xref: /linux/arch/mips/mm/c-r4k.c (revision 6a0e321ea735691e726d84ee29a1a3fd3fc3541a)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 
23 #include <asm/bcache.h>
24 #include <asm/bootinfo.h>
25 #include <asm/cache.h>
26 #include <asm/cacheops.h>
27 #include <asm/cpu.h>
28 #include <asm/cpu-features.h>
29 #include <asm/cpu-type.h>
30 #include <asm/io.h>
31 #include <asm/page.h>
32 #include <asm/r4kcache.h>
33 #include <asm/sections.h>
34 #include <asm/mmu_context.h>
35 #include <asm/war.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/dma-coherence.h>
39 #include <asm/mips-cps.h>
40 
41 /*
42  * Bits describing what cache ops an SMP callback function may perform.
43  *
44  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
45  *		active_mm must be checked before using user addresses, falling
46  *		back to kmap.
47  * R4K_INDEX -	Index based cache operations.
48  */
49 
50 #define R4K_HIT		BIT(0)
51 #define R4K_INDEX	BIT(1)
52 
53 /**
54  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
56  *
57  * Decides whether a cache op needs to be performed on every core in the system.
58  * This may change depending on the @type of cache operation, as well as the set
59  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60  * hotplug from changing the result.
61  *
62  * Returns:	1 if the cache operation @type should be done on every core in
63  *		the system.
64  *		0 if the cache operation @type is globalized and only needs to
65  *		be performed on a simple CPU.
66  */
67 static inline bool r4k_op_needs_ipi(unsigned int type)
68 {
69 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70 	if (type == R4K_HIT && mips_cm_present())
71 		return false;
72 
73 	/*
74 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
75 	 * be needed, but only if there are foreign CPUs (non-siblings with
76 	 * separate caches).
77 	 */
78 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79 #ifdef CONFIG_SMP
80 	return !cpumask_empty(&cpu_foreign_map[0]);
81 #else
82 	return false;
83 #endif
84 }
85 
86 /*
87  * Special Variant of smp_call_function for use by cache functions:
88  *
89  *  o No return value
90  *  o collapses to normal function call on UP kernels
91  *  o collapses to normal function call on systems with a single shared
92  *    primary cache.
93  *  o doesn't disable interrupts on the local CPU
94  */
95 static inline void r4k_on_each_cpu(unsigned int type,
96 				   void (*func)(void *info), void *info)
97 {
98 	preempt_disable();
99 	if (r4k_op_needs_ipi(type))
100 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101 				       func, info, 1);
102 	func(info);
103 	preempt_enable();
104 }
105 
106 /*
107  * Must die.
108  */
109 static unsigned long icache_size __read_mostly;
110 static unsigned long dcache_size __read_mostly;
111 static unsigned long vcache_size __read_mostly;
112 static unsigned long scache_size __read_mostly;
113 
114 /*
115  * Dummy cache handling routines for machines without boardcaches
116  */
117 static void cache_noop(void) {}
118 
119 static struct bcache_ops no_sc_ops = {
120 	.bc_enable = (void *)cache_noop,
121 	.bc_disable = (void *)cache_noop,
122 	.bc_wback_inv = (void *)cache_noop,
123 	.bc_inv = (void *)cache_noop
124 };
125 
126 struct bcache_ops *bcops = &no_sc_ops;
127 
128 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
129 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
130 
131 #define R4600_HIT_CACHEOP_WAR_IMPL					\
132 do {									\
133 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
134 		*(volatile unsigned long *)CKSEG1;			\
135 	if (R4600_V1_HIT_CACHEOP_WAR)					\
136 		__asm__ __volatile__("nop;nop;nop;nop");		\
137 } while (0)
138 
139 static void (*r4k_blast_dcache_page)(unsigned long addr);
140 
141 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
142 {
143 	R4600_HIT_CACHEOP_WAR_IMPL;
144 	blast_dcache32_page(addr);
145 }
146 
147 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
148 {
149 	blast_dcache64_page(addr);
150 }
151 
152 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
153 {
154 	blast_dcache128_page(addr);
155 }
156 
157 static void r4k_blast_dcache_page_setup(void)
158 {
159 	unsigned long  dc_lsize = cpu_dcache_line_size();
160 
161 	switch (dc_lsize) {
162 	case 0:
163 		r4k_blast_dcache_page = (void *)cache_noop;
164 		break;
165 	case 16:
166 		r4k_blast_dcache_page = blast_dcache16_page;
167 		break;
168 	case 32:
169 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
170 		break;
171 	case 64:
172 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
173 		break;
174 	case 128:
175 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
176 		break;
177 	default:
178 		break;
179 	}
180 }
181 
182 #ifndef CONFIG_EVA
183 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
184 #else
185 
186 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
187 
188 static void r4k_blast_dcache_user_page_setup(void)
189 {
190 	unsigned long  dc_lsize = cpu_dcache_line_size();
191 
192 	if (dc_lsize == 0)
193 		r4k_blast_dcache_user_page = (void *)cache_noop;
194 	else if (dc_lsize == 16)
195 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
196 	else if (dc_lsize == 32)
197 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
198 	else if (dc_lsize == 64)
199 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
200 }
201 
202 #endif
203 
204 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
205 
206 static void r4k_blast_dcache_page_indexed_setup(void)
207 {
208 	unsigned long dc_lsize = cpu_dcache_line_size();
209 
210 	if (dc_lsize == 0)
211 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
212 	else if (dc_lsize == 16)
213 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
214 	else if (dc_lsize == 32)
215 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
216 	else if (dc_lsize == 64)
217 		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
218 	else if (dc_lsize == 128)
219 		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
220 }
221 
222 void (* r4k_blast_dcache)(void);
223 EXPORT_SYMBOL(r4k_blast_dcache);
224 
225 static void r4k_blast_dcache_setup(void)
226 {
227 	unsigned long dc_lsize = cpu_dcache_line_size();
228 
229 	if (dc_lsize == 0)
230 		r4k_blast_dcache = (void *)cache_noop;
231 	else if (dc_lsize == 16)
232 		r4k_blast_dcache = blast_dcache16;
233 	else if (dc_lsize == 32)
234 		r4k_blast_dcache = blast_dcache32;
235 	else if (dc_lsize == 64)
236 		r4k_blast_dcache = blast_dcache64;
237 	else if (dc_lsize == 128)
238 		r4k_blast_dcache = blast_dcache128;
239 }
240 
241 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
242 #define JUMP_TO_ALIGN(order) \
243 	__asm__ __volatile__( \
244 		"b\t1f\n\t" \
245 		".align\t" #order "\n\t" \
246 		"1:\n\t" \
247 		)
248 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
249 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
250 
251 static inline void blast_r4600_v1_icache32(void)
252 {
253 	unsigned long flags;
254 
255 	local_irq_save(flags);
256 	blast_icache32();
257 	local_irq_restore(flags);
258 }
259 
260 static inline void tx49_blast_icache32(void)
261 {
262 	unsigned long start = INDEX_BASE;
263 	unsigned long end = start + current_cpu_data.icache.waysize;
264 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
265 	unsigned long ws_end = current_cpu_data.icache.ways <<
266 			       current_cpu_data.icache.waybit;
267 	unsigned long ws, addr;
268 
269 	CACHE32_UNROLL32_ALIGN2;
270 	/* I'm in even chunk.  blast odd chunks */
271 	for (ws = 0; ws < ws_end; ws += ws_inc)
272 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
273 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
