xref: /linux/arch/mips/mm/c-r4k.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15 
16 #include <asm/bcache.h>
17 #include <asm/bootinfo.h>
18 #include <asm/cache.h>
19 #include <asm/cacheops.h>
20 #include <asm/cpu.h>
21 #include <asm/cpu-features.h>
22 #include <asm/io.h>
23 #include <asm/page.h>
24 #include <asm/pgtable.h>
25 #include <asm/r4kcache.h>
26 #include <asm/system.h>
27 #include <asm/mmu_context.h>
28 #include <asm/war.h>
29 #include <asm/cacheflush.h> /* for run_uncached() */
30 
31 
32 /*
33  * Special Variant of smp_call_function for use by cache functions:
34  *
35  *  o No return value
36  *  o collapses to normal function call on UP kernels
37  *  o collapses to normal function call on systems with a single shared
38  *    primary cache.
39  */
40 static inline void r4k_on_each_cpu(void (*func) (void *info), void *info,
41                                    int retry, int wait)
42 {
43 	preempt_disable();
44 
45 #if !defined(CONFIG_MIPS_MT_SMP) && !defined(CONFIG_MIPS_MT_SMTC)
46 	smp_call_function(func, info, retry, wait);
47 #endif
48 	func(info);
49 	preempt_enable();
50 }
51 
52 /*
53  * Must die.
54  */
55 static unsigned long icache_size __read_mostly;
56 static unsigned long dcache_size __read_mostly;
57 static unsigned long scache_size __read_mostly;
58 
59 /*
60  * Dummy cache handling routines for machines without boardcaches
61  */
62 static void cache_noop(void) {}
63 
64 static struct bcache_ops no_sc_ops = {
65 	.bc_enable = (void *)cache_noop,
66 	.bc_disable = (void *)cache_noop,
67 	.bc_wback_inv = (void *)cache_noop,
68 	.bc_inv = (void *)cache_noop
69 };
70 
71 struct bcache_ops *bcops = &no_sc_ops;
72 
73 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
74 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
75 
76 #define R4600_HIT_CACHEOP_WAR_IMPL					\
77 do {									\
78 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
79 		*(volatile unsigned long *)CKSEG1;			\
80 	if (R4600_V1_HIT_CACHEOP_WAR)					\
81 		__asm__ __volatile__("nop;nop;nop;nop");		\
82 } while (0)
83 
84 static void (*r4k_blast_dcache_page)(unsigned long addr);
85 
86 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
87 {
88 	R4600_HIT_CACHEOP_WAR_IMPL;
89 	blast_dcache32_page(addr);
90 }
91 
92 static inline void r4k_blast_dcache_page_setup(void)
93 {
94 	unsigned long  dc_lsize = cpu_dcache_line_size();
95 
96 	if (dc_lsize == 0)
97 		r4k_blast_dcache_page = (void *)cache_noop;
98 	else if (dc_lsize == 16)
99 		r4k_blast_dcache_page = blast_dcache16_page;
100 	else if (dc_lsize == 32)
101 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
102 }
103 
104 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
105 
106 static inline void r4k_blast_dcache_page_indexed_setup(void)
107 {
108 	unsigned long dc_lsize = cpu_dcache_line_size();
109 
110 	if (dc_lsize == 0)
111 		r4k_blast_dcache_page_indexed = (void *)cache_noop;
112 	else if (dc_lsize == 16)
113 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
114 	else if (dc_lsize == 32)
115 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
116 }
117 
118 static void (* r4k_blast_dcache)(void);
119 
120 static inline void r4k_blast_dcache_setup(void)
121 {
122 	unsigned long dc_lsize = cpu_dcache_line_size();
123 
124 	if (dc_lsize == 0)
125 		r4k_blast_dcache = (void *)cache_noop;
126 	else if (dc_lsize == 16)
127 		r4k_blast_dcache = blast_dcache16;
128 	else if (dc_lsize == 32)
129 		r4k_blast_dcache = blast_dcache32;
130 }
131 
132 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
133 #define JUMP_TO_ALIGN(order) \
134 	__asm__ __volatile__( \
135 		"b\t1f\n\t" \
136 		".align\t" #order "\n\t" \
137 		"1:\n\t" \
138 		)
139 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
140 #define CACHE32_UNROLL32_ALIGN2	JUMP_TO_ALIGN(11)
141 
142 static inline void blast_r4600_v1_icache32(void)
143 {
144 	unsigned long flags;
145 
146 	local_irq_save(flags);
147 	blast_icache32();
148 	local_irq_restore(flags);
149 }
150 
151 static inline void tx49_blast_icache32(void)
152 {
153 	unsigned long start = INDEX_BASE;
154 	unsigned long end = start + current_cpu_data.icache.waysize;
155 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
156 	unsigned long ws_end = current_cpu_data.icache.ways <<
157 	                       current_cpu_data.icache.waybit;
158 	unsigned long ws, addr;
159 
160 	CACHE32_UNROLL32_ALIGN2;
161 	/* I'm in even chunk.  blast odd chunks */
162 	for (ws = 0; ws < ws_end; ws += ws_inc)
163 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
164 			cache32_unroll32(addr|ws,Index_Invalidate_I);
165 	CACHE32_UNROLL32_ALIGN;
166 	/* I'm in odd chunk.  blast even chunks */
167 	for (ws = 0; ws < ws_end; ws += ws_inc)
168 		for (addr = start; addr < end; addr += 0x400 * 2)
169 			cache32_unroll32(addr|ws,Index_Invalidate_I);
170 }
171 
172 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
173 {
174 	unsigned long flags;
175 
176 	local_irq_save(flags);
