xref: /linux/arch/mips/mm/c-r4k.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7  * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  */
10 #include <linux/config.h>
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/bitops.h>
16 
17 #include <asm/bcache.h>
18 #include <asm/bootinfo.h>
19 #include <asm/cacheops.h>
20 #include <asm/cpu.h>
21 #include <asm/cpu-features.h>
22 #include <asm/io.h>
23 #include <asm/page.h>
24 #include <asm/pgtable.h>
25 #include <asm/r4kcache.h>
26 #include <asm/system.h>
27 #include <asm/mmu_context.h>
28 #include <asm/war.h>
29 
30 static unsigned long icache_size, dcache_size, scache_size;
31 
32 /*
33  * Dummy cache handling routines for machines without boardcaches
34  */
35 static void no_sc_noop(void) {}
36 
37 static struct bcache_ops no_sc_ops = {
38 	.bc_enable = (void *)no_sc_noop,
39 	.bc_disable = (void *)no_sc_noop,
40 	.bc_wback_inv = (void *)no_sc_noop,
41 	.bc_inv = (void *)no_sc_noop
42 };
43 
44 struct bcache_ops *bcops = &no_sc_ops;
45 
46 #define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x2010)
47 #define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x2020)
48 
49 #define R4600_HIT_CACHEOP_WAR_IMPL					\
50 do {									\
51 	if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x())		\
52 		*(volatile unsigned long *)CKSEG1;			\
53 	if (R4600_V1_HIT_CACHEOP_WAR)					\
54 		__asm__ __volatile__("nop;nop;nop;nop");		\
55 } while (0)
56 
57 static void (*r4k_blast_dcache_page)(unsigned long addr);
58 
59 static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
60 {
61 	R4600_HIT_CACHEOP_WAR_IMPL;
62 	blast_dcache32_page(addr);
63 }
64 
65 static inline void r4k_blast_dcache_page_setup(void)
66 {
67 	unsigned long  dc_lsize = cpu_dcache_line_size();
68 
69 	if (dc_lsize == 16)
70 		r4k_blast_dcache_page = blast_dcache16_page;
71 	else if (dc_lsize == 32)
72 		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
73 }
74 
75 static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
76 
77 static inline void r4k_blast_dcache_page_indexed_setup(void)
78 {
79 	unsigned long dc_lsize = cpu_dcache_line_size();
80 
81 	if (dc_lsize == 16)
82 		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
83 	else if (dc_lsize == 32)
84 		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
85 }
86 
87 static void (* r4k_blast_dcache)(void);
88 
89 static inline void r4k_blast_dcache_setup(void)
90 {
91 	unsigned long dc_lsize = cpu_dcache_line_size();
92 
93 	if (dc_lsize == 16)
94 		r4k_blast_dcache = blast_dcache16;
95 	else if (dc_lsize == 32)
96 		r4k_blast_dcache = blast_dcache32;
97 }
98 
99 /* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
100 #define JUMP_TO_ALIGN(order) \
101 	__asm__ __volatile__( \
102 		"b\t1f\n\t" \
103 		".align\t" #order "\n\t" \
104 		"1:\n\t" \
105 		)
106 #define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
107 #define CACHE32_UNROLL32_ALIGN2	JUMP_TO_ALIGN(11)
108 
109 static inline void blast_r4600_v1_icache32(void)
110 {
111 	unsigned long flags;
112 
113 	local_irq_save(flags);
114 	blast_icache32();
115 	local_irq_restore(flags);
116 }
117 
118 static inline void tx49_blast_icache32(void)
119 {
120 	unsigned long start = INDEX_BASE;
121 	unsigned long end = start + current_cpu_data.icache.waysize;
122 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
123 	unsigned long ws_end = current_cpu_data.icache.ways <<
124 	                       current_cpu_data.icache.waybit;
125 	unsigned long ws, addr;
126 
127 	CACHE32_UNROLL32_ALIGN2;
128 	/* I'm in even chunk.  blast odd chunks */
129 	for (ws = 0; ws < ws_end; ws += ws_inc)
130 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
131 			cache32_unroll32(addr|ws,Index_Invalidate_I);
132 	CACHE32_UNROLL32_ALIGN;
133 	/* I'm in odd chunk.  blast even chunks */
134 	for (ws = 0; ws < ws_end; ws += ws_inc)
135 		for (addr = start; addr < end; addr += 0x400 * 2)
136 			cache32_unroll32(addr|ws,Index_Invalidate_I);
137 }
138 
139 static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
140 {
141 	unsigned long flags;
142 
143 	local_irq_save(flags);
144 	blast_icache32_page_indexed(page);
145 	local_irq_restore(flags);
146 }
147 
148 static inline void tx49_blast_icache32_page_indexed(unsigned long page)
149 {
150 	unsigned long start = page;
151 	unsigned long end = start + PAGE_SIZE;
152 	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
153 	unsigned long ws_end = current_cpu_data.icache.ways <<
154 	                       current_cpu_data.icache.waybit;
155 	unsigned long ws, addr;
156 
157 	CACHE32_UNROLL32_ALIGN2;
158 	/* I'm in even chunk.  blast odd chunks */
159 	for (ws = 0; ws < ws_end; ws += ws_inc)
160 		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
161 			cache32_unroll32(addr|ws,Index_Invalidate_I);
162 	CACHE32_UNROLL32_ALIGN;
163 	/* I'm in odd chunk.  blast even chunks */
164 	for (ws = 0; ws < ws_end; ws += ws_inc)
165 		for (addr = start; addr < end; addr += 0x400 * 2)
166 			cache32_unroll32(addr|ws,Index_Invalidate_I);
167 }
168 
169 static void (* r4k_blast_icache_page)(unsigned long addr);
170 
