1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator 4 * 5 * MIPS floating point support 6 * Copyright (C) 1994-2000 Algorithmics Ltd. 7 * 8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 9 * Copyright (C) 2000 MIPS Technologies, Inc. 10 * 11 * A complete emulator for MIPS coprocessor 1 instructions. This is 12 * required for #float(switch) or #float(trap), where it catches all 13 * COP1 instructions via the "CoProcessor Unusable" exception. 14 * 15 * More surprisingly it is also required for #float(ieee), to help out 16 * the hardware FPU at the boundaries of the IEEE-754 representation 17 * (denormalised values, infinities, underflow, etc). It is made 18 * quite nasty because emulation of some non-COP1 instructions is 19 * required, e.g. in branch delay slots. 20 * 21 * Note if you know that you won't have an FPU, then you'll get much 22 * better performance by compiling with -msoft-float! 23 */ 24 #include <linux/sched.h> 25 #include <linux/debugfs.h> 26 #include <linux/percpu-defs.h> 27 #include <linux/perf_event.h> 28 29 #include <asm/branch.h> 30 #include <asm/inst.h> 31 #include <asm/ptrace.h> 32 #include <asm/signal.h> 33 #include <linux/uaccess.h> 34 35 #include <asm/cpu-info.h> 36 #include <asm/processor.h> 37 #include <asm/fpu_emulator.h> 38 #include <asm/fpu.h> 39 #include <asm/mips-r2-to-r6-emul.h> 40 41 #include "ieee754.h" 42 43 /* Function which emulates a floating point instruction. */ 44 45 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *, 46 mips_instruction); 47 48 static int fpux_emu(struct pt_regs *, 49 struct mips_fpu_struct *, mips_instruction, void __user **); 50 51 /* Control registers */ 52 53 #define FPCREG_RID 0 /* $0 = revision id */ 54 #define FPCREG_FCCR 25 /* $25 = fccr */ 55 #define FPCREG_FEXR 26 /* $26 = fexr */ 56 #define FPCREG_FENR 28 /* $28 = fenr */ 57 #define FPCREG_CSR 31 /* $31 = csr */ 58 59 /* convert condition code register number to csr bit */ 60 const unsigned int fpucondbit[8] = { 61 FPU_CSR_COND, 62 FPU_CSR_COND1, 63 FPU_CSR_COND2, 64 FPU_CSR_COND3, 65 FPU_CSR_COND4, 66 FPU_CSR_COND5, 67 FPU_CSR_COND6, 68 FPU_CSR_COND7 69 }; 70 71 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */ 72 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0}; 73 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0}; 74 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0}; 75 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0}; 76 77 /* 78 * This functions translates a 32-bit microMIPS instruction 79 * into a 32-bit MIPS32 instruction. Returns 0 on success 80 * and SIGILL otherwise. 81 */ 82 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr) 83 { 84 union mips_instruction insn = *insn_ptr; 85 union mips_instruction mips32_insn = insn; 86 int func, fmt, op; 87 88 switch (insn.mm_i_format.opcode) { 89 case mm_ldc132_op: 90 mips32_insn.mm_i_format.opcode = ldc1_op; 91 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 92 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 93 break; 94 case mm_lwc132_op: 95 mips32_insn.mm_i_format.opcode = lwc1_op; 96 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 97 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 98 break; 99 case mm_sdc132_op: 100 mips32_insn.mm_i_format.opcode = sdc1_op; 101 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 102 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 103 break; 104 case mm_swc132_op: 105 mips32_insn.mm_i_format.opcode = swc1_op; 106 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 107 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 108 break; 109 case mm_pool32i_op: 110 /* NOTE: offset is << by 1 if in microMIPS mode. */ 111 if ((insn.mm_i_format.rt == mm_bc1f_op) || 112 (insn.mm_i_format.rt == mm_bc1t_op)) { 113 mips32_insn.fb_format.opcode = cop1_op; 114 mips32_insn.fb_format.bc = bc_op; 115 mips32_insn.fb_format.flag = 116 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0; 117 } else 118 return SIGILL; 119 break; 120 case mm_pool32f_op: 121 switch (insn.mm_fp0_format.func) { 122 case mm_32f_01_op: 123 case mm_32f_11_op: 124 case mm_32f_02_op: 125 case mm_32f_12_op: 126 case mm_32f_41_op: 127 case mm_32f_51_op: 128 case mm_32f_42_op: 129 case mm_32f_52_op: 130 op = insn.mm_fp0_format.func; 131 if (op == mm_32f_01_op) 132 func = madd_s_op; 133 else if (op == mm_32f_11_op) 134 func = madd_d_op; 135 else if (op == mm_32f_02_op) 136 func = nmadd_s_op; 137 else if (op == mm_32f_12_op) 138 func = nmadd_d_op; 139 else if (op == mm_32f_41_op) 140 func = msub_s_op; 141 else if (op == mm_32f_51_op) 142 func = msub_d_op; 143 else if (op == mm_32f_42_op) 144 func = nmsub_s_op; 145 else 146 func = nmsub_d_op; 147 mips32_insn.fp6_format.opcode = cop1x_op; 148 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr; 149 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft; 150 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs; 151 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd; 152 mips32_insn.fp6_format.func = func; 153 break; 154 case mm_32f_10_op: 155 func = -1; /* Invalid */ 156 op = insn.mm_fp5_format.op & 0x7; 157 if (op == mm_ldxc1_op) 158 func = ldxc1_op; 159 else if (op == mm_sdxc1_op) 160 func = sdxc1_op; 161 else if (op == mm_lwxc1_op) 162 func = lwxc1_op; 163 else if (op == mm_swxc1_op) 164 func = swxc1_op; 165 166 if (func != -1) { 167 mips32_insn.r_format.opcode = cop1x_op; 168 mips32_insn.r_format.rs = 169 insn.mm_fp5_format.base; 170 mips32_insn.r_format.rt = 171 insn.mm_fp5_format.index; 172 mips32_insn.r_format.rd = 0; 173 mips32_insn.r_format.re = insn.mm_fp5_format.fd; 174 mips32_insn.r_format.func = func; 175 } else 176 return SIGILL; 177 break; 178 case mm_32f_40_op: 179 op = -1; /* Invalid */ 180 if (insn.mm_fp2_format.op == mm_fmovt_op) 181 op = 1; 182 else if (insn.mm_fp2_format.op == mm_fmovf_op) 183 op = 0; 184 if (op != -1) { 185 mips32_insn.fp0_format.opcode = cop1_op; 186 mips32_insn.fp0_format.fmt = 187 sdps_format[insn.mm_fp2_format.fmt]; 188 mips32_insn.fp0_format.ft = 189 (insn.mm_fp2_format.cc<<2) + op; 190 mips32_insn.fp0_format.fs = 191 insn.mm_fp2_format.fs; 192 mips32_insn.fp0_format.fd = 193 insn.mm_fp2_format.fd; 194 mips32_insn.fp0_format.func = fmovc_op; 195 } else 196 return SIGILL; 197 break; 198 case mm_32f_60_op: 199 func = -1; /* Invalid */ 200 if (insn.mm_fp0_format.op == mm_fadd_op) 201 func = fadd_op; 202 else if (insn.mm_fp0_format.op == mm_fsub_op) 203 func = fsub_op; 204 else if (insn.mm_fp0_format.op == mm_fmul_op) 205 func = fmul_op; 206 else if (insn.mm_fp0_format.op == mm_fdiv_op) 207 func = fdiv_op; 208 if (func != -1) { 209 mips32_insn.fp0_format.opcode = cop1_op; 210 mips32_insn.fp0_format.fmt = 211 sdps_format[insn.mm_fp0_format.fmt]; 212 mips32_insn.fp0_format.ft = 213 insn.mm_fp0_format.ft; 214 mips32_insn.fp0_format.fs = 215 insn.mm_fp0_format.fs; 216 mips32_insn.fp0_format.fd = 217 insn.mm_fp0_format.fd; 218 mips32_insn.fp0_format.func = func; 219 } else 220 return SIGILL; 221 break; 222 case mm_32f_70_op: 223 func = -1; /* Invalid */ 224 if (insn.mm_fp0_format.op == mm_fmovn_op) 225 func = fmovn_op; 226 else if (insn.mm_fp0_format.op == mm_fmovz_op) 227 func = fmovz_op; 228 if (func != -1) { 229 mips32_insn.fp0_format.opcode = cop1_op; 230 mips32_insn.fp0_format.fmt = 231 sdps_format[insn.mm_fp0_format.fmt]; 232 mips32_insn.fp0_format.ft = 233 insn.mm_fp0_format.ft; 234 mips32_insn.fp0_format.fs = 235 insn.mm_fp0_format.fs; 236 mips32_insn.fp0_format.fd = 237 insn.mm_fp0_format.fd; 238 mips32_insn.fp0_format.func = func; 239 } else 240 return SIGILL; 241 break; 242 case mm_32f_73_op: /* POOL32FXF */ 243 switch (insn.mm_fp1_format.op) { 244 case mm_movf0_op: 245 case mm_movf1_op: 246 case mm_movt0_op: 247 case mm_movt1_op: 248 if ((insn.mm_fp1_format.op & 0x7f) == 249 mm_movf0_op) 250 op = 0; 251 else 252 op = 1; 253 mips32_insn.r_format.opcode = spec_op; 254 mips32_insn.r_format.rs = insn.mm_fp4_format.fs; 255 mips32_insn.r_format.rt = 256 (insn.mm_fp4_format.cc << 2) + op; 257 mips32_insn.r_format.rd = insn.mm_fp4_format.rt; 258 mips32_insn.r_format.re = 0; 259 mips32_insn.r_format.func = movc_op; 260 break; 261 case mm_fcvtd0_op: 262 case mm_fcvtd1_op: 263 case mm_fcvts0_op: 264 case mm_fcvts1_op: 265 if ((insn.mm_fp1_format.op & 0x7f) == 266 mm_fcvtd0_op) { 267 func = fcvtd_op; 268 fmt = swl_format[insn.mm_fp3_format.fmt]; 269 } else { 270 func = fcvts_op; 271 fmt = dwl_format[insn.mm_fp3_format.fmt]; 272 } 273 mips32_insn.fp0_format.opcode = cop1_op; 274 mips32_insn.fp0_format.fmt = fmt; 275 mips32_insn.fp0_format.ft = 0; 276 mips32_insn.fp0_format.fs = 277 insn.mm_fp3_format.fs; 278 mips32_insn.fp0_format.fd = 279 insn.mm_fp3_format.rt; 280 mips32_insn.fp0_format.func = func; 281 break; 282 case mm_fmov0_op: 283 case mm_fmov1_op: 284 case mm_fabs0_op: 285 case mm_fabs1_op: 286 case mm_fneg0_op: 287 case mm_fneg1_op: 288 if ((insn.mm_fp1_format.op & 0x7f) == 289 mm_fmov0_op) 290 func = fmov_op; 291 else if ((insn.mm_fp1_format.op & 0x7f) == 292 mm_fabs0_op) 293 func = fabs_op; 294 else 295 func = fneg_op; 296 mips32_insn.fp0_format.opcode = cop1_op; 297 mips32_insn.fp0_format.fmt = 298 sdps_format[insn.mm_fp3_format.fmt]; 299 mips32_insn.fp0_format.ft = 0; 300 mips32_insn.fp0_format.fs = 301 insn.mm_fp3_format.fs; 302 mips32_insn.fp0_format.fd = 303 insn.mm_fp3_format.rt; 304 mips32_insn.fp0_format.func = func; 305 break; 306 case mm_ffloorl_op: 307 case mm_ffloorw_op: 308 case mm_fceill_op: 309 case mm_fceilw_op: 310 case mm_ftruncl_op: 311 case