPU_R4400SC: 1503 case CPU_R4400MC: 1504 sc_present = run_uncached(probe_scache); 1505 if (sc_present) 1506 c->options |= MIPS_CPU_CACHE_CDEX_S; 1507 break; 1508 1509 case CPU_R10000: 1510 case CPU_R12000: 1511 case CPU_R14000: 1512 case CPU_R16000: 1513 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); 1514 c->scache.linesz = 64 << ((config >> 13) & 1); 1515 c->scache.ways = 2; 1516 c->scache.waybit= 0; 1517 sc_present = 1; 1518 break; 1519 1520 case CPU_R5000: 1521 case CPU_NEVADA: 1522 #ifdef CONFIG_R5000_CPU_SCACHE 1523 r5k_sc_init(); 1524 #endif 1525 return; 1526 1527 case CPU_RM7000: 1528 #ifdef CONFIG_RM7000_CPU_SCACHE 1529 rm7k_sc_init(); 1530 #endif 1531 return; 1532 1533 case CPU_LOONGSON2EF: 1534 loongson2_sc_init(); 1535 return; 1536 1537 case CPU_LOONGSON64: 1538 loongson3_sc_init(); 1539 return; 1540 1541 case CPU_CAVIUM_OCTEON3: 1542 /* don't need to worry about L2, fully coherent */ 1543 return; 1544 1545 default: 1546 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 1547 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 1548 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 1549 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 1550 #ifdef CONFIG_MIPS_CPU_SCACHE 1551 if (mips_sc_init ()) { 1552 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; 1553 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", 1554 scache_size >> 10, 1555 way_string[c->scache.ways], c->scache.linesz); 1556 1557 if (current_cpu_type() == CPU_BMIPS5000) 1558 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1559 } 1560 1561 #else 1562 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) 1563 panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); 1564 #endif 1565 return; 1566 } 1567 sc_present = 0; 1568 } 1569 1570 if (!sc_present) 1571 return; 1572 1573 /* compute a couple of other cache variables */ 1574 c->scache.waysize = scache_size / c->scache.ways; 1575 1576 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1577 1578 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1579 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1580 1581 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1582 } 1583 1584 void au1x00_fixup_config_od(void) 1585 { 1586 /* 1587 * c0_config.od (bit 19) was write only (and read as 0) 1588 * on the early revisions of Alchemy SOCs. It disables the bus 1589 * transaction overlapping and needs to be set to fix various errata. 1590 */ 1591 switch (read_c0_prid()) { 1592 case 0x00030100: /* Au1000 DA */ 1593 case 0x00030201: /* Au1000 HA */ 1594 case 0x00030202: /* Au1000 HB */ 1595 case 0x01030200: /* Au1500 AB */ 1596 /* 1597 * Au1100 errata actually keeps silence about this bit, so we set it 1598 * just in case for those revisions that require it to be set according 1599 * to the (now gone) cpu table. 