274 				     addr | ws, 32);
275 	CACHE32_UNROLL32_ALIGN;
276 	/* I'm in odd chunk.  blast even chunks */
277 	for (ws = 0; ws < ws_end; ws += ws_inc)
278 		for (addr = start; addr < end; addr += 0x400 * 2)
279 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
280 				     addr | ws, 32);
281 }
282 
283 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
284 {
285 	unsigned long flags;
286 
287 	local_irq_save(flags);
288 	blast_icache32_page_indexed(page);
289 	local_irq_restore(flags);
290 }
291 
292 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
293 {
294 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
295 	unsigned long start = INDEX_BASE + (page & indexmask);
296 	unsigned long end = start + PAGE_SIZE;
297 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
298 	unsigned long ws_end = current_cpu_data.icache.ways <<
299 			       current_cpu_data.icache.waybit;
300 	unsigned long ws, addr;
301 
302 	CACHE32_UNROLL32_ALIGN2;
303 	/* I'm in even chunk.  blast odd chunks */
304 	for (ws = 0; ws < ws_end; ws += ws_inc)
305 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
306 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
307 				     addr | ws, 32);
308 	CACHE32_UNROLL32_ALIGN;
309 	/* I'm in odd chunk.  blast even chunks */
310 	for (ws = 0; ws < ws_end; ws += ws_inc)
311 		for (addr = start; addr < end; addr += 0x400 * 2)
312 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
313 				     addr | ws, 32);
314 }
315 
316 static void (* r4k_blast_icache_page)(unsigned long addr);
317 
318 static void r4k_blast_icache_page_setup(void)
319 {
320 	unsigned long ic_lsize = cpu_icache_line_size();
321 
322 	if (ic_lsize == 0)
323 		r4k_blast_icache_page = (void *)cache_noop;
324 	else if (ic_lsize == 16)
325 		r4k_blast_icache_page = blast_icache16_page;
326 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
327 		r4k_blast_icache_page = loongson2_blast_icache32_page;
328 	else if (ic_lsize == 32)
329 		r4k_blast_icache_page = blast_icache32_page;
330 	else if (ic_lsize == 64)
331 		r4k_blast_icache_page = blast_icache64_page;
332 	else if (ic_lsize == 128)
333 		r4k_blast_icache_page = blast_icache128_page;
334 }
335 
336 #ifndef CONFIG_EVA
337 #define r4k_blast_icache_user_page  r4k_blast_icache_page
338 #else
339 
340 static void (*r4k_blast_icache_user_page)(unsigned long addr);
341 
342 static void r4k_blast_icache_user_page_setup(void)
343 {
344 	unsigned long ic_lsize = cpu_icache_line_size();
345 
346 	if (ic_lsize == 0)
347 		r4k_blast_icache_user_page = (void *)cache_noop;
348 	else if (ic_lsize == 16)
349 		r4k_blast_icache_user_page = blast_icache16_user_page;
350 	else if (ic_lsize == 32)
351 		r4k_blast_icache_user_page = blast_icache32_user_page;
352 	else if (ic_lsize == 64)
353 		r4k_blast_icache_user_page = blast_icache64_user_page;
354 }
355 
356 #endif
357 
358 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
359 
360 static void r4k_blast_icache_page_indexed_setup(void)
361 {
362 	unsigned long ic_lsize = cpu_icache_line_size();
363 
364 	if (ic_lsize == 0)
365 		r4k_blast_icache_page_indexed = (void *)cache_noop;
366 	else if (ic_lsize == 16)
367 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
368 	else if (ic_lsize == 32) {
369 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
370 			r4k_blast_icache_page_indexed =
371 				blast_icache32_r4600_v1_page_indexed;
372 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
373 			r4k_blast_icache_page_indexed =
374 				tx49_blast_icache32_page_indexed;
375 		else if (current_cpu_type() == CPU_LOONGSON2EF)
376 			r4k_blast_icache_page_indexed =
377 				loongson2_blast_icache32_page_indexed;
378 		else
379 			r4k_blast_icache_page_indexed =
380 				blast_icache32_page_indexed;
381 	} else if (ic_lsize == 64)
382 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
383 }
384 
385 void (* r4k_blast_icache)(void);
386 EXPORT_SYMBOL(r4k_blast_icache);
387 
388 static void r4k_blast_icache_setup(void)
389 {
390 	unsigned long ic_lsize = cpu_icache_line_size();
391 
392 	if (ic_lsize == 0)
393 		r4k_blast_icache = (void *)cache_noop;
394 	else if (ic_lsize == 16)
395 		r4k_blast_icache = blast_icache16;
396 	else if (ic_lsize == 32) {
397 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
398 			r4k_blast_icache = blast_r4600_v1_icache32;
399 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
400 			r4k_blast_icache = tx49_blast_icache32;
401 		else if (current_cpu_type() == CPU_LOONGSON2EF)
402 			r4k_blast_icache = loongson2_blast_icache32;
403 		else
404 			r4k_blast_icache = blast_icache32;
405 	} else if (ic_lsize == 64)
406 		r4k_blast_icache = blast_icache64;
407 	else if (ic_lsize == 128)
408 		r4k_blast_icache = blast_icache128;
409 }
410 
411 static void (* r4k_blast_scache_page)(unsigned long addr);
412 
413 static void r4k_blast_scache_page_setup(void)
414 {
415 	unsigned long sc_lsize = cpu_scache_line_size();
416 
417 	if (scache_size == 0)
418 		r4k_blast_scache_page = (void *)cache_noop;
419 	else if (sc_lsize == 16)
420 		r4k_blast_scache_page = blast_scache16_page;
421 	else if (sc_lsize == 32)
422 		r4k_blast_scache_page = blast_scache32_page;
423 	else if (sc_lsize == 64)
424 		r4k_blast_scache_page = blast_scache64_page;
425 	else if (sc_lsize == 128)
426 		r4k_blast_scache_page = blast_scache128_page;
427 }
428 
429 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
430 
431 static void r4k_blast_scache_page_indexed_setup(void)
432 {
433 	unsigned long sc_lsize = cpu_scache_line_size();
434 
435 	if (scache_size == 0)
436 		r4k_blast_scache_page_indexed = (void *)cache_noop;
437 	else if (sc_lsize == 16)
438 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
439 	else if (sc_lsize == 32)
440 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
441 	else if (sc_lsize == 64)
442 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
443 	else if (sc_lsize == 128)
444 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
445 }
446 
447 static void (* r4k_blast_scache)(void);
448 
449 static void r4k_blast_scache_setup(void)
450 {
451 	unsigned long sc_lsize = cpu_scache_line_size();
452 
453 	if (scache_size == 0)
454 		r4k_blast_scache = (void *)cache_noop;
455 	else if (sc_lsize == 16)
456 		r4k_blast_scache = blast_scache16;
457 	else if (sc_lsize == 32)
458 		r4k_blast_scache = blast_scache32;
459 	else if (sc_lsize == 64)
460 		r4k_blast_scache = blast_scache64;
461 	else if (sc_lsize == 128)
462 		r4k_blast_scache = blast_scache128;
463 }
464 
465 static void (*r4k_blast_scache_node)(long node);
466 
467 static void r4k_blast_scache_node_setup(void)
468 {
469 	unsigned long sc_lsize = cpu_scache_line_size();
470 
471 	if (current_cpu_type() != CPU_LOONGSON64)
472 		r4k_blast_scache_node = (void *)cache_noop;
473 	else if (sc_lsize == 16)
474 		r4k_blast_scache_node = blast_scache16_node;
475 	else if (sc_lsize == 32)
476 		r4k_blast_scache_node = blast_scache32_node;
477 	else if (sc_lsize == 64)
478 		r4k_blast_scache_node = blast_scache64_node;
479 	else if (sc_lsize == 128)
480 		r4k_blast_scache_node = blast_scache128_node;
481 }
482 
483 static inline void local_r4k___flush_cache_all(void * args)
484 {
485 	switch (current_cpu_type()) {
486 	case CPU_LOONGSON2EF:
487 	case CPU_R4000SC:
488 	case CPU_R4000MC:
489 	case CPU_R4400SC:
490 	case CPU_R4400MC:
491 	case CPU_R10000:
492 	case CPU_R12000:
493 	case CPU_R14000:
494 	case CPU_R16000:
495 		/*
496 		 * These caches are inclusive caches, that is, if something
497 		 * is not cached in the S-cache, we know it also won't be
498 		 * in one of the primary caches.
