1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net) 7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org) 8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc. 9 */ 10 #include <linux/cpu_pm.h> 11 #include <linux/hardirq.h> 12 #include <linux/init.h> 13 #include <linux/highmem.h> 14 #include <linux/kernel.h> 15 #include <linux/linkage.h> 16 #include <linux/preempt.h> 17 #include <linux/sched.h> 18 #include <linux/smp.h> 19 #include <linux/mm.h> 20 #include <linux/export.h> 21 #include <linux/bitops.h> 22 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 23 24 #include <asm/bcache.h> 25 #include <asm/bootinfo.h> 26 #include <asm/cache.h> 27 #include <asm/cacheops.h> 28 #include <asm/cpu.h> 29 #include <asm/cpu-features.h> 30 #include <asm/cpu-type.h> 31 #include <asm/io.h> 32 #include <asm/page.h> 33 #include <asm/r4kcache.h> 34 #include <asm/sections.h> 35 #include <asm/mmu_context.h> 36 #include <asm/cacheflush.h> /* for run_uncached() */ 37 #include <asm/traps.h> 38 #include <asm/mips-cps.h> 39 40 /* 41 * Bits describing what cache ops an SMP callback function may perform. 42 * 43 * R4K_HIT - Virtual user or kernel address based cache operations. The 44 * active_mm must be checked before using user addresses, falling 45 * back to kmap. 46 * R4K_INDEX - Index based cache operations. 47 */ 48 49 #define R4K_HIT BIT(0) 50 #define R4K_INDEX BIT(1) 51 52 /** 53 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core. 54 * @type: Type of cache operations (R4K_HIT or R4K_INDEX). 55 * 56 * Decides whether a cache op needs to be performed on every core in the system. 57 * This may change depending on the @type of cache operation, as well as the set 58 * of online CPUs, so preemption should be disabled by the caller to prevent CPU 59 * hotplug from changing the result. 60 * 61 * Returns: 1 if the cache operation @type should be done on every core in 62 * the system. 63 * 0 if the cache operation @type is globalized and only needs to 64 * be performed on a simple CPU. 65 */ 66 static inline bool r4k_op_needs_ipi(unsigned int type) 67 { 68 /* The MIPS Coherence Manager (CM) globalizes address-based cache ops */ 69 if (type == R4K_HIT && mips_cm_present()) 70 return false; 71 72 /* 73 * Hardware doesn't globalize the required cache ops, so SMP calls may 74 * be needed, but only if there are foreign CPUs (non-siblings with 75 * separate caches). 76 */ 77 /* cpu_foreign_map[] undeclared when !CONFIG_SMP */ 78 #ifdef CONFIG_SMP 79 return !cpumask_empty(&cpu_foreign_map[0]); 80 #else 81 return false; 82 #endif 83 } 84 85 /* 86 * Special Variant of smp_call_function for use by cache functions: 87 * 88 * o No return value 89 * o collapses to normal function call on UP kernels 90 * o collapses to normal function call on systems with a single shared 91 * primary cache. 92 * o doesn't disable interrupts on the local CPU 93 */ 94 static inline void r4k_on_each_cpu(unsigned int type, 95 void (*func)(void *info), void *info) 96 { 97 preempt_disable(); 98 if (r4k_op_needs_ipi(type)) 99 smp_call_function_many(&cpu_foreign_map[smp_processor_id()], 100 func, info, 1); 101 func(info); 102 preempt_enable(); 103 } 104 105 /* 106 * Must die. 107 */ 108 static unsigned long icache_size __read_mostly; 109 static unsigned long dcache_size __read_mostly; 110 static unsigned long vcache_size __read_mostly; 111 static unsigned long scache_size __read_mostly; 112 113 #define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x00002010) 114 #define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x00002020) 115 116 #define R4600_HIT_CACHEOP_WAR_IMPL \ 117 do { \ 118 if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) && \ 119 cpu_is_r4600_v2_x()) \ 120 *(volatile unsigned long *)CKSEG1; \ 121 if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP)) \ 122 __asm__ __volatile__("nop;nop;nop;nop"); \ 123 } while (0) 124 125 static void (*r4k_blast_dcache_page)(unsigned long addr); 126 127 static inline void r4k_blast_dcache_page_dc32(unsigned long addr) 128 { 129 R4600_HIT_CACHEOP_WAR_IMPL; 130 blast_dcache32_page(addr); 131 } 132 133 static inline void r4k_blast_dcache_page_dc64(unsigned long addr) 134 { 135 blast_dcache64_page(addr); 136 } 137 138 static inline void r4k_blast_dcache_page_dc128(unsigned long addr) 139 { 140 blast_dcache128_page(addr); 141 } 142 143 static void r4k_blast_dcache_page_setup(void) 144 { 145 unsigned long dc_lsize = cpu_dcache_line_size(); 146 147 switch (dc_lsize) { 148 case 0: 149 r4k_blast_dcache_page = (void *)cache_noop; 150 break; 151 case 16: 152 r4k_blast_dcache_page = blast_dcache16_page; 153 break; 154 case 32: 155 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32; 156 break; 157 case 64: 158 r4k_blast_dcache_page = r4k_blast_dcache_page_dc64; 159 break; 160 case 128: 161 r4k_blast_dcache_page = r4k_blast_dcache_page_dc128; 162 break; 163 default: 164 break; 165 } 166 } 167 168 #ifndef CONFIG_EVA 169 #define r4k_blast_dcache_user_page r4k_blast_dcache_page 170 #else 171 172 static void (*r4k_blast_dcache_user_page)(unsigned long addr); 173 174 static void r4k_blast_dcache_user_page_setup(void) 175 { 176 unsigned long dc_lsize = cpu_dcache_line_size(); 177 178 if (dc_lsize == 0) 179 r4k_blast_dcache_user_page = (void *)cache_noop; 180 else if (dc_lsize == 16) 181 r4k_blast_dcache_user_page = blast_dcache16_user_page; 182 else if (dc_lsize == 32) 183 r4k_blast_dcache_user_page = blast_dcache32_user_page; 184 else if (dc_lsize == 64) 185 r4k_blast_dcache_user_page = blast_dcache64_user_page; 186 } 187 188 #endif 189 190 void (* r4k_blast_dcache)(void); 191 EXPORT_SYMBOL(r4k_blast_dcache); 192 193 static void r4k_blast_dcache_setup(void) 194 { 195 unsigned long dc_lsize = cpu_dcache_line_size(); 196 197 if (dc_lsize == 0) 198 r4k_blast_dcache = (void *)cache_noop; 199 else if (dc_lsize == 16) 200 r4k_blast_dcache = blast_dcache16; 201 else if (dc_lsize == 32) 202 r4k_blast_dcache = blast_dcache32; 203 else if (dc_lsize == 64) 204 r4k_blast_dcache = blast_dcache64; 205 else if (dc_lsize == 128) 206 r4k_blast_dcache = blast_dcache128; 207 } 208 209 /* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */ 210 #define JUMP_TO_ALIGN(order) \ 211 __asm__ __volatile__( \ 212 "b\t1f\n\t" \ 213 ".align\t" #order "\n\t" \ 214 "1:\n\t" \ 215 ) 216 #define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */ 217 #define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11) 218 219 static inline void blast_r4600_v1_icache32(void) 220 { 221 unsigned long flags; 222 223 local_irq_save(flags); 224 blast_icache32(); 225 local_irq_restore(flags); 226 } 227 228 static inline void tx49_blast_icache32(void) 229 { 230 