mm_ftruncw_op: 312 case mm_froundl_op: 313 case mm_froundw_op: 314 case mm_fcvtl_op: 315 case mm_fcvtw_op: 316 if (insn.mm_fp1_format.op == mm_ffloorl_op) 317 func = ffloorl_op; 318 else if (insn.mm_fp1_format.op == mm_ffloorw_op) 319 func = ffloor_op; 320 else if (insn.mm_fp1_format.op == mm_fceill_op) 321 func = fceill_op; 322 else if (insn.mm_fp1_format.op == mm_fceilw_op) 323 func = fceil_op; 324 else if (insn.mm_fp1_format.op == mm_ftruncl_op) 325 func = ftruncl_op; 326 else if (insn.mm_fp1_format.op == mm_ftruncw_op) 327 func = ftrunc_op; 328 else if (insn.mm_fp1_format.op == mm_froundl_op) 329 func = froundl_op; 330 else if (insn.mm_fp1_format.op == mm_froundw_op) 331 func = fround_op; 332 else if (insn.mm_fp1_format.op == mm_fcvtl_op) 333 func = fcvtl_op; 334 else 335 func = fcvtw_op; 336 mips32_insn.fp0_format.opcode = cop1_op; 337 mips32_insn.fp0_format.fmt = 338 sd_format[insn.mm_fp1_format.fmt]; 339 mips32_insn.fp0_format.ft = 0; 340 mips32_insn.fp0_format.fs = 341 insn.mm_fp1_format.fs; 342 mips32_insn.fp0_format.fd = 343 insn.mm_fp1_format.rt; 344 mips32_insn.fp0_format.func = func; 345 break; 346 case mm_frsqrt_op: 347 case mm_fsqrt_op: 348 case mm_frecip_op: 349 if (insn.mm_fp1_format.op == mm_frsqrt_op) 350 func = frsqrt_op; 351 else if (insn.mm_fp1_format.op == mm_fsqrt_op) 352 func = fsqrt_op; 353 else 354 func = frecip_op; 355 mips32_insn.fp0_format.opcode = cop1_op; 356 mips32_insn.fp0_format.fmt = 357 sdps_format[insn.mm_fp1_format.fmt]; 358 mips32_insn.fp0_format.ft = 0; 359 mips32_insn.fp0_format.fs = 360 insn.mm_fp1_format.fs; 361 mips32_insn.fp0_format.fd = 362 insn.mm_fp1_format.rt; 363 mips32_insn.fp0_format.func = func; 364 break; 365 case mm_mfc1_op: 366 case mm_mtc1_op: 367 case mm_cfc1_op: 368 case mm_ctc1_op: 369 case mm_mfhc1_op: 370 case mm_mthc1_op: 371 if (insn.mm_fp1_format.op == mm_mfc1_op) 372 op = mfc_op; 373 else if (insn.mm_fp1_format.op == mm_mtc1_op) 374 op = mtc_op; 375 else if (insn.mm_fp1_format.op == mm_cfc1_op) 376 op = cfc_op; 377 else if (insn.mm_fp1_format.op == mm_ctc1_op) 378 op = ctc_op; 379 else if (insn.mm_fp1_format.op == mm_mfhc1_op) 380 op = mfhc_op; 381 else 382 op = mthc_op; 383 mips32_insn.fp1_format.opcode = cop1_op; 384 mips32_insn.fp1_format.op = op; 385 mips32_insn.fp1_format.rt = 386 insn.mm_fp1_format.rt; 387 mips32_insn.fp1_format.fs = 388 insn.mm_fp1_format.fs; 389 mips32_insn.fp1_format.fd = 0; 390 mips32_insn.fp1_format.func = 0; 391 break; 392 default: 393 return SIGILL; 394 } 395 break; 396 case mm_32f_74_op: /* c.cond.fmt */ 397 mips32_insn.fp0_format.opcode = cop1_op; 398 mips32_insn.fp0_format.fmt = 399 sdps_format[insn.mm_fp4_format.fmt]; 400 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt; 401 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs; 402 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2; 403 mips32_insn.fp0_format.func = 404 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC; 405 break; 406 default: 407 return SIGILL; 408 } 409 break; 410 default: 411 return SIGILL; 412 } 413 414 *insn_ptr = mips32_insn; 415 return 0; 416 } 417 418 /* 419 * Redundant with logic already in kernel/branch.c, 420 * embedded in compute_return_epc. At some point, 421 * a single subroutine should be used across both 422 * modules. 423 */ 424 int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, 425 unsigned long *contpc) 426 { 427 union mips_instruction insn = (union mips_instruction)dec_insn.insn; 428 unsigned int fcr31; 429 unsigned int bit = 0; 430 unsigned int bit0; 431 union fpureg *fpr; 432 433 switch (insn.i_format.opcode) { 434 case spec_op: 435 switch (insn.r_format.func) { 436 case jalr_op: 437 if (insn.r_format.rd != 0) { 438 regs->regs[insn.r_format.rd] = 439 regs->cp0_epc + dec_insn.pc_inc + 440 dec_insn.next_pc_inc; 441 } 442 /* fall through */ 443 case jr_op: 444 /* For R6, JR already emulated in jalr_op */ 445 if (NO_R6EMU && insn.r_format.func == jr_op) 446 break; 447 *contpc = regs->regs[insn.r_format.rs]; 448 return 1; 449 } 450 break; 451 case bcond_op: 452 switch (insn.i_format.rt) { 453 case bltzal_op: 454 case bltzall_op: 455 if (NO_R6EMU && (insn.i_format.rs || 456 insn.i_format.rt == bltzall_op)) 457 break; 458 459 regs->regs[31] = regs->cp0_epc + 460 dec_insn.pc_inc + 461 dec_insn.next_pc_inc; 462 /* fall through */ 463 case bltzl_op: 464 if (NO_R6EMU) 465 break; 466 /* fall through */ 467 case bltz_op: 468 if ((long)regs->regs[insn.i_format.rs] < 0) 469 *contpc = regs->cp0_epc + 470 dec_insn.pc_inc + 471 (insn.i_format.simmediate << 2); 472 else 473 *contpc = regs->cp0_epc + 474 dec_insn.pc_inc + 475 dec_insn.next_pc_inc; 476 return 1; 477 case bgezal_op: 478 case bgezall_op: 479 if (NO_R6EMU && (insn.i_format.rs || 480 insn.i_format.rt == bgezall_op)) 481 break; 482 483 regs->regs[31] = regs->cp0_epc + 484 dec_insn.pc_inc + 485 dec_insn.next_pc_inc; 486 /* fall through */ 487 case bgezl_op: 488 if (NO_R6EMU) 489 break; 490 /* fall through */ 491 case bgez_op: 492 if ((long)regs->regs[insn.i_format.rs] >= 0) 493 *contpc = regs->cp0_epc + 494 dec_insn.pc_inc + 495 (insn.i_format.simmediate << 2); 496 else 497 *contpc = regs->cp0_epc + 498 dec_insn.pc_inc + 499 dec_insn.next_pc_inc; 500 return 1; 501 } 502 break; 503 case jalx_op: 504 set_isa16_mode(bit); 505 /* fall through */ 506 case jal_op: 507 regs->regs[31] = regs->cp0_epc + 508 dec_insn.pc_inc + 509 dec_insn.next_pc_inc; 510 /* fall through */ 511 case j_op: 512 *contpc = regs->cp0_epc + dec_insn.pc_inc; 513 *contpc >>= 28; 514 *contpc <<= 28; 515 *contpc |= (insn.j_format.target << 2); 516 /* Set microMIPS mode bit: XOR for jalx. */ 517 *contpc ^= bit; 518 return 1; 519 case beql_op: 520 if (NO_R6EMU) 521 break; 522 /* fall through */ 523 case beq_op: 524 if (regs->regs[insn.i_format.rs] == 525 regs->regs[insn.i_format.rt]) 526 *contpc = regs->cp0_epc + 527 dec_insn.pc_inc + 528 (insn.i_format.simmediate << 2); 529 else 530 *contpc = regs->cp0_epc + 531 dec_insn.pc_inc + 532 dec_insn.next_pc_inc; 533 return 1; 534 case bnel_op: 535 if (NO_R6EMU) 536 break; 537 /* fall through */ 538 case bne_op: 539 if (regs->regs[insn.i_format.rs] != 540 regs->regs[insn.i_format.rt]) 541 *contpc = regs->cp0_epc + 542 dec_insn.pc_inc + 543 (insn.i_format.simmediate << 2); 544 else 545 *contpc = regs->cp0_epc + 546 dec_insn.pc_inc + 547 dec_insn.next_pc_inc; 548 return 1; 549 case blezl_op: 550 if (!insn.i_format.rt && NO_R6EMU) 551 break; 552 /* fall through */ 553 case blez_op: 554 555 /* 556 * Compact branches for R6 for the 557 * blez and blezl opcodes. 558 * BLEZ | rs = 0 | rt != 0 == BLEZALC 559 * BLEZ | rs = rt != 0 == BGEZALC 560 * BLEZ | rs != 0 | rt != 0 == BGEUC 561 * BLEZL | rs = 0 | rt != 0 == BLEZC 562 * BLEZL | rs = rt != 0 == BGEZC 563 * BLEZL | rs != 0 | rt != 0 == BGEC 564 * 565 * For real BLEZ{,L}, rt is always 0. 566 */ 567 if (cpu_has_mips_r6 && insn.i_format.rt) { 568 if ((insn.i_format.opcode == blez_op) && 569 ((!insn.i_format.rs && insn.i_format.rt) || 570 (insn.i_format.rs == insn.i_format.rt))) 571 regs->regs[31] = regs->cp0_epc + 572 dec_insn.pc_inc; 573 *contpc = regs->cp0_epc + dec_insn.pc_inc + 574 dec_insn.next_pc_inc; 575 576 return 1; 577 } 578 if ((long)regs->regs[insn.i_format.rs] <= 0) 579 *contpc = regs->cp0_epc + 580 dec_insn.pc_inc + 581 (insn.i_format.simmediate << 2); 582 else 583 *contpc = regs->cp0_epc + 584 dec_insn.pc_inc + 585 dec_insn.next_pc_inc; 586 return 1; 587 case bgtzl_op: 588 if (!insn.i_format.rt && NO_R6EMU) 589 break; 590 /* fall through */ 591 case bgtz_op: 592 /* 593 * Compact branches for R6 for the 594 * bgtz and bgtzl opcodes. 595 * BGTZ | rs = 0 | rt != 0 == BGTZALC 596 * BGTZ | rs = rt != 0 == BLTZALC 597 * BGTZ | rs != 0 | rt != 0 == BLTUC 598 * BGTZL | rs = 0 | rt != 0 == BGTZC 599 * BGTZL | rs = rt != 0 == BLTZC 600 * BGTZL | rs != 0 | rt != 0 == BLTC 601 * 602 * *ZALC varint for BGTZ &&& rt != 0 603 * For real GTZ{,L}, rt is always 0. 604 */ 605 if (cpu_has_mips_r6 && insn.i_format.rt) { 606 if ((insn.i_format.opcode == blez_op) && 607 ((!insn.i_format.rs && insn.i_format.rt) || 608 (insn.i_format.rs == insn.i_format.rt))) 609 regs->regs[31] = regs->cp0_epc + 610 dec_insn.pc_inc; 611 *contpc = regs->cp0_epc + dec_insn.pc_inc + 612 dec_insn.next_pc_inc; 613 614 return 1; 615 } 616 617 if ((long)regs->regs[insn.i_format.rs] > 0) 618 *contpc = regs->cp0_epc + 619 dec_insn.pc_inc + 620 (insn.i_format.simmediate << 2); 621 else 622 *contpc = regs->cp0_epc + 623 dec_insn.pc_inc + 624 dec_insn.next_pc_inc; 625 return 1; 626 case pop10_op: 627 case pop30_op: 628 if (!cpu_has_mips_r6) 629 break; 630 if (insn.i_format.rt && !insn.i_format.rs) 631 regs->regs[31] = regs->cp0_epc + 4; 632 *contpc = regs->cp0_epc + dec_insn.pc_inc + 633 dec_insn.next_pc_inc; 634 635 return 1; 636 #ifdef CONFIG_CPU_CAVIUM_OCTEON 637 case lwc2_op: /* This is bbit0 on Octeon */ 638 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) 639 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 640 else 641 *contpc = regs->cp0_epc + 8; 642 return 1; 643 case ldc2_op: /* This is bbit032 on Octeon */ 644 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0) 645 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 646 else 647 *contpc = regs->cp0_epc + 8; 648 return 1; 649 case swc2_op: /* This is bbit1 on Octeon */ 650 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) 651 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 652 else 653 *contpc = regs->cp0_epc + 8; 654 return 1; 655 case sdc2_op: /* This is bbit132 on