xref: /linux/arch/mips/mm/c-r4k.c (revision 616500232e632dba8b03981eeccadacf2fbf1c30)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/init.h>
13 #include <linux/highmem.h>
14 #include <linux/kernel.h>
15 #include <linux/linkage.h>
16 #include <linux/preempt.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/bitops.h>
22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
23 
24 #include <asm/bcache.h>
25 #include <asm/bootinfo.h>
26 #include <asm/cache.h>
27 #include <asm/cacheops.h>
28 #include <asm/cpu.h>
29 #include <asm/cpu-features.h>
30 #include <asm/cpu-type.h>
31 #include <asm/io.h>
32 #include <asm/page.h>
33 #include <asm/r4kcache.h>
34 #include <asm/sections.h>
35 #include <asm/mmu_context.h>
36 #include <asm/cacheflush.h> /* for run_uncached() */
37 #include <asm/traps.h>
38 #include <asm/mips-cps.h>
39 
40 /*
41  * Bits describing what cache ops an SMP callback function may perform.
42  *
43  * R4K_HIT   -	Virtual user or kernel address based cache operations. The
44  *		active_mm must be checked before using user addresses, falling
45  *		back to kmap.
46  * R4K_INDEX -	Index based cache operations.
47  */
48 
49 #define R4K_HIT		BIT(0)
50 #define R4K_INDEX	BIT(1)
51 
52 /**
53  * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
54  * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
55  *
56  * Decides whether a cache op needs to be performed on every core in the system.
57  * This may change depending on the @type of cache operation, as well as the set
58  * of online CPUs, so preemption should be disabled by the caller to prevent CPU
59  * hotplug from changing the result.
60  *
61  * Returns:	1 if the cache operation @type should be done on every core in
62  *		the system.
63  *		0 if the cache operation @type is globalized and only needs to
64  *		be performed on a simple CPU.
65  */
66 static inline bool r4k_op_needs_ipi(unsigned int type)
67 {
68 	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
69 	if (type == R4K_HIT && mips_cm_present())
70 		return false;
71 
72 	/*
73 	 * Hardware doesn't globalize the required cache ops, so SMP calls may
74 	 * be needed, but only if there are foreign CPUs (non-siblings with
75 	 * separate caches).
76 	 */
77 	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
78 #ifdef CONFIG_SMP
79 	return !cpumask_empty(&cpu_foreign_map[0]);
80 #else
81 	return false;
82 #endif
83 }
84 
85 /*
86  * Special Variant of smp_call_function for use by cache functions:
87  *
88  *  o No return value
89  *  o collapses to normal function call on UP kernels
90  *  o collapses to normal function call on systems with a single shared
91  *    primary cache.
92  *  o doesn't disable interrupts on the local CPU
93  */
94 static inline void r4k_on_each_cpu(unsigned int type,
95 				   void (*func)(void *info), void *info)
96 {
97 	preempt_disable();
98 	if (r4k_op_needs_ipi(type))
99 		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
100 				       func, info, 1);
101 	func(info);
102 	preempt_enable();
103 }
104 
105 /*
106  * Must die.
107  */
108 static unsigned long icache_size __read_mostly;
109 static unsigned long dcache_size __read_mostly;
110 static unsigned long vcache_size __read_mostly;
111 static unsigned long scache_size __read_mostly;
112 
113 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
114 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
115 
116 #define R4600_HIT_CACHEOP_WAR_IMPL					\
117 do {									\
118 	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
119 	    cpu_is_r4600_v2_x())					\
120 		*(volatile unsigned long *)CKSEG1;			\
121 	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
122 		__asm__ __volatile__("nop;nop;nop;nop");		\
123 } while (0)
124 
125 static void (*r4k_blast_dcache_page)(unsigned long addr);
126 
127 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
128 {
129 	R4600_HIT_CACHEOP_WAR_IMPL;
130 	blast_dcache32_page(addr);
131 }
132 
133 static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
134 {
135 	blast_dcache64_page(addr);
136 }
137 
138 static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
139 {
140 	blast_dcache128_page(addr);
141 }
142 
143 static void r4k_blast_dcache_page_setup(void)
144 {
145 	unsigned long  dc_lsize = cpu_dcache_line_size();
146 
147 	switch (dc_lsize) {
148 	case 0:
149 		r4k_blast_dcache_page = (void *)cache_noop;
150 		break;
151 	case 16:
152 		r4k_blast_dcache_page = blast_dcache16_page;
153 		break;
154 	case 32:
155 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
156 		break;
157 	case 64:
158 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
159 		break;
160 	case 128:
161 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
162 		break;
163 	default:
164 		break;
165 	}
166 }
167 
168 #ifndef CONFIG_EVA
169 #define r4k_blast_dcache_user_page  r4k_blast_dcache_page
170 #else
171 
172 static void (*r4k_blast_dcache_user_page)(unsigned long addr);
173 
174 static void r4k_blast_dcache_user_page_setup(void)
175 {
176 	unsigned long  dc_lsize = cpu_dcache_line_size();
177 
178 	if (dc_lsize == 0)
179 		r4k_blast_dcache_user_page = (void *)cache_noop;
180 	else if (dc_lsize == 16)
181 		r4k_blast_dcache_user_page = blast_dcache16_user_page;
182 	else if (dc_lsize == 32)
183 		r4k_blast_dcache_user_page = blast_dcache32_user_page;
184 	else if (dc_lsize == 64)
185 		r4k_blast_dcache_user_page = blast_dcache64_user_page;
186 }
187 
188 #endif
189 
190 void (* r4k_blast_dcache)(void);
191 EXPORT_SYMBOL(r4k_blast_dcache);
192 
193 static void r4k_blast_dcache_setup(void)
194 {
195 	unsigned long dc_lsize = cpu_dcache_line_size();
196 
197 	if (dc_lsize == 0)
198 		r4k_blast_dcache = (void *)cache_noop;
199 	else if (dc_lsize == 16)
200 		r4k_blast_dcache = blast_dcache16;
201 	else if (dc_lsize == 32)
202 		r4k_blast_dcache = blast_dcache32;
203 	else if (dc_lsize == 64)
204 		r4k_blast_dcache = blast_dcache64;
205 	else if (dc_lsize == 128)
206 		r4k_blast_dcache = blast_dcache128;
207 }
208 
209 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
210 #define JUMP_TO_ALIGN(order) \
211 	__asm__ __volatile__( \
212 		"b\t1f\n\t" \
213 		".align\t" #order "\n\t" \
214 		"1:\n\t" \
215 		)
216 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
218 
219 static inline void blast_r4600_v1_icache32(void)
220 {
221 	unsigned long flags;
222 
223 	local_irq_save(flags);
224 	blast_icache32();
225 	local_irq_restore(flags);
226 }
227 
228 static inline void tx49_blast_icache32(void)
229 {
230 	unsigned long start = INDEX_BASE;
231 	unsigned long end = start + current_cpu_data.icache.waysize;
232 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
233 	unsigned long ws_end = current_cpu_data.icache.ways <<