499 		 */
500 		r4k_blast_scache();
501 		break;
502 
503 	case CPU_LOONGSON64:
504 		/* Use get_ebase_cpunum() for both NUMA=y/n */
505 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
506 		break;
507 
508 	case CPU_BMIPS5000:
509 		r4k_blast_scache();
510 		__sync();
511 		break;
512 
513 	default:
514 		r4k_blast_dcache();
515 		r4k_blast_icache();
516 		break;
517 	}
518 }
519 
520 static void r4k___flush_cache_all(void)
521 {
522 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
523 }
524 
525 /**
526  * has_valid_asid() - Determine if an mm already has an ASID.
527  * @mm:		Memory map.
528  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
529  *
530  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
531  * of type @type within an r4k_on_each_cpu() call will affect. If
532  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
533  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
534  * will need to be checked.
535  *
536  * Must be called in non-preemptive context.
537  *
538  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
539  *		0 otherwise.
540  */
541 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
542 {
543 	unsigned int i;
544 	const cpumask_t *mask = cpu_present_mask;
545 
546 	if (cpu_has_mmid)
547 		return cpu_context(0, mm) != 0;
548 
549 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
550 #ifdef CONFIG_SMP
551 	/*
552 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
553 	 * each foreign core, so we only need to worry about siblings.
554 	 * Otherwise we need to worry about all present CPUs.
555 	 */
556 	if (r4k_op_needs_ipi(type))
557 		mask = &cpu_sibling_map[smp_processor_id()];
558 #endif
559 	for_each_cpu(i, mask)
560 		if (cpu_context(i, mm))
561 			return 1;
562 	return 0;
563 }
564 
565 static void r4k__flush_cache_vmap(void)
566 {
567 	r4k_blast_dcache();
568 }
569 
570 static void r4k__flush_cache_vunmap(void)
571 {
572 	r4k_blast_dcache();
573 }
574 
575 /*
576  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
577  * whole caches when vma is executable.
578  */
579 static inline void local_r4k_flush_cache_range(void * args)
580 {
581 	struct vm_area_struct *vma = args;
582 	int exec = vma->vm_flags & VM_EXEC;
583 
584 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
585 		return;
586 
587 	/*
588 	 * If dcache can alias, we must blast it since mapping is changing.
589 	 * If executable, we must ensure any dirty lines are written back far
590 	 * enough to be visible to icache.
591 	 */
592 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
593 		r4k_blast_dcache();
594 	/* If executable, blast stale lines from icache */
595 	if (exec)
596 		r4k_blast_icache();
597 }
598 
599 static void r4k_flush_cache_range(struct vm_area_struct *vma,
600 	unsigned long start, unsigned long end)
601 {
602 	int exec = vma->vm_flags & VM_EXEC;
603 
604 	if (cpu_has_dc_aliases || exec)
605 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
606 }
607 
608 static inline void local_r4k_flush_cache_mm(void * args)
609 {
610 	struct mm_struct *mm = args;
611 
612 	if (!has_valid_asid(mm, R4K_INDEX))
613 		return;
614 
615 	/*
616 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
617 	 * only flush the primary caches but R1x000 behave sane ...
618 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
619 	 * caches, so we can bail out early.
620 	 */
621 	if (current_cpu_type() == CPU_R4000SC ||
622 	    current_cpu_type() == CPU_R4000MC ||
623 	    current_cpu_type() == CPU_R4400SC ||
624 	    current_cpu_type() == CPU_R4400MC) {
625 		r4k_blast_scache();
626 		return;
627 	}
628 
629 	r4k_blast_dcache();
630 }
631 
632 static void r4k_flush_cache_mm(struct mm_struct *mm)
633 {
634 	if (!cpu_has_dc_aliases)
635 		return;
636 
637 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
638 }
639 
640 struct flush_cache_page_args {
641 	struct vm_area_struct *vma;
642 	unsigned long addr;
643 	unsigned long pfn;
644 };
645 
646 static inline void local_r4k_flush_cache_page(void *args)
647 {
648 	struct flush_cache_page_args *fcp_args = args;
649 	struct vm_area_struct *vma = fcp_args->vma;
650 	unsigned long addr = fcp_args->addr;
651 	struct page *page = pfn_to_page(fcp_args->pfn);
652 	int exec = vma->vm_flags & VM_EXEC;
653 	struct mm_struct *mm = vma->vm_mm;
654 	int map_coherent = 0;
655 	pmd_t *pmdp;
656 	pte_t *ptep;
657 	void *vaddr;
658 
659 	/*
660 	 * If owns no valid ASID yet, cannot possibly have gotten
661 	 * this page into the cache.
662 	 */
663 	if (!has_valid_asid(mm, R4K_HIT))
664 		return;
665 
666 	addr &= PAGE_MASK;
667 	pmdp = pmd_off(mm, addr);
668 	ptep = pte_offset_kernel(pmdp, addr);
669 
670 	/*
671 	 * If the page isn't marked valid, the page cannot possibly be
672 	 * in the cache.
673 	 */
674 	if (!(pte_present(*ptep)))
675 		return;
676 
677 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
678 		vaddr = NULL;
679 	else {
680 		/*
681 		 * Use kmap_coherent or kmap_atomic to do flushes for
682 		 * another ASID than the current one.
683 		 */
684 		map_coherent = (cpu_has_dc_aliases &&
685 				page_mapcount(page) &&
686 				!Page_dcache_dirty(page));
687 		if (map_coherent)
688 			vaddr = kmap_coherent(page, addr);
689 		else
690 			vaddr = kmap_atomic(page);
691 		addr = (unsigned long)vaddr;
692 	}
693 
694 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
695 		vaddr ? r4k_blast_dcache_page(addr) :
696 			r4k_blast_dcache_user_page(addr);
697 		if (exec && !cpu_icache_snoops_remote_store)
698 			r4k_blast_scache_page(addr);
699 	}
700 	if (exec) {
701 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
702 			drop_mmu_context(mm);
703 		} else
704 			vaddr ? r4k_blast_icache_page(addr) :
705 				r4k_blast_icache_user_page(addr);
706 	}
707 
708 	if (vaddr) {
709 		if (map_coherent)
710 			kunmap_coherent();
711 		else
712 			kunmap_atomic(vaddr);
713 	}
714 }
715 
716 static void r4k_flush_cache_page(struct vm_area_struct *vma,
717 	unsigned long addr, unsigned long pfn)
718 {
719 	struct flush_cache_page_args args;
720 
721 	args.vma = vma;
722 	args.addr = addr;
723 	args.pfn = pfn;
724 
725 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
726 }
727 
728 static inline void local_r4k_flush_data_cache_page(void * addr)
729 {
730 	r4k_blast_dcache_page((unsigned long) addr);
731 }
732 
733 static void r4k_flush_data_cache_page(unsigned long addr)
734 {
735 	if (in_atomic())
736 		local_r4k_flush_data_cache_page((void *)addr);
737 	else
738 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
739 				(void *) addr);
740 }
741 
742 struct flush_icache_range_args {
743 	unsigned long start;
744 	unsigned long end;
745 	unsigned int type;
746 	bool user;
747 };
748 
749 static inline void __local_r4k_flush_icache_range(unsigned long start,
750 						  unsigned long end,
751 						  unsigned int type,
752 						  bool user)
753 {
754 	if (!cpu_has_ic_fills_f_dc) {
755 		if (type == R4K_INDEX ||
756 		    (type & R4K_INDEX && end - start >= dcache_size)) {
757 			r4k_blast_dcache();
758 		} else {
759 			R4600_HIT_CACHEOP_WAR_IMPL;
760 			if (user)
761 				protected_blast_dcache_range(start, end);
762 			else
763 				blast_dcache_range(start, end);
764 		}
765 	}
766 
767 	if (type == R4K_INDEX ||
768 	    (type & R4K_INDEX && end - start > icache_size))
769 		r4k_blast_icache();
770 	else {
771 		switch (boot_cpu_type()) {
772 		case CPU_LOONGSON2EF:
773 			protected_loongson2_blast_icache_range(start, end);
774 			break;
775 
776 		default:
777 			if (user)
778 				protected_blast_icache_range(start, end);
779 			else
780 				blast_icache_range(start, end);
781 			break;
782 		}
783 	}
784 }
785 
786 static inline void local_r4k_flush_icache_range(unsigned long start,
787 						unsigned long end)
788 {
789 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
790 }
791 
792 static inline void local_r4k_flush_icache_user_range(unsigned long start,
793 						     unsigned long end)
794 {
795 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
796 }
797 
798 static inline void local_r4k_flush_icache_range_ipi(void *args)
799 {
800 	struct flush_icache_range_args *fir_args = args;
801 	unsigned long start = fir_args->start;
802 	unsigned long end = fir_args->end;
803 	unsigned int type = fir_args->type;
804 	bool user = fir_args->user;
805 
806 	__local_r4k_flush_icache_range(start, end, type, user);
807 }
808 
809 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
810 				     bool user)
811 {
812 	struct flush_icache_range_args args;
813 	unsigned long size, cache_size;
814 
815 	args.start = start;
816 	args.end = end;
817 	args.type = R4K_HIT | R4K_INDEX;
818 	args.user = user;
819 
820 	/*
821 	 * Indexed cache ops require an SMP call.