Octeon */ 656 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) 657 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 658 else 659 *contpc = regs->cp0_epc + 8; 660 return 1; 661 #else 662 case bc6_op: 663 /* 664 * Only valid for MIPS R6 but we can still end up 665 * here from a broken userland so just tell emulator 666 * this is not a branch and let it break later on. 667 */ 668 if (!cpu_has_mips_r6) 669 break; 670 *contpc = regs->cp0_epc + dec_insn.pc_inc + 671 dec_insn.next_pc_inc; 672 673 return 1; 674 case balc6_op: 675 if (!cpu_has_mips_r6) 676 break; 677 regs->regs[31] = regs->cp0_epc + 4; 678 *contpc = regs->cp0_epc + dec_insn.pc_inc + 679 dec_insn.next_pc_inc; 680 681 return 1; 682 case pop66_op: 683 if (!cpu_has_mips_r6) 684 break; 685 *contpc = regs->cp0_epc + dec_insn.pc_inc + 686 dec_insn.next_pc_inc; 687 688 return 1; 689 case pop76_op: 690 if (!cpu_has_mips_r6) 691 break; 692 if (!insn.i_format.rs) 693 regs->regs[31] = regs->cp0_epc + 4; 694 *contpc = regs->cp0_epc + dec_insn.pc_inc + 695 dec_insn.next_pc_inc; 696 697 return 1; 698 #endif 699 case cop0_op: 700 case cop1_op: 701 /* Need to check for R6 bc1nez and bc1eqz branches */ 702 if (cpu_has_mips_r6 && 703 ((insn.i_format.rs == bc1eqz_op) || 704 (insn.i_format.rs == bc1nez_op))) { 705 bit = 0; 706 fpr = ¤t->thread.fpu.fpr[insn.i_format.rt]; 707 bit0 = get_fpr32(fpr, 0) & 0x1; 708 switch (insn.i_format.rs) { 709 case bc1eqz_op: 710 bit = bit0 == 0; 711 break; 712 case bc1nez_op: 713 bit = bit0 != 0; 714 break; 715 } 716 if (bit) 717 *contpc = regs->cp0_epc + 718 dec_insn.pc_inc + 719 (insn.i_format.simmediate << 2); 720 else 721 *contpc = regs->cp0_epc + 722 dec_insn.pc_inc + 723 dec_insn.next_pc_inc; 724 725 return 1; 726 } 727 /* R2/R6 compatible cop1 instruction */ 728 /* fall through */ 729 case cop2_op: 730 case cop1x_op: 731 if (insn.i_format.rs == bc_op) { 732 preempt_disable(); 733 if (is_fpu_owner()) 734 fcr31 = read_32bit_cp1_register(CP1_STATUS); 735 else 736 fcr31 = current->thread.fpu.fcr31; 737 preempt_enable(); 738 739 bit = (insn.i_format.rt >> 2); 740 bit += (bit != 0); 741 bit += 23; 742 switch (insn.i_format.rt & 3) { 743 case 0: /* bc1f */ 744 case 2: /* bc1fl */ 745 if (~fcr31 & (1 << bit)) 746 *contpc = regs->cp0_epc + 747 dec_insn.pc_inc + 748 (insn.i_format.simmediate << 2); 749 else 750 *contpc = regs->cp0_epc + 751 dec_insn.pc_inc + 752 dec_insn.next_pc_inc; 753 return 1; 754 case 1: /* bc1t */ 755 case 3: /* bc1tl */ 756 if (fcr31 & (1 << bit)) 757 *contpc = regs->cp0_epc + 758 dec_insn.pc_inc + 759 (insn.i_format.simmediate << 2); 760 else 761 *contpc = regs->cp0_epc + 762 dec_insn.pc_inc + 763 dec_insn.next_pc_inc; 764 return 1; 765 } 766 } 767 break; 768 } 769 return 0; 770 } 771 772 /* 773 * In the Linux kernel, we support selection of FPR format on the 774 * basis of the Status.FR bit. If an FPU is not present, the FR bit 775 * is hardwired to zero, which would imply a 32-bit FPU even for 776 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS. 777 * FPU emu is slow and bulky and optimizing this function offers fairly 778 * sizeable benefits so we try to be clever and make this function return 779 * a constant whenever possible, that is on 64-bit kernels without O32 780 * compatibility enabled and on 32-bit without 64-bit FPU support. 781 */ 782 static inline int cop1_64bit(struct pt_regs *xcp) 783 { 784 if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32)) 785 return 1; 786 else if (IS_ENABLED(CONFIG_32BIT) && 787 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT)) 788 return 0; 789 790 return !test_thread_flag(TIF_32BIT_FPREGS); 791 } 792 793 static inline bool hybrid_fprs(void) 794 { 795 return test_thread_flag(TIF_HYBRID_FPREGS); 796 } 797 798 #define SIFROMREG(si, x) \ 799 do { \ 800 if (cop1_64bit(xcp) && !hybrid_fprs()) \ 801 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \ 802 else \ 803 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \ 804 } while (0) 805 806 #define SITOREG(si, x) \ 807 do { \ 808 if (cop1_64bit(xcp) && !hybrid_fprs()) { \ 809 unsigned int i; \ 810 set_fpr32(&ctx->fpr[x], 0, si); \ 811 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 812 set_fpr32(&ctx->fpr[x], i, 0); \ 813 } else { \ 814 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \ 815 } \ 816 } while (0) 817 818 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1)) 819 820 #define SITOHREG(si, x) \ 821 do { \ 822 unsigned int i; \ 823 set_fpr32(&ctx->fpr[x], 1, si); \ 824 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 825 set_fpr32(&ctx->fpr[x], i, 0); \ 826 } while (0) 827 828 #define DIFROMREG(di, x) \ 829 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) ^ 1)], 0)) 830 831 #define DITOREG(di, x) \ 832 do { \ 833 unsigned int fpr, i; \ 834 fpr = (x) & ~(cop1_64bit(xcp) ^ 1); \ 835 set_fpr64(&ctx->fpr[fpr], 0, di); \ 836 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \ 837 set_fpr64(&ctx->fpr[fpr], i, 0); \ 838 } while (0) 839 840 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x) 841 #define SPTOREG(sp, x) SITOREG((sp).bits, x) 842 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x) 843 #define DPTOREG(dp, x) DITOREG((dp).bits, x) 844 845 /* 846 * Emulate a CFC1 instruction. 847 */ 848 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 849 mips_instruction ir) 850 { 851 u32 fcr31 = ctx->fcr31; 852 u32 value = 0; 853 854 switch (MIPSInst_RD(ir)) { 855 case FPCREG_CSR: 856 value = fcr31; 857 pr_debug("%p gpr[%d]<-csr=%08x\n", 858 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 859 break; 860 861 case FPCREG_FENR: 862 if (!cpu_has_mips_r) 863 break; 864 value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 865 MIPS_FENR_FS; 866 value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM); 867 pr_debug("%p gpr[%d]<-enr=%08x\n", 868 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 869 break; 870 871 case FPCREG_FEXR: 872 if (!cpu_has_mips_r) 873 break; 874 value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 875 pr_debug("%p gpr[%d]<-exr=%08x\n", 876 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 877 break; 878 879 case FPCREG_FCCR: 880 if (!cpu_has_mips_r) 881 break; 882 value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 883 MIPS_FCCR_COND0; 884 value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 885 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0); 886 pr_debug("%p gpr[%d]<-ccr=%08x\n", 887 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 888 break; 889 890 case FPCREG_RID: 891 value = boot_cpu_data.fpu_id; 892 break; 893 894 default: 895 break; 896 } 897 898 if (MIPSInst_RT(ir)) 899 xcp->regs[MIPSInst_RT(ir)] = value; 900 } 901 902 /* 903 * Emulate a CTC1 instruction. 904 */ 905 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 906 mips_instruction ir) 907 { 908 u32 fcr31 = ctx->fcr31; 909 u32 value; 910 u32 mask; 911 912 if (MIPSInst_RT(ir) == 0) 913 value = 0; 914 else 915 value = xcp->regs[MIPSInst_RT(ir)]; 916 917 switch (MIPSInst_RD(ir)) { 918 case FPCREG_CSR: 919 pr_debug("%p gpr[%d]->csr=%08x\n", 920 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 921 922 /* Preserve read-only bits. */ 923 mask = boot_cpu_data.fpu_msk31; 924 fcr31 = (value & ~mask) | (fcr31 & mask); 925 break; 926 927 case FPCREG_FENR: 928 if (!cpu_has_mips_r) 929 break; 930 pr_debug("%p gpr[%d]->enr=%08x\n", 931 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 932 fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM); 933 fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 934 FPU_CSR_FS; 935 fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM); 936 break; 937 938 case FPCREG_FEXR: 939 if (!cpu_has_mips_r) 940 break; 941 pr_debug("%p gpr[%d]->exr=%08x\n", 942 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 943 fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S); 944 fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 945 break; 946 947 case FPCREG_FCCR: 948 if (!cpu_has_mips_r) 949 break; 950 pr_debug("%p gpr[%d]->ccr=%08x\n", 951 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 952 fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND); 953 fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 954 FPU_CSR_COND; 955 fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 956 FPU_CSR_CONDX; 957 break; 958 959 default: 960 break; 961 } 962 963 ctx->fcr31 = fcr31; 964 } 965 966 /* 967 * Emulate the single floating point instruction pointed at by EPC. 968 * Two instructions if the instruction is in a branch delay slot. 969 */ 970 971 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 972 struct mm_decoded_insn dec_insn, void __user **fault_addr) 973 { 974 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc; 975 unsigned int cond, cbit, bit0; 976 mips_instruction ir; 977 int likely, pc_inc; 978 union fpureg *fpr; 979 u32 __user *wva; 980 u64 __user *dva; 981 u32 wval; 982 u64 dval; 983 int sig; 984 985 /* 986 * These are giving gcc a gentle hint about what to expect in 987 * dec_inst in order to do better optimization. 988 */ 989 if (!cpu_has_mmips && dec_insn.micro_mips_mode) 990 unreachable(); 991 992 /* XXX NEC Vr54xx bug workaround */ 993 if (delay_slot(xcp)) { 994 if (dec_insn.micro_mips_mode) { 995 if (!mm_isBranchInstr(xcp, dec_insn, &contpc)) 996 clear_delay_slot(xcp); 997 } else { 998 if (!isBranchInstr(xcp, dec_insn, &contpc)) 999 clear_delay_slot(xcp); 1000 } 1001 } 1002 1003 if (delay_slot(xcp)) { 1004 /* 1005 * The instruction to be emulated is in a branch delay slot 1006 * which means that we have to emulate the branch instruction 1007 * BEFORE we do the cop1 instruction. 