177 	blast_icache32_page_indexed(page);
178 	local_irq_restore(flags);
179 }
180 
181 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
182 {
183 	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
184 	unsigned long start = INDEX_BASE + (page & indexmask);
185 	unsigned long end = start + PAGE_SIZE;
186 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
187 	unsigned long ws_end = current_cpu_data.icache.ways <<
188 	                       current_cpu_data.icache.waybit;
189 	unsigned long ws, addr;
190 
191 	CACHE32_UNROLL32_ALIGN2;
192 	/* I'm in even chunk.  blast odd chunks */
193 	for (ws = 0; ws < ws_end; ws += ws_inc)
194 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
195 			cache32_unroll32(addr|ws,Index_Invalidate_I);
196 	CACHE32_UNROLL32_ALIGN;
197 	/* I'm in odd chunk.  blast even chunks */
198 	for (ws = 0; ws < ws_end; ws += ws_inc)
199 		for (addr = start; addr < end; addr += 0x400 * 2)
200 			cache32_unroll32(addr|ws,Index_Invalidate_I);
201 }
202 
203 static void (* r4k_blast_icache_page)(unsigned long addr);
204 
205 static inline void r4k_blast_icache_page_setup(void)
206 {
207 	unsigned long ic_lsize = cpu_icache_line_size();
208 
209 	if (ic_lsize == 0)
210 		r4k_blast_icache_page = (void *)cache_noop;
211 	else if (ic_lsize == 16)
212 		r4k_blast_icache_page = blast_icache16_page;
213 	else if (ic_lsize == 32)
214 		r4k_blast_icache_page = blast_icache32_page;
215 	else if (ic_lsize == 64)
216 		r4k_blast_icache_page = blast_icache64_page;
217 }
218 
219 
220 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
221 
222 static inline void r4k_blast_icache_page_indexed_setup(void)
223 {
224 	unsigned long ic_lsize = cpu_icache_line_size();
225 
226 	if (ic_lsize == 0)
227 		r4k_blast_icache_page_indexed = (void *)cache_noop;
228 	else if (ic_lsize == 16)
229 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
230 	else if (ic_lsize == 32) {
231 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
232 			r4k_blast_icache_page_indexed =
233 				blast_icache32_r4600_v1_page_indexed;
234 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
235 			r4k_blast_icache_page_indexed =
236 				tx49_blast_icache32_page_indexed;
237 		else
238 			r4k_blast_icache_page_indexed =
239 				blast_icache32_page_indexed;
240 	} else if (ic_lsize == 64)
241 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
242 }
243 
244 static void (* r4k_blast_icache)(void);
245 
246 static inline void r4k_blast_icache_setup(void)
247 {
248 	unsigned long ic_lsize = cpu_icache_line_size();
249 
250 	if (ic_lsize == 0)
251 		r4k_blast_icache = (void *)cache_noop;
252 	else if (ic_lsize == 16)
253 		r4k_blast_icache = blast_icache16;
254 	else if (ic_lsize == 32) {
255 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
256 			r4k_blast_icache = blast_r4600_v1_icache32;
257 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
258 			r4k_blast_icache = tx49_blast_icache32;
259 		else
260 			r4k_blast_icache = blast_icache32;
261 	} else if (ic_lsize == 64)
262 		r4k_blast_icache = blast_icache64;
263 }
264 
265 static void (* r4k_blast_scache_page)(unsigned long addr);
266 
267 static inline void r4k_blast_scache_page_setup(void)
268 {
269 	unsigned long sc_lsize = cpu_scache_line_size();
270 
271 	if (scache_size == 0)
272 		r4k_blast_scache_page = (void *)cache_noop;
273 	else if (sc_lsize == 16)
274 		r4k_blast_scache_page = blast_scache16_page;
275 	else if (sc_lsize == 32)
276 		r4k_blast_scache_page = blast_scache32_page;
277 	else if (sc_lsize == 64)
278 		r4k_blast_scache_page = blast_scache64_page;
279 	else if (sc_lsize == 128)
280 		r4k_blast_scache_page = blast_scache128_page;
281 }
282 
283 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
284 
285 static inline void r4k_blast_scache_page_indexed_setup(void)
286 {
287 	unsigned long sc_lsize = cpu_scache_line_size();
288 
289 	if (scache_size == 0)
290 		r4k_blast_scache_page_indexed = (void *)cache_noop;
291 	else if (sc_lsize == 16)
292 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
293 	else if (sc_lsize == 32)
294 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
295 	else if (sc_lsize == 64)
296 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
297 	else if (sc_lsize == 128)
298 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
299 }
300 
301 static void (* r4k_blast_scache)(void);
302 
303 static inline void r4k_blast_scache_setup(void)
304 {
305 	unsigned long sc_lsize = cpu_scache_line_size();
306 
307 	if (scache_size == 0)
308 		r4k_blast_scache = (void *)cache_noop;
309 	else if (sc_lsize == 16)
310 		r4k_blast_scache = blast_scache16;
311 	else if (sc_lsize == 32)
312 		r4k_blast_scache = blast_scache32;
313 	else if (sc_lsize == 64)
314 		r4k_blast_scache = blast_scache64;
315 	else if (sc_lsize == 128)
316 		r4k_blast_scache = blast_scache128;
317 }
318 
319 /*
320  * This is former mm's flush_cache_all() which really should be
321  * flush_cache_vunmap these days ...