unsigned long start = INDEX_BASE; 231 unsigned long end = start + current_cpu_data.icache.waysize; 232 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit; 233 unsigned long ws_end = current_cpu_data.icache.ways << 234 current_cpu_data.icache.waybit; 235 unsigned long ws, addr; 236 237 CACHE32_UNROLL32_ALIGN2; 238 /* I'm in even chunk. blast odd chunks */ 239 for (ws = 0; ws < ws_end; ws += ws_inc) 240 for (addr = start + 0x400; addr < end; addr += 0x400 * 2) 241 cache_unroll(32, kernel_cache, Index_Invalidate_I, 242 addr | ws, 32); 243 CACHE32_UNROLL32_ALIGN; 244 /* I'm in odd chunk. blast even chunks */ 245 for (ws = 0; ws < ws_end; ws += ws_inc) 246 for (addr = start; addr < end; addr += 0x400 * 2) 247 cache_unroll(32, kernel_cache, Index_Invalidate_I, 248 addr | ws, 32); 249 } 250 251 static void (* r4k_blast_icache_page)(unsigned long addr); 252 253 static void r4k_blast_icache_page_setup(void) 254 { 255 unsigned long ic_lsize = cpu_icache_line_size(); 256 257 if (ic_lsize == 0) 258 r4k_blast_icache_page = (void *)cache_noop; 259 else if (ic_lsize == 16) 260 r4k_blast_icache_page = blast_icache16_page; 261 else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF) 262 r4k_blast_icache_page = loongson2_blast_icache32_page; 263 else if (ic_lsize == 32) 264 r4k_blast_icache_page = blast_icache32_page; 265 else if (ic_lsize == 64) 266 r4k_blast_icache_page = blast_icache64_page; 267 else if (ic_lsize == 128) 268 r4k_blast_icache_page = blast_icache128_page; 269 } 270 271 #ifndef CONFIG_EVA 272 #define r4k_blast_icache_user_page r4k_blast_icache_page 273 #else 274 275 static void (*r4k_blast_icache_user_page)(unsigned long addr); 276 277 static void r4k_blast_icache_user_page_setup(void) 278 { 279 unsigned long ic_lsize = cpu_icache_line_size(); 280 281 if (ic_lsize == 0) 282 r4k_blast_icache_user_page = (void *)cache_noop; 283 else if (ic_lsize == 16) 284 r4k_blast_icache_user_page = blast_icache16_user_page; 285 else if (ic_lsize == 32) 286 r4k_blast_icache_user_page = blast_icache32_user_page; 287 else if (ic_lsize == 64) 288 r4k_blast_icache_user_page = blast_icache64_user_page; 289 } 290 291 #endif 292 293 void (* r4k_blast_icache)(void); 294 EXPORT_SYMBOL(r4k_blast_icache); 295 296 static void r4k_blast_icache_setup(void) 297 { 298 unsigned long ic_lsize = cpu_icache_line_size(); 299 300 if (ic_lsize == 0) 301 r4k_blast_icache = (void *)cache_noop; 302 else if (ic_lsize == 16) 303 r4k_blast_icache = blast_icache16; 304 else if (ic_lsize == 32) { 305 if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) && 306 cpu_is_r4600_v1_x()) 307 r4k_blast_icache = blast_r4600_v1_icache32; 308 else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV)) 309 r4k_blast_icache = tx49_blast_icache32; 310 else if (current_cpu_type() == CPU_LOONGSON2EF) 311 r4k_blast_icache = loongson2_blast_icache32; 312 else 313 r4k_blast_icache = blast_icache32; 314 } else if (ic_lsize == 64) 315 r4k_blast_icache = blast_icache64; 316 else if (ic_lsize == 128) 317 r4k_blast_icache = blast_icache128; 318 } 319 320 static void (* r4k_blast_scache_page)(unsigned long addr); 321 322 static void r4k_blast_scache_page_setup(void) 323 { 324 unsigned long sc_lsize = cpu_scache_line_size(); 325 326 if (scache_size == 0) 327 r4k_blast_scache_page = (void *)cache_noop; 328 else if (sc_lsize == 16) 329 r4k_blast_scache_page = blast_scache16_page; 330 else if (sc_lsize == 32) 331 r4k_blast_scache_page = blast_scache32_page; 332 else if (sc_lsize == 64) 333 r4k_blast_scache_page = blast_scache64_page; 334 else if (sc_lsize == 128) 335 r4k_blast_scache_page = blast_scache128_page; 336 } 337 338 static void (* r4k_blast_scache)(void); 339 340 static void r4k_blast_scache_setup(void) 341 { 342 unsigned long sc_lsize = cpu_scache_line_size(); 343 344 if (scache_size == 0) 345 r4k_blast_scache = (void *)cache_noop; 346 else if (sc_lsize == 16) 347 r4k_blast_scache = blast_scache16; 348 else if (sc_lsize == 32) 349 r4k_blast_scache = blast_scache32; 350 else if (sc_lsize == 64) 351 r4k_blast_scache = blast_scache64; 352 else if (sc_lsize == 128) 353 r4k_blast_scache = blast_scache128; 354 } 355 356 static void (*r4k_blast_scache_node)(long node); 357 358 static void r4k_blast_scache_node_setup(void) 359 { 360 unsigned long sc_lsize = cpu_scache_line_size(); 361 362 if (current_cpu_type() != CPU_LOONGSON64) 363 r4k_blast_scache_node = (void *)cache_noop; 364 else if (sc_lsize == 16) 365 r4k_blast_scache_node = blast_scache16_node; 366 else if (sc_lsize == 32) 367 r4k_blast_scache_node = blast_scache32_node; 368 else if (sc_lsize == 64) 369 r4k_blast_scache_node = blast_scache64_node; 370 else if (sc_lsize == 128) 371 r4k_blast_scache_node = blast_scache128_node; 372 } 373 374 static inline void local_r4k___flush_cache_all(void * args) 375 { 376 switch (current_cpu_type()) { 377 case CPU_LOONGSON2EF: 378 case CPU_R4000SC: 379 case CPU_R4000MC: 380 case CPU_R4400SC: 381 case CPU_R4400MC: 382 case CPU_R10000: 383 case CPU_R12000: 384 case CPU_R14000: 385 case CPU_R16000: 386 /* 387 * These caches are inclusive caches, that is, if something 388 * is not cached in the S-cache, we know it also won't be 389 * in one of the primary caches. 390 */ 391 r4k_blast_scache(); 392 break; 393 394 case CPU_LOONGSON64: 395 /* Use get_ebase_cpunum() for both NUMA=y/n */ 396 r4k_blast_scache_node(get_ebase_cpunum() >> 2); 397 break; 398 399 case CPU_BMIPS5000: 400 r4k_blast_scache(); 401 __sync(); 402 break; 403 404 default: 405 r4k_blast_dcache(); 406 r4k_blast_icache(); 407 break; 408 } 409 } 410 411 static void r4k___flush_cache_all(void) 412 { 413 r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL); 414 } 415 416 /** 417 * has_valid_asid() - Determine if an mm already has an ASID. 418 * @mm: Memory map. 419 * @type: R4K_HIT or R4K_INDEX, type of cache op. 420 * 421 * Determines whether @mm already has an ASID on any of the CPUs which cache ops 422 * of type @type within an r4k_on_each_cpu() call will affect. If 423 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the 424 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs 425 * will need to be checked. 426 * 427 * Must be called in non-preemptive context. 428 * 429 * Returns: 1 if the CPUs affected by @type cache ops have an ASID for @mm. 430 * 0 otherwise. 431 */ 432 static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type) 433 { 434 unsigned int i; 435 const cpumask_t *mask = cpu_present_mask; 436 437 if (cpu_has_mmid) 438 return cpu_context(0, mm) != 0; 439 440 /* cpu_sibling_map[] undeclared when !CONFIG_SMP */ 441 #ifdef CONFIG_SMP 442 /* 443 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in 444 * each foreign core, so we only need to worry about siblings. 