234 			       current_cpu_data.icache.waybit;
235 	unsigned long ws, addr;
236 
237 	CACHE32_UNROLL32_ALIGN2;
238 	/* I'm in even chunk.  blast odd chunks */
239 	for (ws = 0; ws < ws_end; ws += ws_inc)
240 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
241 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
242 				     addr | ws, 32);
243 	CACHE32_UNROLL32_ALIGN;
244 	/* I'm in odd chunk.  blast even chunks */
245 	for (ws = 0; ws < ws_end; ws += ws_inc)
246 		for (addr = start; addr < end; addr += 0x400 * 2)
247 			cache_unroll(32, kernel_cache, Index_Invalidate_I,
248 				     addr | ws, 32);
249 }
250 
251 static void (* r4k_blast_icache_page)(unsigned long addr);
252 
253 static void r4k_blast_icache_page_setup(void)
254 {
255 	unsigned long ic_lsize = cpu_icache_line_size();
256 
257 	if (ic_lsize == 0)
258 		r4k_blast_icache_page = (void *)cache_noop;
259 	else if (ic_lsize == 16)
260 		r4k_blast_icache_page = blast_icache16_page;
261 	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
262 		r4k_blast_icache_page = loongson2_blast_icache32_page;
263 	else if (ic_lsize == 32)
264 		r4k_blast_icache_page = blast_icache32_page;
265 	else if (ic_lsize == 64)
266 		r4k_blast_icache_page = blast_icache64_page;
267 	else if (ic_lsize == 128)
268 		r4k_blast_icache_page = blast_icache128_page;
269 }
270 
271 #ifndef CONFIG_EVA
272 #define r4k_blast_icache_user_page  r4k_blast_icache_page
273 #else
274 
275 static void (*r4k_blast_icache_user_page)(unsigned long addr);
276 
277 static void r4k_blast_icache_user_page_setup(void)
278 {
279 	unsigned long ic_lsize = cpu_icache_line_size();
280 
281 	if (ic_lsize == 0)
282 		r4k_blast_icache_user_page = (void *)cache_noop;
283 	else if (ic_lsize == 16)
284 		r4k_blast_icache_user_page = blast_icache16_user_page;
285 	else if (ic_lsize == 32)
286 		r4k_blast_icache_user_page = blast_icache32_user_page;
287 	else if (ic_lsize == 64)
288 		r4k_blast_icache_user_page = blast_icache64_user_page;
289 }
290 
291 #endif
292 
293 void (* r4k_blast_icache)(void);
294 EXPORT_SYMBOL(r4k_blast_icache);
295 
296 static void r4k_blast_icache_setup(void)
297 {
298 	unsigned long ic_lsize = cpu_icache_line_size();
299 
300 	if (ic_lsize == 0)
301 		r4k_blast_icache = (void *)cache_noop;
302 	else if (ic_lsize == 16)
303 		r4k_blast_icache = blast_icache16;
304 	else if (ic_lsize == 32) {
305 		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
306 		    cpu_is_r4600_v1_x())
307 			r4k_blast_icache = blast_r4600_v1_icache32;
308 		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
309 			r4k_blast_icache = tx49_blast_icache32;
310 		else if (current_cpu_type() == CPU_LOONGSON2EF)
311 			r4k_blast_icache = loongson2_blast_icache32;
312 		else
313 			r4k_blast_icache = blast_icache32;
314 	} else if (ic_lsize == 64)
315 		r4k_blast_icache = blast_icache64;
316 	else if (ic_lsize == 128)
317 		r4k_blast_icache = blast_icache128;
318 }
319 
320 static void (* r4k_blast_scache_page)(unsigned long addr);
321 
322 static void r4k_blast_scache_page_setup(void)
323 {
324 	unsigned long sc_lsize = cpu_scache_line_size();
325 
326 	if (scache_size == 0)
327 		r4k_blast_scache_page = (void *)cache_noop;
328 	else if (sc_lsize == 16)
329 		r4k_blast_scache_page = blast_scache16_page;
330 	else if (sc_lsize == 32)
331 		r4k_blast_scache_page = blast_scache32_page;
332 	else if (sc_lsize == 64)
333 		r4k_blast_scache_page = blast_scache64_page;
334 	else if (sc_lsize == 128)
335 		r4k_blast_scache_page = blast_scache128_page;
336 }
337 
338 static void (* r4k_blast_scache)(void);
339 
340 static void r4k_blast_scache_setup(void)
341 {
342 	unsigned long sc_lsize = cpu_scache_line_size();
343 
344 	if (scache_size == 0)
345 		r4k_blast_scache = (void *)cache_noop;
346 	else if (sc_lsize == 16)
347 		r4k_blast_scache = blast_scache16;
348 	else if (sc_lsize == 32)
349 		r4k_blast_scache = blast_scache32;
350 	else if (sc_lsize == 64)
351 		r4k_blast_scache = blast_scache64;
352 	else if (sc_lsize == 128)
353 		r4k_blast_scache = blast_scache128;
354 }
355 
356 static void (*r4k_blast_scache_node)(long node);
357 
358 static void r4k_blast_scache_node_setup(void)
359 {
360 	unsigned long sc_lsize = cpu_scache_line_size();
361 
362 	if (current_cpu_type() != CPU_LOONGSON64)
363 		r4k_blast_scache_node = (void *)cache_noop;
364 	else if (sc_lsize == 16)
365 		r4k_blast_scache_node = blast_scache16_node;
366 	else if (sc_lsize == 32)
367 		r4k_blast_scache_node = blast_scache32_node;
368 	else if (sc_lsize == 64)
369 		r4k_blast_scache_node = blast_scache64_node;
370 	else if (sc_lsize == 128)
371 		r4k_blast_scache_node = blast_scache128_node;
372 }
373 
374 static inline void local_r4k___flush_cache_all(void * args)
375 {
376 	switch (current_cpu_type()) {
377 	case CPU_LOONGSON2EF:
378 	case CPU_R4000SC:
379 	case CPU_R4000MC:
380 	case CPU_R4400SC:
381 	case CPU_R4400MC:
382 	case CPU_R10000:
383 	case CPU_R12000:
384 	case CPU_R14000:
385 	case CPU_R16000:
386 		/*
387 		 * These caches are inclusive caches, that is, if something
388 		 * is not cached in the S-cache, we know it also won't be
389 		 * in one of the primary caches.
390 		 */
391 		r4k_blast_scache();
392 		break;
393 
394 	case CPU_LOONGSON64:
395 		/* Use get_ebase_cpunum() for both NUMA=y/n */
396 		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
397 		break;
398 
399 	case CPU_BMIPS5000:
400 		r4k_blast_scache();
401 		__sync();
402 		break;
403 
404 	default:
405 		r4k_blast_dcache();
406 		r4k_blast_icache();
407 		break;
408 	}
409 }
410 
411 static void r4k___flush_cache_all(void)
412 {
413 	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
414 }
415 
416 /**
417  * has_valid_asid() - Determine if an mm already has an ASID.
418  * @mm:		Memory map.
419  * @type:	R4K_HIT or R4K_INDEX, type of cache op.
420  *
421  * Determines whether @mm already has an ASID on any of the CPUs which cache ops
422  * of type @type within an r4k_on_each_cpu() call will affect. If
423  * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
424  * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
425  * will need to be checked.
426  *
427  * Must be called in non-preemptive context.
428  *
429  * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
430  *		0 otherwise.
431  */
432 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
433 {
434 	unsigned int i;
435 	const cpumask_t *mask = cpu_present_mask;
436 
437 	if (cpu_has_mmid)
438 		return cpu_context(0, mm) != 0;
439 
440 	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
441 #ifdef CONFIG_SMP
442 	/*
443 	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
444 	 * each foreign core, so we only need to worry about siblings.