1008 * 1009 * This branch could be a COP1 branch, but in that case we 1010 * would have had a trap for that instruction, and would not 1011 * come through this route. 1012 * 1013 * Linux MIPS branch emulator operates on context, updating the 1014 * cp0_epc. 1015 */ 1016 ir = dec_insn.next_insn; /* process delay slot instr */ 1017 pc_inc = dec_insn.next_pc_inc; 1018 } else { 1019 ir = dec_insn.insn; /* process current instr */ 1020 pc_inc = dec_insn.pc_inc; 1021 } 1022 1023 /* 1024 * Since microMIPS FPU instructios are a subset of MIPS32 FPU 1025 * instructions, we want to convert microMIPS FPU instructions 1026 * into MIPS32 instructions so that we could reuse all of the 1027 * FPU emulation code. 1028 * 1029 * NOTE: We cannot do this for branch instructions since they 1030 * are not a subset. Example: Cannot emulate a 16-bit 1031 * aligned target address with a MIPS32 instruction. 1032 */ 1033 if (dec_insn.micro_mips_mode) { 1034 /* 1035 * If next instruction is a 16-bit instruction, then it 1036 * it cannot be a FPU instruction. This could happen 1037 * since we can be called for non-FPU instructions. 1038 */ 1039 if ((pc_inc == 2) || 1040 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) 1041 == SIGILL)) 1042 return SIGILL; 1043 } 1044 1045 emul: 1046 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0); 1047 MIPS_FPU_EMU_INC_STATS(emulated); 1048 switch (MIPSInst_OPCODE(ir)) { 1049 case ldc1_op: 1050 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1051 MIPSInst_SIMM(ir)); 1052 MIPS_FPU_EMU_INC_STATS(loads); 1053 1054 if (!access_ok(dva, sizeof(u64))) { 1055 MIPS_FPU_EMU_INC_STATS(errors); 1056 *fault_addr = dva; 1057 return SIGBUS; 1058 } 1059 if (__get_user(dval, dva)) { 1060 MIPS_FPU_EMU_INC_STATS(errors); 1061 *fault_addr = dva; 1062 return SIGSEGV; 1063 } 1064 DITOREG(dval, MIPSInst_RT(ir)); 1065 break; 1066 1067 case sdc1_op: 1068 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1069 MIPSInst_SIMM(ir)); 1070 MIPS_FPU_EMU_INC_STATS(stores); 1071 DIFROMREG(dval, MIPSInst_RT(ir)); 1072 if (!access_ok(dva, sizeof(u64))) { 1073 MIPS_FPU_EMU_INC_STATS(errors); 1074 *fault_addr = dva; 1075 return SIGBUS; 1076 } 1077 if (__put_user(dval, dva)) { 1078 MIPS_FPU_EMU_INC_STATS(errors); 1079 *fault_addr = dva; 1080 return SIGSEGV; 1081 } 1082 break; 1083 1084 case lwc1_op: 1085 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1086 MIPSInst_SIMM(ir)); 1087 MIPS_FPU_EMU_INC_STATS(loads); 1088 if (!access_ok(wva, sizeof(u32))) { 1089 MIPS_FPU_EMU_INC_STATS(errors); 1090 *fault_addr = wva; 1091 return SIGBUS; 1092 } 1093 if (__get_user(wval, wva)) { 1094 MIPS_FPU_EMU_INC_STATS(errors); 1095 *fault_addr = wva; 1096 return SIGSEGV; 1097 } 1098 SITOREG(wval, MIPSInst_RT(ir)); 1099 break; 1100 1101 case swc1_op: 1102 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1103 MIPSInst_SIMM(ir)); 1104 MIPS_FPU_EMU_INC_STATS(stores); 1105 SIFROMREG(wval, MIPSInst_RT(ir)); 1106 if (!access_ok(wva, sizeof(u32))) { 1107 MIPS_FPU_EMU_INC_STATS(errors); 1108 *fault_addr = wva; 1109 return SIGBUS; 1110 } 1111 if (__put_user(wval, wva)) { 1112 MIPS_FPU_EMU_INC_STATS(errors); 1113 *fault_addr = wva; 1114 return SIGSEGV; 1115 } 1116 break; 1117 1118 case cop1_op: 1119 switch (MIPSInst_RS(ir)) { 1120 case dmfc_op: 1121 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1122 return SIGILL; 1123 1124 /* copregister fs -> gpr[rt] */ 1125 if (MIPSInst_RT(ir) != 0) { 1126 DIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1127 MIPSInst_RD(ir)); 1128 } 1129 break; 1130 1131 case dmtc_op: 1132 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1133 return SIGILL; 1134 1135 /* copregister fs <- rt */ 1136 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1137 break; 1138 1139 case mfhc_op: 1140 if (!cpu_has_mips_r2_r6) 1141 return SIGILL; 1142 1143 /* copregister rd -> gpr[rt] */ 1144 if (MIPSInst_RT(ir) != 0) { 1145 SIFROMHREG(xcp->regs[MIPSInst_RT(ir)], 1146 MIPSInst_RD(ir)); 1147 } 1148 break; 1149 1150 case mthc_op: 1151 if (!cpu_has_mips_r2_r6) 1152 return SIGILL; 1153 1154 /* copregister rd <- gpr[rt] */ 1155 SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1156 break; 1157 1158 case mfc_op: 1159 /* copregister rd -> gpr[rt] */ 1160 if (MIPSInst_RT(ir) != 0) { 1161 SIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1162 MIPSInst_RD(ir)); 1163 } 1164 break; 1165 1166 case mtc_op: 1167 /* copregister rd <- rt */ 1168 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1169 break; 1170 1171 case cfc_op: 1172 /* cop control register rd -> gpr[rt] */ 1173 cop1_cfc(xcp, ctx, ir); 1174 break; 1175 1176 case ctc_op: 1177 /* copregister rd <- rt */ 1178 cop1_ctc(xcp, ctx, ir); 1179 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1180 return SIGFPE; 1181 } 1182 break; 1183 1184 case bc1eqz_op: 1185 case bc1nez_op: 1186 if (!cpu_has_mips_r6 || delay_slot(xcp)) 1187 return SIGILL; 1188 1189 likely = 0; 1190 cond = 0; 1191 fpr = ¤t->thread.fpu.fpr[MIPSInst_RT(ir)]; 1192 bit0 = get_fpr32(fpr, 0) & 0x1; 1193 switch (MIPSInst_RS(ir)) { 1194 case bc1eqz_op: 1195 MIPS_FPU_EMU_INC_STATS(bc1eqz); 1196 cond = bit0 == 0; 1197 break; 1198 case bc1nez_op: 1199 MIPS_FPU_EMU_INC_STATS(bc1nez); 1200 cond = bit0 != 0; 1201 break; 1202 } 1203 goto branch_common; 1204 1205 case bc_op: 1206 if (delay_slot(xcp)) 1207 return SIGILL; 1208 1209 if (cpu_has_mips_4_5_r) 1210 cbit = fpucondbit[MIPSInst_RT(ir) >> 2]; 1211 else 1212 cbit = FPU_CSR_COND; 1213 cond = ctx->fcr31 & cbit; 1214 1215 likely = 0; 1216 switch (MIPSInst_RT(ir) & 3) { 1217 case bcfl_op: 1218 if (cpu_has_mips_2_3_4_5_r) 1219 likely = 1; 1220 /* fall through */ 1221 case bcf_op: 1222 cond = !cond; 1223 break; 1224 case bctl_op: 1225 if (cpu_has_mips_2_3_4_5_r) 1226 likely = 1; 1227 /* fall through */ 1228 case bct_op: 1229 break; 1230 } 1231 branch_common: 1232 MIPS_FPU_EMU_INC_STATS(branches); 1233 set_delay_slot(xcp); 1234 if (cond) { 1235 /* 1236 * Branch taken: emulate dslot instruction 1237 */ 1238 unsigned long bcpc; 1239 1240 /* 1241 * Remember EPC at the branch to point back 1242 * at so that any delay-slot instruction 1243 * signal is not silently ignored. 1244 */ 1245 bcpc = xcp->cp0_epc; 1246 xcp->cp0_epc += dec_insn.pc_inc; 1247 1248 contpc = MIPSInst_SIMM(ir); 1249 ir = dec_insn.next_insn; 1250 if (dec_insn.micro_mips_mode) { 1251 contpc = (xcp->cp0_epc + (contpc << 1)); 1252 1253 /* If 16-bit instruction, not FPU. */ 1254 if ((dec_insn.next_pc_inc == 2) || 1255 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) { 1256 1257 /* 1258 * Since this instruction will 1259 * be put on the stack with 1260 * 32-bit words, get around 1261 * this problem by putting a 1262 * NOP16 as the second one. 1263 */ 1264 if (dec_insn.next_pc_inc == 2) 1265 ir = (ir & (~0xffff)) | MM_NOP16; 1266 1267 /* 1268 * Single step the non-CP1 1269 * instruction in the dslot. 1270 */ 1271 sig = mips_dsemul(xcp, ir, 1272 bcpc, contpc); 1273 if (sig < 0) 1274 break; 1275 if (sig) 1276 xcp->cp0_epc = bcpc; 1277 /* 1278 * SIGILL forces out of 1279 * the emulation loop. 1280 */ 1281 return sig ? sig : SIGILL; 1282 } 1283 } else 1284 contpc = (xcp->cp0_epc + (contpc << 2)); 1285 1286 switch (MIPSInst_OPCODE(ir)) { 1287 case lwc1_op: 1288 case swc1_op: 1289 goto emul; 1290 1291 case ldc1_op: 1292 case sdc1_op: 1293 if (cpu_has_mips_2_3_4_5_r) 1294 goto emul; 1295 1296 goto bc_sigill; 1297 1298 case cop1_op: 1299 goto emul; 1300 1301 case cop1x_op: 1302 if (cpu_has_mips_4_5_64_r2_r6) 1303 /* its one of ours */ 1304 goto emul; 1305 1306 goto bc_sigill; 1307 1308 case spec_op: 1309 switch (MIPSInst_FUNC(ir)) { 1310 case movc_op: 1311 if (cpu_has_mips_4_5_r) 1312 goto emul; 1313 1314 goto bc_sigill; 1315 } 1316 break; 1317 1318 bc_sigill: 1319 xcp->cp0_epc = bcpc; 1320 return SIGILL; 1321 } 1322 1323 /* 1324 * Single step the non-cp1 1325 * instruction in the dslot 1326 */ 1327 sig = mips_dsemul(xcp, ir, bcpc, contpc); 1328 if (sig < 0) 1329 break; 1330 if (sig) 1331 xcp->cp0_epc = bcpc; 1332 /* SIGILL forces out of the emulation loop. */ 1333 return sig ? sig : SIGILL; 1334 } else if (likely) { /* branch not taken */ 1335 /* 1336 * branch likely nullifies 1337 * dslot if not taken 1338 */ 1339 xcp->cp0_epc += dec_insn.pc_inc; 1340 contpc += dec_insn.pc_inc; 1341 /* 1342 * else continue & execute 1343 * dslot as normal insn 1344 */ 1345 } 1346 break; 1347 1348 default: 1349 if (!