445 * Otherwise we need to worry about all present CPUs. 446 */ 447 if (r4k_op_needs_ipi(type)) 448 mask = &cpu_sibling_map[smp_processor_id()]; 449 #endif 450 for_each_cpu(i, mask) 451 if (cpu_context(i, mm)) 452 return 1; 453 return 0; 454 } 455 456 static void r4k__flush_cache_vmap(void) 457 { 458 r4k_blast_dcache(); 459 } 460 461 static void r4k__flush_cache_vunmap(void) 462 { 463 r4k_blast_dcache(); 464 } 465 466 /* 467 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes 468 * whole caches when vma is executable. 469 */ 470 static inline void local_r4k_flush_cache_range(void * args) 471 { 472 struct vm_area_struct *vma = args; 473 int exec = vma->vm_flags & VM_EXEC; 474 475 if (!has_valid_asid(vma->vm_mm, R4K_INDEX)) 476 return; 477 478 /* 479 * If dcache can alias, we must blast it since mapping is changing. 480 * If executable, we must ensure any dirty lines are written back far 481 * enough to be visible to icache. 482 */ 483 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) 484 r4k_blast_dcache(); 485 /* If executable, blast stale lines from icache */ 486 if (exec) 487 r4k_blast_icache(); 488 } 489 490 static void r4k_flush_cache_range(struct vm_area_struct *vma, 491 unsigned long start, unsigned long end) 492 { 493 int exec = vma->vm_flags & VM_EXEC; 494 495 if (cpu_has_dc_aliases || exec) 496 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma); 497 } 498 499 static inline void local_r4k_flush_cache_mm(void * args) 500 { 501 struct mm_struct *mm = args; 502 503 if (!has_valid_asid(mm, R4K_INDEX)) 504 return; 505 506 /* 507 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we 508 * only flush the primary caches but R1x000 behave sane ... 509 * R4000SC and R4400SC indexed S-cache ops also invalidate primary 510 * caches, so we can bail out early. 511 */ 512 if (current_cpu_type() == CPU_R4000SC || 513 current_cpu_type() == CPU_R4000MC || 514 current_cpu_type() == CPU_R4400SC || 515 current_cpu_type() == CPU_R4400MC) { 516 r4k_blast_scache(); 517 return; 518 } 519 520 r4k_blast_dcache(); 521 } 522 523 static void r4k_flush_cache_mm(struct mm_struct *mm) 524 { 525 if (!cpu_has_dc_aliases) 526 return; 527 528 r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm); 529 } 530 531 struct flush_cache_page_args { 532 struct vm_area_struct *vma; 533 unsigned long addr; 534 unsigned long pfn; 535 }; 536 537 static inline void local_r4k_flush_cache_page(void *args) 538 { 539 struct flush_cache_page_args *fcp_args = args; 540 struct vm_area_struct *vma = fcp_args->vma; 541 unsigned long addr = fcp_args->addr; 542 struct page *page = pfn_to_page(fcp_args->pfn); 543 int exec = vma->vm_flags & VM_EXEC; 544 struct mm_struct *mm = vma->vm_mm; 545 int map_coherent = 0; 546 pmd_t *pmdp; 547 pte_t *ptep; 548 void *vaddr; 549 550 /* 551 * If owns no valid ASID yet, cannot possibly have gotten 552 * this page into the cache. 553 */ 554 if (!has_valid_asid(mm, R4K_HIT)) 555 return; 556 557 addr &= PAGE_MASK; 558 pmdp = pmd_off(mm, addr); 559 ptep = pte_offset_kernel(pmdp, addr); 560 561 /* 562 * If the page isn't marked valid, the page cannot possibly be 563 * in the cache. 564 */ 565 if (!(pte_present(*ptep))) 566 return; 567 568 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) 569 vaddr = NULL; 570 else { 571 /* 572 * Use kmap_coherent or kmap_atomic to do flushes for 573 * another ASID than the current one. 574 */ 575 map_coherent = (cpu_has_dc_aliases && 576 page_mapcount(page) && 577 !Page_dcache_dirty(page)); 578 if (map_coherent) 579 vaddr = kmap_coherent(page, addr); 580 else 581 vaddr = kmap_atomic(page); 582 addr = (unsigned long)vaddr; 583 } 584 585 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) { 586 vaddr ? r4k_blast_dcache_page(addr) : 587 r4k_blast_dcache_user_page(addr); 588 if (exec && !cpu_icache_snoops_remote_store) 589 r4k_blast_scache_page(addr); 590 } 591 if (exec) { 592 if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) { 593 drop_mmu_context(mm); 594 } else 595 vaddr ? r4k_blast_icache_page(addr) : 596 r4k_blast_icache_user_page(addr); 597 } 598 599 if (vaddr) { 600 if (map_coherent) 601 kunmap_coherent(); 602 else 603 kunmap_atomic(vaddr); 604 } 605 } 606 607 static void r4k_flush_cache_page(struct vm_area_struct *vma, 608 unsigned long addr, unsigned long pfn) 609 { 610 struct flush_cache_page_args args; 611 612 args.vma = vma; 613 args.addr = addr; 614 args.pfn = pfn; 615 616 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args); 617 } 618 619 static inline void local_r4k_flush_data_cache_page(void * addr) 620 { 621 r4k_blast_dcache_page((unsigned long) addr); 622 } 623 624 static void r4k_flush_data_cache_page(unsigned long addr) 625 { 626 if (in_atomic()) 627 local_r4k_flush_data_cache_page((void *)addr); 628 else 629 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page, 630 (void *) addr); 631 } 632 633 struct flush_icache_range_args { 634 unsigned long start; 635 unsigned long end; 636 unsigned int type; 637 bool user; 638 }; 639 640 static inline void __local_r4k_flush_icache_range(unsigned long start, 641 unsigned long end, 642 unsigned int type, 643 bool user) 644 { 645 if (!cpu_has_ic_fills_f_dc) { 646 if (type == R4K_INDEX || 647 (type & R4K_INDEX && end - start >= dcache_size)) { 648 r4k_blast_dcache(); 649 } else { 650 R4600_HIT_CACHEOP_WAR_IMPL; 651 if (user) 652 protected_blast_dcache_range(start, end); 653 else 654 blast_dcache_range(start, end); 655 } 656 } 657 658 if (type == R4K_INDEX || 659 (type & R4K_INDEX && end - start > icache_size)) 660 r4k_blast_icache(); 661 else { 662 switch (boot_cpu_type()) { 663 case CPU_LOONGSON2EF: 664 protected_loongson2_blast_icache_range(start, end); 665 break; 666 667 default: 668 if (user) 669 protected_blast_icache_range(start, end); 670 else 671 blast_icache_range(start, end); 672 break; 673 } 674 } 675 } 676 677 static inline void local_r4k_flush_icache_range(unsigned long start, 678 unsigned long end) 679 { 680 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false); 681 } 682 683 static inline void local_r4k_flush_icache_user_range(unsigned long start, 684 unsigned long end) 685 { 686 __local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true); 687 } 688 689 static inline void local_r4k_flush_icache_range_ipi(void *args) 690 { 691 struct flush_icache_range_args *fir_args = args; 692 unsigned long start = fir_args->start; 693 unsigned long end = fir_args->end; 694 unsigned int type = fir_args->type; 695 bool user = fir_args->user; 696 697 __local_r4k_flush_icache_range(start, end, type, user); 698 } 699 700 static void __r4k_flush_icache_range(unsigned long start, unsigned long end, 701 bool user) 702 { 703 struct flush_icache_range_args args; 704 unsigned long size, cache_size; 705 706 args.start = start; 707 args.end = end; 708 args.type = R4K_HIT | R4K_INDEX; 709 args.user = user; 710 711 /* 712 * Indexed cache ops require an SMP call. 713 * Consider if that can or should be avoided. 