322  */
323 static inline void local_r4k_flush_cache_all(void * args)
324 {
325 	r4k_blast_dcache();
326 	r4k_blast_icache();
327 }
328 
329 static void r4k_flush_cache_all(void)
330 {
331 	if (!cpu_has_dc_aliases)
332 		return;
333 
334 	r4k_on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
335 }
336 
337 static inline void local_r4k___flush_cache_all(void * args)
338 {
339 	r4k_blast_dcache();
340 	r4k_blast_icache();
341 
342 	switch (current_cpu_data.cputype) {
343 	case CPU_R4000SC:
344 	case CPU_R4000MC:
345 	case CPU_R4400SC:
346 	case CPU_R4400MC:
347 	case CPU_R10000:
348 	case CPU_R12000:
349 	case CPU_R14000:
350 		r4k_blast_scache();
351 	}
352 }
353 
354 static void r4k___flush_cache_all(void)
355 {
356 	r4k_on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
357 }
358 
359 static inline void local_r4k_flush_cache_range(void * args)
360 {
361 	struct vm_area_struct *vma = args;
362 	int exec;
363 
364 	if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
365 		return;
366 
367 	exec = vma->vm_flags & VM_EXEC;
368 	if (cpu_has_dc_aliases || exec)
369 		r4k_blast_dcache();
370 	if (exec)
371 		r4k_blast_icache();
372 }
373 
374 static void r4k_flush_cache_range(struct vm_area_struct *vma,
375 	unsigned long start, unsigned long end)
376 {
377 	r4k_on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
378 }
379 
380 static inline void local_r4k_flush_cache_mm(void * args)
381 {
382 	struct mm_struct *mm = args;
383 
384 	if (!cpu_context(smp_processor_id(), mm))
385 		return;
386 
387 	r4k_blast_dcache();
388 	r4k_blast_icache();
389 
390 	/*
391 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
392 	 * only flush the primary caches but R10000 and R12000 behave sane ...
393 	 */
394 	if (current_cpu_data.cputype == CPU_R4000SC ||
395 	    current_cpu_data.cputype == CPU_R4000MC ||
396 	    current_cpu_data.cputype == CPU_R4400SC ||
397 	    current_cpu_data.cputype == CPU_R4400MC)
398 		r4k_blast_scache();
399 }
400 
401 static void r4k_flush_cache_mm(struct mm_struct *mm)
402 {
403 	if (!cpu_has_dc_aliases)
404 		return;
405 
406 	r4k_on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
407 }
408 
409 struct flush_cache_page_args {
410 	struct vm_area_struct *vma;
411 	unsigned long addr;
412 	unsigned long pfn;
413 };
414 
415 static inline void local_r4k_flush_cache_page(void *args)
416 {
417 	struct flush_cache_page_args *fcp_args = args;
418 	struct vm_area_struct *vma = fcp_args->vma;
419 	unsigned long addr = fcp_args->addr;
420 	unsigned long paddr = fcp_args->pfn << PAGE_SHIFT;
421 	int exec = vma->vm_flags & VM_EXEC;
422 	struct mm_struct *mm = vma->vm_mm;
423 	pgd_t *pgdp;
424 	pud_t *pudp;
425 	pmd_t *pmdp;
426 	pte_t *ptep;
427 
428 	/*
429 	 * If ownes no valid ASID yet, cannot possibly have gotten
430 	 * this page into the cache.
431 	 */
432 	if (cpu_context(smp_processor_id(), mm) == 0)
433 		return;
434 
435 	addr &= PAGE_MASK;
436 	pgdp = pgd_offset(mm, addr);
437 	pudp = pud_offset(pgdp, addr);
438 	pmdp = pmd_offset(pudp, addr);
439 	ptep = pte_offset(pmdp, addr);
440 
441 	/*
442 	 * If the page isn't marked valid, the page cannot possibly be
443 	 * in the cache.
444 	 */
445 	if (!(pte_val(*ptep) & _PAGE_PRESENT))
446 		return;
447 
448 	/*
449 	 * Doing flushes for another ASID than the current one is
450 	 * too difficult since stupid R4k caches do a TLB translation
451 	 * for every cache flush operation.  So we do indexed flushes
452 	 * in that case, which doesn't overly flush the cache too much.
453 	 */
454 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
455 		if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
456 			r4k_blast_dcache_page(addr);
457 			if (exec && !cpu_icache_snoops_remote_store)
458 				r4k_blast_scache_page(addr);
459 		}
460 		if (exec)
461 			r4k_blast_icache_page(addr);
462 
463 		return;
464 	}
465 
466 	/*
467 	 * Do indexed flush, too much work to get the (possible) TLB refills
468 	 * to work correctly.
469 	 */
470 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
471 		r4k_blast_dcache_page_indexed(cpu_has_pindexed_dcache ?