(MIPSInst_RS(ir) & 0x10)) 1350 return SIGILL; 1351 1352 /* a real fpu computation instruction */ 1353 sig = fpu_emu(xcp, ctx, ir); 1354 if (sig) 1355 return sig; 1356 } 1357 break; 1358 1359 case cop1x_op: 1360 if (!cpu_has_mips_4_5_64_r2_r6) 1361 return SIGILL; 1362 1363 sig = fpux_emu(xcp, ctx, ir, fault_addr); 1364 if (sig) 1365 return sig; 1366 break; 1367 1368 case spec_op: 1369 if (!cpu_has_mips_4_5_r) 1370 return SIGILL; 1371 1372 if (MIPSInst_FUNC(ir) != movc_op) 1373 return SIGILL; 1374 cond = fpucondbit[MIPSInst_RT(ir) >> 2]; 1375 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) 1376 xcp->regs[MIPSInst_RD(ir)] = 1377 xcp->regs[MIPSInst_RS(ir)]; 1378 break; 1379 default: 1380 return SIGILL; 1381 } 1382 1383 /* we did it !! */ 1384 xcp->cp0_epc = contpc; 1385 clear_delay_slot(xcp); 1386 1387 return 0; 1388 } 1389 1390 /* 1391 * Conversion table from MIPS compare ops 48-63 1392 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); 1393 */ 1394 static const unsigned char cmptab[8] = { 1395 0, /* cmp_0 (sig) cmp_sf */ 1396 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ 1397 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ 1398 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ 1399 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ 1400 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ 1401 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ 1402 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */ 1403 }; 1404 1405 static const unsigned char negative_cmptab[8] = { 1406 0, /* Reserved */ 1407 IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ, 1408 IEEE754_CLT | IEEE754_CGT | IEEE754_CUN, 1409 IEEE754_CLT | IEEE754_CGT, 1410 /* Reserved */ 1411 }; 1412 1413 1414 /* 1415 * Additional MIPS4 instructions 1416 */ 1417 1418 #define DEF3OP(name, p, f1, f2, f3) \ 1419 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \ 1420 union ieee754##p s, union ieee754##p t) \ 1421 { \ 1422 struct _ieee754_csr ieee754_csr_save; \ 1423 s = f1(s, t); \ 1424 ieee754_csr_save = ieee754_csr; \ 1425 s = f2(s, r); \ 1426 ieee754_csr_save.cx |= ieee754_csr.cx; \ 1427 ieee754_csr_save.sx |= ieee754_csr.sx; \ 1428 s = f3(s); \ 1429 ieee754_csr.cx |= ieee754_csr_save.cx; \ 1430 ieee754_csr.sx |= ieee754_csr_save.sx; \ 1431 return s; \ 1432 } 1433 1434 static union ieee754dp fpemu_dp_recip(union ieee754dp d) 1435 { 1436 return ieee754dp_div(ieee754dp_one(0), d); 1437 } 1438 1439 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d) 1440 { 1441 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d)); 1442 } 1443 1444 static union ieee754sp fpemu_sp_recip(union ieee754sp s) 1445 { 1446 return ieee754sp_div(ieee754sp_one(0), s); 1447 } 1448 1449 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s) 1450 { 1451 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s)); 1452 } 1453 1454 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, ); 1455 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, ); 1456 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg); 1457 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg); 1458 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, ); 1459 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, ); 1460 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg); 1461 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg); 1462 1463 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1464 mips_instruction ir, void __user **fault_addr) 1465 { 1466 unsigned int rcsr = 0; /* resulting csr */ 1467 1468 MIPS_FPU_EMU_INC_STATS(cp1xops); 1469 1470 switch (MIPSInst_FMA_FFMT(ir)) { 1471 case s_fmt:{ /* 0 */ 1472 1473 union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp); 1474 union ieee754sp fd, fr, fs, ft; 1475 u32 __user *va; 1476 u32 val; 1477 1478 switch (MIPSInst_FUNC(ir)) { 1479 case lwxc1_op: 1480 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1481 xcp->regs[MIPSInst_FT(ir)]); 1482 1483 MIPS_FPU_EMU_INC_STATS(loads); 1484 if (!access_ok(va, sizeof(u32))) { 1485 MIPS_FPU_EMU_INC_STATS(errors); 1486 *fault_addr = va; 1487 return SIGBUS; 1488 } 1489 if (__get_user(val, va)) { 1490 MIPS_FPU_EMU_INC_STATS(errors); 1491 *fault_addr = va; 1492 return SIGSEGV; 1493 } 1494 SITOREG(val, MIPSInst_FD(ir)); 1495 break; 1496 1497 case swxc1_op: 1498 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1499 xcp->regs[MIPSInst_FT(ir)]); 1500 1501 MIPS_FPU_EMU_INC_STATS(stores); 1502 1503 SIFROMREG(val, MIPSInst_FS(ir)); 1504 if (!access_ok(va, sizeof(u32))) { 1505 MIPS_FPU_EMU_INC_STATS(errors); 1506 *fault_addr = va; 1507 return SIGBUS; 1508 } 1509 if (put_user(val, va)) { 1510 MIPS_FPU_EMU_INC_STATS(errors); 1511 *fault_addr = va; 1512 return SIGSEGV; 1513 } 1514 break; 1515 1516 case madd_s_op: 1517 if (cpu_has_mac2008_only) 1518 handler = ieee754sp_madd; 1519 else 1520 handler = fpemu_sp_madd; 1521 goto scoptop; 1522 case msub_s_op: 1523 if (cpu_has_mac2008_only) 1524 handler = ieee754sp_msub; 1525 else 1526 handler = fpemu_sp_msub; 1527 goto scoptop; 1528 case nmadd_s_op: 1529 if (cpu_has_mac2008_only) 1530 handler = ieee754sp_nmadd; 1531 else 1532 handler = fpemu_sp_nmadd; 1533 goto scoptop; 1534 case nmsub_s_op: 1535 if (cpu_has_mac2008_only) 1536 handler = ieee754sp_nmsub; 1537 else 1538 handler = fpemu_sp_nmsub; 1539 goto scoptop; 1540 1541 scoptop: 1542 SPFROMREG(fr, MIPSInst_FR(ir)); 1543 SPFROMREG(fs, MIPSInst_FS(ir)); 1544 SPFROMREG(ft, MIPSInst_FT(ir)); 1545 fd = (*handler) (fr, fs, ft); 1546 SPTOREG(fd, MIPSInst_FD(ir)); 1547 1548 copcsr: 1549 if (ieee754_cxtest(IEEE754_INEXACT)) { 1550 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1551 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1552 } 1553 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1554 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1555 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1556 } 1557 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1558 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1559 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1560 } 1561 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1562 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1563 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1564 } 1565 1566 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 1567 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1568 /*printk ("SIGFPE: FPU csr = %08x\n", 1569 ctx->fcr31); */ 1570 return SIGFPE; 1571 } 1572 1573 break; 1574 1575 default: 1576 return SIGILL; 1577 } 1578 break; 1579 } 1580 1581 case d_fmt:{ /* 1 */ 1582 union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp); 1583 union ieee754dp fd, fr, fs, ft; 1584 u64 __user *va; 1585 u64 val; 1586 1587 switch (MIPSInst_FUNC(ir)) { 1588 case ldxc1_op: 1589 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1590 xcp->regs[MIPSInst_FT(ir)]); 1591 1592 MIPS_FPU_EMU_INC_STATS(loads); 1593 if (!access_ok(va, sizeof(u64))) { 1594 MIPS_FPU_EMU_INC_STATS(errors); 1595 *fault_addr = va; 1596 return SIGBUS; 1597 } 1598 if (__get_user(val, va)) { 1599 MIPS_FPU_EMU_INC_STATS(errors); 1600 *fault_addr = va; 1601 return SIGSEGV; 1602 } 1603 DITOREG(val, MIPSInst_FD(ir)); 1604 break; 1605 1606 case sdxc1_op: 1607 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1608 xcp->regs[MIPSInst_FT(ir)]); 1609 1610 MIPS_FPU_EMU_INC_STATS(stores); 1611 DIFROMREG(val, MIPSInst_FS(ir)); 1612 if (!access_ok(va, sizeof(u64))) { 1613 MIPS_FPU_EMU_INC_STATS(errors); 1614 *fault_addr = va; 1615 return SIGBUS; 1616 } 1617 if (__put_user(val, va)) { 1618 MIPS_FPU_EMU_INC_STATS(errors); 1619 *fault_addr = va; 1620 return SIGSEGV; 1621 } 1622 break; 1623 1624 case madd_d_op: 1625 if (cpu_has_mac2008_only) 1626 handler = ieee754dp_madd; 1627 else 1628 handler = fpemu_dp_madd; 1629 goto dcoptop; 1630 case msub_d_op: 1631 if (cpu_has_mac2008_only) 1632 handler = ieee754dp_msub; 1633 else 1634 handler = fpemu_dp_msub; 1635 goto dcoptop; 1636 case nmadd_d_op: 1637 if (cpu_has_mac2008_only) 1638 handler = ieee754dp_nmadd; 1639 else 1640 handler = fpemu_dp_nmadd; 1641 goto dcoptop; 1642 case nmsub_d_op: 1643 if (cpu_has_mac2008_only) 1644 handler = ieee754dp_nmsub; 1645 else 1646 handler = fpemu_dp_nmsub; 1647 goto dcoptop; 1648 1649 dcoptop: 1650 DPFROMREG(fr, MIPSInst_FR(ir)); 1651 DPFROMREG(fs, MIPSInst_FS(ir)); 1652 DPFROMREG(ft, MIPSInst_FT(ir)); 1653 fd = (*handler) (fr, fs, ft); 1654 DPTOREG(fd, MIPSInst_FD(ir)); 1655 goto copcsr; 1656 1657 default: 1658 return SIGILL; 1659 } 1660 break; 1661 } 1662 1663 case 0x3: 1664 if (MIPSInst_FUNC(ir) != pfetch_op) 1665 return SIGILL; 1666 1667 /* ignore prefx operation */ 1668 break; 1669 1670 default: 1671 return SIGILL; 1672 } 1673 1674 return 0; 1675 } 1676 1677 1678 1679 /* 1680 * Emulate a single COP1 arithmetic instruction. 1681 */ 1682 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1683 mips_instruction ir) 1684 { 1685 int rfmt; /* resulting format */ 1686 unsigned int rcsr = 0; /* resulting csr */ 1687 unsigned int oldrm; 1688 unsigned int cbit; 1689 unsigned int cond; 1690 union { 1691 union ieee754dp d; 1692 union ieee754sp s; 1693 int w; 1694 s64 l; 1695 } rv; /* resulting value */ 1696 u64 bits; 1697 1698 MIPS_FPU_EMU_INC_STATS(cp1ops); 1699 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) { 1700 case s_fmt: { /* 0 */ 1701 union { 1702 union ieee754sp(*b) (union ieee754sp, union ieee754sp); 1703 union ieee754sp(*u) (union ieee754sp); 1704 } handler; 1705 union ieee754sp fd, fs, ft; 1706 1707 switch (MIPSInst_FUNC(ir)) { 1708 /* binary ops */ 1709 case fadd_op: 1710 MIPS_FPU_EMU_INC_STATS(add_s); 1711 handler.b = ieee754sp_add; 1712 goto scopbop; 1713 case fsub_op: 1714 MIPS_FPU_EMU_INC_STATS(sub_s); 1715 handler.b = ieee754sp_sub; 1716 goto scopbop; 1717 case fmul_op: 1718 MIPS_FPU_EMU_INC_STATS(mul_s); 1719 handler.b = ieee754sp_mul; 1720 goto scopbop; 1721 case fdiv_op: 1722 MIPS_FPU_EMU_INC_STATS(div_s); 1723 handler.b = ieee754sp_div; 1724 goto scopbop; 1725 1726 /* unary ops */ 1727 case fsqrt_op: 1728 if (!cpu_has_mips_2_3_4_5_r) 1729 return SIGILL; 1730 1731 MIPS_FPU_EMU_INC_STATS(sqrt_s); 1732 handler.u = ieee754sp_sqrt; 1733 goto scopuop; 1734 1735 /* 1736 * Note that on some MIPS IV implementations such as the 1737 * R5000 and R8000 the FSQRT and FRECIP instructions do not 1738 * achieve full IEEE-754 accuracy - however this emulator does. 1739 */ 1740 case frsqrt_op: 1741 if (!cpu_has_mips_4_5_64_r2_r6) 1742 return SIGILL; 1743 1744 MIPS_FPU_EMU_INC_STATS(rsqrt_s); 1745 handler.u = fpemu_sp_rsqrt; 1746 goto scopuop; 1747 1748 case frecip_op: 1749 if (!cpu_has_mips_4_5_64_r2_r6) 1750 return SIGILL; 1751 1752 MIPS_FPU_EMU_INC_STATS(recip_s); 1753 handler.u = fpemu_sp_recip; 1754 goto scopuop; 1755 1756 case fmovc_op: 1757 if (!cpu_has_mips_4_5_r) 1758 return SIGILL; 1759 1760 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 1761 if (((ctx->fcr31 & cond) != 0) != 1762 ((MIPSInst_FT(ir) & 1) != 0)) 1763 return 0; 1764 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1765 break; 1766 1767 case fmovz_op: 1768 if (!cpu_has_mips_4_5_r) 1769 return SIGILL; 1770 1771 if (xcp->regs[MIPSInst_FT(ir)] != 0) 1772 return 0; 1773 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1774 break; 1775 1776 case fmovn_op: 1777 if (!cpu_has_mips_4_5_r) 1778 return SIGILL; 1779 1780 if (xcp->regs[MIPSInst_FT(ir)] == 0) 1781 return 0; 1782 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1783 break; 1784 1785 case fseleqz_op: 1786 if (!cpu_has_mips_r6) 1787 return SIGILL; 1788 1789 MIPS_FPU_EMU_INC_STATS(seleqz_s); 1790 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1791 if (rv.w & 0x1) 1792 rv.w = 0; 1793 else 1794 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1795 break; 1796 1797 case fselnez_op: 1798 if (!cpu_has_mips_r6) 1799 return SIGILL; 1800 1801 MIPS_FPU_EMU_INC_STATS(selnez_s); 1802 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1803 if (rv.w & 0x1) 1804 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1805 else 1806 rv.w = 0; 1807 break; 1808 1809 case fmaddf_op: { 1810 union ieee754sp ft, fs, fd; 1811 1812 if (!cpu_has_mips_r6) 1813 return SIGILL; 1814 1815 MIPS_FPU_EMU_INC_STATS(maddf_s); 1816 SPFROMREG(ft, MIPSInst_FT(ir)); 1817 SPFROMREG(fs, MIPSInst_FS(ir)); 1818 SPFROMREG(fd, MIPSInst_FD(ir)); 1819 rv.s = ieee754sp_maddf(fd, fs, ft); 1820 goto copcsr; 1821 } 1822 1823 case fmsubf_op: { 1824 union ieee754sp ft, fs, fd; 1825 1826 if (!cpu_has_mips_r6) 1827 return SIGILL; 1828 1829 MIPS_FPU_EMU_INC_STATS(msubf_s); 1830 SPFROMREG(ft, MIPSInst_FT(ir)); 1831 SPFROMREG(fs, MIPSInst_FS(ir)); 1832 SPFROMREG(fd, MIPSInst_FD(ir)); 1833 rv.s = ieee754sp_msubf(fd, fs, ft); 1834 goto copcsr; 1835 } 1836 1837 case frint_op: { 1838 union ieee754sp fs; 1839 1840 if (!cpu_has_mips_r6) 1841 return SIGILL; 1842 1843 MIPS_FPU_EMU_INC_STATS(rint_s); 1844 SPFROMREG(fs, MIPSInst_FS(ir)); 1845 rv.s = ieee754sp_rint(fs); 1846 goto copcsr; 1847 } 1848 1849 case fclass_op: { 1850 union ieee754sp fs; 1851 1852 if (!cpu_has_mips_r6) 1853 return SIGILL; 1854 1855 MIPS_FPU_EMU_INC_STATS(class_s); 1856 SPFROMREG(fs, MIPSInst_FS(ir)); 1857 rv.w = ieee754sp_2008class(fs); 1858 rfmt = w_fmt; 1859 goto copcsr; 1860 } 1861 1862 case fmin_op: { 1863 union ieee754sp fs, ft; 1864 1865 if (!cpu_has_mips_r6) 1866 return SIGILL; 1867 1868 MIPS_FPU_EMU_INC_STATS(min_s); 1869 SPFROMREG(ft, MIPSInst_FT(ir)); 1870 SPFROMREG(fs, MIPSInst_FS(ir)); 1871 rv.s = ieee754sp_fmin(fs, ft); 1872 goto copcsr; 1873 } 1874 1875 case fmina_op: { 1876 union ieee754sp fs, ft; 1877 1878 if (!cpu_has_mips_r6) 1879 return SIGILL; 1880 1881 MIPS_FPU_EMU_INC_STATS(mina_s); 1882 SPFROMREG(ft, MIPSInst_FT(ir)); 1883 SPFROMREG(fs, MIPSInst_FS(ir)); 1884 rv.s = ieee754sp_fmina(fs, ft); 1885 goto copcsr; 1886 } 1887 1888 case fmax_op: { 1889 union ieee754sp fs, ft; 1890 1891 if (!cpu_has_mips_r6) 1892 return SIGILL; 1893 1894 MIPS_FPU_EMU_INC_STATS(max_s); 1895 SPFROMREG(ft, MIPSInst_FT(ir)); 1896 SPFROMREG(fs, MIPSInst_FS(ir)); 1897 rv.s = ieee754sp_fmax(fs, ft); 1898 goto copcsr; 1899 } 1900 1901 case fmaxa_op: { 1902 union ieee754sp fs, ft; 1903 1904 if (!cpu_has_mips_r6) 1905 return SIGILL; 1906 1907 MIPS_FPU_EMU_INC_STATS(maxa_s); 1908 SPFROMREG(ft, MIPSInst_FT(ir)); 1909 SPFROMREG(fs, MIPSInst_FS(ir)); 1910 rv.s = ieee754sp_fmaxa(fs, ft); 1911 goto copcsr; 1912 } 1913 1914 case fabs_op: 1915 MIPS_FPU_EMU_INC_STATS(abs_s); 1916 handler.u = ieee754sp_abs; 1917 goto scopuop; 1918 1919 case fneg_op: 1920 MIPS_FPU_EMU_INC_STATS(neg_s); 1921 handler.u = ieee754sp_neg; 1922 goto scopuop; 1923 1924 case fmov_op: 1925 /* an easy one */ 1926 MIPS_FPU_EMU_INC_STATS(mov_s); 1927 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1928 goto copcsr; 1929 1930 /* binary op on handler */ 1931 scopbop: 1932 SPFROMREG(fs, MIPSInst_FS(ir)); 1933 SPFROMREG(ft, MIPSInst_FT(ir)); 1934 1935 rv.s = (*handler.b) (fs, ft); 1936 goto copcsr; 1937 scopuop: 1938 SPFROMREG(fs, MIPSInst_FS(ir)); 1939 rv.s = (*handler.u) (fs); 1940 goto copcsr; 1941 copcsr: 1942 if (ieee754_cxtest(IEEE754_INEXACT)) { 1943 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1944 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1945 } 1946 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1947 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1948 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1949 } 1950 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1951 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1952 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1953 } 1954 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) { 1955 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv); 1956 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S; 1957 } 1958 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1959 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1960 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1961 } 1962 break; 1963 1964 /* unary conv ops */ 1965 case fcvts_op: 1966 return SIGILL; /* not defined */ 1967 1968 case fcvtd_op: 1969 MIPS_FPU_EMU_INC_STATS(cvt_d_s); 1970 SPFROMREG(fs, MIPSInst_FS(ir)); 1971 rv.d = ieee754dp_fsp(fs); 1972 rfmt = d_fmt; 1973 goto copcsr; 1974 1975 case fcvtw_op: 1976 MIPS_FPU_EMU_INC_STATS(cvt_w_s); 1977 SPFROMREG(fs, MIPSInst_FS(ir)); 1978 rv.w = ieee754sp_tint(fs); 1979 rfmt = w_fmt; 1980 goto copcsr; 1981 1982 case fround_op: 1983 case ftrunc_op: 1984 case fceil_op: 1985 case ffloor_op: 1986 if (!cpu_has_mips_2_3_4_5_r) 1987 return SIGILL; 1988 1989 if (MIPSInst_FUNC(ir) == fceil_op) 1990 MIPS_FPU_EMU_INC_STATS(ceil_w_s); 1991 if (MIPSInst_FUNC(ir) == ffloor_op) 1992 MIPS_FPU_EMU_INC_STATS(floor_w_s); 1993 if (MIPSInst_FUNC(ir) == fround_op) 1994 MIPS_FPU_EMU_INC_STATS(round_w_s); 1995 if (MIPSInst_FUNC(ir) == ftrunc_op) 1996 MIPS_FPU_EMU_INC_STATS(trunc_w_s); 1997 1998 oldrm = ieee754_csr.rm; 1999 SPFROMREG(fs, MIPSInst_FS(ir)); 2000 ieee754_csr.rm = MIPSInst_FUNC(ir); 2001 rv.w = ieee754sp_tint(fs); 2002 ieee754_csr.rm = oldrm; 2003 rfmt = w_fmt; 2004 goto copcsr; 2005 2006 case fsel_op: 2007 if (!cpu_has_mips_r6) 2008 return SIGILL; 2009 2010 MIPS_FPU_EMU_INC_STATS(sel_s); 2011 SPFROMREG(fd, MIPSInst_FD(ir)); 2012 if (fd.bits & 0x1) 2013 SPFROMREG(rv.s, MIPSInst_FT(ir)); 2014 else 2015 SPFROMREG(rv.s, MIPSInst_FS(ir)); 2016 break; 2017 2018 case fcvtl_op: 2019 if (!cpu_has_mips_3_4_5_64_r2_r6) 2020 return SIGILL; 2021 2022 MIPS_FPU_EMU_INC_STATS(cvt_l_s); 2023 SPFROMREG(fs, MIPSInst_FS(ir)); 2024 rv.l = ieee754sp_tlong(fs); 2025 rfmt = l_fmt; 2026 goto copcsr; 2027 2028 case froundl_op: 2029 case ftruncl_op: 2030 case fceill_op: 2031 case ffloorl_op: 2032 if (!cpu_has_mips_3_4_5_64_r2_r6) 2033 return SIGILL; 2034 2035 if (MIPSInst_FUNC(ir) == fceill_op) 2036 MIPS_FPU_EMU_INC_STATS(ceil_l_s); 2037 if (MIPSInst_FUNC(ir) == ffloorl_op) 2038 MIPS_FPU_EMU_INC_STATS(floor_l_s); 2039 if (MIPSInst_FUNC(ir) == froundl_op) 2040 MIPS_FPU_EMU_INC_STATS(round_l_s); 2041 if (MIPSInst_FUNC(ir) == ftruncl_op) 2042 MIPS_FPU_EMU_INC_STATS(trunc_l_s); 2043 2044 oldrm = ieee754_csr.rm; 2045 SPFROMREG(fs, MIPSInst_FS(ir)); 2046 ieee754_csr.rm = MIPSInst_FUNC(ir); 2047 rv.l = ieee754sp_tlong(fs); 2048 ieee754_csr.rm = oldrm; 2049 rfmt = l_fmt; 2050 goto copcsr; 2051 2052 default: 2053 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 2054 unsigned int cmpop; 2055 union ieee754sp fs, ft; 2056 2057 cmpop = MIPSInst_FUNC(ir) - fcmp_op; 2058 SPFROMREG(fs, MIPSInst_FS(ir)); 2059 SPFROMREG(ft, MIPSInst_FT(ir)); 2060 rv.w = ieee754sp_cmp(fs, ft, 2061 cmptab[cmpop & 0x7], cmpop & 0x8); 2062 rfmt = -1; 2063 if ((cmpop & 0x8) && ieee754_cxtest 2064 (IEEE754_INVALID_OPERATION)) 2065 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2066 else 2067 goto copcsr; 2068 2069 } else 2070 return SIGILL; 2071 break; 2072 } 2073 break; 2074 } 2075 2076 case d_fmt: { 2077 union ieee754dp fd, fs, ft; 2078 union { 2079 union ieee754dp(*b) (union ieee754dp, union ieee754dp); 2080 union ieee754dp(*u) (union ieee754dp); 2081 } handler; 2082 2083 switch (MIPSInst_FUNC(ir)) { 2084 /* binary ops */ 2085 case fadd_op: 2086 MIPS_FPU_EMU_INC_STATS(add_d); 2087 handler.b = ieee754dp_add; 2088 goto dcopbop; 2089 case fsub_op: 2090 MIPS_FPU_EMU_INC_STATS(sub_d); 2091 handler.b = ieee754dp_sub; 2092 goto dcopbop; 2093 case fmul_op: 2094 MIPS_FPU_EMU_INC_STATS(mul_d); 2095 handler.b = ieee754dp_mul; 2096 goto dcopbop; 2097 case fdiv_op: 2098 MIPS_FPU_EMU_INC_STATS(div_d); 2099 handler.b = ieee754dp_div; 2100 goto dcopbop; 2101 2102 /* unary ops */ 2103 case fsqrt_op: 2104 if (!cpu_has_mips_2_3_4_5_r) 2105 return SIGILL; 2106 2107 MIPS_FPU_EMU_INC_STATS(sqrt_d); 2108 handler.u = ieee754dp_sqrt; 2109 goto dcopuop; 2110 /* 2111 * Note that on some MIPS IV implementations such as the 2112 * R5000 and R8000 the FSQRT and FRECIP instructions do not 2113 * achieve full IEEE-754 accuracy - however this emulator does. 2114 */ 2115 case frsqrt_op: 2116 if (!cpu_has_mips_4_5_64_r2_r6) 2117 return SIGILL; 2118 2119 MIPS_FPU_EMU_INC_STATS(rsqrt_d); 