xref: /linux/arch/mips/math-emu/cp1emu.c (revision dd6d1844af33acb4edd0a40b1770d091a22c94be)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  * http://www.algor.co.uk
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * A complete emulator for MIPS coprocessor 1 instructions.  This is
25  * required for #float(switch) or #float(trap), where it catches all
26  * COP1 instructions via the "CoProcessor Unusable" exception.
27  *
28  * More surprisingly it is also required for #float(ieee), to help out
29  * the hardware fpu at the boundaries of the IEEE-754 representation
30  * (denormalised values, infinities, underflow, etc).  It is made
31  * quite nasty because emulation of some non-COP1 instructions is
32  * required, e.g. in branch delay slots.
33  *
34  * Note if you know that you won't have an fpu, then you'll get much
35  * better performance by compiling with -msoft-float!
36  */
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/inst.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
49 
50 #include "ieee754.h"
51 #include "dsemul.h"
52 
53 /* Strap kernel emulator for full MIPS IV emulation */
54 
55 #ifdef __mips
56 #undef __mips
57 #endif
58 #define __mips 4
59 
60 /* Function which emulates a floating point instruction. */
61 
62 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
63 	mips_instruction);
64 
65 #if __mips >= 4 && __mips != 32
66 static int fpux_emu(struct pt_regs *,
67 	struct mips_fpu_struct *, mips_instruction);
68 #endif
69 
70 /* Further private data for which no space exists in mips_fpu_struct */
71 
72 struct mips_fpu_emulator_stats fpuemustats;
73 
74 /* Control registers */
75 
76 #define FPCREG_RID	0	/* $0  = revision id */
77 #define FPCREG_CSR	31	/* $31 = csr */
78 
79 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
80 static const unsigned char ieee_rm[4] = {
81 	[FPU_CSR_RN] = IEEE754_RN,
82 	[FPU_CSR_RZ] = IEEE754_RZ,
83 	[FPU_CSR_RU] = IEEE754_RU,
84 	[FPU_CSR_RD] = IEEE754_RD,
85 };
86 /* Convert IEEE library modes to Mips rounding mode (0..3). */
87 static const unsigned char mips_rm[4] = {
88 	[IEEE754_RN] = FPU_CSR_RN,
89 	[IEEE754_RZ] = FPU_CSR_RZ,
90 	[IEEE754_RD] = FPU_CSR_RD,
91 	[IEEE754_RU] = FPU_CSR_RU,
92 };
93 
94 #if __mips >= 4
95 /* convert condition code register number to csr bit */
96 static const unsigned int fpucondbit[8] = {
97 	FPU_CSR_COND0,
98 	FPU_CSR_COND1,
99 	FPU_CSR_COND2,
100 	FPU_CSR_COND3,
101 	FPU_CSR_COND4,
102 	FPU_CSR_COND5,
103 	FPU_CSR_COND6,
104 	FPU_CSR_COND7
105 };
106 #endif
107 
108 
109 /*
110  * Redundant with logic already in kernel/branch.c,
111  * embedded in compute_return_epc.  At some point,
112  * a single subroutine should be used across both
113  * modules.
114  */
115 static int isBranchInstr(mips_instruction * i)
116 {
117 	switch (MIPSInst_OPCODE(*i)) {
118 	case spec_op:
119 		switch (MIPSInst_FUNC(*i)) {
120 		case jalr_op:
121 		case jr_op:
122 			return 1;
123 		}
124 		break;
125 
126 	case bcond_op:
127 		switch (MIPSInst_RT(*i)) {
128 		case bltz_op:
129 		case bgez_op:
130 		case bltzl_op:
131 		case bgezl_op:
132 		case bltzal_op:
133 		case bgezal_op:
134 		case bltzall_op:
135 		case bgezall_op:
136 			return 1;
137 		}
138 		break;
139 
140 	case j_op:
141 	case jal_op:
142 	case jalx_op:
143 	case beq_op:
144 	case bne_op:
145 	case blez_op:
146 	case bgtz_op:
147 	case beql_op:
148 	case bnel_op:
149 	case blezl_op:
150 	case bgtzl_op:
151 		return 1;
152 
153 	case cop0_op:
154 	case cop1_op:
155 	case cop2_op:
156 	case cop1x_op:
157 		if (MIPSInst_RS(*i) == bc_op)
158 			return 1;
159 		break;
160 	}
161 
162 	return 0;
163 }
164 
165 /*
166  * In the Linux kernel, we support selection of FPR format on the
167  * basis of the Status.FR bit.  This does imply that, if a full 32
168  * FPRs are desired, there needs to be a flip-flop that can be written
169  * to one at that bit position.  In any case, O32 MIPS ABI uses
170  * only the even FPRs (Status.FR = 0).