445 	 * Otherwise we need to worry about all present CPUs.
446 	 */
447 	if (r4k_op_needs_ipi(type))
448 		mask = &cpu_sibling_map[smp_processor_id()];
449 #endif
450 	for_each_cpu(i, mask)
451 		if (cpu_context(i, mm))
452 			return 1;
453 	return 0;
454 }
455 
456 static void r4k__flush_cache_vmap(void)
457 {
458 	r4k_blast_dcache();
459 }
460 
461 static void r4k__flush_cache_vunmap(void)
462 {
463 	r4k_blast_dcache();
464 }
465 
466 /*
467  * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
468  * whole caches when vma is executable.
469  */
470 static inline void local_r4k_flush_cache_range(void * args)
471 {
472 	struct vm_area_struct *vma = args;
473 	int exec = vma->vm_flags & VM_EXEC;
474 
475 	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
476 		return;
477 
478 	/*
479 	 * If dcache can alias, we must blast it since mapping is changing.
480 	 * If executable, we must ensure any dirty lines are written back far
481 	 * enough to be visible to icache.
482 	 */
483 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
484 		r4k_blast_dcache();
485 	/* If executable, blast stale lines from icache */
486 	if (exec)
487 		r4k_blast_icache();
488 }
489 
490 static void r4k_flush_cache_range(struct vm_area_struct *vma,
491 	unsigned long start, unsigned long end)
492 {
493 	int exec = vma->vm_flags & VM_EXEC;
494 
495 	if (cpu_has_dc_aliases || exec)
496 		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
497 }
498 
499 static inline void local_r4k_flush_cache_mm(void * args)
500 {
501 	struct mm_struct *mm = args;
502 
503 	if (!has_valid_asid(mm, R4K_INDEX))
504 		return;
505 
506 	/*
507 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
508 	 * only flush the primary caches but R1x000 behave sane ...
509 	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
510 	 * caches, so we can bail out early.
511 	 */
512 	if (current_cpu_type() == CPU_R4000SC ||
513 	    current_cpu_type() == CPU_R4000MC ||
514 	    current_cpu_type() == CPU_R4400SC ||
515 	    current_cpu_type() == CPU_R4400MC) {
516 		r4k_blast_scache();
517 		return;
518 	}
519 
520 	r4k_blast_dcache();
521 }
522 
523 static void r4k_flush_cache_mm(struct mm_struct *mm)
524 {
525 	if (!cpu_has_dc_aliases)
526 		return;
527 
528 	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
529 }
530 
531 struct flush_cache_page_args {
532 	struct vm_area_struct *vma;
533 	unsigned long addr;
534 	unsigned long pfn;
535 };
536 
537 static inline void local_r4k_flush_cache_page(void *args)
538 {
539 	struct flush_cache_page_args *fcp_args = args;
540 	struct vm_area_struct *vma = fcp_args->vma;
541 	unsigned long addr = fcp_args->addr;
542 	struct page *page = pfn_to_page(fcp_args->pfn);
543 	int exec = vma->vm_flags & VM_EXEC;
544 	struct mm_struct *mm = vma->vm_mm;
545 	int map_coherent = 0;
546 	pmd_t *pmdp;
547 	pte_t *ptep;
548 	void *vaddr;
549 
550 	/*
551 	 * If owns no valid ASID yet, cannot possibly have gotten
552 	 * this page into the cache.
553 	 */
554 	if (!has_valid_asid(mm, R4K_HIT))
555 		return;
556 
557 	addr &= PAGE_MASK;
558 	pmdp = pmd_off(mm, addr);
559 	ptep = pte_offset_kernel(pmdp, addr);
560 
561 	/*
562 	 * If the page isn't marked valid, the page cannot possibly be
563 	 * in the cache.
564 	 */
565 	if (!(pte_present(*ptep)))
566 		return;
567 
568 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
569 		vaddr = NULL;
570 	else {
571 		/*
572 		 * Use kmap_coherent or kmap_atomic to do flushes for
573 		 * another ASID than the current one.
574 		 */
575 		map_coherent = (cpu_has_dc_aliases &&
576 				page_mapcount(page) &&
577 				!Page_dcache_dirty(page));
578 		if (map_coherent)
579 			vaddr = kmap_coherent(page, addr);
580 		else
581 			vaddr = kmap_atomic(page);
582 		addr = (unsigned long)vaddr;
583 	}
584 
585 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
586 		vaddr ? r4k_blast_dcache_page(addr) :
587 			r4k_blast_dcache_user_page(addr);
588 		if (exec && !cpu_icache_snoops_remote_store)
589 			r4k_blast_scache_page(addr);
590 	}
591 	if (exec) {
592 		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
593 			drop_mmu_context(mm);
594 		} else
595 			vaddr ? r4k_blast_icache_page(addr) :
596 				r4k_blast_icache_user_page(addr);
597 	}
598 
599 	if (vaddr) {
600 		if (map_coherent)
601 			kunmap_coherent();
602 		else
603 			kunmap_atomic(vaddr);
604 	}
605 }
606 
607 static void r4k_flush_cache_page(struct vm_area_struct *vma,
608 	unsigned long addr, unsigned long pfn)
609 {
610 	struct flush_cache_page_args args;
611 
612 	args.vma = vma;
613 	args.addr = addr;
614 	args.pfn = pfn;
615 
616 	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
617 }
618 
619 static inline void local_r4k_flush_data_cache_page(void * addr)
620 {
621 	r4k_blast_dcache_page((unsigned long) addr);
622 }
623 
624 static void r4k_flush_data_cache_page(unsigned long addr)
625 {
626 	if (in_atomic())
627 		local_r4k_flush_data_cache_page((void *)addr);
628 	else
629 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
630 				(void *) addr);
631 }
632 
633 struct flush_icache_range_args {
634 	unsigned long start;
635 	unsigned long end;
636 	unsigned int type;
637 	bool user;
638 };
639 
640 static inline void __local_r4k_flush_icache_range(unsigned long start,
641 						  unsigned long end,
642 						  unsigned int type,
643 						  bool user)
644 {
645 	if (!cpu_has_ic_fills_f_dc) {
646 		if (type == R4K_INDEX ||
647 		    (type & R4K_INDEX && end - start >= dcache_size)) {
648 			r4k_blast_dcache();
649 		} else {
650 			R4600_HIT_CACHEOP_WAR_IMPL;
651 			if (user)
652 				protected_blast_dcache_range(start, end);
653 			else
654 				blast_dcache_range(start, end);
655 		}
656 	}
657 
658 	if (type == R4K_INDEX ||
659 	    (type & R4K_INDEX && end - start > icache_size))
660 		r4k_blast_icache();
661 	else {
662 		switch (boot_cpu_type()) {
663 		case CPU_LOONGSON2EF:
664 			protected_loongson2_blast_icache_range(start, end);
665 			break;
666 
667 		default:
668 			if (user)
669 				protected_blast_icache_range(start, end);
670 			else
671 				blast_icache_range(start, end);
672 			break;
673 		}
674 	}
675 }
676 
677 static inline void local_r4k_flush_icache_range(unsigned long start,
678 						unsigned long end)
679 {
680 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
681 }
682 
683 static inline void local_r4k_flush_icache_user_range(unsigned long start,
684 						     unsigned long end)
685 {
686 	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
687 }
688 
689 static inline void local_r4k_flush_icache_range_ipi(void *args)
690 {
691 	struct flush_icache_range_args *fir_args = args;
692 	unsigned long start = fir_args->start;
693 	unsigned long end = fir_args->end;
694 	unsigned int type = fir_args->type;
695 	bool user = fir_args->user;
696 
697 	__local_r4k_flush_icache_range(start, end, type, user);
698 }
699 
700 static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
701 				     bool user)
702 {
703 	struct flush_icache_range_args args;
704 	unsigned long size, cache_size;
705 
706 	args.start = start;
707 	args.end = end;
708 	args.type = R4K_HIT | R4K_INDEX;
709 	args.user = user;
710 
711 	/*
712 	 * Indexed cache ops require an SMP call.