472 					      paddr : addr);
473 		if (exec && !cpu_icache_snoops_remote_store) {
474 			r4k_blast_scache_page_indexed(paddr);
475 		}
476 	}
477 	if (exec) {
478 		if (cpu_has_vtag_icache) {
479 			int cpu = smp_processor_id();
480 
481 			if (cpu_context(cpu, mm) != 0)
482 				drop_mmu_context(mm, cpu);
483 		} else
484 			r4k_blast_icache_page_indexed(addr);
485 	}
486 }
487 
488 static void r4k_flush_cache_page(struct vm_area_struct *vma,
489 	unsigned long addr, unsigned long pfn)
490 {
491 	struct flush_cache_page_args args;
492 
493 	args.vma = vma;
494 	args.addr = addr;
495 	args.pfn = pfn;
496 
497 	r4k_on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
498 }
499 
500 static inline void local_r4k_flush_data_cache_page(void * addr)
501 {
502 	r4k_blast_dcache_page((unsigned long) addr);
503 }
504 
505 static void r4k_flush_data_cache_page(unsigned long addr)
506 {
507 	r4k_on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
508 }
509 
510 struct flush_icache_range_args {
511 	unsigned long start;
512 	unsigned long end;
513 };
514 
515 static inline void local_r4k_flush_icache_range(void *args)
516 {
517 	struct flush_icache_range_args *fir_args = args;
518 	unsigned long start = fir_args->start;
519 	unsigned long end = fir_args->end;
520 
521 	if (!cpu_has_ic_fills_f_dc) {
522 		if (end - start >= dcache_size) {
523 			r4k_blast_dcache();
524 		} else {
525 			R4600_HIT_CACHEOP_WAR_IMPL;
526 			protected_blast_dcache_range(start, end);
527 		}
528 
529 		if (!cpu_icache_snoops_remote_store && scache_size) {
530 			if (end - start > scache_size)
531 				r4k_blast_scache();
532 			else
533 				protected_blast_scache_range(start, end);
534 		}
535 	}
536 
537 	if (end - start > icache_size)
538 		r4k_blast_icache();
539 	else
540 		protected_blast_icache_range(start, end);
541 }
542 
543 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
544 {
545 	struct flush_icache_range_args args;
546 
547 	args.start = start;
548 	args.end = end;
549 
550 	r4k_on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
551 	instruction_hazard();
552 }
553 
554 /*
555  * Ok, this seriously sucks.  We use them to flush a user page but don't
556  * know the virtual address, so we have to blast away the whole icache
557  * which is significantly more expensive than the real thing.  Otoh we at
558  * least know the kernel address of the page so we can flush it
559  * selectivly.
560  */
561 
562 struct flush_icache_page_args {
563 	struct vm_area_struct *vma;
564 	struct page *page;
565 };
566 
567 static inline void local_r4k_flush_icache_page(void *args)
568 {
569 	struct flush_icache_page_args *fip_args = args;
570 	struct vm_area_struct *vma = fip_args->vma;
571 	struct page *page = fip_args->page;
572 
573 	/*
574 	 * Tricky ...  Because we don't know the virtual address we've got the
575 	 * choice of either invalidating the entire primary and secondary
576 	 * caches or invalidating the secondary caches also.  With the subset
577 	 * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
578 	 * secondary cache will result in any entries in the primary caches
579 	 * also getting invalidated which hopefully is a bit more economical.
580 	 */
581 	if (cpu_has_subset_pcaches) {
582 		unsigned long addr = (unsigned long) page_address(page);
583 
584 		r4k_blast_scache_page(addr);
585 		ClearPageDcacheDirty(page);
586 
587 		return;
588 	}
589 
590 	if (!cpu_has_ic_fills_f_dc) {
591 		unsigned long addr = (unsigned long) page_address(page);
592 		r4k_blast_dcache_page(addr);
593 		if (!cpu_icache_snoops_remote_store)
594 			r4k_blast_scache_page(addr);
595 		ClearPageDcacheDirty(page);
596 	}
597 
598 	/*
599 	 * We're not sure of the virtual address(es) involved here, so
600 	 * we have to flush the entire I-cache.
601 	 */
602 	if (cpu_has_vtag_icache) {
603 		int cpu = smp_processor_id();
604 
605 		if (cpu_context(cpu, vma->vm_mm) != 0)
606 			drop_mmu_context(vma->vm_mm, cpu);
607 	} else
608 		r4k_blast_icache();
609 }
610 
611 static void r4k_flush_icache_page(struct vm_area_struct *vma,
612 	struct page *page)
613 {
614 	struct flush_icache_page_args args;
615 
616 	/*
617 	 * If there's no context yet, or the page isn't executable, no I-cache
618 	 * flush is needed.
619 	 */
620 	if (!(vma->vm_flags & VM_EXEC))
621 		return;
622 
623 	args.vma = vma;
624 	args.page = page;
625 
626 	r4k_on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
627 }
628 
629 
630 #ifdef CONFIG_DMA_NONCOHERENT
631 
632 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
633 {
634 	/* Catch bad driver code */
635 	BUG_ON(size == 0);
636 
637 	if (cpu_has_subset_pcaches) {
638 		if (size >= scache_size)
639 			r4k_blast_scache();
640 		else
641 			blast_scache_range(addr, addr + size);
642 		return;
643 	}
644 
645 	/*
646 	 * Either no secondary cache or the available caches don't have the
647 	 * subset property so we have to flush the primary caches
648 	 * explicitly
649 	 */
650 	if (size >= dcache_size) {
651 		r4k_blast_dcache();
652 	} else {
653 		R4600_HIT_CACHEOP_WAR_IMPL;
654 		blast_dcache_range(addr, addr + size);
655 	}
656 
657 	bc_wback_inv(addr, size);
658 }
659 
660 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
661 {
662 	/* Catch bad driver code */
663 	BUG_ON(size == 0);
664 
665 	if (cpu_has_subset_pcaches) {
666 		if (size >= scache_size)
667 			r4k_blast_scache();
668 		else
669 			blast_scache_range(addr, addr + size);
670 		return;
671 	}
672 
673 	if (size >= dcache_size) {
674 		r4k_blast_dcache();
675 	} else {
676 		R4600_HIT_CACHEOP_WAR_IMPL;
677 		blast_dcache_range(addr, addr + size);
678 	}
679 
680 	bc_inv(addr, size);
681 }
682 #endif /* CONFIG_DMA_NONCOHERENT */
683 
684 /*
685  * While we're protected against bad userland addresses we don't care
686  * very much about what happens in that case.  Usually a segmentation
687  * fault will dump the process later on anyway ...