171 static inline void r4k_blast_icache_page_setup(void)
172 {
173 	unsigned long ic_lsize = cpu_icache_line_size();
174 
175 	if (ic_lsize == 16)
176 		r4k_blast_icache_page = blast_icache16_page;
177 	else if (ic_lsize == 32)
178 		r4k_blast_icache_page = blast_icache32_page;
179 	else if (ic_lsize == 64)
180 		r4k_blast_icache_page = blast_icache64_page;
181 }
182 
183 
184 static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
185 
186 static inline void r4k_blast_icache_page_indexed_setup(void)
187 {
188 	unsigned long ic_lsize = cpu_icache_line_size();
189 
190 	if (ic_lsize == 16)
191 		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
192 	else if (ic_lsize == 32) {
193 		if (TX49XX_ICACHE_INDEX_INV_WAR)
194 			r4k_blast_icache_page_indexed =
195 				tx49_blast_icache32_page_indexed;
196 		else if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
197 			r4k_blast_icache_page_indexed =
198 				blast_icache32_r4600_v1_page_indexed;
199 		else
200 			r4k_blast_icache_page_indexed =
201 				blast_icache32_page_indexed;
202 	} else if (ic_lsize == 64)
203 		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
204 }
205 
206 static void (* r4k_blast_icache)(void);
207 
208 static inline void r4k_blast_icache_setup(void)
209 {
210 	unsigned long ic_lsize = cpu_icache_line_size();
211 
212 	if (ic_lsize == 16)
213 		r4k_blast_icache = blast_icache16;
214 	else if (ic_lsize == 32) {
215 		if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
216 			r4k_blast_icache = blast_r4600_v1_icache32;
217 		else if (TX49XX_ICACHE_INDEX_INV_WAR)
218 			r4k_blast_icache = tx49_blast_icache32;
219 		else
220 			r4k_blast_icache = blast_icache32;
221 	} else if (ic_lsize == 64)
222 		r4k_blast_icache = blast_icache64;
223 }
224 
225 static void (* r4k_blast_scache_page)(unsigned long addr);
226 
227 static inline void r4k_blast_scache_page_setup(void)
228 {
229 	unsigned long sc_lsize = cpu_scache_line_size();
230 
231 	if (sc_lsize == 16)
232 		r4k_blast_scache_page = blast_scache16_page;
233 	else if (sc_lsize == 32)
234 		r4k_blast_scache_page = blast_scache32_page;
235 	else if (sc_lsize == 64)
236 		r4k_blast_scache_page = blast_scache64_page;
237 	else if (sc_lsize == 128)
238 		r4k_blast_scache_page = blast_scache128_page;
239 }
240 
241 static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
242 
243 static inline void r4k_blast_scache_page_indexed_setup(void)
244 {
245 	unsigned long sc_lsize = cpu_scache_line_size();
246 
247 	if (sc_lsize == 16)
248 		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
249 	else if (sc_lsize == 32)
250 		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
251 	else if (sc_lsize == 64)
252 		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
253 	else if (sc_lsize == 128)
254 		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
255 }
256 
257 static void (* r4k_blast_scache)(void);
258 
259 static inline void r4k_blast_scache_setup(void)
260 {
261 	unsigned long sc_lsize = cpu_scache_line_size();
262 
263 	if (sc_lsize == 16)
264 		r4k_blast_scache = blast_scache16;
265 	else if (sc_lsize == 32)
266 		r4k_blast_scache = blast_scache32;
267 	else if (sc_lsize == 64)
268 		r4k_blast_scache = blast_scache64;
269 	else if (sc_lsize == 128)
270 		r4k_blast_scache = blast_scache128;
271 }
272 
273 /*
274  * This is former mm's flush_cache_all() which really should be
275  * flush_cache_vunmap these days ...
276  */
277 static inline void local_r4k_flush_cache_all(void * args)
278 {
279 	r4k_blast_dcache();
280 	r4k_blast_icache();
281 }
282 
283 static void r4k_flush_cache_all(void)
284 {
285 	if (!cpu_has_dc_aliases)
286 		return;
287 
288 	on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
289 }
290 
291 static inline void local_r4k___flush_cache_all(void * args)
292 {
293 	r4k_blast_dcache();
294 	r4k_blast_icache();
295 
296 	switch (current_cpu_data.cputype) {
297 	case CPU_R4000SC:
298 	case CPU_R4000MC:
299 	case CPU_R4400SC:
300 	case CPU_R4400MC:
301 	case CPU_R10000:
302 	case CPU_R12000:
303 		r4k_blast_scache();
304 	}
305 }
306 
307 static void r4k___flush_cache_all(void)
308 {
309 	on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
310 }
311 
312 static inline void local_r4k_flush_cache_range(void * args)
313 {
314 	struct vm_area_struct *vma = args;
315 	int exec;
316 
317 	if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
318 		return;
319 
320 	exec = vma->vm_flags & VM_EXEC;
321 	if (cpu_has_dc_aliases || exec)
322 		r4k_blast_dcache();
323 	if (exec)
324 		r4k_blast_icache();
325 }
326 
327 static void r4k_flush_cache_range(struct vm_area_struct *vma,
328 	unsigned long start, unsigned long end)
329 {
330 	on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
331 }
332 
333 static inline void local_r4k_flush_cache_mm(void * args)
334 {
335 	struct mm_struct *mm = args;
336 
337 	if (!cpu_context(smp_processor_id(), mm))
338 		return;
339 
340 	r4k_blast_dcache();
341 	r4k_blast_icache();
342 
343 	/*
344 	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
345 	 * only flush the primary caches but R10000 and R12000 behave sane ...