713 	 * Consider if that can or should be avoided.
714 	 */
715 	preempt_disable();
716 	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
717 		/*
718 		 * If address-based cache ops don't require an SMP call, then
719 		 * use them exclusively for small flushes.
720 		 */
721 		size = end - start;
722 		cache_size = icache_size;
723 		if (!cpu_has_ic_fills_f_dc) {
724 			size *= 2;
725 			cache_size += dcache_size;
726 		}
727 		if (size <= cache_size)
728 			args.type &= ~R4K_INDEX;
729 	}
730 	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
731 	preempt_enable();
732 	instruction_hazard();
733 }
734 
735 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
736 {
737 	return __r4k_flush_icache_range(start, end, false);
738 }
739 
740 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
741 {
742 	return __r4k_flush_icache_range(start, end, true);
743 }
744 
745 #ifdef CONFIG_DMA_NONCOHERENT
746 
747 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
748 {
749 	/* Catch bad driver code */
750 	if (WARN_ON(size == 0))
751 		return;
752 
753 	preempt_disable();
754 	if (cpu_has_inclusive_pcaches) {
755 		if (size >= scache_size) {
756 			if (current_cpu_type() != CPU_LOONGSON64)
757 				r4k_blast_scache();
758 			else
759 				r4k_blast_scache_node(pa_to_nid(addr));
760 		} else {
761 			blast_scache_range(addr, addr + size);
762 		}
763 		preempt_enable();
764 		__sync();
765 		return;
766 	}
767 
768 	/*
769 	 * Either no secondary cache or the available caches don't have the
770 	 * subset property so we have to flush the primary caches
771 	 * explicitly.
772 	 * If we would need IPI to perform an INDEX-type operation, then
773 	 * we have to use the HIT-type alternative as IPI cannot be used
774 	 * here due to interrupts possibly being disabled.
775 	 */
776 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
777 		r4k_blast_dcache();
778 	} else {
779 		R4600_HIT_CACHEOP_WAR_IMPL;
780 		blast_dcache_range(addr, addr + size);
781 	}
782 	preempt_enable();
783 
784 	bc_wback_inv(addr, size);
785 	__sync();
786 }
787 
788 static void prefetch_cache_inv(unsigned long addr, unsigned long size)
789 {
790 	unsigned int linesz = cpu_scache_line_size();
791 	unsigned long addr0 = addr, addr1;
792 
793 	addr0 &= ~(linesz - 1);
794 	addr1 = (addr0 + size - 1) & ~(linesz - 1);
795 
796 	protected_writeback_scache_line(addr0);
797 	if (likely(addr1 != addr0))
798 		protected_writeback_scache_line(addr1);
799 	else
800 		return;
801 
802 	addr0 += linesz;
803 	if (likely(addr1 != addr0))
804 		protected_writeback_scache_line(addr0);
805 	else
806 		return;
807 
808 	addr1 -= linesz;
809 	if (likely(addr1 > addr0))
810 		protected_writeback_scache_line(addr0);
811 }
812 
813 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
814 {
815 	/* Catch bad driver code */
816 	if (WARN_ON(size == 0))
817 		return;
818 
819 	preempt_disable();
820 
821 	if (current_cpu_type() == CPU_BMIPS5000)
822 		prefetch_cache_inv(addr, size);
823 
824 	if (cpu_has_inclusive_pcaches) {
825 		if (size >= scache_size) {
826 			if (current_cpu_type() != CPU_LOONGSON64)
827 				r4k_blast_scache();
828 			else
829 				r4k_blast_scache_node(pa_to_nid(addr));
830 		} else {
831 			/*
832 			 * There is no clearly documented alignment requirement
833 			 * for the cache instruction on MIPS processors and
834 			 * some processors, among them the RM5200 and RM7000
835 			 * QED processors will throw an address error for cache
836 			 * hit ops with insufficient alignment.	 Solved by
837 			 * aligning the address to cache line size.
838 			 */
839 			blast_inv_scache_range(addr, addr + size);
840 		}
841 		preempt_enable();
842 		__sync();
843 		return;
844 	}
845 
846 	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
847 		r4k_blast_dcache();
848 	} else {
849 		R4600_HIT_CACHEOP_WAR_IMPL;
850 		blast_inv_dcache_range(addr, addr + size);
851 	}
852 	preempt_enable();
853 
854 	bc_inv(addr, size);
855 	__sync();
856 }
857 #endif /* CONFIG_DMA_NONCOHERENT */
858 
859 static void r4k_flush_icache_all(void)
860 {
861 	if (cpu_has_vtag_icache)
862 		r4k_blast_icache();
863 }
864 
865 struct flush_kernel_vmap_range_args {
866 	unsigned long	vaddr;
867 	int		size;
868 };
869 
870 static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
871 {
872 	/*
873 	 * Aliases only affect the primary caches so don't bother with
874 	 * S-caches or T-caches.
875 	 */
876 	r4k_blast_dcache();
877 }
878 
879 static inline void local_r4k_flush_kernel_vmap_range(void *args)
880 {
881 	struct flush_kernel_vmap_range_args *vmra = args;
882 	unsigned long vaddr = vmra->vaddr;
883 	int size = vmra->size;
884 
885 	/*
886 	 * Aliases only affect the primary caches so don't bother with
887 	 * S-caches or T-caches.