822 	 * Consider if that can or should be avoided.
823 	 */
824 	preempt_disable();
825 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
826 		/*
827 		 * If address-based cache ops don't require an SMP call, then
828 		 * use them exclusively for small flushes.
829 		 */
830 		size = end - start;
831 		cache_size = icache_size;
832 		if (!cpu_has_ic_fills_f_dc) {
833 			size *= 2;
834 			cache_size += dcache_size;
835 		}
836 		if (size <= cache_size)
837 			args.type &= ~R4K_INDEX;
838 	}
839 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
840 	preempt_enable();
841 	instruction_hazard();
842 }
843 
844 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
845 {
846 	return __r4k_flush_icache_range(start, end, false);
847 }
848 
849 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
850 {
851 	return __r4k_flush_icache_range(start, end, true);
852 }
853 
854 #ifdef CONFIG_DMA_NONCOHERENT
855 
856 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
857 {
858 	/* Catch bad driver code */
859 	if (WARN_ON(size == 0))
860 		return;
861 
862 	preempt_disable();
863 	if (cpu_has_inclusive_pcaches) {
864 		if (size >= scache_size) {
865 			if (current_cpu_type() != CPU_LOONGSON64)
866 				r4k_blast_scache();
867 			else
868 				r4k_blast_scache_node(pa_to_nid(addr));
869 		} else {
870 			blast_scache_range(addr, addr + size);
871 		}
872 		preempt_enable();
873 		__sync();
874 		return;
875 	}
876 
877 	/*
878 	 * Either no secondary cache or the available caches don't have the
879 	 * subset property so we have to flush the primary caches
880 	 * explicitly.
881 	 * If we would need IPI to perform an INDEX-type operation, then
882 	 * we have to use the HIT-type alternative as IPI cannot be used
883 	 * here due to interrupts possibly being disabled.
884 	 */
885 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
886 		r4k_blast_dcache();
887 	} else {
888 		R4600_HIT_CACHEOP_WAR_IMPL;
889 		blast_dcache_range(addr, addr + size);
890 	}
891 	preempt_enable();
892 
893 	bc_wback_inv(addr, size);
894 	__sync();
895 }
896 
897 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
898 {
899 	unsigned int linesz = cpu_scache_line_size();
900 	unsigned long addr0 = addr, addr1;
901 
902 	addr0 &= ~(linesz - 1);
903 	addr1 = (addr0 + size - 1) & ~(linesz - 1);
904 
905 	protected_writeback_scache_line(addr0);
906 	if (likely(addr1 != addr0))
907 		protected_writeback_scache_line(addr1);
908 	else
909 		return;
910 
911 	addr0 += linesz;
912 	if (likely(addr1 != addr0))
913 		protected_writeback_scache_line(addr0);
914 	else
915 		return;
916 
917 	addr1 -= linesz;
918 	if (likely(addr1 > addr0))
919 		protected_writeback_scache_line(addr0);
920 }
921 
922 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
923 {
924 	/* Catch bad driver code */
925 	if (WARN_ON(size == 0))
926 		return;
927 
928 	preempt_disable();
929 
930 	if (current_cpu_type() == CPU_BMIPS5000)
931 		prefetch_cache_inv(addr, size);
932 
933 	if (cpu_has_inclusive_pcaches) {
934 		if (size >= scache_size) {
935 			if (current_cpu_type() != CPU_LOONGSON64)
936 				r4k_blast_scache();
937 			else
938 				r4k_blast_scache_node(pa_to_nid(addr));
939 		} else {
940 			/*
941 			 * There is no clearly documented alignment requirement
942 			 * for the cache instruction on MIPS processors and
943 			 * some processors, among them the RM5200 and RM7000
944 			 * QED processors will throw an address error for cache
945 			 * hit ops with insufficient alignment.	 Solved by
946 			 * aligning the address to cache line size.
947 			 */
948 			blast_inv_scache_range(addr, addr + size);
949 		}
950 		preempt_enable();
951 		__sync();
952 		return;
953 	}
954 
955 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
956 		r4k_blast_dcache();
957 	} else {
958 		R4600_HIT_CACHEOP_WAR_IMPL;
959 		blast_inv_dcache_range(addr, addr + size);
960 	}
961 	preempt_enable();
962 
963 	bc_inv(addr, size);
964 	__sync();
965 }
966 #endif /* CONFIG_DMA_NONCOHERENT */
967 
968 static void r4k_flush_icache_all(void)
969 {
970 	if (cpu_has_vtag_icache)
971 		r4k_blast_icache();
972 }
973 
974 struct flush_kernel_vmap_range_args {
975 	unsigned long	vaddr;
976 	int		size;
977 };
978 
979 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
980 {
981 	/*
982 	 * Aliases only affect the primary caches so don't bother with
983 	 * S-caches or T-caches.
984 	 */
985 	r4k_blast_dcache();
986 }
987 
988 static inline void local_r4k_flush_kernel_vmap_range(void *args)
989 {
990 	struct flush_kernel_vmap_range_args *vmra = args;
991 	unsigned long vaddr = vmra->vaddr;
992 	int size = vmra->size;
993 
994 	/*
995 	 * Aliases only affect the primary caches so don't bother with
996 	 * S-caches or T-caches.