346 	 */
347 	if (current_cpu_data.cputype == CPU_R4000SC ||
348 	    current_cpu_data.cputype == CPU_R4000MC ||
349 	    current_cpu_data.cputype == CPU_R4400SC ||
350 	    current_cpu_data.cputype == CPU_R4400MC)
351 		r4k_blast_scache();
352 }
353 
354 static void r4k_flush_cache_mm(struct mm_struct *mm)
355 {
356 	if (!cpu_has_dc_aliases)
357 		return;
358 
359 	on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
360 }
361 
362 struct flush_cache_page_args {
363 	struct vm_area_struct *vma;
364 	unsigned long page;
365 };
366 
367 static inline void local_r4k_flush_cache_page(void *args)
368 {
369 	struct flush_cache_page_args *fcp_args = args;
370 	struct vm_area_struct *vma = fcp_args->vma;
371 	unsigned long page = fcp_args->page;
372 	int exec = vma->vm_flags & VM_EXEC;
373 	struct mm_struct *mm = vma->vm_mm;
374 	pgd_t *pgdp;
375 	pmd_t *pmdp;
376 	pte_t *ptep;
377 
378 	page &= PAGE_MASK;
379 	pgdp = pgd_offset(mm, page);
380 	pmdp = pmd_offset(pgdp, page);
381 	ptep = pte_offset(pmdp, page);
382 
383 	/*
384 	 * If the page isn't marked valid, the page cannot possibly be
385 	 * in the cache.
386 	 */
387 	if (!(pte_val(*ptep) & _PAGE_PRESENT))
388 		return;
389 
390 	/*
391 	 * Doing flushes for another ASID than the current one is
392 	 * too difficult since stupid R4k caches do a TLB translation
393 	 * for every cache flush operation.  So we do indexed flushes
394 	 * in that case, which doesn't overly flush the cache too much.
395 	 */
396 	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
397 		if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
398 			r4k_blast_dcache_page(page);
399 			if (exec && !cpu_icache_snoops_remote_store)
400 				r4k_blast_scache_page(page);
401 		}
402 		if (exec)
403 			r4k_blast_icache_page(page);
404 
405 		return;
406 	}
407 
408 	/*
409 	 * Do indexed flush, too much work to get the (possible) TLB refills
410 	 * to work correctly.
411 	 */
412 	page = INDEX_BASE + (page & (dcache_size - 1));
413 	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
414 		r4k_blast_dcache_page_indexed(page);
415 		if (exec && !cpu_icache_snoops_remote_store)
416 			r4k_blast_scache_page_indexed(page);
417 	}
418 	if (exec) {
419 		if (cpu_has_vtag_icache) {
420 			int cpu = smp_processor_id();
421 
422 			if (cpu_context(cpu, vma->vm_mm) != 0)
423 				drop_mmu_context(vma->vm_mm, cpu);
424 		} else
425 			r4k_blast_icache_page_indexed(page);
426 	}
427 }
428 
429 static void r4k_flush_cache_page(struct vm_area_struct *vma, unsigned long page, unsigned long pfn)
430 {
431 	struct flush_cache_page_args args;
432 
433 	/*
434 	 * If ownes no valid ASID yet, cannot possibly have gotten
435 	 * this page into the cache.
436 	 */
437 	if (cpu_context(smp_processor_id(), vma->vm_mm) == 0)
438 		return;
439 
440 	args.vma = vma;
441 	args.page = page;
442 
443 	on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
444 }
445 
446 static inline void local_r4k_flush_data_cache_page(void * addr)
447 {
448 	r4k_blast_dcache_page((unsigned long) addr);
449 }
450 
451 static void r4k_flush_data_cache_page(unsigned long addr)
452 {
453 	on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
454 }
455 
456 struct flush_icache_range_args {
457 	unsigned long start;
458 	unsigned long end;
459 };
460 
461 static inline void local_r4k_flush_icache_range(void *args)
462 {
463 	struct flush_icache_range_args *fir_args = args;
464 	unsigned long dc_lsize = current_cpu_data.dcache.linesz;
465 	unsigned long ic_lsize = current_cpu_data.icache.linesz;
466 	unsigned long sc_lsize = current_cpu_data.scache.linesz;
467 	unsigned long start = fir_args->start;
468 	unsigned long end = fir_args->end;
469 	unsigned long addr, aend;
470 
471 	if (!cpu_has_ic_fills_f_dc) {
472 		if (end - start > dcache_size) {
473 			r4k_blast_dcache();
474 		} else {
475 			addr = start & ~(dc_lsize - 1);
476 			aend = (end - 1) & ~(dc_lsize - 1);
477 
478 			while (1) {
479 				/* Hit_Writeback_Inv_D */
480 				protected_writeback_dcache_line(addr);
481 				if (addr == aend)
482 					break;
483 				addr += dc_lsize;
484 			}
485 		}
486 
487 		if (!cpu_icache_snoops_remote_store) {
488 			if (end - start > scache_size) {
489 				r4k_blast_scache();
490 			} else {
491 				addr = start & ~(sc_lsize - 1);
492 				aend = (end - 1) & ~(sc_lsize - 1);
493 
494 				while (1) {
495 					/* Hit_Writeback_Inv_D */
496 					protected_writeback_scache_line(addr);
497 					if (addr == aend)
498 						break;
499 					addr += sc_lsize;
500 				}
501 			}
502 		}
503 	}
504 
505 	if (end - start > icache_size)
506 		r4k_blast_icache();
507 	else {
508 		addr = start & ~(ic_lsize - 1);
509 		aend = (end - 1) & ~(ic_lsize - 1);
510 		while (1) {
511 			/* Hit_Invalidate_I */
512 			protected_flush_icache_line(addr);
513 			if (addr == aend)
514 				break;
515 			addr += ic_lsize;
516 		}
517 	}
518 }
519 
520 static void r4k_flush_icache_range(unsigned long start, unsigned long end)
521 {
522 	struct flush_icache_range_args args;
523 
524 	args.start = start;
525 	args.end = end;
526 
527 	on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
528 }
529 
530 /*
531  * Ok, this seriously sucks.  We use them to flush a user page but don't
532  * know the virtual address, so we have to blast away the whole icache
533  * which is significantly more expensive than the real thing.  Otoh we at
534  * least know the kernel address of the page so we can flush it
535  * selectivly.