1600 */ 1601 case 0x02030200: /* Au1100 AB */ 1602 case 0x02030201: /* Au1100 BA */ 1603 case 0x02030202: /* Au1100 BC */ 1604 set_c0_config(1 << 19); 1605 break; 1606 } 1607 } 1608 1609 /* CP0 hazard avoidance. */ 1610 #define NXP_BARRIER() \ 1611 __asm__ __volatile__( \ 1612 ".set noreorder\n\t" \ 1613 "nop; nop; nop; nop; nop; nop;\n\t" \ 1614 ".set reorder\n\t") 1615 1616 static void nxp_pr4450_fixup_config(void) 1617 { 1618 unsigned long config0; 1619 1620 config0 = read_c0_config(); 1621 1622 /* clear all three cache coherency fields */ 1623 config0 &= ~(0x7 | (7 << 25) | (7 << 28)); 1624 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | 1625 ((_page_cachable_default >> _CACHE_SHIFT) << 25) | 1626 ((_page_cachable_default >> _CACHE_SHIFT) << 28)); 1627 write_c0_config(config0); 1628 NXP_BARRIER(); 1629 } 1630 1631 static int cca = -1; 1632 1633 static int __init cca_setup(char *str) 1634 { 1635 get_option(&str, &cca); 1636 1637 return 0; 1638 } 1639 1640 early_param("cca", cca_setup); 1641 1642 static void coherency_setup(void) 1643 { 1644 if (cca < 0 || cca > 7) 1645 cca = read_c0_config() & CONF_CM_CMASK; 1646 _page_cachable_default = cca << _CACHE_SHIFT; 1647 1648 pr_debug("Using cache attribute %d\n", cca); 1649 change_c0_config(CONF_CM_CMASK, cca); 1650 1651 /* 1652 * c0_status.cu=0 specifies that updates by the sc instruction use 1653 * the coherency mode specified by the TLB; 1 means cacheable 1654 * coherent update on write will be used. Not all processors have 1655 * this bit and; some wire it to zero, others like Toshiba had the 1656 * silly idea of putting something else there ... 1657 */ 1658 switch (current_cpu_type()) { 1659 case CPU_R4000PC: 1660 case CPU_R4000SC: 1661 case CPU_R4000MC: 1662 case CPU_R4400PC: 1663 case CPU_R4400SC: 1664 case CPU_R4400MC: 1665 clear_c0_config(CONF_CU); 1666 break; 1667 /* 1668 * We need to catch the early Alchemy SOCs with 1669 * the write-only co_config.od bit and set it back to one on: 1670 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB 1671 */ 1672 case CPU_ALCHEMY: 1673 au1x00_fixup_config_od(); 1674 break; 1675 1676 case PRID_IMP_PR4450: 1677 nxp_pr4450_fixup_config(); 1678 break; 1679 } 1680 } 1681 1682 static void r4k_cache_error_setup(void) 1683 { 1684 extern char __weak except_vec2_generic; 1685 extern char __weak except_vec2_sb1; 1686 1687 switch (current_cpu_type()) { 1688 case CPU_SB1: 1689 case CPU_SB1A: 1690 set_uncached_handler(0x100, &except_vec2_sb1, 0x80); 1691 break; 1692 1693 default: 1694 set_uncached_handler(0x100, &except_vec2_generic, 0x80); 1695 break; 1696 } 1697 } 1698 1699 void r4k_cache_init(void) 1700 { 1701 extern void build_clear_page(void); 1702 extern void build_copy_page(void); 1703 struct cpuinfo_mips *c = ¤t_cpu_data; 1704 1705 probe_pcache(); 1706 probe_vcache(); 1707 setup_scache(); 1708 1709 r4k_blast_dcache_page_setup(); 1710 r4k_blast_dcache_setup(); 1711 r4k_blast_icache_page_setup(); 1712 r4k_blast_icache_setup(); 1713 r4k_blast_scache_page_setup(); 1714 r4k_blast_scache_setup(); 1715 r4k_blast_scache_node_setup(); 1716 #ifdef CONFIG_EVA 1717 r4k_blast_dcache_user_page_setup(); 1718 r4k_blast_icache_user_page_setup(); 1719 #endif 1720 1721 /* 1722 * Some MIPS32 and MIPS64 processors have physically indexed caches. 1723 * This code supports virtually indexed processors and will be 1724 * unnecessarily inefficient on physically indexed processors. 