997 	 */
998 	R4600_HIT_CACHEOP_WAR_IMPL;
999 	blast_dcache_range(vaddr, vaddr + size);
1000 }
1001 
1002 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1003 {
1004 	struct flush_kernel_vmap_range_args args;
1005 
1006 	args.vaddr = (unsigned long) vaddr;
1007 	args.size = size;
1008 
1009 	if (size >= dcache_size)
1010 		r4k_on_each_cpu(R4K_INDEX,
1011 				local_r4k_flush_kernel_vmap_range_index, NULL);
1012 	else
1013 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1014 				&args);
1015 }
1016 
1017 static inline void rm7k_erratum31(void)
1018 {
1019 	const unsigned long ic_lsize = 32;
1020 	unsigned long addr;
1021 
1022 	/* RM7000 erratum #31. The icache is screwed at startup. */
1023 	write_c0_taglo(0);
1024 	write_c0_taghi(0);
1025 
1026 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1027 		__asm__ __volatile__ (
1028 			".set push\n\t"
1029 			".set noreorder\n\t"
1030 			".set mips3\n\t"
1031 			"cache\t%1, 0(%0)\n\t"
1032 			"cache\t%1, 0x1000(%0)\n\t"
1033 			"cache\t%1, 0x2000(%0)\n\t"
1034 			"cache\t%1, 0x3000(%0)\n\t"
1035 			"cache\t%2, 0(%0)\n\t"
1036 			"cache\t%2, 0x1000(%0)\n\t"
1037 			"cache\t%2, 0x2000(%0)\n\t"
1038 			"cache\t%2, 0x3000(%0)\n\t"
1039 			"cache\t%1, 0(%0)\n\t"
1040 			"cache\t%1, 0x1000(%0)\n\t"
1041 			"cache\t%1, 0x2000(%0)\n\t"
1042 			"cache\t%1, 0x3000(%0)\n\t"
1043 			".set pop\n"
1044 			:
1045 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1046 	}
1047 }
1048 
1049 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1050 {
1051 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1052 	unsigned int rev = c->processor_id & PRID_REV_MASK;
1053 	int present = 0;
1054 
1055 	/*
1056 	 * Early versions of the 74K do not update the cache tags on a
1057 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1058 	 * aliases.  In this case it is better to treat the cache as always
1059 	 * having aliases.  Also disable the synonym tag update feature
1060 	 * where available.  In this case no opportunistic tag update will
1061 	 * happen where a load causes a virtual address miss but a physical
1062 	 * address hit during a D-cache look-up.
1063 	 */
1064 	switch (imp) {
1065 	case PRID_IMP_74K:
1066 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1067 			present = 1;
1068 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1069 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1070 		break;
1071 	case PRID_IMP_1074K:
1072 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1073 			present = 1;
1074 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1075 		}
1076 		break;
1077 	default:
1078 		BUG();
1079 	}
1080 
1081 	return present;
1082 }
1083 
1084 static void b5k_instruction_hazard(void)
1085 {
1086 	__sync();
1087 	__sync();
1088 	__asm__ __volatile__(
1089 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1090 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1091 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1092 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093 	: : : "memory");
1094 }
1095 
1096 static char *way_string[] = { NULL, "direct mapped", "2-way",
1097 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1098 	"9-way", "10-way", "11-way", "12-way",
1099 	"13-way", "14-way", "15-way", "16-way",
1100 };
1101 
1102 static void probe_pcache(void)
1103 {
1104 	struct cpuinfo_mips *c = &current_cpu_data;
1105 	unsigned int config = read_c0_config();
1106 	unsigned int prid = read_c0_prid();
1107 	int has_74k_erratum = 0;
1108 	unsigned long config1;
1109 	unsigned int lsize;
1110 
1111 	switch (current_cpu_type()) {
1112 	case CPU_R4600:			/* QED style two way caches? */
1113 	case CPU_R4700:
1114 	case CPU_R5000:
1115 	case CPU_NEVADA:
1116 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1117 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1118 		c->icache.ways = 2;
1119 		c->icache.waybit = __ffs(icache_size/2);
1120 
1121 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1122 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1123 		c->dcache.ways = 2;
1124 		c->dcache.waybit= __ffs(dcache_size/2);
1125 
1126 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1127 		break;
1128 
1129 	case CPU_R5500:
1130 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1131 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1132 		c->icache.ways = 2;
1133 		c->icache.waybit= 0;
1134 
1135 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1136 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1137 		c->dcache.ways = 2;
1138 		c->dcache.waybit = 0;
1139 
1140 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1141 		break;
1142 
1143 	case CPU_TX49XX:
1144 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1145 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1146 		c->icache.ways = 4;
1147 		c->icache.waybit= 0;
1148 
1149 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1150 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1151 		c->dcache.ways = 4;
1152 		c->dcache.waybit = 0;
1153 
1154 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1155 		c->options |= MIPS_CPU_PREFETCH;
1156 		break;
1157 
1158 	case CPU_R4000PC:
1159 	case CPU_R4000SC:
1160 	case CPU_R4000MC:
1161 	case CPU_R4400PC:
1162 	case CPU_R4400SC:
1163 	case CPU_R4400MC:
1164 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1165 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1166 		c->icache.ways = 1;
1167 		c->icache.waybit = 0;	/* doesn't matter */
1168 
1169 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1170 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1171 		c->dcache.ways = 1;
1172 		c->dcache.waybit = 0;	/* does not matter */
1173 
1174 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1175 		break;
1176 
1177 	case CPU_R10000:
1178 	case CPU_R12000:
1179 	case CPU_R14000:
1180 	case CPU_R16000:
1181 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1182 		c->icache.linesz = 64;
1183 		c->icache.ways = 2;
1184 		c->icache.waybit = 0;
1185 
1186 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1187 		c->dcache.linesz = 32;
1188 		c->dcache.ways = 2;
1189 		c->dcache.waybit = 0;
1190 
1191 		c->options |= MIPS_CPU_PREFETCH;
1192 		break;
1193 
1194 	case CPU_VR4133:
1195 		write_c0_config(config & ~VR41_CONF_P4K);
1196 		fallthrough;
1197 	case CPU_VR4131:
1198 		/* Workaround for cache instruction bug of VR4131 */
1199 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1200 		    c->processor_id == 0x0c82U) {
1201 			config |= 0x00400000U;
1202 			if (c->processor_id == 0x0c80U)
1203 				config |= VR41_CONF_BP;
1204 			write_c0_config(config);
1205 		} else
1206 			c->options |= MIPS_CPU_CACHE_CDEX_P;
1207 
1208 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1209 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1210 		c->icache.ways = 2;
1211 		c->icache.waybit = __ffs(icache_size/2);
1212 
1213 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1214 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1215 		c->dcache.ways = 2;
1216 		c->dcache.waybit = __ffs(dcache_size/2);
1217 		break;
1218 
1219 	case CPU_VR41XX:
1220 	case CPU_VR4111:
1221 	case CPU_VR4121:
1222 	case CPU_VR4122:
1223 	case CPU_VR4181:
1224 	case CPU_VR4181A:
1225 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1226 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1227 		c->icache.ways = 1;
1228 		c->icache.waybit = 0;	/* doesn't matter */
1229 
1230 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1231 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1232 		c->dcache.ways = 1;
1233 		c->dcache.waybit = 0;	/* does not matter */
1234 
1235 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1236 		break;
1237 
1238 	case CPU_RM7000:
1239 		rm7k_erratum31();
1240 
1241 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1242 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1243 		c->icache.ways = 4;
1244 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1245 
1246 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1247 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1248 		c->dcache.ways = 4;
1249 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1250 
1251 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1252 		c->options |= MIPS_CPU_PREFETCH;
1253 		break;
1254 
1255 	case CPU_LOONGSON2EF:
1256 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1257 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1258 		if (prid & 0x3)
1259 			c->icache.ways = 4;
1260 		else
1261 			c->icache.ways = 2;
1262 		c->icache.waybit = 0;
1263 
1264 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1265 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1266 		if (prid & 0x3)
1267 			c->dcache.ways = 4;
1268 		else
1269 			c->dcache.ways = 2;
1270 		c->dcache.waybit = 0;
1271 		break;
1272 
1273 	case CPU_LOONGSON64:
1274 		config1 = read_c0_config1();
1275 		lsize = (config1 >> 19) & 7;
1276 		if (lsize)
1277 			c->icache.linesz = 2 << lsize;
1278 		else
1279 			c->icache.linesz = 0;
1280 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1281 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1282 		icache_size = c->icache.sets *
1283 					  c->icache.ways *
1284 					  c->icache.linesz;
1285 		c->icache.waybit = 0;
1286 
1287 		lsize = (config1 >> 10) & 7;
1288 		if (lsize)
1289 			c->dcache.linesz = 2 << lsize;
1290 		else
1291 			c->dcache.linesz = 0;
1292 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1293 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1294 		dcache_size = c->dcache.sets *
1295 					  c->dcache.ways *
1296 					  c->dcache.linesz;
1297 		c->dcache.waybit = 0;
1298 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1299 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1300 				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1301 			c->options |= MIPS_CPU_PREFETCH;
1302 		break;
1303 
1304 	case CPU_CAVIUM_OCTEON3:
1305 		/* For now lie about the number of ways. */
1306 		c->icache.linesz = 128;
1307 		c->icache.sets = 16;
1308 		c->icache.ways = 8;
1309 		c->icache.flags |= MIPS_CACHE_VTAG;
1310 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1311 
1312 		c->dcache.linesz = 128;
1313 		c->dcache.ways = 8;
1314 		c->dcache.sets = 8;
1315 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1316 		c->options |= MIPS_CPU_PREFETCH;
1317 		break;
1318 
1319 	default:
1320 		if (!(config & MIPS_CONF_M))
1321 			panic("Don't know how to probe P-caches on this cpu.");
1322 
1323 		/*
1324 		 * So we seem to be a MIPS32 or MIPS64 CPU
1325 		 * So let's probe the I-cache ...