688  */
689 static void local_r4k_flush_cache_sigtramp(void * arg)
690 {
691 	unsigned long ic_lsize = cpu_icache_line_size();
692 	unsigned long dc_lsize = cpu_dcache_line_size();
693 	unsigned long sc_lsize = cpu_scache_line_size();
694 	unsigned long addr = (unsigned long) arg;
695 
696 	R4600_HIT_CACHEOP_WAR_IMPL;
697 	if (dc_lsize)
698 		protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
699 	if (!cpu_icache_snoops_remote_store && scache_size)
700 		protected_writeback_scache_line(addr & ~(sc_lsize - 1));
701 	if (ic_lsize)
702 		protected_flush_icache_line(addr & ~(ic_lsize - 1));
703 	if (MIPS4K_ICACHE_REFILL_WAR) {
704 		__asm__ __volatile__ (
705 			".set push\n\t"
706 			".set noat\n\t"
707 			".set mips3\n\t"
708 #ifdef CONFIG_32BIT
709 			"la	$at,1f\n\t"
710 #endif
711 #ifdef CONFIG_64BIT
712 			"dla	$at,1f\n\t"
713 #endif
714 			"cache	%0,($at)\n\t"
715 			"nop; nop; nop\n"
716 			"1:\n\t"
717 			".set pop"
718 			:
719 			: "i" (Hit_Invalidate_I));
720 	}
721 	if (MIPS_CACHE_SYNC_WAR)
722 		__asm__ __volatile__ ("sync");
723 }
724 
725 static void r4k_flush_cache_sigtramp(unsigned long addr)
726 {
727 	r4k_on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
728 }
729 
730 static void r4k_flush_icache_all(void)
731 {
732 	if (cpu_has_vtag_icache)
733 		r4k_blast_icache();
734 }
735 
736 static inline void rm7k_erratum31(void)
737 {
738 	const unsigned long ic_lsize = 32;
739 	unsigned long addr;
740 
741 	/* RM7000 erratum #31. The icache is screwed at startup. */
742 	write_c0_taglo(0);
743 	write_c0_taghi(0);
744 
745 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
746 		__asm__ __volatile__ (
747 			".set push\n\t"
748 			".set noreorder\n\t"
749 			".set mips3\n\t"
750 			"cache\t%1, 0(%0)\n\t"
751 			"cache\t%1, 0x1000(%0)\n\t"
752 			"cache\t%1, 0x2000(%0)\n\t"
753 			"cache\t%1, 0x3000(%0)\n\t"
754 			"cache\t%2, 0(%0)\n\t"
755 			"cache\t%2, 0x1000(%0)\n\t"
756 			"cache\t%2, 0x2000(%0)\n\t"
757 			"cache\t%2, 0x3000(%0)\n\t"
758 			"cache\t%1, 0(%0)\n\t"
759 			"cache\t%1, 0x1000(%0)\n\t"
760 			"cache\t%1, 0x2000(%0)\n\t"
761 			"cache\t%1, 0x3000(%0)\n\t"
762 			".set pop\n"
763 			:
764 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
765 	}
766 }
767 
768 static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
769 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
770 };
771 
772 static void __init probe_pcache(void)
773 {
774 	struct cpuinfo_mips *c = &current_cpu_data;
775 	unsigned int config = read_c0_config();
776 	unsigned int prid = read_c0_prid();
777 	unsigned long config1;
778 	unsigned int lsize;
779 
780 	switch (c->cputype) {
781 	case CPU_R4600:			/* QED style two way caches? */
782 	case CPU_R4700:
783 	case CPU_R5000:
784 	case CPU_NEVADA:
785 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
786 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
787 		c->icache.ways = 2;
788 		c->icache.waybit = __ffs(icache_size/2);
789 
790 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
791 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
792 		c->dcache.ways = 2;
793 		c->dcache.waybit= __ffs(dcache_size/2);
794 
795 		c->options |= MIPS_CPU_CACHE_CDEX_P;
796 		break;
797 
798 	case CPU_R5432:
799 	case CPU_R5500:
800 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
801 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
802 		c->icache.ways = 2;
803 		c->icache.waybit= 0;
804 
805 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
806 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
807 		c->dcache.ways = 2;
808 		c->dcache.waybit = 0;
809 
810 		c->options |= MIPS_CPU_CACHE_CDEX_P;
811 		break;
812 
813 	case CPU_TX49XX:
814 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
815 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
816 		c->icache.ways = 4;
817 		c->icache.waybit= 0;
818 
819 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
820 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
821 		c->dcache.ways = 4;
822 		c->dcache.waybit = 0;
823 
824 		c->options |= MIPS_CPU_CACHE_CDEX_P;
825 		c->options |= MIPS_CPU_PREFETCH;
826 		break;
827 
828 	case CPU_R4000PC:
829 	case CPU_R4000SC:
830 	case CPU_R4000MC:
831 	case CPU_R4400PC:
832 	case CPU_R4400SC:
833 	case CPU_R4400MC:
834 	case CPU_R4300:
835 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
836 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
837 		c->icache.ways = 1;
838 		c->icache.waybit = 0; 	/* doesn't matter */
839 
840 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
841 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
842 		c->dcache.ways = 1;
843 		c->dcache.waybit = 0;	/* does not matter */
844 
845 		c->options |= MIPS_CPU_CACHE_CDEX_P;
846 		break;
847 
848 	case CPU_R10000:
849 	case CPU_R12000:
850 	case CPU_R14000:
851 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
852 		c->icache.linesz = 64;