888 	 */
889 	R4600_HIT_CACHEOP_WAR_IMPL;
890 	blast_dcache_range(vaddr, vaddr + size);
891 }
892 
893 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
894 {
895 	struct flush_kernel_vmap_range_args args;
896 
897 	args.vaddr = (unsigned long) vaddr;
898 	args.size = size;
899 
900 	if (size >= dcache_size)
901 		r4k_on_each_cpu(R4K_INDEX,
902 				local_r4k_flush_kernel_vmap_range_index, NULL);
903 	else
904 		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
905 				&args);
906 }
907 
908 static inline void rm7k_erratum31(void)
909 {
910 	const unsigned long ic_lsize = 32;
911 	unsigned long addr;
912 
913 	/* RM7000 erratum #31. The icache is screwed at startup. */
914 	write_c0_taglo(0);
915 	write_c0_taghi(0);
916 
917 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
918 		__asm__ __volatile__ (
919 			".set push\n\t"
920 			".set noreorder\n\t"
921 			".set mips3\n\t"
922 			"cache\t%1, 0(%0)\n\t"
923 			"cache\t%1, 0x1000(%0)\n\t"
924 			"cache\t%1, 0x2000(%0)\n\t"
925 			"cache\t%1, 0x3000(%0)\n\t"
926 			"cache\t%2, 0(%0)\n\t"
927 			"cache\t%2, 0x1000(%0)\n\t"
928 			"cache\t%2, 0x2000(%0)\n\t"
929 			"cache\t%2, 0x3000(%0)\n\t"
930 			"cache\t%1, 0(%0)\n\t"
931 			"cache\t%1, 0x1000(%0)\n\t"
932 			"cache\t%1, 0x2000(%0)\n\t"
933 			"cache\t%1, 0x3000(%0)\n\t"
934 			".set pop\n"
935 			:
936 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
937 	}
938 }
939 
940 static inline int alias_74k_erratum(struct cpuinfo_mips *c)
941 {
942 	unsigned int imp = c->processor_id & PRID_IMP_MASK;
943 	unsigned int rev = c->processor_id & PRID_REV_MASK;
944 	int present = 0;
945 
946 	/*
947 	 * Early versions of the 74K do not update the cache tags on a
948 	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
949 	 * aliases.  In this case it is better to treat the cache as always
950 	 * having aliases.  Also disable the synonym tag update feature
951 	 * where available.  In this case no opportunistic tag update will
952 	 * happen where a load causes a virtual address miss but a physical
953 	 * address hit during a D-cache look-up.
954 	 */
955 	switch (imp) {
956 	case PRID_IMP_74K:
957 		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
958 			present = 1;
959 		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
960 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
961 		break;
962 	case PRID_IMP_1074K:
963 		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
964 			present = 1;
965 			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
966 		}
967 		break;
968 	default:
969 		BUG();
970 	}
971 
972 	return present;
973 }
974 
975 static void b5k_instruction_hazard(void)
976 {
977 	__sync();
978 	__sync();
979 	__asm__ __volatile__(
980 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
981 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
982 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
983 	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
984 	: : : "memory");
985 }
986 
987 static char *way_string[] = { NULL, "direct mapped", "2-way",
988 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
989 	"9-way", "10-way", "11-way", "12-way",
990 	"13-way", "14-way", "15-way", "16-way",
991 };
992 
993 static void probe_pcache(void)
994 {
995 	struct cpuinfo_mips *c = &current_cpu_data;
996 	unsigned int config = read_c0_config();
997 	unsigned int prid = read_c0_prid();
998 	int has_74k_erratum = 0;
999 	unsigned long config1;
1000 	unsigned int lsize;
1001 
1002 	switch (current_cpu_type()) {
1003 	case CPU_R4600:			/* QED style two way caches? */
1004 	case CPU_R4700:
1005 	case CPU_R5000:
1006 	case CPU_NEVADA:
1007 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1008 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1009 		c->icache.ways = 2;
1010 		c->icache.waybit = __ffs(icache_size/2);
1011 
1012 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1013 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1014 		c->dcache.ways = 2;
1015 		c->dcache.waybit= __ffs(dcache_size/2);
1016 
1017 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1018 		break;
1019 
1020 	case CPU_R5500:
1021 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1022 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1023 		c->icache.ways = 2;
1024 		c->icache.waybit= 0;
1025 
1026 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1027 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1028 		c->dcache.ways = 2;
1029 		c->dcache.waybit = 0;
1030 
1031 		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1032 		break;
1033 
1034 	case CPU_TX49XX:
1035 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1036 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1037 		c->icache.ways = 4;
1038 		c->icache.waybit= 0;
1039 
1040 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1041 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1042 		c->dcache.ways = 4;
1043 		c->dcache.waybit = 0;
1044 
1045 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1046 		c->options |= MIPS_CPU_PREFETCH;
1047 		break;
1048 
1049 	case CPU_R4000PC:
1050 	case CPU_R4000SC:
1051 	case CPU_R4000MC:
1052 	case CPU_R4400PC:
1053 	case CPU_R4400SC:
1054 	case CPU_R4400MC:
1055 	case CPU_R4300:
1056 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1057 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1058 		c->icache.ways = 1;
1059 		c->icache.waybit = 0;	/* doesn't matter */
1060 
1061 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1062 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1063 		c->dcache.ways = 1;
1064 		c->dcache.waybit = 0;	/* does not matter */
1065 
1066 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1067 		break;
1068 
1069 	case CPU_R10000:
1070 	case CPU_R12000:
1071 	case CPU_R14000:
1072 	case CPU_R16000:
1073 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1074 		c->icache.linesz = 64;
1075 		c->icache.ways = 2;
1076 		c->icache.waybit = 0;
1077 
1078 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1079 		c->dcache.linesz = 32;
1080 		c->dcache.ways = 2;
1081 		c->dcache.waybit = 0;
1082 
1083 		c->options |= MIPS_CPU_PREFETCH;
1084 		break;
1085 
1086 	case CPU_RM7000:
1087 		rm7k_erratum31();
1088 
1089 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1090 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1091 		c->icache.ways = 4;
1092 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1093 
1094 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1095 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1096 		c->dcache.ways = 4;
1097 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1098 
1099 		c->options |= MIPS_CPU_CACHE_CDEX_P;
1100 		c->options |= MIPS_CPU_PREFETCH;
1101 		break;
1102 
1103 	case CPU_LOONGSON2EF:
1104 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1105 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1106 		if (prid & 0x3)
1107 			c->icache.ways = 4;
1108 		else
1109 			c->icache.ways = 2;
1110 		c->icache.waybit = 0;
1111 
1112 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1113 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1114 		if (prid & 0x3)
1115 			c->dcache.ways = 4;
1116 		else
1117 			c->dcache.ways = 2;
1118 		c->dcache.waybit = 0;
1119 		break;
1120 
1121 	case CPU_LOONGSON64:
1122 		config1 = read_c0_config1();
1123 		lsize = (config1 >> 19) & 7;
1124 		if (lsize)
1125 			c->icache.linesz = 2 << lsize;
1126 		else
1127 			c->icache.linesz = 0;
1128 		c->icache.sets = 64 << ((config1 >> 22) & 7);
1129 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1130 		icache_size = c->icache.sets *
1131 					  c->icache.ways *
1132 					  c->icache.linesz;
1133 		c->icache.waybit = 0;
1134 
1135 		lsize = (config1 >> 10) & 7;
1136 		if (lsize)
1137 			c->dcache.linesz = 2 << lsize;
1138 		else
1139 			c->dcache.linesz = 0;
1140 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1141 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1142 		dcache_size = c->dcache.sets *
1143 					  c->dcache.ways *
1144 					  c->dcache.linesz;
1145 		c->dcache.waybit = 0;
1146 		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1147 				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1148 				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1149 			c->options |= MIPS_CPU_PREFETCH;
1150 		break;
1151 
1152 	case CPU_CAVIUM_OCTEON3:
1153 		/* For now lie about the number of ways. */
1154 		c->icache.linesz = 128;
1155 		c->icache.sets = 16;
1156 		c->icache.ways = 8;
1157 		c->icache.flags |= MIPS_CACHE_VTAG;
1158 		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1159 
1160 		c->dcache.linesz = 128;
1161 		c->dcache.ways = 8;
1162 		c->dcache.sets = 8;
1163 		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1164 		c->options |= MIPS_CPU_PREFETCH;
1165 		break;
1166 
1167 	default:
1168 		if (!(config & MIPS_CONF_M))
1169 			panic("Don't know how to probe P-caches on this cpu.");
1170 
1171 		/*
1172 		 * So we seem to be a MIPS32 or MIPS64 CPU
1173 		 * So let's probe the I-cache ...