714 */ 715 preempt_disable(); 716 if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) { 717 /* 718 * If address-based cache ops don't require an SMP call, then 719 * use them exclusively for small flushes. 720 */ 721 size = end - start; 722 cache_size = icache_size; 723 if (!cpu_has_ic_fills_f_dc) { 724 size *= 2; 725 cache_size += dcache_size; 726 } 727 if (size <= cache_size) 728 args.type &= ~R4K_INDEX; 729 } 730 r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args); 731 preempt_enable(); 732 instruction_hazard(); 733 } 734 735 static void r4k_flush_icache_range(unsigned long start, unsigned long end) 736 { 737 return __r4k_flush_icache_range(start, end, false); 738 } 739 740 static void r4k_flush_icache_user_range(unsigned long start, unsigned long end) 741 { 742 return __r4k_flush_icache_range(start, end, true); 743 } 744 745 #ifdef CONFIG_DMA_NONCOHERENT 746 747 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size) 748 { 749 /* Catch bad driver code */ 750 if (WARN_ON(size == 0)) 751 return; 752 753 preempt_disable(); 754 if (cpu_has_inclusive_pcaches) { 755 if (size >= scache_size) { 756 if (current_cpu_type() != CPU_LOONGSON64) 757 r4k_blast_scache(); 758 else 759 r4k_blast_scache_node(pa_to_nid(addr)); 760 } else { 761 blast_scache_range(addr, addr + size); 762 } 763 preempt_enable(); 764 __sync(); 765 return; 766 } 767 768 /* 769 * Either no secondary cache or the available caches don't have the 770 * subset property so we have to flush the primary caches 771 * explicitly. 772 * If we would need IPI to perform an INDEX-type operation, then 773 * we have to use the HIT-type alternative as IPI cannot be used 774 * here due to interrupts possibly being disabled. 775 */ 776 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 777 r4k_blast_dcache(); 778 } else { 779 R4600_HIT_CACHEOP_WAR_IMPL; 780 blast_dcache_range(addr, addr + size); 781 } 782 preempt_enable(); 783 784 bc_wback_inv(addr, size); 785 __sync(); 786 } 787 788 static void prefetch_cache_inv(unsigned long addr, unsigned long size) 789 { 790 unsigned int linesz = cpu_scache_line_size(); 791 unsigned long addr0 = addr, addr1; 792 793 addr0 &= ~(linesz - 1); 794 addr1 = (addr0 + size - 1) & ~(linesz - 1); 795 796 protected_writeback_scache_line(addr0); 797 if (likely(addr1 != addr0)) 798 protected_writeback_scache_line(addr1); 799 else 800 return; 801 802 addr0 += linesz; 803 if (likely(addr1 != addr0)) 804 protected_writeback_scache_line(addr0); 805 else 806 return; 807 808 addr1 -= linesz; 809 if (likely(addr1 > addr0)) 810 protected_writeback_scache_line(addr0); 811 } 812 813 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size) 814 { 815 /* Catch bad driver code */ 816 if (WARN_ON(size == 0)) 817 return; 818 819 preempt_disable(); 820 821 if (current_cpu_type() == CPU_BMIPS5000) 822 prefetch_cache_inv(addr, size); 823 824 if (cpu_has_inclusive_pcaches) { 825 if (size >= scache_size) { 826 if (current_cpu_type() != CPU_LOONGSON64) 827 r4k_blast_scache(); 828 else 829 r4k_blast_scache_node(pa_to_nid(addr)); 830 } else { 831 /* 832 * There is no clearly documented alignment requirement 833 * for the cache instruction on MIPS processors and 834 * some processors, among them the RM5200 and RM7000 835 * QED processors will throw an address error for cache 836 * hit ops with insufficient alignment. Solved by 837 * aligning the address to cache line size. 838 */ 839 blast_inv_scache_range(addr, addr + size); 840 } 841 preempt_enable(); 842 __sync(); 843 return; 844 } 845 846 if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) { 847 r4k_blast_dcache(); 848 } else { 849 R4600_HIT_CACHEOP_WAR_IMPL; 850 blast_inv_dcache_range(addr, addr + size); 851 } 852 preempt_enable(); 853 854 bc_inv(addr, size); 855 __sync(); 856 } 857 #endif /* CONFIG_DMA_NONCOHERENT */ 858 859 static void r4k_flush_icache_all(void) 860 { 861 if (cpu_has_vtag_icache) 862 r4k_blast_icache(); 863 } 864 865 struct flush_kernel_vmap_range_args { 866 unsigned long vaddr; 867 int size; 868 }; 869 870 static inline void local_r4k_flush_kernel_vmap_range_index(void *args) 871 { 872 /* 873 * Aliases only affect the primary caches so don't bother with 874 * S-caches or T-caches. 875 */ 876 r4k_blast_dcache(); 877 } 878 879 static inline void local_r4k_flush_kernel_vmap_range(void *args) 880 { 881 struct flush_kernel_vmap_range_args *vmra = args; 882 unsigned long vaddr = vmra->vaddr; 883 int size = vmra->size; 884 885 /* 886 * Aliases only affect the primary caches so don't bother with 887 * S-caches or T-caches. 888 */ 889 R4600_HIT_CACHEOP_WAR_IMPL; 890 blast_dcache_range(vaddr, vaddr + size); 891 } 892 893 static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size) 894 { 895 struct flush_kernel_vmap_range_args args; 896 897 args.vaddr = (unsigned long) vaddr; 898 args.size = size; 899 900 if (size >= dcache_size) 901 r4k_on_each_cpu(R4K_INDEX, 902 local_r4k_flush_kernel_vmap_range_index, NULL); 903 else 904 r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range, 905 &args); 906 } 907 908 static inline void rm7k_erratum31(void) 909 { 910 const unsigned long ic_lsize = 32; 911 unsigned long addr; 912 913 /* RM7000 erratum #31. The icache is screwed at startup. */ 914 write_c0_taglo(0); 915 write_c0_taghi(0); 916 917 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) { 918 __asm__ __volatile__ ( 919 ".set push\n\t" 920 ".set noreorder\n\t" 921 ".set mips3\n\t" 922 "cache\t%1, 0(%0)\n\t" 923 "cache\t%1, 0x1000(%0)\n\t" 924 "cache\t%1, 0x2000(%0)\n\t" 925 "cache\t%1, 0x3000(%0)\n\t" 926 "cache\t%2, 0(%0)\n\t" 927 "cache\t%2, 0x1000(%0)\n\t" 928 "cache\t%2, 0x2000(%0)\n\t" 929 "cache\t%2, 0x3000(%0)\n\t" 930 "cache\t%1, 0(%0)\n\t" 931 "cache\t%1, 0x1000(%0)\n\t" 932 "cache\t%1, 0x2000(%0)\n\t" 933 "cache\t%1, 0x3000(%0)\n\t" 934 ".set pop\n" 935 : 936 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I)); 937 } 938 } 939 940 static inline int alias_74k_erratum(struct cpuinfo_mips *c) 941 { 942 unsigned int imp = c->processor_id & PRID_IMP_MASK; 943 unsigned int rev = c->processor_id & PRID_REV_MASK; 944 int present = 0; 945 946 /* 947 * Early versions of the 74K do not update the cache tags on a 948 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG 949 * aliases. In this case it is better to treat the cache as always 950 * having