1725 */ 1726 if (c->dcache.linesz && cpu_has_dc_aliases) 1727 shm_align_mask = max_t( unsigned long, 1728 c->dcache.sets * c->dcache.linesz - 1, 1729 PAGE_SIZE - 1); 1730 else 1731 shm_align_mask = PAGE_SIZE-1; 1732 1733 __flush_cache_vmap = r4k__flush_cache_vmap; 1734 __flush_cache_vunmap = r4k__flush_cache_vunmap; 1735 1736 flush_cache_all = cache_noop; 1737 __flush_cache_all = r4k___flush_cache_all; 1738 flush_cache_mm = r4k_flush_cache_mm; 1739 flush_cache_page = r4k_flush_cache_page; 1740 flush_cache_range = r4k_flush_cache_range; 1741 1742 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; 1743 1744 flush_icache_all = r4k_flush_icache_all; 1745 flush_data_cache_page = r4k_flush_data_cache_page; 1746 flush_icache_range = r4k_flush_icache_range; 1747 local_flush_icache_range = local_r4k_flush_icache_range; 1748 __flush_icache_user_range = r4k_flush_icache_user_range; 1749 __local_flush_icache_user_range = local_r4k_flush_icache_user_range; 1750 1751 #ifdef CONFIG_DMA_NONCOHERENT 1752 _dma_cache_wback_inv = r4k_dma_cache_wback_inv; 1753 _dma_cache_wback = r4k_dma_cache_wback_inv; 1754 _dma_cache_inv = r4k_dma_cache_inv; 1755 #endif /* CONFIG_DMA_NONCOHERENT */ 1756 1757 build_clear_page(); 1758 build_copy_page(); 1759 1760 /* 1761 * We want to run CMP kernels on core with and without coherent 1762 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether 1763 * or not to flush caches. 1764 */ 1765 local_r4k___flush_cache_all(NULL); 1766 1767 coherency_setup(); 1768 board_cache_error_setup = r4k_cache_error_setup; 1769 1770 /* 1771 * Per-CPU overrides 1772 */ 1773 switch (current_cpu_type()) { 1774 case CPU_BMIPS4350: 1775 case CPU_BMIPS4380: 1776 /* No IPI is needed because all CPUs share the same D$ */ 1777 flush_data_cache_page = r4k_blast_dcache_page; 1778 break; 1779 case CPU_BMIPS5000: 1780 /* We lose our superpowers if L2 is disabled */ 1781 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) 1782 break; 1783 1784 /* I$ fills from D$ just by emptying the write buffers */ 1785 flush_cache_page = (void *)b5k_instruction_hazard; 1786 flush_cache_range = (void *)b5k_instruction_hazard; 1787 flush_data_cache_page = (void *)b5k_instruction_hazard; 1788 flush_icache_range = (void *)b5k_instruction_hazard; 1789 local_flush_icache_range = (void *)b5k_instruction_hazard; 1790 1791 1792 /* Optimization: an L2 flush implicitly flushes the L1 */ 1793 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; 1794 break; 1795 case CPU_LOONGSON64: 1796 /* Loongson-3 maintains cache coherency by hardware */ 1797 __flush_cache_all = cache_noop; 1798 __flush_cache_vmap = cache_noop; 1799 __flush_cache_vunmap = cache_noop; 1800 __flush_kernel_vmap_range = (void *)cache_noop; 1801 flush_cache_mm = (void *)cache_noop; 1802 flush_cache_page = (void *)cache_noop; 1803 flush_cache_range = (void *)cache_noop; 1804 flush_icache_all = (void *)cache_noop; 1805 flush_data_cache_page = (void *)cache_noop; 1806 break; 1807 } 1808 } 1809 1810 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, 1811 void *v) 1812 { 1813 switch (cmd) { 1814 case CPU_PM_ENTER_FAILED: 1815 case CPU_PM_EXIT: 1816 coherency_setup(); 1817 break; 1818 } 1819 1820 return NOTIFY_OK; 1821 } 1822 1823 static struct notifier_block r4k_cache_pm_notifier_block = { 1824 .notifier_call = r4k_cache_pm_notifier, 1825 }; 1826 1827 static int __init r4k_cache_init_pm(void) 1828 { 1829 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); 1830 } 1831 arch_initcall(r4k_cache_init_pm); 1832