1174 		 */
1175 		config1 = read_c0_config1();
1176 
1177 		lsize = (config1 >> 19) & 7;
1178 
1179 		/* IL == 7 is reserved */
1180 		if (lsize == 7)
1181 			panic("Invalid icache line size");
1182 
1183 		c->icache.linesz = lsize ? 2 << lsize : 0;
1184 
1185 		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1186 		c->icache.ways = 1 + ((config1 >> 16) & 7);
1187 
1188 		icache_size = c->icache.sets *
1189 			      c->icache.ways *
1190 			      c->icache.linesz;
1191 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1192 
1193 		if (config & MIPS_CONF_VI)
1194 			c->icache.flags |= MIPS_CACHE_VTAG;
1195 
1196 		/*
1197 		 * Now probe the MIPS32 / MIPS64 data cache.
1198 		 */
1199 		c->dcache.flags = 0;
1200 
1201 		lsize = (config1 >> 10) & 7;
1202 
1203 		/* DL == 7 is reserved */
1204 		if (lsize == 7)
1205 			panic("Invalid dcache line size");
1206 
1207 		c->dcache.linesz = lsize ? 2 << lsize : 0;
1208 
1209 		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1210 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1211 
1212 		dcache_size = c->dcache.sets *
1213 			      c->dcache.ways *
1214 			      c->dcache.linesz;
1215 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1216 
1217 		c->options |= MIPS_CPU_PREFETCH;
1218 		break;
1219 	}
1220 
1221 	/*
1222 	 * Processor configuration sanity check for the R4000SC erratum
1223 	 * #5.	With page sizes larger than 32kB there is no possibility
1224 	 * to get a VCE exception anymore so we don't care about this
1225 	 * misconfiguration.  The case is rather theoretical anyway;
1226 	 * presumably no vendor is shipping his hardware in the "bad"
1227 	 * configuration.
1228 	 */
1229 	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1230 	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1231 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1232 	    PAGE_SIZE <= 0x8000)
1233 		panic("Improper R4000SC processor configuration detected");
1234 
1235 	/* compute a couple of other cache variables */
1236 	c->icache.waysize = icache_size / c->icache.ways;
1237 	c->dcache.waysize = dcache_size / c->dcache.ways;
1238 
1239 	c->icache.sets = c->icache.linesz ?
1240 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1241 	c->dcache.sets = c->dcache.linesz ?
1242 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1243 
1244 	/*
1245 	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1246 	 * virtually indexed so normally would suffer from aliases.  So
1247 	 * normally they'd suffer from aliases but magic in the hardware deals
1248 	 * with that for us so we don't need to take care ourselves.
1249 	 */
1250 	switch (current_cpu_type()) {
1251 	case CPU_20KC:
1252 	case CPU_25KF:
1253 	case CPU_I6400:
1254 	case CPU_I6500:
1255 	case CPU_SB1:
1256 	case CPU_SB1A:
1257 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1258 		break;
1259 
1260 	case CPU_R10000:
1261 	case CPU_R12000:
1262 	case CPU_R14000:
1263 	case CPU_R16000:
1264 		break;
1265 
1266 	case CPU_74K:
1267 	case CPU_1074K:
1268 		has_74k_erratum = alias_74k_erratum(c);
1269 		fallthrough;
1270 	case CPU_M14KC:
1271 	case CPU_M14KEC:
1272 	case CPU_24K:
1273 	case CPU_34K:
1274 	case CPU_1004K:
1275 	case CPU_INTERAPTIV:
1276 	case CPU_P5600:
1277 	case CPU_PROAPTIV:
1278 	case CPU_M5150:
1279 	case CPU_QEMU_GENERIC:
1280 	case CPU_P6600:
1281 	case CPU_M6250:
1282 		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1283 		    (c->icache.waysize > PAGE_SIZE))
1284 			c->icache.flags |= MIPS_CACHE_ALIASES;
1285 		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1286 			/*
1287 			 * Effectively physically indexed dcache,
1288 			 * thus no virtual aliases.
1289 			*/
1290 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1291 			break;
1292 		}
1293 		fallthrough;
1294 	default:
1295 		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1296 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1297 	}
1298 
1299 	/* Physically indexed caches don't suffer from virtual aliasing */
1300 	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1301 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1302 
1303 	/*
1304 	 * In systems with CM the icache fills from L2 or closer caches, and
1305 	 * thus sees remote stores without needing to write them back any
1306 	 * further than that.
1307 	 */
1308 	if (mips_cm_present())
1309 		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1310 
1311 	switch (current_cpu_type()) {
1312 	case CPU_20KC:
1313 		/*
1314 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1315 		 * the config register.
1316 		 */
1317 		c->icache.flags |= MIPS_CACHE_VTAG;
1318 		break;
1319 
1320 	case CPU_ALCHEMY:
1321 	case CPU_I6400:
1322 	case CPU_I6500:
1323 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1324 		break;
1325 
1326 	case CPU_BMIPS5000:
1327 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1328 		/* Cache aliases are handled in hardware; allow HIGHMEM */
1329 		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1330 		break;
1331 
1332 	case CPU_LOONGSON2EF:
1333 		/*
1334 		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1335 		 * one op will act on all 4 ways
1336 		 */
1337 		c->icache.ways = 1;
1338 	}
1339 
1340 	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1341 		icache_size >> 10,
1342 		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1343 		way_string[c->icache.ways], c->icache.linesz);
1344 
1345 	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1346 		dcache_size >> 10, way_string[c->dcache.ways],
1347 		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1348 		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1349 			"cache aliases" : "no aliases",
1350 		c->dcache.linesz);
1351 }
1352 
1353 static void probe_vcache(void)
1354 {
1355 	struct cpuinfo_mips *c = &current_cpu_data;
1356 	unsigned int config2, lsize;
1357 
1358 	if (current_cpu_type() != CPU_LOONGSON64)
1359 		return;
1360 
1361 	config2 = read_c0_config2();
1362 	if ((lsize = ((config2 >> 20) & 15)))
1363 		c->vcache.linesz = 2 << lsize;
1364 	else
1365 		c->vcache.linesz = lsize;
1366 
1367 	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1368 	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1369 
1370 	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1371 
1372 	c->vcache.waybit = 0;
1373 	c->vcache.waysize = vcache_size / c->vcache.ways;
1374 
1375 	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1376 		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1377 }
1378 
1379 /*
1380  * If you even _breathe_ on this function, look at the gcc output and make sure
1381  * it does not pop things on and off the stack for the cache sizing loop that
1382  * executes in KSEG1 space or else you will crash and burn badly.  You have
1383  * been warned.
1384  */
1385 static int probe_scache(void)
1386 {
1387 	unsigned long flags, addr, begin, end, pow2;
1388 	unsigned int config = read_c0_config();
1389 	struct cpuinfo_mips *c = &current_cpu_data;
1390 
1391 	if (config & CONF_SC)
1392 		return 0;
1393 
1394 	begin = (unsigned long) &_stext;
1395 	begin &= ~((4 * 1024 * 1024) - 1);
1396 	end = begin + (4 * 1024 * 1024);
1397 
1398 	/*
1399 	 * This is such a bitch, you'd think they would make it easy to do
1400 	 * this.  Away you daemons of stupidity!