aliases. Also disable the synonym tag update feature 951 * where available. In this case no opportunistic tag update will 952 * happen where a load causes a virtual address miss but a physical 953 * address hit during a D-cache look-up. 954 */ 955 switch (imp) { 956 case PRID_IMP_74K: 957 if (rev <= PRID_REV_ENCODE_332(2, 4, 0)) 958 present = 1; 959 if (rev == PRID_REV_ENCODE_332(2, 4, 0)) 960 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 961 break; 962 case PRID_IMP_1074K: 963 if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) { 964 present = 1; 965 write_c0_config6(read_c0_config6() | MTI_CONF6_SYND); 966 } 967 break; 968 default: 969 BUG(); 970 } 971 972 return present; 973 } 974 975 static void b5k_instruction_hazard(void) 976 { 977 __sync(); 978 __sync(); 979 __asm__ __volatile__( 980 " nop; nop; nop; nop; nop; nop; nop; nop\n" 981 " nop; nop; nop; nop; nop; nop; nop; nop\n" 982 " nop; nop; nop; nop; nop; nop; nop; nop\n" 983 " nop; nop; nop; nop; nop; nop; nop; nop\n" 984 : : : "memory"); 985 } 986 987 static char *way_string[] = { NULL, "direct mapped", "2-way", 988 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way", 989 "9-way", "10-way", "11-way", "12-way", 990 "13-way", "14-way", "15-way", "16-way", 991 }; 992 993 static void probe_pcache(void) 994 { 995 struct cpuinfo_mips *c = ¤t_cpu_data; 996 unsigned int config = read_c0_config(); 997 unsigned int prid = read_c0_prid(); 998 int has_74k_erratum = 0; 999 unsigned long config1; 1000 unsigned int lsize; 1001 1002 switch (current_cpu_type()) { 1003 case CPU_R4600: /* QED style two way caches? */ 1004 case CPU_R4700: 1005 case CPU_R5000: 1006 case CPU_NEVADA: 1007 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1008 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1009 c->icache.ways = 2; 1010 c->icache.waybit = __ffs(icache_size/2); 1011 1012 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1013 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1014 c->dcache.ways = 2; 1015 c->dcache.waybit= __ffs(dcache_size/2); 1016 1017 c->options |= MIPS_CPU_CACHE_CDEX_P; 1018 break; 1019 1020 case CPU_R5500: 1021 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1022 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1023 c->icache.ways = 2; 1024 c->icache.waybit= 0; 1025 1026 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1027 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1028 c->dcache.ways = 2; 1029 c->dcache.waybit = 0; 1030 1031 c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH; 1032 break; 1033 1034 case CPU_TX49XX: 1035 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1036 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1037 c->icache.ways = 4; 1038 c->icache.waybit= 0; 1039 1040 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1041 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1042 c->dcache.ways = 4; 1043 c->dcache.waybit = 0; 1044 1045 c->options |= MIPS_CPU_CACHE_CDEX_P; 1046 c->options |= MIPS_CPU_PREFETCH; 1047 break; 1048 1049 case CPU_R4000PC: 1050 case CPU_R4000SC: 1051 case CPU_R4000MC: 1052 case CPU_R4400PC: 1053 case CPU_R4400SC: 1054 case CPU_R4400MC: 1055 case CPU_R4300: 1056 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1057 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1058 c->icache.ways = 1; 1059 c->icache.waybit = 0; /* doesn't matter */ 1060 1061 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1062 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1063 c->dcache.ways = 1; 1064 c->dcache.waybit = 0; /* does not matter */ 1065 1066 c->options |= MIPS_CPU_CACHE_CDEX_P; 1067 break; 1068 1069 case CPU_R10000: 1070 case CPU_R12000: 1071 case CPU_R14000: 1072 case CPU_R16000: 1073 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29)); 1074 c->icache.linesz = 64; 1075 c->icache.ways = 2; 1076 c->icache.waybit = 0; 1077 1078 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26)); 1079 c->dcache.linesz = 32; 1080 c->dcache.ways = 2; 1081 c->dcache.waybit = 0; 1082 1083 c->options |= MIPS_CPU_PREFETCH; 1084 break; 1085 1086 case CPU_RM7000: 1087 rm7k_erratum31(); 1088 1089 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1090 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1091 c->icache.ways = 4; 1092 c->icache.waybit = __ffs(icache_size / c->icache.ways); 1093 1094 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1095 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1096 c->dcache.ways = 4; 1097 c->dcache.waybit = __ffs(dcache_size / c->dcache.ways); 1098 1099 c->options |= MIPS_CPU_CACHE_CDEX_P; 1100 c->options |= MIPS_CPU_PREFETCH; 1101 break; 1102 1103 case CPU_LOONGSON2EF: 1104 icache_size = 1 << (12 + ((config & CONF_IC) >> 9)); 1105 c->icache.linesz = 16 << ((config & CONF_IB) >> 5); 1106 if (prid & 0x3) 1107 c->icache.ways = 4; 1108 else 1109 c->icache.ways = 2; 1110 c->icache.waybit = 0; 1111 1112 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6)); 1113 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4); 1114 if (prid & 0x3) 1115 c->dcache.ways = 4; 1116 else 1117 c->dcache.ways = 2; 1118 c->dcache.waybit = 0; 1119 break; 1120 1121 case CPU_LOONGSON64: 1122 config1 = read_c0_config1(); 1123 lsize = (config1 >> 19) & 7; 1124 if (lsize) 1125 c->icache.linesz = 2 << lsize; 1126 else 1127 c->icache.linesz = 0; 1128 c->icache.sets = 64 << ((config1 >> 22) & 7); 1129 c->icache.ways = 1 + ((config1 >> 16) & 7); 1130 icache_size = c->icache.sets * 1131 c->icache.ways * 1132 c->icache.linesz; 1133 c->icache.waybit = 0; 1134 1135 lsize = (config1 >> 10) & 7; 1136 if (lsize) 1137 c->dcache.linesz = 2 << lsize; 1138 else 1139 c->dcache.linesz = 0; 1140 c->dcache.sets = 64 << ((config1 >> 13) & 7); 1141 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1142 dcache_size = c->dcache.sets * 1143 c->dcache.ways * 1144 c->dcache.linesz; 1145 c->dcache.waybit = 0; 1146 if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >= 1147 (PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) || 1148 (c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1149 c->options |= MIPS_CPU_PREFETCH; 1150 break; 1151 1152 case CPU_CAVIUM_OCTEON3: 1153 /* For now lie about the number of ways. */ 1154 c->icache.linesz = 128; 1155 c->icache.sets = 16; 1156 c->icache.ways = 8; 1157 c->icache.flags |= MIPS_CACHE_VTAG; 1158 icache_size = c->icache.sets * c->icache.ways * c->icache.linesz; 1159 1160 c->dcache.linesz = 128; 1161 c->dcache.ways = 8; 1162 c->dcache.sets = 8; 1163 dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz; 1164 c->options |= MIPS_CPU_PREFETCH; 1165 break; 1166 1167 default: 1168 if (!