171  */
172 
173 #define CP0_STATUS_FR_SUPPORT
174 
175 #ifdef CP0_STATUS_FR_SUPPORT
176 #define FR_BIT ST0_FR
177 #else
178 #define FR_BIT 0
179 #endif
180 
181 #define SIFROMREG(si, x) ((si) = \
182 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
183 			(int)ctx->fpr[x] : \
184 			(int)(ctx->fpr[x & ~1] >> 32 ))
185 #define SITOREG(si, x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
186 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
187 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
188 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
189 
190 #define DIFROMREG(di, x) ((di) = \
191 			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
192 #define DITOREG(di, x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
193 			= (di))
194 
195 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
196 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
197 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
198 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
199 
200 /*
201  * Emulate the single floating point instruction pointed at by EPC.
202  * Two instructions if the instruction is in a branch delay slot.
203  */
204 
205 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
206 {
207 	mips_instruction ir;
208 	unsigned long emulpc, contpc;
209 	unsigned int cond;
210 
211 	if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
212 		fpuemustats.errors++;
213 		return SIGBUS;
214 	}
215 
216 	/* XXX NEC Vr54xx bug workaround */
217 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
218 		xcp->cp0_cause &= ~CAUSEF_BD;
219 
220 	if (xcp->cp0_cause & CAUSEF_BD) {
221 		/*
222 		 * The instruction to be emulated is in a branch delay slot
223 		 * which means that we have to  emulate the branch instruction
224 		 * BEFORE we do the cop1 instruction.
225 		 *
226 		 * This branch could be a COP1 branch, but in that case we
227 		 * would have had a trap for that instruction, and would not
228 		 * come through this route.
229 		 *
230 		 * Linux MIPS branch emulator operates on context, updating the
231 		 * cp0_epc.
232 		 */
233 		emulpc = xcp->cp0_epc + 4;	/* Snapshot emulation target */
234 
235 		if (__compute_return_epc(xcp)) {
236 #ifdef CP1DBG
237 			printk("failed to emulate branch at %p\n",
238 				(void *) (xcp->cp0_epc));
239 #endif
240 			return SIGILL;
241 		}
242 		if (get_user(ir, (mips_instruction __user *) emulpc)) {
243 			fpuemustats.errors++;
244 			return SIGBUS;
245 		}
246 		/* __compute_return_epc() will have updated cp0_epc */
247 		contpc = xcp->cp0_epc;
248 		/* In order not to confuse ptrace() et al, tweak context */
249 		xcp->cp0_epc = emulpc - 4;
250 	} else {
251 		emulpc = xcp->cp0_epc;
252 		contpc = xcp->cp0_epc + 4;
253 	}
254 
255       emul:
256 	fpuemustats.emulated++;
257 	switch (MIPSInst_OPCODE(ir)) {
258 	case ldc1_op:{
259 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
260 			MIPSInst_SIMM(ir));
261 		u64 val;
262 
263 		fpuemustats.loads++;
264 		if (get_user(val, va)) {
265 			fpuemustats.errors++;
266 			return SIGBUS;
267 		}
268 		DITOREG(val, MIPSInst_RT(ir));
269 		break;
270 	}
271 
272 	case sdc1_op:{
273 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
274 			MIPSInst_SIMM(ir));
275 		u64 val;
276 
277 		fpuemustats.stores++;
278 		DIFROMREG(val, MIPSInst_RT(ir));
279 		if (put_user(val, va)) {
280 			fpuemustats.errors++;
281 			return SIGBUS;
282 		}
283 		break;
284 	}
285 
286 	case lwc1_op:{
287 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
288 			MIPSInst_SIMM(ir));
289 		u32 val;
290 
291 		fpuemustats.loads++;
292 		if (get_user(val, va)) {
293 			fpuemustats.errors++;
294 			return SIGBUS;
295 		}
296 		SITOREG(val, MIPSInst_RT(ir));
297 		break;
298 	}
299 
300 	case swc1_op:{
301 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
302 			MIPSInst_SIMM(ir));
303 		u32 val;
304 
305 		fpuemustats.stores++;
306 		SIFROMREG(val, MIPSInst_RT(ir));
307 		if (put_user(val, va)) {
308 			fpuemustats.errors++;
309 			return SIGBUS;
310 		}
311 		break;
312 	}
313 
314 	case cop1_op:
315 		switch (MIPSInst_RS(ir)) {
316 
317 #if defined(__mips64)
318 		case dmfc_op:
319 			/* copregister fs -> gpr[rt] */
320 			if (MIPSInst_RT(ir) != 0) {
321 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
322 					MIPSInst_RD(ir));
323 			}
324 			break;
325 
326 		case dmtc_op:
327 			/* copregister fs <- rt */
328 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
329 			break;
330 #endif
331 
332 		case mfc_op:
333 			/* copregister rd -> gpr[rt] */
334 			if (MIPSInst_RT(ir) != 0) {
335 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
336 					MIPSInst_RD(ir));
337 			}
338 			break;
339 
340 		case mtc_op:
341 			/* copregister rd <- rt */
342 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
343 			break;
344 
345 		case cfc_op:{
346 			/* cop control register rd -> gpr[rt] */
347 			u32 value;
348 
349 			if (ir == CP1UNDEF) {
350 				return do_dsemulret(xcp);
351 			}
352 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
353 				value = ctx->fcr31;
354 				value = (value & ~0x3) | mips_rm[value & 0x3];
355 #ifdef CSRTRACE
356 				printk("%p gpr[%d]<-csr=%08x\n",
357 					(void *) (xcp->cp0_epc),
358 					MIPSInst_RT(ir), value);
359 #endif
360 			}
361 			else if (MIPSInst_RD(ir) == FPCREG_RID)
362 				value = 0;
363 			else
364 				value = 0;
365 			if (MIPSInst_RT(ir))
366 				xcp->regs[MIPSInst_RT(ir)] = value;
367 			break;
368 		}
369 
370 		case ctc_op:{
371 			/* copregister rd <- rt */
372 			u32 value;
373 
374 			if (MIPSInst_RT(ir) == 0)
375 				value = 0;
376 			else
377 				value = xcp->regs[MIPSInst_RT(ir)];
378 
379 			/* we only have one writable control reg
380 			 */
381 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
382 #ifdef CSRTRACE
383 				printk("%p gpr[%d]->csr=%08x\n",
384 					(void *) (xcp->cp0_epc),
385 					MIPSInst_RT(ir), value);
386 #endif
387 				value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
388 				ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389 				/* convert to ieee library modes */
390 				ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
391 			}
392 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
393 				return SIGFPE;
394 			}
395 			break;
396 		}
397 
398 		case bc_op:{
399 			int likely = 0;
400 
401 			if (xcp->cp0_cause & CAUSEF_BD)
402 				return SIGILL;
403 
404 #if __mips >= 4
405 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
406 #else
407 			cond = ctx->fcr31 & FPU_CSR_COND;
408 #endif
409 			switch (MIPSInst_RT(ir) & 3) {
410 			case bcfl_op:
411 				likely = 1;
412 			case bcf_op:
413 				cond = !cond;
414 				break;
415 			case bctl_op:
416 				likely = 1;
417 			case bct_op:
418 				break;
419 			default:
420 				/* thats an illegal instruction */
421 				return SIGILL;
422 			}
423 
424 			xcp->cp0_cause |= CAUSEF_BD;
425 			if (cond) {
426 				/* branch taken: emulate dslot
427 				 * instruction
428 				 */
429 				xcp->cp0_epc += 4;
430 				contpc = (xcp->cp0_epc +
431 					(MIPSInst_SIMM(ir) << 2));
432 
433 				if (get_user(ir,
434 				    (mips_instruction __user *) xcp->cp0_epc)) {
435 					fpuemustats.errors++;
436 					return SIGBUS;
437 				}
438 
439 				switch (MIPSInst_OPCODE(ir)) {
440 				case lwc1_op:
441 				case swc1_op:
442 #if (__mips >= 2 || defined(__mips64))
443 				case ldc1_op:
444 				case sdc1_op:
445 #endif
446 				case cop1_op:
447 #if __mips >= 4 && __mips != 32
448 				case cop1x_op:
449 #endif
450 					/* its one of ours */
451 					goto emul;
452 #if __mips >= 4
453 				case spec_op:
454 					if (MIPSInst_FUNC(ir) == movc_op)
455 						goto emul;
456 					break;
457 #endif
458 				}
459 
460 				/*
461 				 * Single step the non-cp1
462 				 * instruction in the dslot
463 				 */
464 				return mips_dsemul(xcp, ir, contpc);
465 			}
466 			else {
467 				/* branch not taken */
468 				if (likely) {
469 					/*
470 					 * branch likely nullifies
471 					 * dslot if not taken
472 					 */
473 					xcp->cp0_epc += 4;
474 					contpc += 4;
475 					/*
476 					 * else continue & execute
477 					 * dslot as normal insn
478 					 */
479 				}
480 			}
481 			break;
482 		}
483 
484 		default:
485 			if (!(MIPSInst_RS(ir) & 0x10))
486 				return SIGILL;
487 			{
488 				int sig;
489 
490 				/* a real fpu computation instruction */
491 				if ((sig = fpu_emu(xcp, ctx, ir)))
492 					return sig;
493 			}
494 		}
495 		break;
496 
497 #if __mips >= 4 && __mips != 32
498 	case cop1x_op:{
499 		int sig;
500 
501 		if ((sig = fpux_emu(xcp, ctx, ir)))
502 			return sig;
503 		break;
504 	}
505 #endif
506 
507 #if __mips >= 4
508 	case spec_op:
509 		if (MIPSInst_FUNC(ir) != movc_op)
510 			return SIGILL;