853 		c->icache.ways = 2;
854 		c->icache.waybit = 0;
855 
856 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
857 		c->dcache.linesz = 32;
858 		c->dcache.ways = 2;
859 		c->dcache.waybit = 0;
860 
861 		c->options |= MIPS_CPU_PREFETCH;
862 		break;
863 
864 	case CPU_VR4133:
865 		write_c0_config(config & ~CONF_EB);
866 	case CPU_VR4131:
867 		/* Workaround for cache instruction bug of VR4131 */
868 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
869 		    c->processor_id == 0x0c82U) {
870 			config &= ~0x00000030U;
871 			config |= 0x00410000U;
872 			write_c0_config(config);
873 		}
874 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
875 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
876 		c->icache.ways = 2;
877 		c->icache.waybit = __ffs(icache_size/2);
878 
879 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
880 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
881 		c->dcache.ways = 2;
882 		c->dcache.waybit = __ffs(dcache_size/2);
883 
884 		c->options |= MIPS_CPU_CACHE_CDEX_P;
885 		break;
886 
887 	case CPU_VR41XX:
888 	case CPU_VR4111:
889 	case CPU_VR4121:
890 	case CPU_VR4122:
891 	case CPU_VR4181:
892 	case CPU_VR4181A:
893 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
894 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
895 		c->icache.ways = 1;
896 		c->icache.waybit = 0; 	/* doesn't matter */
897 
898 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
899 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
900 		c->dcache.ways = 1;
901 		c->dcache.waybit = 0;	/* does not matter */
902 
903 		c->options |= MIPS_CPU_CACHE_CDEX_P;
904 		break;
905 
906 	case CPU_RM7000:
907 		rm7k_erratum31();
908 
909 	case CPU_RM9000:
910 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
911 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
912 		c->icache.ways = 4;
913 		c->icache.waybit = __ffs(icache_size / c->icache.ways);
914 
915 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
916 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
917 		c->dcache.ways = 4;
918 		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
919 
920 #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
921 		c->options |= MIPS_CPU_CACHE_CDEX_P;
922 #endif
923 		c->options |= MIPS_CPU_PREFETCH;
924 		break;
925 
926 	default:
927 		if (!(config & MIPS_CONF_M))
928 			panic("Don't know how to probe P-caches on this cpu.");
929 
930 		/*
931 		 * So we seem to be a MIPS32 or MIPS64 CPU
932 		 * So let's probe the I-cache ...
933 		 */
934 		config1 = read_c0_config1();
935 
936 		if ((lsize = ((config1 >> 19) & 7)))
937 			c->icache.linesz = 2 << lsize;
938 		else
939 			c->icache.linesz = lsize;
940 		c->icache.sets = 64 << ((config1 >> 22) & 7);
941 		c->icache.ways = 1 + ((config1 >> 16) & 7);
942 
943 		icache_size = c->icache.sets *
944 		              c->icache.ways *
945 		              c->icache.linesz;
946 		c->icache.waybit = __ffs(icache_size/c->icache.ways);
947 
948 		if (config & 0x8)		/* VI bit */
949 			c->icache.flags |= MIPS_CACHE_VTAG;
950 
951 		/*
952 		 * Now probe the MIPS32 / MIPS64 data cache.
953 		 */
954 		c->dcache.flags = 0;
955 
956 		if ((lsize = ((config1 >> 10) & 7)))
957 			c->dcache.linesz = 2 << lsize;
958 		else
959 			c->dcache.linesz= lsize;
960 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
961 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
962 
963 		dcache_size = c->dcache.sets *
964 		              c->dcache.ways *
965 		              c->dcache.linesz;
966 		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
967 
968 		c->options |= MIPS_CPU_PREFETCH;
969 		break;
970 	}
971 
972 	/*
973 	 * Processor configuration sanity check for the R4000SC erratum
974 	 * #5.  With page sizes larger than 32kB there is no possibility
975 	 * to get a VCE exception anymore so we don't care about this
976 	 * misconfiguration.  The case is rather theoretical anyway;
977 	 * presumably no vendor is shipping his hardware in the "bad"
978 	 * configuration.
979 	 */
980 	if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
981 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
982 	    PAGE_SIZE <= 0x8000)
983 		panic("Improper R4000SC processor configuration detected");
984 
985 	/* compute a couple of other cache variables */
986 	c->icache.waysize = icache_size / c->icache.ways;
987 	c->dcache.waysize = dcache_size / c->dcache.ways;
988 
989 	c->icache.sets = c->icache.linesz ?
990 		icache_size / (c->icache.linesz * c->icache.ways) : 0;
991 	c->dcache.sets = c->dcache.linesz ?
992 		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
993 
994 	/*
995 	 * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
996 	 * 2-way virtually indexed so normally would suffer from aliases.  So
997 	 * normally they'd suffer from aliases but magic in the hardware deals
998 	 * with that for us so we don't need to take care ourselves.