(config & MIPS_CONF_M)) 1169 panic("Don't know how to probe P-caches on this cpu."); 1170 1171 /* 1172 * So we seem to be a MIPS32 or MIPS64 CPU 1173 * So let's probe the I-cache ... 1174 */ 1175 config1 = read_c0_config1(); 1176 1177 lsize = (config1 >> 19) & 7; 1178 1179 /* IL == 7 is reserved */ 1180 if (lsize == 7) 1181 panic("Invalid icache line size"); 1182 1183 c->icache.linesz = lsize ? 2 << lsize : 0; 1184 1185 c->icache.sets = 32 << (((config1 >> 22) + 1) & 7); 1186 c->icache.ways = 1 + ((config1 >> 16) & 7); 1187 1188 icache_size = c->icache.sets * 1189 c->icache.ways * 1190 c->icache.linesz; 1191 c->icache.waybit = __ffs(icache_size/c->icache.ways); 1192 1193 if (config & MIPS_CONF_VI) 1194 c->icache.flags |= MIPS_CACHE_VTAG; 1195 1196 /* 1197 * Now probe the MIPS32 / MIPS64 data cache. 1198 */ 1199 c->dcache.flags = 0; 1200 1201 lsize = (config1 >> 10) & 7; 1202 1203 /* DL == 7 is reserved */ 1204 if (lsize == 7) 1205 panic("Invalid dcache line size"); 1206 1207 c->dcache.linesz = lsize ? 2 << lsize : 0; 1208 1209 c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7); 1210 c->dcache.ways = 1 + ((config1 >> 7) & 7); 1211 1212 dcache_size = c->dcache.sets * 1213 c->dcache.ways * 1214 c->dcache.linesz; 1215 c->dcache.waybit = __ffs(dcache_size/c->dcache.ways); 1216 1217 c->options |= MIPS_CPU_PREFETCH; 1218 break; 1219 } 1220 1221 /* 1222 * Processor configuration sanity check for the R4000SC erratum 1223 * #5. With page sizes larger than 32kB there is no possibility 1224 * to get a VCE exception anymore so we don't care about this 1225 * misconfiguration. The case is rather theoretical anyway; 1226 * presumably no vendor is shipping his hardware in the "bad" 1227 * configuration. 1228 */ 1229 if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 && 1230 (prid & PRID_REV_MASK) < PRID_REV_R4400 && 1231 !(config & CONF_SC) && c->icache.linesz != 16 && 1232 PAGE_SIZE <= 0x8000) 1233 panic("Improper R4000SC processor configuration detected"); 1234 1235 /* compute a couple of other cache variables */ 1236 c->icache.waysize = icache_size / c->icache.ways; 1237 c->dcache.waysize = dcache_size / c->dcache.ways; 1238 1239 c->icache.sets = c->icache.linesz ? 1240 icache_size / (c->icache.linesz * c->icache.ways) : 0; 1241 c->dcache.sets = c->dcache.linesz ? 1242 dcache_size / (c->dcache.linesz * c->dcache.ways) : 0; 1243 1244 /* 1245 * R1x000 P-caches are odd in a positive way. They're 32kB 2-way 1246 * virtually indexed so normally would suffer from aliases. So 1247 * normally they'd suffer from aliases but magic in the hardware deals 1248 * with that for us so we don't need to take care ourselves. 1249 */ 1250 switch (current_cpu_type()) { 1251 case CPU_20KC: 1252 case CPU_25KF: 1253 case CPU_I6400: 1254 case CPU_I6500: 1255 case CPU_SB1: 1256 case CPU_SB1A: 1257 c->dcache.flags |= MIPS_CACHE_PINDEX; 1258 break; 1259 1260 case CPU_R10000: 1261 case CPU_R12000: 1262 case CPU_R14000: 1263 case CPU_R16000: 1264 break; 1265 1266 case CPU_74K: 1267 case CPU_1074K: 1268 has_74k_erratum = alias_74k_erratum(c); 1269 fallthrough; 1270 case CPU_M14KC: 1271 case CPU_M14KEC: 1272 case CPU_24K: 1273 case CPU_34K: 1274 case CPU_1004K: 1275 case CPU_INTERAPTIV: 1276 case CPU_P5600: 1277 case CPU_PROAPTIV: 1278 case CPU_M5150: 1279 case CPU_QEMU_GENERIC: 1280 case CPU_P6600: 1281 case CPU_M6250: 1282 if (!(read_c0_config7() & MIPS_CONF7_IAR) && 1283 (c->icache.waysize > PAGE_SIZE)) 1284 c->icache.flags |= MIPS_CACHE_ALIASES; 1285 if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) { 1286 /* 1287 * Effectively physically indexed dcache, 1288 * thus no virtual aliases. 1289 */ 1290 c->dcache.flags |= MIPS_CACHE_PINDEX; 1291 break; 1292 } 1293 fallthrough; 1294 default: 1295 if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE) 1296 c->dcache.flags |= MIPS_CACHE_ALIASES; 1297 } 1298 1299 /* Physically indexed caches don't suffer from virtual aliasing */ 1300 if (c->dcache.flags & MIPS_CACHE_PINDEX) 1301 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1302 1303 /* 1304 * In systems with CM the icache fills from L2 or closer caches, and 1305 * thus sees remote stores without needing to write them back any 1306 * further than that. 1307 */ 1308 if (mips_cm_present()) 1309 c->icache.flags |= MIPS_IC_SNOOPS_REMOTE; 1310 1311 switch (current_cpu_type()) { 1312 case CPU_20KC: 1313 /* 1314 * Some older 20Kc chips doesn't have the 'VI' bit in 1315 * the config register. 1316 */ 1317 c->icache.flags |= MIPS_CACHE_VTAG; 1318 break; 1319 1320 case CPU_ALCHEMY: 1321 case CPU_I6400: 1322 case CPU_I6500: 1323 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1324 break; 1325 1326 case CPU_BMIPS5000: 1327 c->icache.flags |= MIPS_CACHE_IC_F_DC; 1328 /* Cache aliases are handled in hardware; allow HIGHMEM */ 1329 c->dcache.flags &= ~MIPS_CACHE_ALIASES; 1330 break; 1331 1332 case CPU_LOONGSON2EF: 1333 /* 1334 * LOONGSON2 has 4 way icache, but when using indexed cache op, 1335 * one op will act on all 4 ways 1336 */ 1337 c->icache.ways = 1; 1338 } 1339 1340 pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n", 1341 icache_size >> 10, 1342 c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT", 1343 way_string[c->icache.ways], c->icache.linesz); 1344 1345 pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n", 1346 dcache_size >> 10, way_string[c->dcache.ways], 1347 (c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT", 1348 (c->dcache.flags & MIPS_CACHE_ALIASES) ? 1349 "cache aliases" : "no aliases", 1350 c->dcache.linesz); 1351 } 1352 1353 static void probe_vcache(void) 1354 { 1355 struct cpuinfo_mips *c = ¤t_cpu_data; 1356 unsigned int config2, lsize; 1357 1358 if (current_cpu_type() != CPU_LOONGSON64) 1359 return; 1360 1361 config2 = read_c0_config2(); 1362 if ((lsize = ((config2 >> 20) & 15))) 1363 c->vcache.linesz = 2 << lsize; 1364 else 1365 c->vcache.linesz = lsize; 1366 1367 c->vcache.sets = 64 << ((config2 >> 24) & 15); 1368 c->vcache.ways = 1 + ((config2 >> 16) & 15); 1369 1370 vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz; 1371 1372 c->vcache.waybit = 0; 1373 c->vcache.waysize = vcache_size / c->vcache.ways; 1374 1375 pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n", 1376 vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz); 1377 } 1378 1379 /* 1380 * If you even _breathe_ on this function, look at the gcc output and make sure 1381 * it does not pop things on and off the stack for the cache sizing loop that 1382 * executes in KSEG1 space or else you will crash and burn badly. You have 1383 * been warned. 