511 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
512 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
513 			xcp->regs[MIPSInst_RD(ir)] =
514 				xcp->regs[MIPSInst_RS(ir)];
515 		break;
516 #endif
517 
518 	default:
519 		return SIGILL;
520 	}
521 
522 	/* we did it !! */
523 	xcp->cp0_epc = contpc;
524 	xcp->cp0_cause &= ~CAUSEF_BD;
525 
526 	return 0;
527 }
528 
529 /*
530  * Conversion table from MIPS compare ops 48-63
531  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
532  */
533 static const unsigned char cmptab[8] = {
534 	0,			/* cmp_0 (sig) cmp_sf */
535 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
536 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
537 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
538 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
539 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
540 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
541 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
542 };
543 
544 
545 #if __mips >= 4 && __mips != 32
546 
547 /*
548  * Additional MIPS4 instructions
549  */
550 
551 #define DEF3OP(name, p, f1, f2, f3) \
552 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
553     ieee754##p t) \
554 { \
555 	struct _ieee754_csr ieee754_csr_save; \
556 	s = f1(s, t); \
557 	ieee754_csr_save = ieee754_csr; \
558 	s = f2(s, r); \
559 	ieee754_csr_save.cx |= ieee754_csr.cx; \
560 	ieee754_csr_save.sx |= ieee754_csr.sx; \
561 	s = f3(s); \
562 	ieee754_csr.cx |= ieee754_csr_save.cx; \
563 	ieee754_csr.sx |= ieee754_csr_save.sx; \
564 	return s; \
565 }
566 
567 static ieee754dp fpemu_dp_recip(ieee754dp d)
568 {
569 	return ieee754dp_div(ieee754dp_one(0), d);
570 }
571 
572 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
573 {
574 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
575 }
576 
577 static ieee754sp fpemu_sp_recip(ieee754sp s)
578 {
579 	return ieee754sp_div(ieee754sp_one(0), s);
580 }
581 
582 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
583 {
584 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
585 }
586 
587 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
588 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
589 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
590 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
591 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
592 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
593 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
594 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
595 
596 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
597 	mips_instruction ir)
598 {
599 	unsigned rcsr = 0;	/* resulting csr */
600 
601 	fpuemustats.cp1xops++;
602 
603 	switch (MIPSInst_FMA_FFMT(ir)) {
604 	case s_fmt:{		/* 0 */
605 
606 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
607 		ieee754sp fd, fr, fs, ft;
608 		u32 __user *va;
609 		u32 val;
610 
611 		switch (MIPSInst_FUNC(ir)) {
612 		case lwxc1_op:
613 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
614 				xcp->regs[MIPSInst_FT(ir)]);
615 
616 			fpuemustats.loads++;
617 			if (get_user(val, va)) {
618 				fpuemustats.errors++;
619 				return SIGBUS;
620 			}
621 			SITOREG(val, MIPSInst_FD(ir));
622 			break;
623 
624 		case swxc1_op:
625 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
626 				xcp->regs[MIPSInst_FT(ir)]);
627 
628 			fpuemustats.stores++;
629 
630 			SIFROMREG(val, MIPSInst_FS(ir));
631 			if (put_user(val, va)) {
632 				fpuemustats.errors++;
633 				return SIGBUS;
634 			}
635 			break;
636 
637 		case madd_s_op:
638 			handler = fpemu_sp_madd;
639 			goto scoptop;
640 		case msub_s_op:
641 			handler = fpemu_sp_msub;
642 			goto scoptop;
643 		case nmadd_s_op:
644 			handler = fpemu_sp_nmadd;
645 			goto scoptop;
646 		case nmsub_s_op:
647 			handler = fpemu_sp_nmsub;
648 			goto scoptop;
649 
650 		      scoptop:
651 			SPFROMREG(fr, MIPSInst_FR(ir));
652 			SPFROMREG(fs, MIPSInst_FS(ir));
653 			SPFROMREG(ft, MIPSInst_FT(ir));
654 			fd = (*handler) (fr, fs, ft);
655 			SPTOREG(fd, MIPSInst_FD(ir));
656 
657 		      copcsr:
658 			if (ieee754_cxtest(IEEE754_INEXACT))
659 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
660 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
661 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