536  */
537 
538 struct flush_icache_page_args {
539 	struct vm_area_struct *vma;
540 	struct page *page;
541 };
542 
543 static inline void local_r4k_flush_icache_page(void *args)
544 {
545 	struct flush_icache_page_args *fip_args = args;
546 	struct vm_area_struct *vma = fip_args->vma;
547 	struct page *page = fip_args->page;
548 
549 	/*
550 	 * Tricky ...  Because we don't know the virtual address we've got the
551 	 * choice of either invalidating the entire primary and secondary
552 	 * caches or invalidating the secondary caches also.  With the subset
553 	 * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
554 	 * secondary cache will result in any entries in the primary caches
555 	 * also getting invalidated which hopefully is a bit more economical.
556 	 */
557 	if (cpu_has_subset_pcaches) {
558 		unsigned long addr = (unsigned long) page_address(page);
559 
560 		r4k_blast_scache_page(addr);
561 		ClearPageDcacheDirty(page);
562 
563 		return;
564 	}
565 
566 	if (!cpu_has_ic_fills_f_dc) {
567 		unsigned long addr = (unsigned long) page_address(page);
568 		r4k_blast_dcache_page(addr);
569 		if (!cpu_icache_snoops_remote_store)
570 			r4k_blast_scache_page(addr);
571 		ClearPageDcacheDirty(page);
572 	}
573 
574 	/*
575 	 * We're not sure of the virtual address(es) involved here, so
576 	 * we have to flush the entire I-cache.
577 	 */
578 	if (cpu_has_vtag_icache) {
579 		int cpu = smp_processor_id();
580 
581 		if (cpu_context(cpu, vma->vm_mm) != 0)
582 			drop_mmu_context(vma->vm_mm, cpu);
583 	} else
584 		r4k_blast_icache();
585 }
586 
587 static void r4k_flush_icache_page(struct vm_area_struct *vma,
588 	struct page *page)
589 {
590 	struct flush_icache_page_args args;
591 
592 	/*
593 	 * If there's no context yet, or the page isn't executable, no I-cache
594 	 * flush is needed.
595 	 */
596 	if (!(vma->vm_flags & VM_EXEC))
597 		return;
598 
599 	args.vma = vma;
600 	args.page = page;
601 
602 	on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
603 }
604 
605 
606 #ifdef CONFIG_DMA_NONCOHERENT
607 
608 static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
609 {
610 	unsigned long end, a;
611 
612 	/* Catch bad driver code */
613 	BUG_ON(size == 0);
614 
615 	if (cpu_has_subset_pcaches) {
616 		unsigned long sc_lsize = current_cpu_data.scache.linesz;
617 
618 		if (size >= scache_size) {
619 			r4k_blast_scache();
620 			return;
621 		}
622 
623 		a = addr & ~(sc_lsize - 1);
624 		end = (addr + size - 1) & ~(sc_lsize - 1);
625 		while (1) {
626 			flush_scache_line(a);	/* Hit_Writeback_Inv_SD */
627 			if (a == end)
628 				break;
629 			a += sc_lsize;
630 		}
631 		return;
632 	}
633 
634 	/*
635 	 * Either no secondary cache or the available caches don't have the
636 	 * subset property so we have to flush the primary caches
637 	 * explicitly
638 	 */
639 	if (size >= dcache_size) {
640 		r4k_blast_dcache();
641 	} else {
642 		unsigned long dc_lsize = current_cpu_data.dcache.linesz;
643 
644 		R4600_HIT_CACHEOP_WAR_IMPL;
645 		a = addr & ~(dc_lsize - 1);
646 		end = (addr + size - 1) & ~(dc_lsize - 1);
647 		while (1) {
648 			flush_dcache_line(a);	/* Hit_Writeback_Inv_D */
649 			if (a == end)
650 				break;
651 			a += dc_lsize;
652 		}
653 	}
654 
655 	bc_wback_inv(addr, size);
656 }
657 
658 static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
659 {
660 	unsigned long end, a;
661 
662 	/* Catch bad driver code */
663 	BUG_ON(size == 0);
664 
665 	if (cpu_has_subset_pcaches) {
666 		unsigned long sc_lsize = current_cpu_data.scache.linesz;
667 
668 		if (size >= scache_size) {
669 			r4k_blast_scache();
670 			return;
671 		}
672 
673 		a = addr & ~(sc_lsize - 1);
674 		end = (addr + size - 1) & ~(sc_lsize - 1);
675 		while (1) {
676 			flush_scache_line(a);	/* Hit_Writeback_Inv_SD */
677 			if (a == end)
678 				break;
679 			a += sc_lsize;
680 		}
681 		return;
682 	}
683 
684 	if (size >= dcache_size) {
685 		r4k_blast_dcache();
686 	} else {
687 		unsigned long dc_lsize = current_cpu_data.dcache.linesz;
688 
689 		R4600_HIT_CACHEOP_WAR_IMPL;
690 		a = addr & ~(dc_lsize - 1);
691 		end = (addr + size - 1) & ~(dc_lsize - 1);
692 		while (1) {
693 			flush_dcache_line(a);	/* Hit_Writeback_Inv_D */
694 			if (a == end)
695 				break;
696 			a += dc_lsize;
697 		}
698 	}
699 
700 	bc_inv(addr, size);
701 }
702 #endif /* CONFIG_DMA_NONCOHERENT */
703 
704 /*
705  * While we're protected against bad userland addresses we don't care
706  * very much about what happens in that case.  Usually a segmentation
707  * fault will dump the process later on anyway ...