2120 handler.u = fpemu_dp_rsqrt; 2121 goto dcopuop; 2122 case frecip_op: 2123 if (!cpu_has_mips_4_5_64_r2_r6) 2124 return SIGILL; 2125 2126 MIPS_FPU_EMU_INC_STATS(recip_d); 2127 handler.u = fpemu_dp_recip; 2128 goto dcopuop; 2129 case fmovc_op: 2130 if (!cpu_has_mips_4_5_r) 2131 return SIGILL; 2132 2133 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 2134 if (((ctx->fcr31 & cond) != 0) != 2135 ((MIPSInst_FT(ir) & 1) != 0)) 2136 return 0; 2137 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2138 break; 2139 case fmovz_op: 2140 if (!cpu_has_mips_4_5_r) 2141 return SIGILL; 2142 2143 if (xcp->regs[MIPSInst_FT(ir)] != 0) 2144 return 0; 2145 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2146 break; 2147 case fmovn_op: 2148 if (!cpu_has_mips_4_5_r) 2149 return SIGILL; 2150 2151 if (xcp->regs[MIPSInst_FT(ir)] == 0) 2152 return 0; 2153 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2154 break; 2155 2156 case fseleqz_op: 2157 if (!cpu_has_mips_r6) 2158 return SIGILL; 2159 2160 MIPS_FPU_EMU_INC_STATS(seleqz_d); 2161 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2162 if (rv.l & 0x1) 2163 rv.l = 0; 2164 else 2165 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2166 break; 2167 2168 case fselnez_op: 2169 if (!cpu_has_mips_r6) 2170 return SIGILL; 2171 2172 MIPS_FPU_EMU_INC_STATS(selnez_d); 2173 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2174 if (rv.l & 0x1) 2175 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2176 else 2177 rv.l = 0; 2178 break; 2179 2180 case fmaddf_op: { 2181 union ieee754dp ft, fs, fd; 2182 2183 if (!cpu_has_mips_r6) 2184 return SIGILL; 2185 2186 MIPS_FPU_EMU_INC_STATS(maddf_d); 2187 DPFROMREG(ft, MIPSInst_FT(ir)); 2188 DPFROMREG(fs, MIPSInst_FS(ir)); 2189 DPFROMREG(fd, MIPSInst_FD(ir)); 2190 rv.d = ieee754dp_maddf(fd, fs, ft); 2191 goto copcsr; 2192 } 2193 2194 case fmsubf_op: { 2195 union ieee754dp ft, fs, fd; 2196 2197 if (!cpu_has_mips_r6) 2198 return SIGILL; 2199 2200 MIPS_FPU_EMU_INC_STATS(msubf_d); 2201 DPFROMREG(ft, MIPSInst_FT(ir)); 2202 DPFROMREG(fs, MIPSInst_FS(ir)); 2203 DPFROMREG(fd, MIPSInst_FD(ir)); 2204 rv.d = ieee754dp_msubf(fd, fs, ft); 2205 goto copcsr; 2206 } 2207 2208 case frint_op: { 2209 union ieee754dp fs; 2210 2211 if (!cpu_has_mips_r6) 2212 return SIGILL; 2213 2214 MIPS_FPU_EMU_INC_STATS(rint_d); 2215 DPFROMREG(fs, MIPSInst_FS(ir)); 2216 rv.d = ieee754dp_rint(fs); 2217 goto copcsr; 2218 } 2219 2220 case fclass_op: { 2221 union ieee754dp fs; 2222 2223 if (!cpu_has_mips_r6) 2224 return SIGILL; 2225 2226 MIPS_FPU_EMU_INC_STATS(class_d); 2227 DPFROMREG(fs, MIPSInst_FS(ir)); 2228 rv.l = ieee754dp_2008class(fs); 2229 rfmt = l_fmt; 2230 goto copcsr; 2231 } 2232 2233 case fmin_op: { 2234 union ieee754dp fs, ft; 2235 2236 if (!cpu_has_mips_r6) 2237 return SIGILL; 2238 2239 MIPS_FPU_EMU_INC_STATS(min_d); 2240 DPFROMREG(ft, MIPSInst_FT(ir)); 2241 DPFROMREG(fs, MIPSInst_FS(ir)); 2242 rv.d = ieee754dp_fmin(fs, ft); 2243 goto copcsr; 2244 } 2245 2246 case fmina_op: { 2247 union ieee754dp fs, ft; 2248 2249 if (!cpu_has_mips_r6) 2250 return SIGILL; 2251 2252 MIPS_FPU_EMU_INC_STATS(mina_d); 2253 DPFROMREG(ft, MIPSInst_FT(ir)); 2254 DPFROMREG(fs, MIPSInst_FS(ir)); 2255 rv.d = ieee754dp_fmina(fs, ft); 2256 goto copcsr; 2257 } 2258 2259 case fmax_op: { 2260 union ieee754dp fs, ft; 2261 2262 if (!cpu_has_mips_r6) 2263 return SIGILL; 2264 2265 MIPS_FPU_EMU_INC_STATS(max_d); 2266 DPFROMREG(ft, MIPSInst_FT(ir)); 2267 DPFROMREG(fs, MIPSInst_FS(ir)); 2268 rv.d = ieee754dp_fmax(fs, ft); 2269 goto copcsr; 2270 } 2271 2272 case fmaxa_op: { 2273 union ieee754dp fs, ft; 2274 2275 if (!cpu_has_mips_r6) 2276 return SIGILL; 2277 2278 MIPS_FPU_EMU_INC_STATS(maxa_d); 2279 DPFROMREG(ft, MIPSInst_FT(ir)); 2280 DPFROMREG(fs, MIPSInst_FS(ir)); 2281 rv.d = ieee754dp_fmaxa(fs, ft); 2282 goto copcsr; 2283 } 2284 2285 case fabs_op: 2286 MIPS_FPU_EMU_INC_STATS(abs_d); 2287 handler.u = ieee754dp_abs; 2288 goto dcopuop; 2289 2290 case fneg_op: 2291 MIPS_FPU_EMU_INC_STATS(neg_d); 2292 handler.u = ieee754dp_neg; 2293 goto dcopuop; 2294 2295 case fmov_op: 2296 /* an easy one */ 2297 MIPS_FPU_EMU_INC_STATS(mov_d); 2298 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2299 goto copcsr; 2300 2301 /* binary op on handler */ 2302 dcopbop: 2303 DPFROMREG(fs, MIPSInst_FS(ir)); 2304 DPFROMREG(ft, MIPSInst_FT(ir)); 2305 2306 rv.d = (*handler.b) (fs, ft); 2307 goto copcsr; 2308 dcopuop: 2309 DPFROMREG(fs, MIPSInst_FS(ir)); 2310 rv.d = (*handler.u) (fs); 2311 goto copcsr; 2312 2313 /* 2314 * unary conv ops 2315 */ 2316 case fcvts_op: 2317 MIPS_FPU_EMU_INC_STATS(cvt_s_d); 2318 DPFROMREG(fs, MIPSInst_FS(ir)); 2319 rv.s = ieee754sp_fdp(fs); 2320 rfmt = s_fmt; 2321 goto copcsr; 2322 2323 case fcvtd_op: 2324 return SIGILL; /* not defined */ 2325 2326 case fcvtw_op: 2327 MIPS_FPU_EMU_INC_STATS(cvt_w_d); 2328 DPFROMREG(fs, MIPSInst_FS(ir)); 2329 rv.w = ieee754dp_tint(fs); /* wrong */ 2330 rfmt = w_fmt; 2331 goto copcsr; 2332 2333 case fround_op: 2334 case ftrunc_op: 2335 case fceil_op: 2336 case ffloor_op: 2337 if (!cpu_has_mips_2_3_4_5_r) 2338 return SIGILL; 2339 2340 if (MIPSInst_FUNC(ir) == fceil_op) 2341 MIPS_FPU_EMU_INC_STATS(ceil_w_d); 2342 if (MIPSInst_FUNC(ir) == ffloor_op) 2343 MIPS_FPU_EMU_INC_STATS(floor_w_d); 2344 if (MIPSInst_FUNC(ir) == fround_op) 2345 MIPS_FPU_EMU_INC_STATS(round_w_d); 2346 if (MIPSInst_FUNC(ir) == ftrunc_op) 2347 MIPS_FPU_EMU_INC_STATS(trunc_w_d); 2348 2349 oldrm = ieee754_csr.rm; 2350 DPFROMREG(fs, MIPSInst_FS(ir)); 2351 ieee754_csr.rm = MIPSInst_FUNC(ir); 2352 rv.w = ieee754dp_tint(fs); 2353 ieee754_csr.rm = oldrm; 2354 rfmt = w_fmt; 2355 goto copcsr; 2356 2357 case fsel_op: 2358 if (!cpu_has_mips_r6) 2359 return SIGILL; 2360 2361 MIPS_FPU_EMU_INC_STATS(sel_d); 2362 DPFROMREG(fd, MIPSInst_FD(ir)); 2363 if (fd.bits & 0x1) 2364 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2365 else 2366 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2367 break; 2368 2369 case fcvtl_op: 2370 if (!cpu_has_mips_3_4_5_64_r2_r6) 2371 return SIGILL; 2372 2373 MIPS_FPU_EMU_INC_STATS(cvt_l_d); 2374 DPFROMREG(fs, MIPSInst_FS(ir)); 2375 rv.l = ieee754dp_tlong(fs); 2376 rfmt = l_fmt; 2377 goto copcsr; 2378 2379 case froundl_op: 2380 case ftruncl_op: 2381 case fceill_op: 2382 case ffloorl_op: 2383 if (!cpu_has_mips_3_4_5_64_r2_r6) 2384 return SIGILL; 2385 2386 if (MIPSInst_FUNC(ir) == fceill_op) 2387 MIPS_FPU_EMU_INC_STATS(ceil_l_d); 2388 if (MIPSInst_FUNC(ir) == ffloorl_op) 2389 MIPS_FPU_EMU_INC_STATS(floor_l_d); 2390 if (MIPSInst_FUNC(ir) == froundl_op) 2391 MIPS_FPU_EMU_INC_STATS(round_l_d); 2392 if (MIPSInst_FUNC(ir) == ftruncl_op) 2393 MIPS_FPU_EMU_INC_STATS(trunc_l_d); 2394 2395 oldrm = ieee754_csr.rm; 2396 DPFROMREG(fs, MIPSInst_FS(ir)); 2397 ieee754_csr.rm = MIPSInst_FUNC(ir); 2398 rv.l = ieee754dp_tlong(fs); 2399 ieee754_csr.rm = oldrm; 2400 rfmt = l_fmt; 2401 goto copcsr; 2402 2403 default: 2404 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 2405 unsigned int cmpop; 2406 union ieee754dp fs, ft; 2407 2408 cmpop = MIPSInst_FUNC(ir) - fcmp_op; 2409 DPFROMREG(fs, MIPSInst_FS(ir)); 2410 DPFROMREG(ft, MIPSInst_FT(ir)); 2411 rv.w = ieee754dp_cmp(fs, ft, 2412 cmptab[cmpop & 0x7], cmpop & 0x8); 2413 rfmt = -1; 2414 if ((cmpop & 0x8) 2415 && 2416 ieee754_cxtest 2417 (IEEE754_INVALID_OPERATION)) 2418 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2419 else 2420 goto copcsr; 2421 2422 } 2423 else { 2424 return SIGILL; 2425 } 2426 break; 2427 } 2428 break; 2429 } 2430 2431 case w_fmt: { 2432 union ieee754dp fs; 2433 2434 switch (MIPSInst_FUNC(ir)) { 2435 case fcvts_op: 2436 /* convert word to single precision real */ 2437 MIPS_FPU_EMU_INC_STATS(cvt_s_w); 2438 SPFROMREG(fs, MIPSInst_FS(ir)); 2439 rv.s = ieee754sp_fint(fs.bits); 2440 rfmt = s_fmt; 2441 goto copcsr; 2442 case fcvtd_op: 2443 /* convert word to double precision real */ 2444 MIPS_FPU_EMU_INC_STATS(cvt_d_w); 2445 SPFROMREG(fs, MIPSInst_FS(ir)); 2446 rv.d = ieee754dp_fint(fs.bits); 2447 rfmt = d_fmt; 2448 goto copcsr; 2449 default: { 2450 /* Emulating the new CMP.condn.fmt R6 instruction */ 2451 #define CMPOP_MASK 0x7 2452 #define SIGN_BIT (0x1 << 3) 2453 #define PREDICATE_BIT (0x1 << 4) 2454 2455 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2456 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2457 union ieee754sp fs, ft; 2458 2459 /* This is an R6 only instruction */ 2460 if (!cpu_has_mips_r6 || 2461 (MIPSInst_FUNC(ir) & 0x20)) 2462 return SIGILL; 2463 2464 if (!sig) { 2465 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2466 switch (cmpop) { 2467 case 0: 2468 MIPS_FPU_EMU_INC_STATS(cmp_af_s); 2469 break; 2470 case 1: 2471 MIPS_FPU_EMU_INC_STATS(cmp_un_s); 2472 break; 2473 case 2: 2474 MIPS_FPU_EMU_INC_STATS(cmp_eq_s); 2475 break; 2476 case 3: 2477 MIPS_FPU_EMU_INC_STATS(cmp_ueq_s); 2478 break; 2479 case 4: 2480 MIPS_FPU_EMU_INC_STATS(cmp_lt_s); 2481 break; 2482 case 5: 2483 MIPS_FPU_EMU_INC_STATS(cmp_ult_s); 2484 break; 2485 case 6: 2486 MIPS_FPU_EMU_INC_STATS(cmp_le_s); 2487 break; 2488 case 7: 2489 MIPS_FPU_EMU_INC_STATS(cmp_ule_s); 2490 break; 2491 } 2492 } else { 2493 switch (cmpop) { 2494 case 1: 2495 MIPS_FPU_EMU_INC_STATS(cmp_or_s); 2496 break; 2497 case 2: 2498 MIPS_FPU_EMU_INC_STATS(cmp_une_s); 2499 break; 2500 case 3: 2501 MIPS_FPU_EMU_INC_STATS(cmp_ne_s); 2502 break; 2503 } 2504 } 2505 } else { 2506 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2507 switch (cmpop) { 2508 case 0: 2509 MIPS_FPU_EMU_INC_STATS(cmp_saf_s); 2510 break; 2511 case 1: 2512 