662 			if (ieee754_cxtest(IEEE754_OVERFLOW))
663 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
664 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
665 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
666 
667 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
668 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
669 				/*printk ("SIGFPE: fpu csr = %08x\n",
670 				   ctx->fcr31); */
671 				return SIGFPE;
672 			}
673 
674 			break;
675 
676 		default:
677 			return SIGILL;
678 		}
679 		break;
680 	}
681 
682 	case d_fmt:{		/* 1 */
683 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
684 		ieee754dp fd, fr, fs, ft;
685 		u64 __user *va;
686 		u64 val;
687 
688 		switch (MIPSInst_FUNC(ir)) {
689 		case ldxc1_op:
690 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
691 				xcp->regs[MIPSInst_FT(ir)]);
692 
693 			fpuemustats.loads++;
694 			if (get_user(val, va)) {
695 				fpuemustats.errors++;
696 				return SIGBUS;
697 			}
698 			DITOREG(val, MIPSInst_FD(ir));
699 			break;
700 
701 		case sdxc1_op:
702 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
703 				xcp->regs[MIPSInst_FT(ir)]);
704 
705 			fpuemustats.stores++;
706 			DIFROMREG(val, MIPSInst_FS(ir));
707 			if (put_user(val, va)) {
708 				fpuemustats.errors++;
709 				return SIGBUS;
710 			}
711 			break;
712 
713 		case madd_d_op:
714 			handler = fpemu_dp_madd;
715 			goto dcoptop;
716 		case msub_d_op:
717 			handler = fpemu_dp_msub;
718 			goto dcoptop;
719 		case nmadd_d_op:
720 			handler = fpemu_dp_nmadd;
721 			goto dcoptop;
722 		case nmsub_d_op:
723 			handler = fpemu_dp_nmsub;
724 			goto dcoptop;
725 
726 		      dcoptop:
727 			DPFROMREG(fr, MIPSInst_FR(ir));
728 			DPFROMREG(fs, MIPSInst_FS(ir));
729 			DPFROMREG(ft, MIPSInst_FT(ir));
730 			fd = (*handler) (fr, fs, ft);
731 			DPTOREG(fd, MIPSInst_FD(ir));
732 			goto copcsr;
733 
734 		default:
735 			return SIGILL;
736 		}
737 		break;
738 	}
739 
740 	case 0x7:		/* 7 */
741 		if (MIPSInst_FUNC(ir) != pfetch_op) {
742 			return SIGILL;
743 		}
744 		/* ignore prefx operation */
745 		break;
746 
747 	default:
748 		return SIGILL;
749 	}
750 
751 	return 0;
752 }
753 #endif
754 
755 
756 
757 /*
758  * Emulate a single COP1 arithmetic instruction.
759  */
760 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
761 	mips_instruction ir)
762 {
763 	int rfmt;		/* resulting format */
764 	unsigned rcsr = 0;	/* resulting csr */
765 	unsigned cond;
766 	union {
767 		ieee754dp d;
768 		ieee754sp s;
769 		int w;
770 #ifdef __mips64
771 		s64 l;
772 #endif
773 	} rv;			/* resulting value */
774 
775 	fpuemustats.cp1ops++;
776 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
777 	case s_fmt:{		/* 0 */
778 		union {
779 			ieee754sp(*b) (ieee754sp, ieee754sp);
780 			ieee754sp(*u) (ieee754sp);
781 		} handler;
782 
783 		switch (MIPSInst_FUNC(ir)) {
784 			/* binary ops */
785 		case fadd_op:
786 			handler.b = ieee754sp_add;
787 			goto scopbop;
788 		case fsub_op:
789 			handler.b = ieee754sp_sub;
790 			goto scopbop;
791 		case fmul_op:
792 			handler.b = ieee754sp_mul;
793 			goto scopbop;
794 		case fdiv_op:
795 			handler.b = ieee754sp_div;
796 			goto scopbop;
797 
798 			/* unary  ops */
799 #if __mips >= 2 || defined(__mips64)
800 		case fsqrt_op:
801 			handler.u = ieee754sp_sqrt;
802 			goto scopuop;
803 #endif
804 #if __mips >= 4 && __mips != 32
805 		case frsqrt_op:
806 			handler.u = fpemu_sp_rsqrt;
807 			goto scopuop;
808 		case frecip_op:
809 			handler.u = fpemu_sp_recip;
810 			goto scopuop;
811 #endif
812 #if __mips >= 4
813 		case fmovc_op:
814 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
815 			if (((ctx->fcr31 & cond) != 0) !=
816 				((MIPSInst_FT(ir) & 1) != 0))
817 				return 0;
818 			SPFROMREG(rv.s, MIPSInst_FS(ir));
819 			break;
820 		case fmovz_op:
821 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
822 				return 0;
823 			SPFROMREG(rv.s, MIPSInst_FS(ir));
824 			break;
825 		case fmovn_op:
826 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
827 				return 0;
828 			SPFROMREG(rv.s, MIPSInst_FS(ir));
829 			break;
830 #endif
831 		case fabs_op:
832 			handler.u = ieee754sp_abs;
833 			goto scopuop;
834 		case fneg_op:
835 			handler.u = ieee754sp_neg;
836 			goto scopuop;
837 		case fmov_op:
838 			/* an easy one */
839 			SPFROMREG(rv.s, MIPSInst_FS(ir));
840 			goto copcsr;