708  */
709 static void local_r4k_flush_cache_sigtramp(void * arg)
710 {
711 	unsigned long ic_lsize = current_cpu_data.icache.linesz;
712 	unsigned long dc_lsize = current_cpu_data.dcache.linesz;
713 	unsigned long sc_lsize = current_cpu_data.scache.linesz;
714 	unsigned long addr = (unsigned long) arg;
715 
716 	R4600_HIT_CACHEOP_WAR_IMPL;
717 	protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
718 	if (!cpu_icache_snoops_remote_store)
719 		protected_writeback_scache_line(addr & ~(sc_lsize - 1));
720 	protected_flush_icache_line(addr & ~(ic_lsize - 1));
721 	if (MIPS4K_ICACHE_REFILL_WAR) {
722 		__asm__ __volatile__ (
723 			".set push\n\t"
724 			".set noat\n\t"
725 			".set mips3\n\t"
726 #ifdef CONFIG_32BIT
727 			"la	$at,1f\n\t"
728 #endif
729 #ifdef CONFIG_64BIT
730 			"dla	$at,1f\n\t"
731 #endif
732 			"cache	%0,($at)\n\t"
733 			"nop; nop; nop\n"
734 			"1:\n\t"
735 			".set pop"
736 			:
737 			: "i" (Hit_Invalidate_I));
738 	}
739 	if (MIPS_CACHE_SYNC_WAR)
740 		__asm__ __volatile__ ("sync");
741 }
742 
743 static void r4k_flush_cache_sigtramp(unsigned long addr)
744 {
745 	on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
746 }
747 
748 static void r4k_flush_icache_all(void)
749 {
750 	if (cpu_has_vtag_icache)
751 		r4k_blast_icache();
752 }
753 
754 static inline void rm7k_erratum31(void)
755 {
756 	const unsigned long ic_lsize = 32;
757 	unsigned long addr;
758 
759 	/* RM7000 erratum #31. The icache is screwed at startup. */
760 	write_c0_taglo(0);
761 	write_c0_taghi(0);
762 
763 	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
764 		__asm__ __volatile__ (
765 			".set noreorder\n\t"
766 			".set mips3\n\t"
767 			"cache\t%1, 0(%0)\n\t"
768 			"cache\t%1, 0x1000(%0)\n\t"
769 			"cache\t%1, 0x2000(%0)\n\t"
770 			"cache\t%1, 0x3000(%0)\n\t"
771 			"cache\t%2, 0(%0)\n\t"
772 			"cache\t%2, 0x1000(%0)\n\t"
773 			"cache\t%2, 0x2000(%0)\n\t"
774 			"cache\t%2, 0x3000(%0)\n\t"
775 			"cache\t%1, 0(%0)\n\t"
776 			"cache\t%1, 0x1000(%0)\n\t"
777 			"cache\t%1, 0x2000(%0)\n\t"
778 			"cache\t%1, 0x3000(%0)\n\t"
779 			".set\tmips0\n\t"
780 			".set\treorder\n\t"
781 			:
782 			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
783 	}
784 }
785 
786 static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
787 	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
788 };
789 
790 static void __init probe_pcache(void)
791 {
792 	struct cpuinfo_mips *c = &current_cpu_data;
793 	unsigned int config = read_c0_config();
794 	unsigned int prid = read_c0_prid();
795 	unsigned long config1;
796 	unsigned int lsize;
797 
798 	switch (c->cputype) {
799 	case CPU_R4600:			/* QED style two way caches? */
800 	case CPU_R4700:
801 	case CPU_R5000:
802 	case CPU_NEVADA:
803 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
804 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
805 		c->icache.ways = 2;
806 		c->icache.waybit = ffs(icache_size/2) - 1;
807 
808 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
809 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
810 		c->dcache.ways = 2;
811 		c->dcache.waybit= ffs(dcache_size/2) - 1;
812 
813 		c->options |= MIPS_CPU_CACHE_CDEX_P;
814 		break;
815 
816 	case CPU_R5432:
817 	case CPU_R5500:
818 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
819 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
820 		c->icache.ways = 2;
821 		c->icache.waybit= 0;
822 
823 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
824 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
825 		c->dcache.ways = 2;
826 		c->dcache.waybit = 0;
827 
828 		c->options |= MIPS_CPU_CACHE_CDEX_P;
829 		break;
830 
831 	case CPU_TX49XX:
832 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
833 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
834 		c->icache.ways = 4;
835 		c->icache.waybit= 0;
836 
837 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
838 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
839 		c->dcache.ways = 4;