999 	 */
1000 	switch (c->cputype) {
1001 	case CPU_20KC:
1002 	case CPU_25KF:
1003 		c->dcache.flags |= MIPS_CACHE_PINDEX;
1004 	case CPU_R10000:
1005 	case CPU_R12000:
1006 	case CPU_R14000:
1007 	case CPU_SB1:
1008 		break;
1009 	case CPU_24K:
1010 	case CPU_34K:
1011 	case CPU_74K:
1012 		if ((read_c0_config7() & (1 << 16))) {
1013 			/* effectively physically indexed dcache,
1014 			   thus no virtual aliases. */
1015 			c->dcache.flags |= MIPS_CACHE_PINDEX;
1016 			break;
1017 		}
1018 	default:
1019 		if (c->dcache.waysize > PAGE_SIZE)
1020 			c->dcache.flags |= MIPS_CACHE_ALIASES;
1021 	}
1022 
1023 	switch (c->cputype) {
1024 	case CPU_20KC:
1025 		/*
1026 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1027 		 * the config register.
1028 		 */
1029 		c->icache.flags |= MIPS_CACHE_VTAG;
1030 		break;
1031 
1032 	case CPU_AU1000:
1033 	case CPU_AU1500:
1034 	case CPU_AU1100:
1035 	case CPU_AU1550:
1036 	case CPU_AU1200:
1037 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1038 		break;
1039 	}
1040 
1041 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1042 	       icache_size >> 10,
1043 	       cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
1044 	       way_string[c->icache.ways], c->icache.linesz);
1045 
1046 	printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
1047 	       dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
1048 }
1049 
1050 /*
1051  * If you even _breathe_ on this function, look at the gcc output and make sure
1052  * it does not pop things on and off the stack for the cache sizing loop that
1053  * executes in KSEG1 space or else you will crash and burn badly.  You have
1054  * been warned.
1055  */
1056 static int __init probe_scache(void)
1057 {
1058 	extern unsigned long stext;
1059 	unsigned long flags, addr, begin, end, pow2;
1060 	unsigned int config = read_c0_config();
1061 	struct cpuinfo_mips *c = &current_cpu_data;
1062 	int tmp;
1063 
1064 	if (config & CONF_SC)
1065 		return 0;
1066 
1067 	begin = (unsigned long) &stext;
1068 	begin &= ~((4 * 1024 * 1024) - 1);
1069 	end = begin + (4 * 1024 * 1024);
1070 
1071 	/*
1072 	 * This is such a bitch, you'd think they would make it easy to do
1073 	 * this.  Away you daemons of stupidity!
1074 	 */
1075 	local_irq_save(flags);
1076 
1077 	/* Fill each size-multiple cache line with a valid tag. */
1078 	pow2 = (64 * 1024);
1079 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1080 		unsigned long *p = (unsigned long *) addr;
1081 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1082 		pow2 <<= 1;
1083 	}
1084 
1085 	/* Load first line with zero (therefore invalid) tag. */
1086 	write_c0_taglo(0);
1087 	write_c0_taghi(0);
1088 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1089 	cache_op(Index_Store_Tag_I, begin);
1090 	cache_op(Index_Store_Tag_D, begin);
1091 	cache_op(Index_Store_Tag_SD, begin);
1092 
1093 	/* Now search for the wrap around point. */
1094 	pow2 = (128 * 1024);
1095 	tmp = 0;
1096 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1097 		cache_op(Index_Load_Tag_SD, addr);
1098 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1099 		if (!read_c0_taglo())
1100 			break;
1101 		pow2 <<= 1;
1102 	}
1103 	local_irq_restore(flags);
1104 	addr -= begin;
1105 
1106 	scache_size = addr;
1107 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1108 	c->scache.ways = 1;
1109 	c->dcache.waybit = 0;		/* does not matter */
1110 
1111 	return 1;
1112 }
1113 
1114 extern int r5k_sc_init(void);
1115 extern int rm7k_sc_init(void);
1116 extern int mips_sc_init(void);
1117 
1118 static void __init setup_scache(void)
1119 {
1120 	struct cpuinfo_mips *c = &current_cpu_data;
1121 	unsigned int config = read_c0_config();
1122 	int sc_present = 0;
1123 
1124 	/*
1125 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1126 	 * processors don't have a S-cache that would be relevant to the
1127 	 * Linux memory managment.
1128 	 */
1129 	switch (c->cputype) {
1130 	case CPU_R4000SC:
1131 	case CPU_R4000MC:
1132 	case CPU_R4400SC:
1133 	case CPU_R4400MC:
1134 		sc_present = run_uncached(probe_scache);
1135 		if (sc_present)
1136 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1137 		break;
1138 
1139 	case CPU_R10000:
1140 	case CPU_R12000:
1141 	case CPU_R14000:
1142 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1143 		c->scache.linesz = 64 << ((config >> 13) & 1);
1144 		c->scache.ways = 2;
1145 		c->scache.waybit= 0;
1146 		sc_present = 1;
1147 		break;
1148 
1149 	case CPU_R5000:
1150 	case CPU_NEVADA:
1151 #ifdef CONFIG_R5000_CPU_SCACHE
1152 		r5k_sc_init();
1153 #endif
1154                 return;
1155 
1156 	case CPU_RM7000:
1157 	case CPU_RM9000:
1158 #ifdef CONFIG_RM7000_CPU_SCACHE
1159 		rm7k_sc_init();
1160 #endif
1161 		return;
1162 
1163 	default:
1164 		if (c->isa_level == MIPS_CPU_ISA_M32R1 ||
1165 		    c->isa_level == MIPS_CPU_ISA_M32R2 ||
1166 		    c->isa_level == MIPS_CPU_ISA_M64R1 ||
1167 		    c->isa_level == MIPS_CPU_ISA_M64R2) {
1168 #ifdef CONFIG_MIPS_CPU_SCACHE
1169 			if (mips_sc_init ()) {
1170 				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1171 				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1172 				       scache_size >> 10,
1173 				       way_string[c->scache.ways], c->scache.linesz);
1174 			}
1175 #else
1176 			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1177 				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1178 #endif
1179 			return;
1180 		}
1181 		sc_present = 0;
1182 	}
1183 
1184 	if (!sc_present)
1185 		return;
1186 
1187 	/* compute a couple of other cache variables */
1188 	c->scache.waysize = scache_size / c->scache.ways;
1189 
1190 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1191 
1192 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1193 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1194 
1195 	c->options |= MIPS_CPU_SUBSET_CACHES;
1196 }
1197 
1198 void au1x00_fixup_config_od(void)
1199 {
1200 	/*
1201 	 * c0_config.od (bit 19) was write only (and read as 0)
1202 	 * on the early revisions of Alchemy SOCs.  It disables the bus
1203 	 * transaction overlapping and needs to be set to fix various errata.
