xref: /linux/arch/mips/math-emu/ieee754sp.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* IEEE754 floating point arithmetic
2  * single precision
3  */
4 /*
5  * MIPS floating point support
6  * Copyright (C) 1994-2000 Algorithmics Ltd.
7  *
8  *  This program is free software; you can distribute it and/or modify it
9  *  under the terms of the GNU General Public License (Version 2) as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope it will be useful, but WITHOUT
13  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  *  for more details.
16  *
17  *  You should have received a copy of the GNU General Public License along
18  *  with this program; if not, write to the Free Software Foundation, Inc.,
19  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
20  */
21 
22 #include <linux/compiler.h>
23 
24 #include "ieee754sp.h"
25 
26 int ieee754sp_class(union ieee754sp x)
27 {
28 	COMPXSP;
29 	EXPLODEXSP;
30 	return xc;
31 }
32 
33 static inline int ieee754sp_isnan(union ieee754sp x)
34 {
35 	return ieee754_class_nan(ieee754sp_class(x));
36 }
37 
38 static inline int ieee754sp_issnan(union ieee754sp x)
39 {
40 	int qbit;
41 
42 	assert(ieee754sp_isnan(x));
43 	qbit = (SPMANT(x) & SP_MBIT(SP_FBITS - 1)) == SP_MBIT(SP_FBITS - 1);
44 	return ieee754_csr.nan2008 ^ qbit;
45 }
46 
47 
48 /*
49  * Raise the Invalid Operation IEEE 754 exception
50  * and convert the signaling NaN supplied to a quiet NaN.
51  */
52 union ieee754sp __cold ieee754sp_nanxcpt(union ieee754sp r)
53 {
54 	assert(ieee754sp_issnan(r));
55 
56 	ieee754_setcx(IEEE754_INVALID_OPERATION);
57 	if (ieee754_csr.nan2008) {
58 		SPMANT(r) |= SP_MBIT(SP_FBITS - 1);
59 	} else {
60 		SPMANT(r) &= ~SP_MBIT(SP_FBITS - 1);
61 		if (!ieee754sp_isnan(r))
62 			SPMANT(r) |= SP_MBIT(SP_FBITS - 2);
63 	}
64 
65 	return r;
66 }
67 
68 static unsigned ieee754sp_get_rounding(int sn, unsigned xm)
69 {
70 	/* inexact must round of 3 bits
71 	 */
72 	if (xm & (SP_MBIT(3) - 1)) {
73 		switch (ieee754_csr.rm) {
74 		case FPU_CSR_RZ:
75 			break;
76 		case FPU_CSR_RN:
77 			xm += 0x3 + ((xm >> 3) & 1);
78 			/* xm += (xm&0x8)?0x4:0x3 */
79 			break;
80 		case FPU_CSR_RU:	/* toward +Infinity */
81 			if (!sn)	/* ?? */
82 				xm += 0x8;
83 			break;
84 		case FPU_CSR_RD:	/* toward -Infinity */
85 			if (sn) /* ?? */
86 				xm += 0x8;
87 			break;
88 		}
89 	}
90 	return xm;
91 }
92 
93 
94 /* generate a normal/denormal number with over,under handling
95  * sn is sign
96  * xe is an unbiased exponent
97  * xm is 3bit extended precision value.