1326 		 */
1327 		config1 = read_c0_config1();
1328 
1329 		lsize = (config1 >> 19) & 7;
1330 
1331 		/* IL == 7 is reserved */
1332 		if (lsize == 7)
1333 			panic("Invalid icache line size");
1334 
1335 		c->icache.linesz = lsize ? 2 << lsize : 0;
1336 
1337 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1338 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1339 
1340 		icache_size = c->icache.sets *
1341 			      c->icache.ways *
1342 			      c->icache.linesz;
1343 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1344 
1345 		if (config & MIPS_CONF_VI)
1346 			c->icache.flags |= MIPS_CACHE_VTAG;
1347 
1348 		/*
1349 		 * Now probe the MIPS32 / MIPS64 data cache.
1350 		 */
1351 		c->dcache.flags = 0;
1352 
1353 		lsize = (config1 >> 10) & 7;
1354 
1355 		/* DL == 7 is reserved */
1356 		if (lsize == 7)
1357 			panic("Invalid dcache line size");
1358 
1359 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1360 
1361 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1362 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1363 
1364 		dcache_size = c->dcache.sets *
1365 			      c->dcache.ways *
1366 			      c->dcache.linesz;
1367 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1368 
1369 		c->options |= MIPS_CPU_PREFETCH;
1370 		break;
1371 	}
1372 
1373 	/*
1374 	 * Processor configuration sanity check for the R4000SC erratum
1375 	 * #5.	With page sizes larger than 32kB there is no possibility
1376 	 * to get a VCE exception anymore so we don't care about this
1377 	 * misconfiguration.  The case is rather theoretical anyway;
1378 	 * presumably no vendor is shipping his hardware in the "bad"
1379 	 * configuration.
1380 	 */
1381 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1382 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1383 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1384 	    PAGE_SIZE <= 0x8000)
1385 		panic("Improper R4000SC processor configuration detected");
1386 
1387 	/* compute a couple of other cache variables */
1388 	c->icache.waysize = icache_size / c->icache.ways;
1389 	c->dcache.waysize = dcache_size / c->dcache.ways;
1390 
1391 	c->icache.sets = c->icache.linesz ?
1392 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1393 	c->dcache.sets = c->dcache.linesz ?
1394 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1395 
1396 	/*
1397 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1398 	 * virtually indexed so normally would suffer from aliases.  So
1399 	 * normally they'd suffer from aliases but magic in the hardware deals
1400 	 * with that for us so we don't need to take care ourselves.
1401 	 */
1402 	switch (current_cpu_type()) {
1403 	case CPU_20KC:
1404 	case CPU_25KF:
1405 	case CPU_I6400:
1406 	case CPU_I6500:
1407 	case CPU_SB1:
1408 	case CPU_SB1A:
1409 	case CPU_XLR:
1410 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1411 		break;
1412 
1413 	case CPU_R10000:
1414 	case CPU_R12000:
1415 	case CPU_R14000:
1416 	case CPU_R16000:
1417 		break;
1418 
1419 	case CPU_74K:
1420 	case CPU_1074K:
1421 		has_74k_erratum = alias_74k_erratum(c);
1422 		fallthrough;
1423 	case CPU_M14KC:
1424 	case CPU_M14KEC:
1425 	case CPU_24K:
1426 	case CPU_34K:
1427 	case CPU_1004K:
1428 	case CPU_INTERAPTIV:
1429 	case CPU_P5600:
1430 	case CPU_PROAPTIV:
1431 	case CPU_M5150:
1432 	case CPU_QEMU_GENERIC:
1433 	case CPU_P6600:
1434 	case CPU_M6250:
1435 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1436 		    (c->icache.waysize > PAGE_SIZE))
1437 			c->icache.flags |= MIPS_CACHE_ALIASES;
1438 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1439 			/*
1440 			 * Effectively physically indexed dcache,
1441 			 * thus no virtual aliases.
1442 			*/
1443 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1444 			break;
1445 		}
1446 		fallthrough;
1447 	default:
1448 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1449 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1450 	}
1451 
1452 	/* Physically indexed caches don't suffer from virtual aliasing */
1453 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1454 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1455 
1456 	/*
1457 	 * In systems with CM the icache fills from L2 or closer caches, and
1458 	 * thus sees remote stores without needing to write them back any
1459 	 * further than that.
1460 	 */
1461 	if (mips_cm_present())
1462 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1463 
1464 	switch (current_cpu_type()) {
1465 	case CPU_20KC:
1466 		/*
1467 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1468 		 * the config register.
1469 		 */
1470 		c->icache.flags |= MIPS_CACHE_VTAG;
1471 		break;
1472 
1473 	case CPU_ALCHEMY:
1474 	case CPU_I6400:
1475 	case CPU_I6500:
1476 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1477 		break;
1478 
1479 	case CPU_BMIPS5000:
1480 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1481 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1482 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1483 		break;
1484 
1485 	case CPU_LOONGSON2EF:
1486 		/*
1487 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1488 		 * one op will act on all 4 ways
1489 		 */
1490 		c->icache.ways = 1;
1491 	}
1492 
1493 	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1494 		icache_size >> 10,
1495 		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1496 		way_string[c->icache.ways], c->icache.linesz);
1497 
1498 	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1499 		dcache_size >> 10, way_string[c->dcache.ways],
1500 		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1501 		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1502 			"cache aliases" : "no aliases",
1503 		c->dcache.linesz);
1504 }
1505 
1506 static void probe_vcache(void)
1507 {
1508 	struct cpuinfo_mips *c = &current_cpu_data;
1509 	unsigned int config2, lsize;
1510 
1511 	if (current_cpu_type() != CPU_LOONGSON64)
1512 		return;
1513 
1514 	config2 = read_c0_config2();
1515 	if ((lsize = ((config2 >> 20) & 15)))
1516 		c->vcache.linesz = 2 << lsize;
1517 	else
1518 		c->vcache.linesz = lsize;
1519 
1520 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1521 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1522 
1523 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1524 
1525 	c->vcache.waybit = 0;
1526 	c->vcache.waysize = vcache_size / c->vcache.ways;
1527 
1528 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1529 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1530 }
1531 
1532 /*
1533  * If you even _breathe_ on this function, look at the gcc output and make sure
1534  * it does not pop things on and off the stack for the cache sizing loop that
1535  * executes in KSEG1 space or else you will crash and burn badly.  You have
1536  * been warned.