840 		c->dcache.waybit = 0;
841 
842 		c->options |= MIPS_CPU_CACHE_CDEX_P;
843 		break;
844 
845 	case CPU_R4000PC:
846 	case CPU_R4000SC:
847 	case CPU_R4000MC:
848 	case CPU_R4400PC:
849 	case CPU_R4400SC:
850 	case CPU_R4400MC:
851 	case CPU_R4300:
852 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
853 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
854 		c->icache.ways = 1;
855 		c->icache.waybit = 0; 	/* doesn't matter */
856 
857 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
858 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
859 		c->dcache.ways = 1;
860 		c->dcache.waybit = 0;	/* does not matter */
861 
862 		c->options |= MIPS_CPU_CACHE_CDEX_P;
863 		break;
864 
865 	case CPU_R10000:
866 	case CPU_R12000:
867 		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
868 		c->icache.linesz = 64;
869 		c->icache.ways = 2;
870 		c->icache.waybit = 0;
871 
872 		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
873 		c->dcache.linesz = 32;
874 		c->dcache.ways = 2;
875 		c->dcache.waybit = 0;
876 
877 		c->options |= MIPS_CPU_PREFETCH;
878 		break;
879 
880 	case CPU_VR4133:
881 		write_c0_config(config & ~CONF_EB);
882 	case CPU_VR4131:
883 		/* Workaround for cache instruction bug of VR4131 */
884 		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
885 		    c->processor_id == 0x0c82U) {
886 			config &= ~0x00000030U;
887 			config |= 0x00410000U;
888 			write_c0_config(config);
889 		}
890 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
891 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
892 		c->icache.ways = 2;
893 		c->icache.waybit = ffs(icache_size/2) - 1;
894 
895 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
896 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
897 		c->dcache.ways = 2;
898 		c->dcache.waybit = ffs(dcache_size/2) - 1;
899 
900 		c->options |= MIPS_CPU_CACHE_CDEX_P;
901 		break;
902 
903 	case CPU_VR41XX:
904 	case CPU_VR4111:
905 	case CPU_VR4121:
906 	case CPU_VR4122:
907 	case CPU_VR4181:
908 	case CPU_VR4181A:
909 		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
910 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
911 		c->icache.ways = 1;
912 		c->icache.waybit = 0; 	/* doesn't matter */
913 
914 		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
915 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
916 		c->dcache.ways = 1;
917 		c->dcache.waybit = 0;	/* does not matter */
918 
919 		c->options |= MIPS_CPU_CACHE_CDEX_P;
920 		break;
921 
922 	case CPU_RM7000:
923 		rm7k_erratum31();
924 
925 	case CPU_RM9000:
926 		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
927 		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
928 		c->icache.ways = 4;
929 		c->icache.waybit = ffs(icache_size / c->icache.ways) - 1;
930 
931 		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
932 		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
933 		c->dcache.ways = 4;
934 		c->dcache.waybit = ffs(dcache_size / c->dcache.ways) - 1;
935 
936 #if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
937 		c->options |= MIPS_CPU_CACHE_CDEX_P;
938 #endif
939 		c->options |= MIPS_CPU_PREFETCH;
940 		break;
941 
942 	default:
943 		if (!(config & MIPS_CONF_M))
944 			panic("Don't know how to probe P-caches on this cpu.");
945 
946 		/*
947 		 * So we seem to be a MIPS32 or MIPS64 CPU
948 		 * So let's probe the I-cache ...
949 		 */
950 		config1 = read_c0_config1();
951 
952 		if ((lsize = ((config1 >> 19) & 7)))
953 			c->icache.linesz = 2 << lsize;
954 		else
955 			c->icache.linesz = lsize;
956 		c->icache.sets = 64 << ((config1 >> 22) & 7);
957 		c->icache.ways = 1 + ((config1 >> 16) & 7);
958 
959 		icache_size = c->icache.sets *
960 		              c->icache.ways *
961 		              c->icache.linesz;
962 		c->icache.waybit = ffs(icache_size/c->icache.ways) - 1;
963 
964 		if (config & 0x8)		/* VI bit */
965 			c->icache.flags |= MIPS_CACHE_VTAG;
966 
967 		/*
968 		 * Now probe the MIPS32 / MIPS64 data cache.