1384 */ 1385 static int probe_scache(void) 1386 { 1387 unsigned long flags, addr, begin, end, pow2; 1388 unsigned int config = read_c0_config(); 1389 struct cpuinfo_mips *c = ¤t_cpu_data; 1390 1391 if (config & CONF_SC) 1392 return 0; 1393 1394 begin = (unsigned long) &_stext; 1395 begin &= ~((4 * 1024 * 1024) - 1); 1396 end = begin + (4 * 1024 * 1024); 1397 1398 /* 1399 * This is such a bitch, you'd think they would make it easy to do 1400 * this. Away you daemons of stupidity! 1401 */ 1402 local_irq_save(flags); 1403 1404 /* Fill each size-multiple cache line with a valid tag. */ 1405 pow2 = (64 * 1024); 1406 for (addr = begin; addr < end; addr = (begin + pow2)) { 1407 unsigned long *p = (unsigned long *) addr; 1408 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ 1409 pow2 <<= 1; 1410 } 1411 1412 /* Load first line with zero (therefore invalid) tag. */ 1413 write_c0_taglo(0); 1414 write_c0_taghi(0); 1415 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ 1416 cache_op(Index_Store_Tag_I, begin); 1417 cache_op(Index_Store_Tag_D, begin); 1418 cache_op(Index_Store_Tag_SD, begin); 1419 1420 /* Now search for the wrap around point. */ 1421 pow2 = (128 * 1024); 1422 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) { 1423 cache_op(Index_Load_Tag_SD, addr); 1424 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ 1425 if (!read_c0_taglo()) 1426 break; 1427 pow2 <<= 1; 1428 } 1429 local_irq_restore(flags); 1430 addr -= begin; 1431 1432 scache_size = addr; 1433 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22); 1434 c->scache.ways = 1; 1435 c->scache.waybit = 0; /* does not matter */ 1436 1437 return 1; 1438 } 1439 1440 static void loongson2_sc_init(void) 1441 { 1442 struct cpuinfo_mips *c = ¤t_cpu_data; 1443 1444 scache_size = 512*1024; 1445 c->scache.linesz = 32; 1446 c->scache.ways = 4; 1447 c->scache.waybit = 0; 1448 c->scache.waysize = scache_size / (c->scache.ways); 1449 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1450 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1451 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1452 1453 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1454 } 1455 1456 static void loongson3_sc_init(void) 1457 { 1458 struct cpuinfo_mips *c = ¤t_cpu_data; 1459 unsigned int config2, lsize; 1460 1461 config2 = read_c0_config2(); 1462 lsize = (config2 >> 4) & 15; 1463 if (lsize) 1464 c->scache.linesz = 2 << lsize; 1465 else 1466 c->scache.linesz = 0; 1467 c->scache.sets = 64 << ((config2 >> 8) & 15); 1468 c->scache.ways = 1 + (config2 & 15); 1469 1470 /* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */ 1471 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R) 1472 c->scache.sets *= 2; 1473 else 1474 c->scache.sets *= 4; 1475 1476 scache_size = c->scache.sets * c->scache.ways * c->scache.linesz; 1477 1478 c->scache.waybit = 0; 1479 c->scache.waysize = scache_size / c->scache.ways; 1480 pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1481 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1482 if (scache_size) 1483 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1484 return; 1485 } 1486 1487 extern int r5k_sc_init(void); 1488 extern int rm7k_sc_init(void); 1489 extern int mips_sc_init(void); 1490 1491 static void setup_scache(void) 1492 { 1493 struct cpuinfo_mips *c = ¤t_cpu_data; 1494 unsigned int config = read_c0_config(); 1495 int sc_present = 0; 1496 1497 /* 1498 * Do the probing thing on R4000SC and R4400SC processors. Other 1499 * processors don't have a S-cache that would be relevant to the 1500 * Linux memory management. 1501 */ 1502 switch (current_cpu_type()) { 1503 case CPU_R4000SC: 1504 case CPU_R4000MC: 1505 case CPU_R4400SC: 1506 case CPU_R4400MC: 1507 sc_present = run_uncached(probe_scache); 1508 if (sc_present) 1509 c->options |= MIPS_CPU_CACHE_CDEX_S; 1510 break; 1511 1512 case CPU_R10000: 1513 case CPU_R12000: 1514 case CPU_R14000: 1515 case CPU_R16000: 1516 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16); 1517 c->scache.linesz = 64 << ((config >> 13) & 1); 1518 c->scache.ways = 2; 1519 c->scache.waybit= 0; 1520 sc_present = 1; 1521 break; 1522 1523 case CPU_R5000: 1524 case CPU_NEVADA: 1525 #ifdef CONFIG_R5000_CPU_SCACHE 1526 r5k_sc_init(); 1527 #endif 1528 return; 1529 1530 case CPU_RM7000: 1531 #ifdef CONFIG_RM7000_CPU_SCACHE 1532 rm7k_sc_init(); 1533 #endif 1534 return; 1535 1536 case CPU_LOONGSON2EF: 1537 loongson2_sc_init(); 1538 return; 1539 1540 case CPU_LOONGSON64: 1541 loongson3_sc_init(); 1542 return; 1543 1544 case CPU_CAVIUM_OCTEON3: 1545 /* don't need to worry about L2, fully coherent */ 1546 return; 1547 1548 default: 1549 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 | 1550 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 | 1551 MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 | 1552 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) { 1553 #ifdef CONFIG_MIPS_CPU_SCACHE 1554 if (mips_sc_init ()) { 1555 scache_size = c->scache.ways * c->scache.sets * c->scache.linesz; 1556 printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n", 1557 scache_size >> 10, 1558 way_string[c->scache.ways], c->scache.linesz); 1559 1560 if (current_cpu_type() == CPU_BMIPS5000) 1561 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1562 } 1563 1564 #else 1565 if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT)) 1566 panic("Dunno how to handle MIPS32 / MIPS64 second level cache"); 1567 #endif 1568 return; 1569 } 1570 sc_present = 0; 1571 } 1572 1573 if (!sc_present) 1574 return; 1575 1576 /* compute a couple of other cache variables */ 1577 c->scache.waysize = scache_size / c->scache.ways; 1578 1579 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways); 1580 1581 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n", 1582 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz); 1583 1584 c->options |= MIPS_CPU_INCLUSIVE_CACHES; 1585 } 1586 1587 void au1x00_fixup_config_od(void) 1588 { 1589 /* 1590 * c0_config.od (bit 19) was write only (and read as 0) 1591 * on the early revisions of Alchemy SOCs. It disables the bus 1592 * transaction overlapping and needs to be set to fix various errata. 1593 */ 1594 switch (read_c0_prid()) { 1595 case 0x00030100: /* Au1000 DA */ 1596 case 0x00030201: /* Au1000 HA */ 1597 case 0x00030202: /* Au1000 HB */ 1598 case 0x01030200: /* Au1500 AB */ 1599 /* 1600 * Au1100 errata actually keeps silence about this bit, so we set it 1601 * just in case for those revisions that require it to be set according 1602 * to the (now gone) cpu table. 