1537  */
1538 static int probe_scache(void)
1539 {
1540 	unsigned long flags, addr, begin, end, pow2;
1541 	unsigned int config = read_c0_config();
1542 	struct cpuinfo_mips *c = &current_cpu_data;
1543 
1544 	if (config & CONF_SC)
1545 		return 0;
1546 
1547 	begin = (unsigned long) &_stext;
1548 	begin &= ~((4 * 1024 * 1024) - 1);
1549 	end = begin + (4 * 1024 * 1024);
1550 
1551 	/*
1552 	 * This is such a bitch, you'd think they would make it easy to do
1553 	 * this.  Away you daemons of stupidity!
1554 	 */
1555 	local_irq_save(flags);
1556 
1557 	/* Fill each size-multiple cache line with a valid tag. */
1558 	pow2 = (64 * 1024);
1559 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1560 		unsigned long *p = (unsigned long *) addr;
1561 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1562 		pow2 <<= 1;
1563 	}
1564 
1565 	/* Load first line with zero (therefore invalid) tag. */
1566 	write_c0_taglo(0);
1567 	write_c0_taghi(0);
1568 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1569 	cache_op(Index_Store_Tag_I, begin);
1570 	cache_op(Index_Store_Tag_D, begin);
1571 	cache_op(Index_Store_Tag_SD, begin);
1572 
1573 	/* Now search for the wrap around point. */
1574 	pow2 = (128 * 1024);
1575 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1576 		cache_op(Index_Load_Tag_SD, addr);
1577 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1578 		if (!read_c0_taglo())
1579 			break;
1580 		pow2 <<= 1;
1581 	}
1582 	local_irq_restore(flags);
1583 	addr -= begin;
1584 
1585 	scache_size = addr;
1586 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1587 	c->scache.ways = 1;
1588 	c->scache.waybit = 0;		/* does not matter */
1589 
1590 	return 1;
1591 }
1592 
1593 static void __init loongson2_sc_init(void)
1594 {
1595 	struct cpuinfo_mips *c = &current_cpu_data;
1596 
1597 	scache_size = 512*1024;
1598 	c->scache.linesz = 32;
1599 	c->scache.ways = 4;
1600 	c->scache.waybit = 0;
1601 	c->scache.waysize = scache_size / (c->scache.ways);
1602 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1603 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1604 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1605 
1606 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1607 }
1608 
1609 static void __init loongson3_sc_init(void)
1610 {
1611 	struct cpuinfo_mips *c = &current_cpu_data;
1612 	unsigned int config2, lsize;
1613 
1614 	config2 = read_c0_config2();
1615 	lsize = (config2 >> 4) & 15;
1616 	if (lsize)
1617 		c->scache.linesz = 2 << lsize;
1618 	else
1619 		c->scache.linesz = 0;
1620 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1621 	c->scache.ways = 1 + (config2 & 15);
1622 
1623 	scache_size = c->scache.sets *
1624 				  c->scache.ways *
1625 				  c->scache.linesz;
1626 
1627 	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1628 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1629 		scache_size *= 2;
1630 	else
1631 		scache_size *= 4;
1632 
1633 	c->scache.waybit = 0;
1634 	c->scache.waysize = scache_size / c->scache.ways;
1635 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1636 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1637 	if (scache_size)
1638 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1639 	return;
1640 }
1641 
1642 extern int r5k_sc_init(void);
1643 extern int rm7k_sc_init(void);
1644 extern int mips_sc_init(void);
1645 
1646 static void setup_scache(void)
1647 {
1648 	struct cpuinfo_mips *c = &current_cpu_data;
1649 	unsigned int config = read_c0_config();
1650 	int sc_present = 0;
1651 
1652 	/*
1653 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1654 	 * processors don't have a S-cache that would be relevant to the
1655 	 * Linux memory management.
1656 	 */
1657 	switch (current_cpu_type()) {
1658 	case CPU_R4000SC:
1659 	case CPU_R4000MC:
1660 	case CPU_R4400SC:
1661 	case CPU_R4400MC:
1662 		sc_present = run_uncached(probe_scache);
1663 		if (sc_present)
1664 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1665 		break;
1666 
1667 	case CPU_R10000:
1668 	case CPU_R12000:
1669 	case CPU_R14000:
1670 	case CPU_R16000:
1671 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1672 		c->scache.linesz = 64 << ((config >> 13) & 1);
1673 		c->scache.ways = 2;
1674 		c->scache.waybit= 0;
1675 		sc_present = 1;
1676 		break;
1677 
1678 	case CPU_R5000:
1679 	case CPU_NEVADA:
1680 #ifdef CONFIG_R5000_CPU_SCACHE
1681 		r5k_sc_init();
1682 #endif
1683 		return;
1684 
1685 	case CPU_RM7000:
1686 #ifdef CONFIG_RM7000_CPU_SCACHE
1687 		rm7k_sc_init();
1688 #endif
1689 		return;
1690 
1691 	case CPU_LOONGSON2EF:
1692 		loongson2_sc_init();
1693 		return;
1694 
1695 	case CPU_LOONGSON64:
1696 		loongson3_sc_init();
1697 		return;
1698 
1699 	case CPU_CAVIUM_OCTEON3:
1700 	case CPU_XLP:
1701 		/* don't need to worry about L2, fully coherent */
1702 		return;
1703 
1704 	default:
1705 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1706 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1707 				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1708 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1709 #ifdef CONFIG_MIPS_CPU_SCACHE
1710 			if (mips_sc_init ()) {
1711 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1712 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1713 				       scache_size >> 10,
1714 				       way_string[c->scache.ways], c->scache.linesz);
1715 			}
1716 #else
1717 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1718 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1719 #endif
1720 			return;
1721 		}
1722 		sc_present = 0;
1723 	}
1724 
1725 	if (!sc_present)
1726 		return;
1727 
1728 	/* compute a couple of other cache variables */
1729 	c->scache.waysize = scache_size / c->scache.ways;
1730 
1731 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1732 
1733 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1734 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1735 
1736 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1737 }
1738 
1739 void au1x00_fixup_config_od(void)
1740 {
1741 	/*
1742 	 * c0_config.od (bit 19) was write only (and read as 0)
1743 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1744 	 * transaction overlapping and needs to be set to fix various errata.
1745 	 */
1746 	switch (read_c0_prid()) {
1747 	case 0x00030100: /* Au1000 DA */
1748 	case 0x00030201: /* Au1000 HA */
1749 	case 0x00030202: /* Au1000 HB */
1750 	case 0x01030200: /* Au1500 AB */
1751 	/*
1752 	 * Au1100 errata actually keeps silence about this bit, so we set it
1753 	 * just in case for those revisions that require it to be set according
1754 	 * to the (now gone) cpu table.