969 		 */
970 		c->dcache.flags = 0;
971 
972 		if ((lsize = ((config1 >> 10) & 7)))
973 			c->dcache.linesz = 2 << lsize;
974 		else
975 			c->dcache.linesz= lsize;
976 		c->dcache.sets = 64 << ((config1 >> 13) & 7);
977 		c->dcache.ways = 1 + ((config1 >> 7) & 7);
978 
979 		dcache_size = c->dcache.sets *
980 		              c->dcache.ways *
981 		              c->dcache.linesz;
982 		c->dcache.waybit = ffs(dcache_size/c->dcache.ways) - 1;
983 
984 		c->options |= MIPS_CPU_PREFETCH;
985 		break;
986 	}
987 
988 	/*
989 	 * Processor configuration sanity check for the R4000SC erratum
990 	 * #5.  With page sizes larger than 32kB there is no possibility
991 	 * to get a VCE exception anymore so we don't care about this
992 	 * misconfiguration.  The case is rather theoretical anyway;
993 	 * presumably no vendor is shipping his hardware in the "bad"
994 	 * configuration.
995 	 */
996 	if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
997 	    !(config & CONF_SC) && c->icache.linesz != 16 &&
998 	    PAGE_SIZE <= 0x8000)
999 		panic("Improper R4000SC processor configuration detected");
1000 
1001 	/* compute a couple of other cache variables */
1002 	c->icache.waysize = icache_size / c->icache.ways;
1003 	c->dcache.waysize = dcache_size / c->dcache.ways;
1004 
1005 	c->icache.sets = icache_size / (c->icache.linesz * c->icache.ways);
1006 	c->dcache.sets = dcache_size / (c->dcache.linesz * c->dcache.ways);
1007 
1008 	/*
1009 	 * R10000 and R12000 P-caches are odd in a positive way.  They're 32kB
1010 	 * 2-way virtually indexed so normally would suffer from aliases.  So
1011 	 * normally they'd suffer from aliases but magic in the hardware deals
1012 	 * with that for us so we don't need to take care ourselves.
1013 	 */
1014 	if (c->cputype != CPU_R10000 && c->cputype != CPU_R12000)
1015 		if (c->dcache.waysize > PAGE_SIZE)
1016 		        c->dcache.flags |= MIPS_CACHE_ALIASES;
1017 
1018 	switch (c->cputype) {
1019 	case CPU_20KC:
1020 		/*
1021 		 * Some older 20Kc chips doesn't have the 'VI' bit in
1022 		 * the config register.
1023 		 */
1024 		c->icache.flags |= MIPS_CACHE_VTAG;
1025 		break;
1026 
1027 	case CPU_AU1500:
1028 		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1029 		break;
1030 	}
1031 
1032 	printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1033 	       icache_size >> 10,
1034 	       cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
1035 	       way_string[c->icache.ways], c->icache.linesz);
1036 
1037 	printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
1038 	       dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
1039 }
1040 
1041 /*
1042  * If you even _breathe_ on this function, look at the gcc output and make sure
1043  * it does not pop things on and off the stack for the cache sizing loop that
1044  * executes in KSEG1 space or else you will crash and burn badly.  You have
1045  * been warned.
1046  */
1047 static int __init probe_scache(void)
1048 {
1049 	extern unsigned long stext;
1050 	unsigned long flags, addr, begin, end, pow2;
1051 	unsigned int config = read_c0_config();
1052 	struct cpuinfo_mips *c = &current_cpu_data;
1053 	int tmp;
1054 
1055 	if (config & CONF_SC)
1056 		return 0;
1057 
1058 	begin = (unsigned long) &stext;
1059 	begin &= ~((4 * 1024 * 1024) - 1);
1060 	end = begin + (4 * 1024 * 1024);
1061 
1062 	/*
1063 	 * This is such a bitch, you'd think they would make it easy to do
1064 	 * this.  Away you daemons of stupidity!
1065 	 */
1066 	local_irq_save(flags);
1067 
1068 	/* Fill each size-multiple cache line with a valid tag. */
1069 	pow2 = (64 * 1024);
1070 	for (addr = begin; addr < end; addr = (begin + pow2)) {
1071 		unsigned long *p = (unsigned long *) addr;
1072 		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1073 		pow2 <<= 1;
1074 	}
1075 
1076 	/* Load first line with zero (therefore invalid) tag. */
1077 	write_c0_taglo(0);
1078 	write_c0_taghi(0);
1079 	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1080 	cache_op(Index_Store_Tag_I, begin);
1081 	cache_op(Index_Store_Tag_D, begin);
1082 	cache_op(Index_Store_Tag_SD, begin);
1083 
1084 	/* Now search for the wrap around point. */
1085 	pow2 = (128 * 1024);
1086 	tmp = 0;
1087 	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1088 		cache_op(Index_Load_Tag_SD, addr);
1089 		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1090 		if (!read_c0_taglo())
1091 			break;
1092 		pow2 <<= 1;
1093 	}
1094 	local_irq_restore(flags);
1095 	addr -= begin;
1096 
1097 	scache_size = addr;
1098 	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1099 	c->scache.ways = 1;
1100 	c->dcache.waybit = 0;		/* does not matter */
1101 
1102 	return 1;
1103 }
1104 
1105 typedef int (*probe_func_t)(unsigned long);
1106 extern int r5k_sc_init(void);
1107 extern int rm7k_sc_init(void);
1108 
1109 static void __init setup_scache(void)
1110 {
1111 	struct cpuinfo_mips *c = &current_cpu_data;
1112 	unsigned int config = read_c0_config();
1113 	probe_func_t probe_scache_kseg1;
1114 	int sc_present = 0;
1115 
1116 	/*
1117 	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1118 	 * processors don't have a S-cache that would be relevant to the
1119 	 * Linux memory managment.