1603 */ 1604 case 0x02030200: /* Au1100 AB */ 1605 case 0x02030201: /* Au1100 BA */ 1606 case 0x02030202: /* Au1100 BC */ 1607 set_c0_config(1 << 19); 1608 break; 1609 } 1610 } 1611 1612 /* CP0 hazard avoidance. */ 1613 #define NXP_BARRIER() \ 1614 __asm__ __volatile__( \ 1615 ".set noreorder\n\t" \ 1616 "nop; nop; nop; nop; nop; nop;\n\t" \ 1617 ".set reorder\n\t") 1618 1619 static void nxp_pr4450_fixup_config(void) 1620 { 1621 unsigned long config0; 1622 1623 config0 = read_c0_config(); 1624 1625 /* clear all three cache coherency fields */ 1626 config0 &= ~(0x7 | (7 << 25) | (7 << 28)); 1627 config0 |= (((_page_cachable_default >> _CACHE_SHIFT) << 0) | 1628 ((_page_cachable_default >> _CACHE_SHIFT) << 25) | 1629 ((_page_cachable_default >> _CACHE_SHIFT) << 28)); 1630 write_c0_config(config0); 1631 NXP_BARRIER(); 1632 } 1633 1634 static int cca = -1; 1635 1636 static int __init cca_setup(char *str) 1637 { 1638 get_option(&str, &cca); 1639 1640 return 0; 1641 } 1642 1643 early_param("cca", cca_setup); 1644 1645 static void coherency_setup(void) 1646 { 1647 if (cca < 0 || cca > 7) 1648 cca = read_c0_config() & CONF_CM_CMASK; 1649 _page_cachable_default = cca << _CACHE_SHIFT; 1650 1651 pr_debug("Using cache attribute %d\n", cca); 1652 change_c0_config(CONF_CM_CMASK, cca); 1653 1654 /* 1655 * c0_status.cu=0 specifies that updates by the sc instruction use 1656 * the coherency mode specified by the TLB; 1 means cachable 1657 * coherent update on write will be used. Not all processors have 1658 * this bit and; some wire it to zero, others like Toshiba had the 1659 * silly idea of putting something else there ... 1660 */ 1661 switch (current_cpu_type()) { 1662 case CPU_R4000PC: 1663 case CPU_R4000SC: 1664 case CPU_R4000MC: 1665 case CPU_R4400PC: 1666 case CPU_R4400SC: 1667 case CPU_R4400MC: 1668 clear_c0_config(CONF_CU); 1669 break; 1670 /* 1671 * We need to catch the early Alchemy SOCs with 1672 * the write-only co_config.od bit and set it back to one on: 1673 * Au1000 rev DA, HA, HB; Au1100 AB, BA, BC, Au1500 AB 1674 */ 1675 case CPU_ALCHEMY: 1676 au1x00_fixup_config_od(); 1677 break; 1678 1679 case PRID_IMP_PR4450: 1680 nxp_pr4450_fixup_config(); 1681 break; 1682 } 1683 } 1684 1685 static void r4k_cache_error_setup(void) 1686 { 1687 extern char __weak except_vec2_generic; 1688 extern char __weak except_vec2_sb1; 1689 1690 switch (current_cpu_type()) { 1691 case CPU_SB1: 1692 case CPU_SB1A: 1693 set_uncached_handler(0x100, &except_vec2_sb1, 0x80); 1694 break; 1695 1696 default: 1697 set_uncached_handler(0x100, &except_vec2_generic, 0x80); 1698 break; 1699 } 1700 } 1701 1702 void r4k_cache_init(void) 1703 { 1704 extern void build_clear_page(void); 1705 extern void build_copy_page(void); 1706 struct cpuinfo_mips *c = ¤t_cpu_data; 1707 1708 probe_pcache(); 1709 probe_vcache(); 1710 setup_scache(); 1711 1712 r4k_blast_dcache_page_setup(); 1713 r4k_blast_dcache_setup(); 1714 r4k_blast_icache_page_setup(); 1715 r4k_blast_icache_setup(); 1716 r4k_blast_scache_page_setup(); 1717 r4k_blast_scache_setup(); 1718 r4k_blast_scache_node_setup(); 1719 #ifdef CONFIG_EVA 1720 r4k_blast_dcache_user_page_setup(); 1721 r4k_blast_icache_user_page_setup(); 1722 #endif 1723 1724 /* 1725 * Some MIPS32 and MIPS64 processors have physically indexed caches. 1726 * This code supports virtually indexed processors and will be 1727 * unnecessarily inefficient on physically indexed processors. 1728 */ 1729 if (c->dcache.linesz && cpu_has_dc_aliases) 1730 shm_align_mask = max_t( unsigned long, 1731 c->dcache.sets * c->dcache.linesz - 1, 1732 PAGE_SIZE - 1); 1733 else 1734 shm_align_mask = PAGE_SIZE-1; 1735 1736 __flush_cache_vmap = r4k__flush_cache_vmap; 1737 __flush_cache_vunmap = r4k__flush_cache_vunmap; 1738 1739 flush_cache_all = cache_noop; 1740 __flush_cache_all = r4k___flush_cache_all; 1741 flush_cache_mm = r4k_flush_cache_mm; 1742 flush_cache_page = r4k_flush_cache_page; 1743 flush_cache_range = r4k_flush_cache_range; 1744 1745 __flush_kernel_vmap_range = r4k_flush_kernel_vmap_range; 1746 1747 flush_icache_all = r4k_flush_icache_all; 1748 flush_data_cache_page = r4k_flush_data_cache_page; 1749 flush_icache_range = r4k_flush_icache_range; 1750 local_flush_icache_range = local_r4k_flush_icache_range; 1751 __flush_icache_user_range = r4k_flush_icache_user_range; 1752 __local_flush_icache_user_range = local_r4k_flush_icache_user_range; 1753 1754 #ifdef CONFIG_DMA_NONCOHERENT 1755 _dma_cache_wback_inv = r4k_dma_cache_wback_inv; 1756 _dma_cache_wback = r4k_dma_cache_wback_inv; 1757 _dma_cache_inv = r4k_dma_cache_inv; 1758 #endif /* CONFIG_DMA_NONCOHERENT */ 1759 1760 build_clear_page(); 1761 build_copy_page(); 1762 1763 /* 1764 * We want to run CMP kernels on core with and without coherent 1765 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether 1766 * or not to flush caches. 1767 */ 1768 local_r4k___flush_cache_all(NULL); 1769 1770 coherency_setup(); 1771 board_cache_error_setup = r4k_cache_error_setup; 1772 1773 /* 1774 * Per-CPU overrides 1775 */ 1776 switch (current_cpu_type()) { 1777 case CPU_BMIPS4350: 1778 case CPU_BMIPS4380: 1779 /* No IPI is needed because all CPUs share the same D$ */ 1780 flush_data_cache_page = r4k_blast_dcache_page; 1781 break; 1782 case CPU_BMIPS5000: 1783 /* We lose our superpowers if L2 is disabled */ 1784 if (c->scache.flags & MIPS_CACHE_NOT_PRESENT) 1785 break; 1786 1787 /* I$ fills from D$ just by emptying the write buffers */ 1788 flush_cache_page = (void *)b5k_instruction_hazard; 1789 flush_cache_range = (void *)b5k_instruction_hazard; 1790 flush_data_cache_page = (void *)b5k_instruction_hazard; 1791 flush_icache_range = (void *)b5k_instruction_hazard; 1792 local_flush_icache_range = (void *)b5k_instruction_hazard; 1793 1794 1795 /* Optimization: an L2 flush implicitly flushes the L1 */ 1796 current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES; 1797 break; 1798 case CPU_LOONGSON64: 1799 /* Loongson-3 maintains cache coherency by hardware */ 1800 __flush_cache_all = cache_noop; 1801 __flush_cache_vmap = cache_noop; 1802 __flush_cache_vunmap = cache_noop; 1803 __flush_kernel_vmap_range = (void *)cache_noop; 1804 flush_cache_mm = (void *)cache_noop; 1805 flush_cache_page = (void *)cache_noop; 1806 flush_cache_range = (void *)cache_noop; 1807 flush_icache_all = (void *)cache_noop; 1808 flush_data_cache_page = (void *)cache_noop; 1809 break; 1810 } 1811 } 1812 1813 static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd, 1814 void *v) 1815 { 1816 switch (cmd) { 1817 case CPU_PM_ENTER_FAILED: 1818 case CPU_PM_EXIT: 1819 coherency_setup(); 1820 break; 1821 } 1822 1823 return NOTIFY_OK; 1824 } 1825 1826 static struct notifier_block r4k_cache_pm_notifier_block = { 1827 .notifier_call = r4k_cache_pm_notifier, 1828 }; 1829 1830 int __init r4k_cache_init_pm(void) 1831 { 1832 return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block); 1833 } 1834 arch_initcall(r4k_cache_init_pm); 1835