98  */
99 union ieee754sp ieee754sp_format(int sn, int xe, unsigned xm)
100 {
101 	assert(xm);		/* we don't gen exact zeros (probably should) */
102 
103 	assert((xm >> (SP_FBITS + 1 + 3)) == 0);	/* no excess */
104 	assert(xm & (SP_HIDDEN_BIT << 3));
105 
106 	if (xe < SP_EMIN) {
107 		/* strip lower bits */
108 		int es = SP_EMIN - xe;
109 
110 		if (ieee754_csr.nod) {
111 			ieee754_setcx(IEEE754_UNDERFLOW);
112 			ieee754_setcx(IEEE754_INEXACT);
113 
114 			switch(ieee754_csr.rm) {
115 			case FPU_CSR_RN:
116 			case FPU_CSR_RZ:
117 				return ieee754sp_zero(sn);
118 			case FPU_CSR_RU:      /* toward +Infinity */
119 				if (sn == 0)
120 					return ieee754sp_min(0);
121 				else
122 					return ieee754sp_zero(1);
123 			case FPU_CSR_RD:      /* toward -Infinity */
124 				if (sn == 0)
125 					return ieee754sp_zero(0);
126 				else
127 					return ieee754sp_min(1);
128 			}
129 		}
130 
131 		if (xe == SP_EMIN - 1 &&
132 		    ieee754sp_get_rounding(sn, xm) >> (SP_FBITS + 1 + 3))
133 		{
134 			/* Not tiny after rounding */
135 			ieee754_setcx(IEEE754_INEXACT);
136 			xm = ieee754sp_get_rounding(sn, xm);
137 			xm >>= 1;
138 			/* Clear grs bits */
139 			xm &= ~(SP_MBIT(3) - 1);
140 			xe++;
141 		} else {
142 			/* sticky right shift es bits
143 			 */
144 			xm = XSPSRS(xm, es);
145 			xe += es;
146 			assert((xm & (SP_HIDDEN_BIT << 3)) == 0);
147 			assert(xe == SP_EMIN);
148 		}
149 	}
150 	if (xm & (SP_MBIT(3) - 1)) {
151 		ieee754_setcx(IEEE754_INEXACT);
152 		if ((xm & (SP_HIDDEN_BIT << 3)) == 0) {
153 			ieee754_setcx(IEEE754_UNDERFLOW);
154 		}
155 
156 		/* inexact must round of 3 bits
157 		 */
158 		xm = ieee754sp_get_rounding(sn, xm);
159 		/* adjust exponent for rounding add overflowing
160 		 */
161 		if (xm >> (SP_FBITS + 1 + 3)) {
162 			/* add causes mantissa overflow */
163 			xm >>= 1;
164 			xe++;
165 		}
166 	}
167 	/* strip grs bits */
168 	xm >>= 3;
169 
170 	assert((xm >> (SP_FBITS + 1)) == 0);	/* no excess */
171 	assert(xe >= SP_EMIN);
172 
173 	if (xe > SP_EMAX) {
174 		ieee754_setcx(IEEE754_OVERFLOW);
175 		ieee754_setcx(IEEE754_INEXACT);
176 		/* -O can be table indexed by (rm,sn) */
177 		switch (ieee754_csr.rm) {
178 		case FPU_CSR_RN:
179 			return ieee754sp_inf(sn);
180 		case FPU_CSR_RZ:
181 			return ieee754sp_max(sn);
182 		case FPU_CSR_RU:	/* toward +Infinity */
183 			if (sn == 0)
184 				return ieee754sp_inf(0);
185 			else
186 				return ieee754sp_max(1);
187 		case FPU_CSR_RD:	/* toward -Infinity */
188 			if (sn == 0)
189 				return ieee754sp_max(0);
190 			else
191 				return ieee754sp_inf(1);
192 		}
193 	}
194 	/* gen norm/denorm/zero */
195 
196 	if ((xm & SP_HIDDEN_BIT) == 0) {
197 		/* we underflow (tiny/zero) */
198 		assert(xe == SP_EMIN);
199 		if (ieee754_csr.mx & IEEE754_UNDERFLOW)
200 			ieee754_setcx(IEEE754_UNDERFLOW);
201 		return buildsp(sn, SP_EMIN - 1 + SP_EBIAS, xm);
202 	} else {
203 		assert((xm >> (SP_FBITS + 1)) == 0);	/* no excess */
204 		assert(xm & SP_HIDDEN_BIT);
205 
206 		return buildsp(sn, xe + SP_EBIAS, xm & ~SP_HIDDEN_BIT);
207 	}
208 }
209