1120 	 */
1121 	switch (c->cputype) {
1122 	case CPU_R4000SC:
1123 	case CPU_R4000MC:
1124 	case CPU_R4400SC:
1125 	case CPU_R4400MC:
1126 		probe_scache_kseg1 = (probe_func_t) (CKSEG1ADDR(&probe_scache));
1127 		sc_present = probe_scache_kseg1(config);
1128 		if (sc_present)
1129 			c->options |= MIPS_CPU_CACHE_CDEX_S;
1130 		break;
1131 
1132 	case CPU_R10000:
1133 	case CPU_R12000:
1134 		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1135 		c->scache.linesz = 64 << ((config >> 13) & 1);
1136 		c->scache.ways = 2;
1137 		c->scache.waybit= 0;
1138 		sc_present = 1;
1139 		break;
1140 
1141 	case CPU_R5000:
1142 	case CPU_NEVADA:
1143 #ifdef CONFIG_R5000_CPU_SCACHE
1144 		r5k_sc_init();
1145 #endif
1146                 return;
1147 
1148 	case CPU_RM7000:
1149 	case CPU_RM9000:
1150 #ifdef CONFIG_RM7000_CPU_SCACHE
1151 		rm7k_sc_init();
1152 #endif
1153 		return;
1154 
1155 	default:
1156 		sc_present = 0;
1157 	}
1158 
1159 	if (!sc_present)
1160 		return;
1161 
1162 	if ((c->isa_level == MIPS_CPU_ISA_M32 ||
1163 	     c->isa_level == MIPS_CPU_ISA_M64) &&
1164 	    !(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1165 		panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1166 
1167 	/* compute a couple of other cache variables */
1168 	c->scache.waysize = scache_size / c->scache.ways;
1169 
1170 	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1171 
1172 	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1173 	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1174 
1175 	c->options |= MIPS_CPU_SUBSET_CACHES;
1176 }
1177 
1178 static inline void coherency_setup(void)
1179 {
1180 	change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1181 
1182 	/*
1183 	 * c0_status.cu=0 specifies that updates by the sc instruction use
1184 	 * the coherency mode specified by the TLB; 1 means cachable
1185 	 * coherent update on write will be used.  Not all processors have
1186 	 * this bit and; some wire it to zero, others like Toshiba had the
1187 	 * silly idea of putting something else there ...
1188 	 */
1189 	switch (current_cpu_data.cputype) {
1190 	case CPU_R4000PC:
1191 	case CPU_R4000SC:
1192 	case CPU_R4000MC:
1193 	case CPU_R4400PC:
1194 	case CPU_R4400SC:
1195 	case CPU_R4400MC:
1196 		clear_c0_config(CONF_CU);
1197 		break;
1198 	}
1199 }
1200 
1201 void __init ld_mmu_r4xx0(void)
1202 {
1203 	extern void build_clear_page(void);
1204 	extern void build_copy_page(void);
1205 	extern char except_vec2_generic;
1206 	struct cpuinfo_mips *c = &current_cpu_data;
1207 
1208 	/* Default cache error handler for R4000 and R5000 family */
1209 	memcpy((void *)(CAC_BASE   + 0x100), &except_vec2_generic, 0x80);
1210 	memcpy((void *)(UNCAC_BASE + 0x100), &except_vec2_generic, 0x80);
1211 
1212 	probe_pcache();
1213 	setup_scache();
1214 
1215 	if (c->dcache.sets * c->dcache.ways > PAGE_SIZE)
1216 		c->dcache.flags |= MIPS_CACHE_ALIASES;
1217 
1218 	r4k_blast_dcache_page_setup();
1219 	r4k_blast_dcache_page_indexed_setup();
1220 	r4k_blast_dcache_setup();
1221 	r4k_blast_icache_page_setup();
1222 	r4k_blast_icache_page_indexed_setup();
1223 	r4k_blast_icache_setup();
1224 	r4k_blast_scache_page_setup();
1225 	r4k_blast_scache_page_indexed_setup();
1226 	r4k_blast_scache_setup();
1227 
1228 	/*
1229 	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1230 	 * This code supports virtually indexed processors and will be
1231 	 * unnecessarily inefficient on physically indexed processors.
1232 	 */
1233 	shm_align_mask = max_t( unsigned long,
1234 				c->dcache.sets * c->dcache.linesz - 1,
1235 				PAGE_SIZE - 1);
1236 
1237 	flush_cache_all		= r4k_flush_cache_all;
1238 	__flush_cache_all	= r4k___flush_cache_all;
1239 	flush_cache_mm		= r4k_flush_cache_mm;
1240 	flush_cache_page	= r4k_flush_cache_page;
1241 	flush_icache_page	= r4k_flush_icache_page;
1242 	flush_cache_range	= r4k_flush_cache_range;
1243 
1244 	flush_cache_sigtramp	= r4k_flush_cache_sigtramp;
1245 	flush_icache_all	= r4k_flush_icache_all;
1246 	flush_data_cache_page	= r4k_flush_data_cache_page;
1247 	flush_icache_range	= r4k_flush_icache_range;
1248 
1249 #ifdef CONFIG_DMA_NONCOHERENT
1250 	_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1251 	_dma_cache_wback	= r4k_dma_cache_wback_inv;
1252 	_dma_cache_inv		= r4k_dma_cache_inv;
1253 #endif
1254 
1255 	__flush_cache_all();
1256 	coherency_setup();
1257 
1258 	build_clear_page();
1259 	build_copy_page();
1260 }
1261