1755 	 */
1756 	case 0x02030200: /* Au1100 AB */
1757 	case 0x02030201: /* Au1100 BA */
1758 	case 0x02030202: /* Au1100 BC */
1759 		set_c0_config(1 << 19);
1760 		break;
1761 	}
1762 }
1763 
1764 /* CP0 hazard avoidance. */
1765 #define NXP_BARRIER()							\
1766 	 __asm__ __volatile__(						\
1767 	".set noreorder\n\t"						\
1768 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1769 	".set reorder\n\t")
1770 
1771 static void nxp_pr4450_fixup_config(void)
1772 {
1773 	unsigned long config0;
1774 
1775 	config0 = read_c0_config();
1776 
1777 	/* clear all three cache coherency fields */
1778 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1779 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1780 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1781 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1782 	write_c0_config(config0);
1783 	NXP_BARRIER();
1784 }
1785 
1786 static int cca = -1;
1787 
1788 static int __init cca_setup(char *str)
1789 {
1790 	get_option(&str, &cca);
1791 
1792 	return 0;
1793 }
1794 
1795 early_param("cca", cca_setup);
1796 
1797 static void coherency_setup(void)
1798 {
1799 	if (cca < 0 || cca > 7)
1800 		cca = read_c0_config() & CONF_CM_CMASK;
1801 	_page_cachable_default = cca << _CACHE_SHIFT;
1802 
1803 	pr_debug("Using cache attribute %d\n", cca);
1804 	change_c0_config(CONF_CM_CMASK, cca);
1805 
1806 	/*
1807 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1808 	 * the coherency mode specified by the TLB; 1 means cachable
1809 	 * coherent update on write will be used.  Not all processors have
1810 	 * this bit and; some wire it to zero, others like Toshiba had the
1811 	 * silly idea of putting something else there ...
1812 	 */
1813 	switch (current_cpu_type()) {
1814 	case CPU_R4000PC:
1815 	case CPU_R4000SC:
1816 	case CPU_R4000MC:
1817 	case CPU_R4400PC:
1818 	case CPU_R4400SC:
1819 	case CPU_R4400MC:
1820 		clear_c0_config(CONF_CU);
1821 		break;
1822 	/*
1823 	 * We need to catch the early Alchemy SOCs with
1824 	 * the write-only co_config.od bit and set it back to one on:
1825 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1826 	 */
1827 	case CPU_ALCHEMY:
1828 		au1x00_fixup_config_od();
1829 		break;
1830 
1831 	case PRID_IMP_PR4450:
1832 		nxp_pr4450_fixup_config();
1833 		break;
1834 	}
1835 }
1836 
1837 static void r4k_cache_error_setup(void)
1838 {
1839 	extern char __weak except_vec2_generic;
1840 	extern char __weak except_vec2_sb1;
1841 
1842 	switch (current_cpu_type()) {
1843 	case CPU_SB1:
1844 	case CPU_SB1A:
1845 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1846 		break;
1847 
1848 	default:
1849 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1850 		break;
1851 	}
1852 }
1853 
1854 void r4k_cache_init(void)
1855 {
1856 	extern void build_clear_page(void);
1857 	extern void build_copy_page(void);
1858 	struct cpuinfo_mips *c = &current_cpu_data;
1859 
1860 	probe_pcache();
1861 	probe_vcache();
1862 	setup_scache();
1863 
1864 	r4k_blast_dcache_page_setup();
1865 	r4k_blast_dcache_page_indexed_setup();
1866 	r4k_blast_dcache_setup();
1867 	r4k_blast_icache_page_setup();
1868 	r4k_blast_icache_page_indexed_setup();
1869 	r4k_blast_icache_setup();
1870 	r4k_blast_scache_page_setup();
1871 	r4k_blast_scache_page_indexed_setup();
1872 	r4k_blast_scache_setup();
1873 	r4k_blast_scache_node_setup();
1874 #ifdef CONFIG_EVA
1875 	r4k_blast_dcache_user_page_setup();
1876 	r4k_blast_icache_user_page_setup();
1877 #endif
1878 
1879 	/*
1880 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1881 	 * This code supports virtually indexed processors and will be
1882 	 * unnecessarily inefficient on physically indexed processors.
1883 	 */
1884 	if (c->dcache.linesz && cpu_has_dc_aliases)
1885 		shm_align_mask = max_t( unsigned long,
1886 					c->dcache.sets * c->dcache.linesz - 1,
1887 					PAGE_SIZE - 1);
1888 	else
1889 		shm_align_mask = PAGE_SIZE-1;
1890 
1891 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1892 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1893 
1894 	flush_cache_all		= cache_noop;
1895 	__flush_cache_all	= r4k___flush_cache_all;
1896 	flush_cache_mm		= r4k_flush_cache_mm;
1897 	flush_cache_page	= r4k_flush_cache_page;
1898 	flush_cache_range	= r4k_flush_cache_range;
1899 
1900 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1901 
1902 	flush_icache_all	= r4k_flush_icache_all;
1903 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1904 	flush_data_cache_page	= r4k_flush_data_cache_page;
1905 	flush_icache_range	= r4k_flush_icache_range;
1906 	local_flush_icache_range	= local_r4k_flush_icache_range;
1907 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1908 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1909 
1910 #ifdef CONFIG_DMA_NONCOHERENT
1911 #ifdef CONFIG_DMA_MAYBE_COHERENT
1912 	if (coherentio == IO_COHERENCE_ENABLED ||
1913 	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1914 		_dma_cache_wback_inv	= (void *)cache_noop;
1915 		_dma_cache_wback	= (void *)cache_noop;
1916 		_dma_cache_inv		= (void *)cache_noop;
1917 	} else
1918 #endif /* CONFIG_DMA_MAYBE_COHERENT */
1919 	{
1920 		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1921 		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1922 		_dma_cache_inv		= r4k_dma_cache_inv;
1923 	}
1924 #endif /* CONFIG_DMA_NONCOHERENT */
1925 
1926 	build_clear_page();
1927 	build_copy_page();
1928 
1929 	/*
1930 	 * We want to run CMP kernels on core with and without coherent
1931 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1932 	 * or not to flush caches.
1933 	 */
1934 	local_r4k___flush_cache_all(NULL);
1935 
1936 	coherency_setup();
1937 	board_cache_error_setup = r4k_cache_error_setup;
1938 
1939 	/*
1940 	 * Per-CPU overrides
1941 	 */
1942 	switch (current_cpu_type()) {
1943 	case CPU_BMIPS4350:
1944 	case CPU_BMIPS4380:
1945 		/* No IPI is needed because all CPUs share the same D$ */
1946 		flush_data_cache_page = r4k_blast_dcache_page;
1947 		break;
1948 	case CPU_BMIPS5000:
1949 		/* We lose our superpowers if L2 is disabled */
1950 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1951 			break;
1952 
1953 		/* I$ fills from D$ just by emptying the write buffers */
1954 		flush_cache_page = (void *)b5k_instruction_hazard;
1955 		flush_cache_range = (void *)b5k_instruction_hazard;
1956 		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1957 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1958 		flush_icache_range = (void *)b5k_instruction_hazard;
1959 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1960 
1961 
1962 		/* Optimization: an L2 flush implicitly flushes the L1 */
1963 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1964 		break;
1965 	case CPU_LOONGSON64:
1966 		/* Loongson-3 maintains cache coherency by hardware */
1967 		__flush_cache_all	= cache_noop;
1968 		__flush_cache_vmap	= cache_noop;
1969 		__flush_cache_vunmap	= cache_noop;
1970 		__flush_kernel_vmap_range = (void *)cache_noop;
1971 		flush_cache_mm		= (void *)cache_noop;
1972 		flush_cache_page	= (void *)cache_noop;
1973 		flush_cache_range	= (void *)cache_noop;
1974 		flush_icache_all	= (void *)cache_noop;
1975 		flush_data_cache_page	= (void *)cache_noop;
1976 		local_flush_data_cache_page	= (void *)cache_noop;
1977 		break;
1978 	}
1979 }
1980 
1981 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1982 			       void *v)
1983 {
1984 	switch (cmd) {
1985 	case CPU_PM_ENTER_FAILED:
1986 	case CPU_PM_EXIT:
1987 		coherency_setup();
1988 		break;
1989 	}
1990 
1991 	return NOTIFY_OK;
1992 }
1993 
1994 static struct notifier_block r4k_cache_pm_notifier_block = {
1995 	.notifier_call = r4k_cache_pm_notifier,
1996 };
1997 
1998 int __init r4k_cache_init_pm(void)
1999 {
2000 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2001 }
2002 arch_initcall(r4k_cache_init_pm);
2003