841 
842 			/* binary op on handler */
843 		      scopbop:
844 			{
845 				ieee754sp fs, ft;
846 
847 				SPFROMREG(fs, MIPSInst_FS(ir));
848 				SPFROMREG(ft, MIPSInst_FT(ir));
849 
850 				rv.s = (*handler.b) (fs, ft);
851 				goto copcsr;
852 			}
853 		      scopuop:
854 			{
855 				ieee754sp fs;
856 
857 				SPFROMREG(fs, MIPSInst_FS(ir));
858 				rv.s = (*handler.u) (fs);
859 				goto copcsr;
860 			}
861 		      copcsr:
862 			if (ieee754_cxtest(IEEE754_INEXACT))
863 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
864 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
865 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
866 			if (ieee754_cxtest(IEEE754_OVERFLOW))
867 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
868 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
869 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
870 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
871 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
872 			break;
873 
874 			/* unary conv ops */
875 		case fcvts_op:
876 			return SIGILL;	/* not defined */
877 		case fcvtd_op:{
878 			ieee754sp fs;
879 
880 			SPFROMREG(fs, MIPSInst_FS(ir));
881 			rv.d = ieee754dp_fsp(fs);
882 			rfmt = d_fmt;
883 			goto copcsr;
884 		}
885 		case fcvtw_op:{
886 			ieee754sp fs;
887 
888 			SPFROMREG(fs, MIPSInst_FS(ir));
889 			rv.w = ieee754sp_tint(fs);
890 			rfmt = w_fmt;
891 			goto copcsr;
892 		}
893 
894 #if __mips >= 2 || defined(__mips64)
895 		case fround_op:
896 		case ftrunc_op:
897 		case fceil_op:
898 		case ffloor_op:{
899 			unsigned int oldrm = ieee754_csr.rm;
900 			ieee754sp fs;
901 
902 			SPFROMREG(fs, MIPSInst_FS(ir));
903 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
904 			rv.w = ieee754sp_tint(fs);
905 			ieee754_csr.rm = oldrm;
906 			rfmt = w_fmt;
907 			goto copcsr;
908 		}
909 #endif /* __mips >= 2 */
910 
911 #if defined(__mips64)
912 		case fcvtl_op:{
913 			ieee754sp fs;
914 
915 			SPFROMREG(fs, MIPSInst_FS(ir));
916 			rv.l = ieee754sp_tlong(fs);
917 			rfmt = l_fmt;
918 			goto copcsr;
919 		}
920 
921 		case froundl_op:
922 		case ftruncl_op:
923 		case fceill_op:
924 		case ffloorl_op:{
925 			unsigned int oldrm = ieee754_csr.rm;
926 			ieee754sp fs;
927 
928 			SPFROMREG(fs, MIPSInst_FS(ir));
929 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
930 			rv.l = ieee754sp_tlong(fs);
931 			ieee754_csr.rm = oldrm;
932 			rfmt = l_fmt;
933 			goto copcsr;
934 		}
935 #endif /* defined(__mips64) */
936 
937 		default:
938 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
939 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
940 				ieee754sp fs, ft;
941 
942 				SPFROMREG(fs, MIPSInst_FS(ir));
943 				SPFROMREG(ft, MIPSInst_FT(ir));
944 				rv.w = ieee754sp_cmp(fs, ft,
945 					cmptab[cmpop & 0x7], cmpop & 0x8);
946 				rfmt = -1;
947 				if ((cmpop & 0x8) && ieee754_cxtest
948 					(IEEE754_INVALID_OPERATION))
949 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
950 				else
951 					goto copcsr;
952 
953 			}
954 			else {
955 				return SIGILL;
956 			}
957 			break;
958 		}
959 		break;
960 	}
961 
962 	case d_fmt:{
963 		union {
964 			ieee754dp(*b) (ieee754dp, ieee754dp);
965 			ieee754dp(*u) (ieee754dp);
966 		} handler;
967 
968 		switch (MIPSInst_FUNC(ir)) {
969 			/* binary ops */
970 		case fadd_op:
971 			handler.b = ieee754dp_add;
972 			goto dcopbop;
973 		case fsub_op:
974 			handler.b = ieee754dp_sub;
975 			goto dcopbop;
976 		case fmul_op:
977 			handler.b = ieee754dp_mul;
978 			goto dcopbop;
979 		case fdiv_op:
980 			handler.b = ieee754dp_div;
981 			goto dcopbop;
982 
983 			/* unary  ops */
984 #if __mips >= 2 || defined(__mips64)
985 		case fsqrt_op:
986 			handler.u = ieee754dp_sqrt;
987 			goto dcopuop;
988 #endif
989 #if __mips >= 4 && __mips != 32
990 		case frsqrt_op:
991 			handler.u = fpemu_dp_rsqrt;
992 			goto dcopuop;
993 		case frecip_op:
994 			handler.u = fpemu_dp_recip;
995 			goto dcopuop;
996 #endif
997 #if __mips >= 4
998 		case fmovc_op:
999 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1000 			if (((ctx->fcr31 & cond) != 0) !=
1001 				((MIPSInst_FT(ir) & 1) != 0))
1002 				return 0;
1003 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1004 			break;
1005 		case fmovz_op:
1006 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1007 				return 0;