1401 	 */
1402 	local_irq_save(flags);
1403 
1404 	/* Fill each size-multiple cache line with a valid tag. */
1405 	pow2 = (64 * 1024);
1406 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1407 		unsigned long *p = (unsigned long *) addr;
1408 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1409 		pow2 <<= 1;
1410 	}
1411 
1412 	/* Load first line with zero (therefore invalid) tag. */
1413 	write_c0_taglo(0);
1414 	write_c0_taghi(0);
1415 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1416 	cache_op(Index_Store_Tag_I, begin);
1417 	cache_op(Index_Store_Tag_D, begin);
1418 	cache_op(Index_Store_Tag_SD, begin);
1419 
1420 	/* Now search for the wrap around point. */
1421 	pow2 = (128 * 1024);
1422 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1423 		cache_op(Index_Load_Tag_SD, addr);
1424 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1425 		if (!read_c0_taglo())
1426 			break;
1427 		pow2 <<= 1;
1428 	}
1429 	local_irq_restore(flags);
1430 	addr -= begin;
1431 
1432 	scache_size = addr;
1433 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1434 	c->scache.ways = 1;
1435 	c->scache.waybit = 0;		/* does not matter */
1436 
1437 	return 1;
1438 }
1439 
1440 static void loongson2_sc_init(void)
1441 {
1442 	struct cpuinfo_mips *c = &current_cpu_data;
1443 
1444 	scache_size = 512*1024;
1445 	c->scache.linesz = 32;
1446 	c->scache.ways = 4;
1447 	c->scache.waybit = 0;
1448 	c->scache.waysize = scache_size / (c->scache.ways);
1449 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1450 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1451 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1452 
1453 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1454 }
1455 
1456 static void loongson3_sc_init(void)
1457 {
1458 	struct cpuinfo_mips *c = &current_cpu_data;
1459 	unsigned int config2, lsize;
1460 
1461 	config2 = read_c0_config2();
1462 	lsize = (config2 >> 4) & 15;
1463 	if (lsize)
1464 		c->scache.linesz = 2 << lsize;
1465 	else
1466 		c->scache.linesz = 0;
1467 	c->scache.sets = 64 << ((config2 >> 8) & 15);
1468 	c->scache.ways = 1 + (config2 & 15);
1469 
1470 	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1471 	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1472 		c->scache.sets *= 2;
1473 	else
1474 		c->scache.sets *= 4;
1475 
1476 	scache_size = c->scache.sets * c->scache.ways * c->scache.linesz;
1477 
1478 	c->scache.waybit = 0;
1479 	c->scache.waysize = scache_size / c->scache.ways;
1480 	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1481 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1482 	if (scache_size)
1483 		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1484 	return;
1485 }
1486 
1487 extern int r5k_sc_init(void);
1488 extern int rm7k_sc_init(void);
1489 extern int mips_sc_init(void);
1490 
1491 static void setup_scache(void)
1492 {
1493 	struct cpuinfo_mips *c = &current_cpu_data;
1494 	unsigned int config = read_c0_config();
1495 	int sc_present = 0;
1496 
1497 	/*
1498 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1499 	 * processors don't have a S-cache that would be relevant to the
1500 	 * Linux memory management.
1501 	 */
1502 	switch (current_cpu_type()) {
1503 	case CPU_R4000SC:
1504 	case CPU_R4000MC:
1505 	case CPU_R4400SC:
1506 	case CPU_R4400MC:
1507 		sc_present = run_uncached(probe_scache);
1508 		if (sc_present)
1509 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1510 		break;
1511 
1512 	case CPU_R10000:
1513 	case CPU_R12000:
1514 	case CPU_R14000:
1515 	case CPU_R16000:
1516 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1517 		c->scache.linesz = 64 << ((config >> 13) & 1);
1518 		c->scache.ways = 2;
1519 		c->scache.waybit= 0;
1520 		sc_present = 1;
1521 		break;
1522 
1523 	case CPU_R5000:
1524 	case CPU_NEVADA:
1525 #ifdef CONFIG_R5000_CPU_SCACHE
1526 		r5k_sc_init();
1527 #endif
1528 		return;
1529 
1530 	case CPU_RM7000:
1531 #ifdef CONFIG_RM7000_CPU_SCACHE
1532 		rm7k_sc_init();
1533 #endif
1534 		return;
1535 
1536 	case CPU_LOONGSON2EF:
1537 		loongson2_sc_init();
1538 		return;
1539 
1540 	case CPU_LOONGSON64:
1541 		loongson3_sc_init();
1542 		return;
1543 
1544 	case CPU_CAVIUM_OCTEON3:
1545 		/* don't need to worry about L2, fully coherent */
1546 		return;
1547 
1548 	default:
1549 		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1550 				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1551 				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1552 				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1553 #ifdef CONFIG_MIPS_CPU_SCACHE
1554 			if (mips_sc_init ()) {
1555 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1556 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1557 				       scache_size >> 10,
1558 				       way_string[c->scache.ways], c->scache.linesz);
1559 
1560 				if (current_cpu_type() == CPU_BMIPS5000)
1561 					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1562 			}
1563 
1564 #else
1565 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1566 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1567 #endif
1568 			return;
1569 		}
1570 		sc_present = 0;
1571 	}
1572 
1573 	if (!sc_present)
1574 		return;
1575 
1576 	/* compute a couple of other cache variables */
1577 	c->scache.waysize = scache_size / c->scache.ways;
1578 
1579 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1580 
1581 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1582 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1583 
1584 	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1585 }
1586 
1587 void au1x00_fixup_config_od(void)
1588 {
1589 	/*
1590 	 * c0_config.od (bit 19) was write only (and read as 0)
1591 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1592 	 * transaction overlapping and needs to be set to fix various errata.
1593 	 */
1594 	switch (read_c0_prid()) {
1595 	case 0x00030100: /* Au1000 DA */
1596 	case 0x00030201: /* Au1000 HA */
1597 	case 0x00030202: /* Au1000 HB */
1598 	case 0x01030200: /* Au1500 AB */
1599 	/*
1600 	 * Au1100 errata actually keeps silence about this bit, so we set it
1601 	 * just in case for those revisions that require it to be set according
1602 	 * to the (now gone) cpu table.
1603 	 */
1604 	case 0x02030200: /* Au1100 AB */
1605 	case 0x02030201: /* Au1100 BA */
1606 	case 0x02030202: /* Au1100 BC */
1607 		set_c0_config(1 << 19);
1608 		break;
1609 	}
1610 }
1611 
1612 /* CP0 hazard avoidance. */
1613 #define NXP_BARRIER()							\
1614 	 __asm__ __volatile__(						\
1615 	".set noreorder\n\t"						\
1616 	"nop; nop; nop; nop; nop; nop;\n\t"				\
1617 	".set reorder\n\t")
1618 
1619 static void nxp_pr4450_fixup_config(void)
1620 {
1621 	unsigned long config0;
1622 
1623 	config0 = read_c0_config();
1624 
1625 	/* clear all three cache coherency fields */
1626 	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1627 	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1628 		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1629 		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1630 	write_c0_config(config0);
1631 	NXP_BARRIER();
1632 }
1633 
1634 static int cca = -1;
1635 
1636 static int __init cca_setup(char *str)
1637 {
1638 	get_option(&str, &cca);
1639 
1640 	return 0;
1641 }
1642 
1643 early_param("cca", cca_setup);
1644 
1645 static void coherency_setup(void)
1646 {
1647 	if (cca < 0 || cca > 7)
1648 		cca = read_c0_config() & CONF_CM_CMASK;
1649 	_page_cachable_default = cca << _CACHE_SHIFT;
1650 
1651 	pr_debug("Using cache attribute %d\n", cca);
1652 	change_c0_config(CONF_CM_CMASK, cca);
1653 
1654 	/*
1655 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1656 	 * the coherency mode specified by the TLB; 1 means cachable
1657 	 * coherent update on write will be used.  Not all processors have
1658 	 * this bit and; some wire it to zero, others like Toshiba had the
1659 	 * silly idea of putting something else there ...