1204 	 */
1205 	switch (read_c0_prid()) {
1206 	case 0x00030100: /* Au1000 DA */
1207 	case 0x00030201: /* Au1000 HA */
1208 	case 0x00030202: /* Au1000 HB */
1209 	case 0x01030200: /* Au1500 AB */
1210 	/*
1211 	 * Au1100 errata actually keeps silence about this bit, so we set it
1212 	 * just in case for those revisions that require it to be set according
1213 	 * to arch/mips/au1000/common/cputable.c
1214 	 */
1215 	case 0x02030200: /* Au1100 AB */
1216 	case 0x02030201: /* Au1100 BA */
1217 	case 0x02030202: /* Au1100 BC */
1218 		set_c0_config(1 << 19);
1219 		break;
1220 	}
1221 }
1222 
1223 static inline void coherency_setup(void)
1224 {
1225 	change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1226 
1227 	/*
1228 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1229 	 * the coherency mode specified by the TLB; 1 means cachable
1230 	 * coherent update on write will be used.  Not all processors have
1231 	 * this bit and; some wire it to zero, others like Toshiba had the
1232 	 * silly idea of putting something else there ...
1233 	 */
1234 	switch (current_cpu_data.cputype) {
1235 	case CPU_R4000PC:
1236 	case CPU_R4000SC:
1237 	case CPU_R4000MC:
1238 	case CPU_R4400PC:
1239 	case CPU_R4400SC:
1240 	case CPU_R4400MC:
1241 		clear_c0_config(CONF_CU);
1242 		break;
1243 	/*
1244 	 * We need to catch the ealry Alchemy SOCs with
1245 	 * the write-only co_config.od bit and set it back to one...
1246 	 */
1247 	case CPU_AU1000: /* rev. DA, HA, HB */
1248 	case CPU_AU1100: /* rev. AB, BA, BC ?? */
1249 	case CPU_AU1500: /* rev. AB */
1250 		au1x00_fixup_config_od();
1251 		break;
1252 	}
1253 }
1254 
1255 void __init r4k_cache_init(void)
1256 {
1257 	extern void build_clear_page(void);
1258 	extern void build_copy_page(void);
1259 	extern char except_vec2_generic;
1260 	struct cpuinfo_mips *c = &current_cpu_data;
1261 
1262 	/* Default cache error handler for R4000 and R5000 family */
1263 	set_uncached_handler (0x100, &except_vec2_generic, 0x80);
1264 
1265 	probe_pcache();
1266 	setup_scache();
1267 
1268 	r4k_blast_dcache_page_setup();
1269 	r4k_blast_dcache_page_indexed_setup();
1270 	r4k_blast_dcache_setup();
1271 	r4k_blast_icache_page_setup();
1272 	r4k_blast_icache_page_indexed_setup();
1273 	r4k_blast_icache_setup();
1274 	r4k_blast_scache_page_setup();
1275 	r4k_blast_scache_page_indexed_setup();
1276 	r4k_blast_scache_setup();
1277 
1278 	/*
1279 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1280 	 * This code supports virtually indexed processors and will be
1281 	 * unnecessarily inefficient on physically indexed processors.
1282 	 */
1283 	if (c->dcache.linesz)
1284 		shm_align_mask = max_t( unsigned long,
1285 					c->dcache.sets * c->dcache.linesz - 1,
1286 					PAGE_SIZE - 1);
1287 	else
1288 		shm_align_mask = PAGE_SIZE-1;
1289 	flush_cache_all		= r4k_flush_cache_all;
1290 	__flush_cache_all	= r4k___flush_cache_all;
1291 	flush_cache_mm		= r4k_flush_cache_mm;
1292 	flush_cache_page	= r4k_flush_cache_page;
1293 	flush_icache_page	= r4k_flush_icache_page;
1294 	flush_cache_range	= r4k_flush_cache_range;
1295 
1296 	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1297 	flush_icache_all	= r4k_flush_icache_all;
1298 	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1299 	flush_data_cache_page	= r4k_flush_data_cache_page;
1300 	flush_icache_range	= r4k_flush_icache_range;
1301 
1302 #ifdef CONFIG_DMA_NONCOHERENT
1303 	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1304 	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1305 	_dma_cache_inv		= r4k_dma_cache_inv;
1306 #endif
1307 
1308 	build_clear_page();
1309 	build_copy_page();
1310 	local_r4k___flush_cache_all(NULL);
1311 	coherency_setup();
1312 }
1313