1008 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1009 			break;
1010 		case fmovn_op:
1011 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1012 				return 0;
1013 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1014 			break;
1015 #endif
1016 		case fabs_op:
1017 			handler.u = ieee754dp_abs;
1018 			goto dcopuop;
1019 
1020 		case fneg_op:
1021 			handler.u = ieee754dp_neg;
1022 			goto dcopuop;
1023 
1024 		case fmov_op:
1025 			/* an easy one */
1026 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1027 			goto copcsr;
1028 
1029 			/* binary op on handler */
1030 		      dcopbop:{
1031 				ieee754dp fs, ft;
1032 
1033 				DPFROMREG(fs, MIPSInst_FS(ir));
1034 				DPFROMREG(ft, MIPSInst_FT(ir));
1035 
1036 				rv.d = (*handler.b) (fs, ft);
1037 				goto copcsr;
1038 			}
1039 		      dcopuop:{
1040 				ieee754dp fs;
1041 
1042 				DPFROMREG(fs, MIPSInst_FS(ir));
1043 				rv.d = (*handler.u) (fs);
1044 				goto copcsr;
1045 			}
1046 
1047 			/* unary conv ops */
1048 		case fcvts_op:{
1049 			ieee754dp fs;
1050 
1051 			DPFROMREG(fs, MIPSInst_FS(ir));
1052 			rv.s = ieee754sp_fdp(fs);
1053 			rfmt = s_fmt;
1054 			goto copcsr;
1055 		}
1056 		case fcvtd_op:
1057 			return SIGILL;	/* not defined */
1058 
1059 		case fcvtw_op:{
1060 			ieee754dp fs;
1061 
1062 			DPFROMREG(fs, MIPSInst_FS(ir));
1063 			rv.w = ieee754dp_tint(fs);	/* wrong */
1064 			rfmt = w_fmt;
1065 			goto copcsr;
1066 		}
1067 
1068 #if __mips >= 2 || defined(__mips64)
1069 		case fround_op:
1070 		case ftrunc_op:
1071 		case fceil_op:
1072 		case ffloor_op:{
1073 			unsigned int oldrm = ieee754_csr.rm;
1074 			ieee754dp fs;
1075 
1076 			DPFROMREG(fs, MIPSInst_FS(ir));
1077 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1078 			rv.w = ieee754dp_tint(fs);
1079 			ieee754_csr.rm = oldrm;
1080 			rfmt = w_fmt;
1081 			goto copcsr;
1082 		}
1083 #endif
1084 
1085 #if defined(__mips64)
1086 		case fcvtl_op:{
1087 			ieee754dp fs;
1088 
1089 			DPFROMREG(fs, MIPSInst_FS(ir));
1090 			rv.l = ieee754dp_tlong(fs);
1091 			rfmt = l_fmt;
1092 			goto copcsr;
1093 		}
1094 
1095 		case froundl_op:
1096 		case ftruncl_op:
1097 		case fceill_op:
1098 		case ffloorl_op:{
1099 			unsigned int oldrm = ieee754_csr.rm;
1100 			ieee754dp fs;
1101 
1102 			DPFROMREG(fs, MIPSInst_FS(ir));
1103 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1104 			rv.l = ieee754dp_tlong(fs);
1105 			ieee754_csr.rm = oldrm;
1106 			rfmt = l_fmt;
1107 			goto copcsr;
1108 		}
1109 #endif /* __mips >= 3 */
1110 
1111 		default:
1112 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1113 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1114 				ieee754dp fs, ft;
1115 
1116 				DPFROMREG(fs, MIPSInst_FS(ir));
1117 				DPFROMREG(ft, MIPSInst_FT(ir));
1118 				rv.w = ieee754dp_cmp(fs, ft,
1119 					cmptab[cmpop & 0x7], cmpop & 0x8);
1120 				rfmt = -1;
1121 				if ((cmpop & 0x8)
1122 					&&
1123 					ieee754_cxtest
1124 					(IEEE754_INVALID_OPERATION))
1125 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1126 				else
1127 					goto copcsr;
1128 
1129 			}
1130 			else {
1131 				return SIGILL;
1132 			}
1133 			break;
1134 		}
1135 		break;
1136 	}
1137 
1138 	case w_fmt:{
1139 		ieee754sp fs;
1140 
1141 		switch (MIPSInst_FUNC(ir)) {
1142 		case fcvts_op:
1143 			/* convert word to single precision real */
1144 			SPFROMREG(fs, MIPSInst_FS(ir));
1145 			rv.s = ieee754sp_fint(fs.bits);
1146 			rfmt = s_fmt;
1147 			goto copcsr;
1148 		case fcvtd_op:
1149 			/* convert word to double precision real */
1150 			SPFROMREG(fs, MIPSInst_FS(ir));
1151 			rv.d = ieee754dp_fint(fs.bits);
1152 			rfmt = d_fmt;
1153 			goto copcsr;
1154 		default:
1155 			return SIGILL;
1156 		}
1157 		break;
1158 	}
1159 
1160 #if defined(__mips64)
1161 	case l_fmt:{
1162 		switch (MIPSInst_FUNC(ir)) {
1163 		case fcvts_op:
1164 			/* convert long to single precision real */
1165 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1166 			rfmt = s_fmt;
1167 			goto copcsr;
1168 		case fcvtd_op:
1169 			/* convert long to double precision real */
1170 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1171 			rfmt = d_fmt;
1172 			goto copcsr;
1173 		default:
1174 			return SIGILL;
1175 		}
1176 		break;
1177 	}
1178 #endif
1179 
1180 	default:
1181 		return SIGILL;
1182 	}
1183 
1184 	/*
1185 	 * Update the fpu CSR register for this operation.