1660 	 */
1661 	switch (current_cpu_type()) {
1662 	case CPU_R4000PC:
1663 	case CPU_R4000SC:
1664 	case CPU_R4000MC:
1665 	case CPU_R4400PC:
1666 	case CPU_R4400SC:
1667 	case CPU_R4400MC:
1668 		clear_c0_config(CONF_CU);
1669 		break;
1670 	/*
1671 	 * We need to catch the early Alchemy SOCs with
1672 	 * the write-only co_config.od bit and set it back to one on:
1673 	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1674 	 */
1675 	case CPU_ALCHEMY:
1676 		au1x00_fixup_config_od();
1677 		break;
1678 
1679 	case PRID_IMP_PR4450:
1680 		nxp_pr4450_fixup_config();
1681 		break;
1682 	}
1683 }
1684 
1685 static void r4k_cache_error_setup(void)
1686 {
1687 	extern char __weak except_vec2_generic;
1688 	extern char __weak except_vec2_sb1;
1689 
1690 	switch (current_cpu_type()) {
1691 	case CPU_SB1:
1692 	case CPU_SB1A:
1693 		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1694 		break;
1695 
1696 	default:
1697 		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1698 		break;
1699 	}
1700 }
1701 
1702 void r4k_cache_init(void)
1703 {
1704 	extern void build_clear_page(void);
1705 	extern void build_copy_page(void);
1706 	struct cpuinfo_mips *c = &current_cpu_data;
1707 
1708 	probe_pcache();
1709 	probe_vcache();
1710 	setup_scache();
1711 
1712 	r4k_blast_dcache_page_setup();
1713 	r4k_blast_dcache_setup();
1714 	r4k_blast_icache_page_setup();
1715 	r4k_blast_icache_setup();
1716 	r4k_blast_scache_page_setup();
1717 	r4k_blast_scache_setup();
1718 	r4k_blast_scache_node_setup();
1719 #ifdef CONFIG_EVA
1720 	r4k_blast_dcache_user_page_setup();
1721 	r4k_blast_icache_user_page_setup();
1722 #endif
1723 
1724 	/*
1725 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1726 	 * This code supports virtually indexed processors and will be
1727 	 * unnecessarily inefficient on physically indexed processors.
1728 	 */
1729 	if (c->dcache.linesz && cpu_has_dc_aliases)
1730 		shm_align_mask = max_t( unsigned long,
1731 					c->dcache.sets * c->dcache.linesz - 1,
1732 					PAGE_SIZE - 1);
1733 	else
1734 		shm_align_mask = PAGE_SIZE-1;
1735 
1736 	__flush_cache_vmap	= r4k__flush_cache_vmap;
1737 	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1738 
1739 	flush_cache_all		= cache_noop;
1740 	__flush_cache_all	= r4k___flush_cache_all;
1741 	flush_cache_mm		= r4k_flush_cache_mm;
1742 	flush_cache_page	= r4k_flush_cache_page;
1743 	flush_cache_range	= r4k_flush_cache_range;
1744 
1745 	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1746 
1747 	flush_icache_all	= r4k_flush_icache_all;
1748 	flush_data_cache_page	= r4k_flush_data_cache_page;
1749 	flush_icache_range	= r4k_flush_icache_range;
1750 	local_flush_icache_range	= local_r4k_flush_icache_range;
1751 	__flush_icache_user_range	= r4k_flush_icache_user_range;
1752 	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1753 
1754 #ifdef CONFIG_DMA_NONCOHERENT
1755 	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1756 	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1757 	_dma_cache_inv		= r4k_dma_cache_inv;
1758 #endif /* CONFIG_DMA_NONCOHERENT */
1759 
1760 	build_clear_page();
1761 	build_copy_page();
1762 
1763 	/*
1764 	 * We want to run CMP kernels on core with and without coherent
1765 	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1766 	 * or not to flush caches.
1767 	 */
1768 	local_r4k___flush_cache_all(NULL);
1769 
1770 	coherency_setup();
1771 	board_cache_error_setup = r4k_cache_error_setup;
1772 
1773 	/*
1774 	 * Per-CPU overrides
1775 	 */
1776 	switch (current_cpu_type()) {
1777 	case CPU_BMIPS4350:
1778 	case CPU_BMIPS4380:
1779 		/* No IPI is needed because all CPUs share the same D$ */
1780 		flush_data_cache_page = r4k_blast_dcache_page;
1781 		break;
1782 	case CPU_BMIPS5000:
1783 		/* We lose our superpowers if L2 is disabled */
1784 		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1785 			break;
1786 
1787 		/* I$ fills from D$ just by emptying the write buffers */
1788 		flush_cache_page = (void *)b5k_instruction_hazard;
1789 		flush_cache_range = (void *)b5k_instruction_hazard;
1790 		flush_data_cache_page = (void *)b5k_instruction_hazard;
1791 		flush_icache_range = (void *)b5k_instruction_hazard;
1792 		local_flush_icache_range = (void *)b5k_instruction_hazard;
1793 
1794 
1795 		/* Optimization: an L2 flush implicitly flushes the L1 */
1796 		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1797 		break;
1798 	case CPU_LOONGSON64:
1799 		/* Loongson-3 maintains cache coherency by hardware */
1800 		__flush_cache_all	= cache_noop;
1801 		__flush_cache_vmap	= cache_noop;
1802 		__flush_cache_vunmap	= cache_noop;
1803 		__flush_kernel_vmap_range = (void *)cache_noop;
1804 		flush_cache_mm		= (void *)cache_noop;
1805 		flush_cache_page	= (void *)cache_noop;
1806 		flush_cache_range	= (void *)cache_noop;
1807 		flush_icache_all	= (void *)cache_noop;
1808 		flush_data_cache_page	= (void *)cache_noop;
1809 		break;
1810 	}
1811 }
1812 
1813 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1814 			       void *v)
1815 {
1816 	switch (cmd) {
1817 	case CPU_PM_ENTER_FAILED:
1818 	case CPU_PM_EXIT:
1819 		coherency_setup();
1820 		break;
1821 	}
1822 
1823 	return NOTIFY_OK;
1824 }
1825 
1826 static struct notifier_block r4k_cache_pm_notifier_block = {
1827 	.notifier_call = r4k_cache_pm_notifier,
1828 };
1829 
1830 int __init r4k_cache_init_pm(void)
1831 {
1832 	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
1833 }
1834 arch_initcall(r4k_cache_init_pm);
1835