1186 	 * If an exception is required, generate a tidy SIGFPE exception,
1187 	 * without updating the result register.
1188 	 * Note: cause exception bits do not accumulate, they are rewritten
1189 	 * for each op; only the flag/sticky bits accumulate.
1190 	 */
1191 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1192 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1193 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1194 		return SIGFPE;
1195 	}
1196 
1197 	/*
1198 	 * Now we can safely write the result back to the register file.
1199 	 */
1200 	switch (rfmt) {
1201 	case -1:{
1202 #if __mips >= 4
1203 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1204 #else
1205 		cond = FPU_CSR_COND;
1206 #endif
1207 		if (rv.w)
1208 			ctx->fcr31 |= cond;
1209 		else
1210 			ctx->fcr31 &= ~cond;
1211 		break;
1212 	}
1213 	case d_fmt:
1214 		DPTOREG(rv.d, MIPSInst_FD(ir));
1215 		break;
1216 	case s_fmt:
1217 		SPTOREG(rv.s, MIPSInst_FD(ir));
1218 		break;
1219 	case w_fmt:
1220 		SITOREG(rv.w, MIPSInst_FD(ir));
1221 		break;
1222 #if defined(__mips64)
1223 	case l_fmt:
1224 		DITOREG(rv.l, MIPSInst_FD(ir));
1225 		break;
1226 #endif
1227 	default:
1228 		return SIGILL;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1235 	int has_fpu)
1236 {
1237 	unsigned long oldepc, prevepc;
1238 	mips_instruction insn;
1239 	int sig = 0;
1240 
1241 	oldepc = xcp->cp0_epc;
1242 	do {
1243 		prevepc = xcp->cp0_epc;
1244 
1245 		if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1246 			fpuemustats.errors++;
1247 			return SIGBUS;
1248 		}
1249 		if (insn == 0)
1250 			xcp->cp0_epc += 4;	/* skip nops */
1251 		else {
1252 			/*
1253 			 * The 'ieee754_csr' is an alias of
1254 			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1255 			 * ieee754_csr.  But ieee754_csr.rm is ieee
1256 			 * library modes. (not mips rounding mode)
1257 			 */
1258 			/* convert to ieee library modes */
1259 			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1260 			sig = cop1Emulate(xcp, ctx);
1261 			/* revert to mips rounding mode */
1262 			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1263 		}
1264 
1265 		if (has_fpu)
1266 			break;
1267 		if (sig)
1268 			break;
1269 
1270 		cond_resched();
1271 	} while (xcp->cp0_epc > prevepc);
1272 
1273 	/* SIGILL indicates a non-fpu instruction */
1274 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1275 		/* but if epc has advanced, then ignore it */
1276 		sig = 0;
1277 
1278 	return sig;
1279 }
1280 
1281 #ifdef CONFIG_DEBUG_FS
1282 extern struct dentry *mips_debugfs_dir;
1283 static int __init debugfs_fpuemu(void)
1284 {
1285 	struct dentry *d, *dir;
1286 	int i;
1287 	static struct {
1288 		const char *name;
1289 		unsigned int *v;
1290 	} vars[] __initdata = {
1291 		{ "emulated", &fpuemustats.emulated },
1292 		{ "loads",    &fpuemustats.loads },
1293 		{ "stores",   &fpuemustats.stores },
1294 		{ "cp1ops",   &fpuemustats.cp1ops },
1295 		{ "cp1xops",  &fpuemustats.cp1xops },
1296 		{ "errors",   &fpuemustats.errors },
1297 	};
1298 
1299 	if (!mips_debugfs_dir)
1300 		return -ENODEV;
1301 	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1302 	if (IS_ERR(dir))
1303 		return PTR_ERR(dir);
1304 	for (i = 0; i < ARRAY_SIZE(vars); i++) {
1305 		d = debugfs_create_u32(vars[i].name, S_IRUGO, dir, vars[i].v);
1306 		if (IS_ERR(d))
1307 			return PTR_ERR(d);
1308 	}
1309 	return 0;
1310 }
1311 __initcall(debugfs_fpuemu);
1312 #endif
1313