MIPS_FPU_EMU_INC_STATS(cmp_sun_s); 2513 break; 2514 case 2: 2515 MIPS_FPU_EMU_INC_STATS(cmp_seq_s); 2516 break; 2517 case 3: 2518 MIPS_FPU_EMU_INC_STATS(cmp_sueq_s); 2519 break; 2520 case 4: 2521 MIPS_FPU_EMU_INC_STATS(cmp_slt_s); 2522 break; 2523 case 5: 2524 MIPS_FPU_EMU_INC_STATS(cmp_sult_s); 2525 break; 2526 case 6: 2527 MIPS_FPU_EMU_INC_STATS(cmp_sle_s); 2528 break; 2529 case 7: 2530 MIPS_FPU_EMU_INC_STATS(cmp_sule_s); 2531 break; 2532 } 2533 } else { 2534 switch (cmpop) { 2535 case 1: 2536 MIPS_FPU_EMU_INC_STATS(cmp_sor_s); 2537 break; 2538 case 2: 2539 MIPS_FPU_EMU_INC_STATS(cmp_sune_s); 2540 break; 2541 case 3: 2542 MIPS_FPU_EMU_INC_STATS(cmp_sne_s); 2543 break; 2544 } 2545 } 2546 } 2547 2548 /* fmt is w_fmt for single precision so fix it */ 2549 rfmt = s_fmt; 2550 /* default to false */ 2551 rv.w = 0; 2552 2553 /* CMP.condn.S */ 2554 SPFROMREG(fs, MIPSInst_FS(ir)); 2555 SPFROMREG(ft, MIPSInst_FT(ir)); 2556 2557 /* positive predicates */ 2558 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2559 if (ieee754sp_cmp(fs, ft, cmptab[cmpop], 2560 sig)) 2561 rv.w = -1; /* true, all 1s */ 2562 if ((sig) && 2563 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2564 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2565 else 2566 goto copcsr; 2567 } else { 2568 /* negative predicates */ 2569 switch (cmpop) { 2570 case 1: 2571 case 2: 2572 case 3: 2573 if (ieee754sp_cmp(fs, ft, 2574 negative_cmptab[cmpop], 2575 sig)) 2576 rv.w = -1; /* true, all 1s */ 2577 if (sig && 2578 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2579 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2580 else 2581 goto copcsr; 2582 break; 2583 default: 2584 /* Reserved R6 ops */ 2585 return SIGILL; 2586 } 2587 } 2588 break; 2589 } 2590 } 2591 break; 2592 } 2593 2594 case l_fmt: 2595 2596 if (!cpu_has_mips_3_4_5_64_r2_r6) 2597 return SIGILL; 2598 2599 DIFROMREG(bits, MIPSInst_FS(ir)); 2600 2601 switch (MIPSInst_FUNC(ir)) { 2602 case fcvts_op: 2603 /* convert long to single precision real */ 2604 MIPS_FPU_EMU_INC_STATS(cvt_s_l); 2605 rv.s = ieee754sp_flong(bits); 2606 rfmt = s_fmt; 2607 goto copcsr; 2608 case fcvtd_op: 2609 /* convert long to double precision real */ 2610 MIPS_FPU_EMU_INC_STATS(cvt_d_l); 2611 rv.d = ieee754dp_flong(bits); 2612 rfmt = d_fmt; 2613 goto copcsr; 2614 default: { 2615 /* Emulating the new CMP.condn.fmt R6 instruction */ 2616 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2617 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2618 union ieee754dp fs, ft; 2619 2620 if (!cpu_has_mips_r6 || 2621 (MIPSInst_FUNC(ir) & 0x20)) 2622 return SIGILL; 2623 2624 if (!sig) { 2625 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2626 switch (cmpop) { 2627 case 0: 2628 MIPS_FPU_EMU_INC_STATS(cmp_af_d); 2629 break; 2630 case 1: 2631 MIPS_FPU_EMU_INC_STATS(cmp_un_d); 2632 break; 2633 case 2: 2634 MIPS_FPU_EMU_INC_STATS(cmp_eq_d); 2635 break; 2636 case 3: 2637 MIPS_FPU_EMU_INC_STATS(cmp_ueq_d); 2638 break; 2639 case 4: 2640 MIPS_FPU_EMU_INC_STATS(cmp_lt_d); 2641 break; 2642 case 5: 2643 MIPS_FPU_EMU_INC_STATS(cmp_ult_d); 2644 break; 2645 case 6: 2646 MIPS_FPU_EMU_INC_STATS(cmp_le_d); 2647 break; 2648 case 7: 2649 MIPS_FPU_EMU_INC_STATS(cmp_ule_d); 2650 break; 2651 } 2652 } else { 2653 switch (cmpop) { 2654 case 1: 2655 MIPS_FPU_EMU_INC_STATS(cmp_or_d); 2656 break; 2657 case 2: 2658 MIPS_FPU_EMU_INC_STATS(cmp_une_d); 2659 break; 2660 case 3: 2661 MIPS_FPU_EMU_INC_STATS(cmp_ne_d); 2662 break; 2663 } 2664 } 2665 } else { 2666 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2667 switch (cmpop) { 2668 case 0: 2669 MIPS_FPU_EMU_INC_STATS(cmp_saf_d); 2670 break; 2671 case 1: 2672 MIPS_FPU_EMU_INC_STATS(cmp_sun_d); 2673 break; 2674 case 2: 2675 MIPS_FPU_EMU_INC_STATS(cmp_seq_d); 2676 break; 2677 case 3: 2678 MIPS_FPU_EMU_INC_STATS(cmp_sueq_d); 2679 break; 2680 case 4: 2681 MIPS_FPU_EMU_INC_STATS(cmp_slt_d); 2682 break; 2683 case 5: 2684 MIPS_FPU_EMU_INC_STATS(cmp_sult_d); 2685 break; 2686 case 6: 2687 MIPS_FPU_EMU_INC_STATS(cmp_sle_d); 2688 break; 2689 case 7: 2690 MIPS_FPU_EMU_INC_STATS(cmp_sule_d); 2691 break; 2692 } 2693 } else { 2694 switch (cmpop) { 2695 case 1: 2696 MIPS_FPU_EMU_INC_STATS(cmp_sor_d); 2697 break; 2698 case 2: 2699 MIPS_FPU_EMU_INC_STATS(cmp_sune_d); 2700 break; 2701 case 3: 2702 MIPS_FPU_EMU_INC_STATS(cmp_sne_d); 2703 break; 2704 } 2705 } 2706 } 2707 2708 /* fmt is l_fmt for double precision so fix it */ 2709 rfmt = d_fmt; 2710 /* default to false */ 2711 rv.l = 0; 2712 2713 /* CMP.condn.D */ 2714 DPFROMREG(fs, MIPSInst_FS(ir)); 2715 DPFROMREG(ft, MIPSInst_FT(ir)); 2716 2717 /* positive predicates */ 2718 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2719 if (ieee754dp_cmp(fs, ft, 2720 cmptab[cmpop], sig)) 2721 rv.l = -1LL; /* true, all 1s */ 2722 if (sig && 2723 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2724 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2725 else 2726 goto copcsr; 2727 } else { 2728 /* negative predicates */ 2729 switch (cmpop) { 2730 case 1: 2731 case 2: 2732 case 3: 2733 if (ieee754dp_cmp(fs, ft, 2734 negative_cmptab[cmpop], 2735 sig)) 2736 rv.l = -1LL; /* true, all 1s */ 2737 if (sig && 2738 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2739 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2740 else 2741 goto copcsr; 2742 break; 2743 default: 2744 /* Reserved R6 ops */ 2745 return SIGILL; 2746 } 2747 } 2748 break; 2749 } 2750 } 2751 break; 2752 2753 default: 2754 return SIGILL; 2755 } 2756 2757 /* 2758 * Update the fpu CSR register for this operation. 2759 * If an exception is required, generate a tidy SIGFPE exception, 2760 * without updating the result register. 2761 * Note: cause exception bits do not accumulate, they are rewritten 2762 * for each op; only the flag/sticky bits accumulate. 2763 */ 2764 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 2765 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 2766 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */ 2767 return SIGFPE; 2768 } 2769 2770 /* 2771 * Now we can safely write the result back to the register file. 2772 */ 2773 switch (rfmt) { 2774 case -1: 2775 2776 if (cpu_has_mips_4_5_r) 2777 cbit = fpucondbit[MIPSInst_FD(ir) >> 2]; 2778 else 2779 cbit = FPU_CSR_COND; 2780 if (rv.w) 2781 ctx->fcr31 |= cbit; 2782 else 2783 ctx->fcr31 &= ~cbit; 2784 break; 2785 2786 case d_fmt: 2787 DPTOREG(rv.d, MIPSInst_FD(ir)); 2788 break; 2789 case s_fmt: 2790 SPTOREG(rv.s, MIPSInst_FD(ir)); 2791 break; 2792 case w_fmt: 2793 SITOREG(rv.w, MIPSInst_FD(ir)); 2794 break; 2795 case l_fmt: 2796 if (!cpu_has_mips_3_4_5_64_r2_r6) 2797 return SIGILL; 2798 2799 DITOREG(rv.l, MIPSInst_FD(ir)); 2800 break; 2801 default: 2802 return SIGILL; 2803 } 2804 2805 return 0; 2806 } 2807 2808 /* 2809 * Emulate FPU instructions. 2810 * 2811 * If we use FPU hardware, then we have been typically called to handle 2812 * an unimplemented operation, such as where an operand is a NaN or 2813 * denormalized. In that case exit the emulation loop after a single 2814 * iteration so as to let hardware execute any subsequent instructions. 2815 * 2816 * If we have no FPU hardware or it has been disabled, then continue 2817 * emulating floating-point instructions until one of these conditions 2818 * has occurred: 2819 * 2820 * - a non-FPU instruction has been encountered, 2821 * 2822 * - an attempt to emulate has ended with a signal, 2823 * 2824 * - the ISA mode has been switched. 2825 * 2826 * We need to terminate the emulation loop if we got switched to the 2827 * MIPS16 mode, whether supported or not, so that we do not attempt 2828 * to emulate a MIPS16 instruction as a regular MIPS FPU instruction. 2829 * Similarly if we got switched to the microMIPS mode and only the 2830 * regular MIPS mode is supported, so that we do not attempt to emulate 2831 * a microMIPS instruction as a regular MIPS FPU instruction. Or if 2832 * we got switched to the regular MIPS mode and only the microMIPS mode 2833 * is supported, so that we do not attempt to emulate a regular MIPS 2834 * instruction that should cause an Address Error exception instead. 2835 * For simplicity we always terminate upon an ISA mode switch. 2836 */ 2837 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 2838 int has_fpu, void __user **fault_addr) 2839 { 2840 unsigned long oldepc, prevepc; 2841 struct mm_decoded_insn dec_insn; 2842 u16 instr[4]; 2843 u16 *instr_ptr; 2844 int sig = 0; 2845 2846 /* 2847 * Initialize context if it hasn't been used already, otherwise ensure 2848 * it has been saved to struct thread_struct. 2849 */ 2850 if (!init_fp_ctx(current)) 2851 lose_fpu(1); 2852 2853 oldepc = xcp->cp0_epc; 2854 do { 2855 prevepc = xcp->cp0_epc; 2856 2857 if (get_isa16_mode(prevepc) && cpu_has_mmips) { 2858 /* 2859 * Get next 2 microMIPS instructions and convert them 2860 * into 32-bit instructions. 2861 */ 2862 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) || 2863 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) || 2864 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) || 2865 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) { 2866 MIPS_FPU_EMU_INC_STATS(errors); 2867 return SIGBUS; 2868 } 2869 instr_ptr = instr; 2870 2871 /* Get first instruction. */ 2872 if (mm_insn_16bit(*instr_ptr)) { 2873 /* Duplicate the half-word. */ 2874 dec_insn.insn = (*instr_ptr << 16) | 2875 (*instr_ptr); 2876 /* 16-bit instruction. */ 2877 dec_insn.pc_inc = 2; 2878 instr_ptr += 1; 2879 } else { 2880 dec_insn.insn = (*instr_ptr << 16) | 2881 *(instr_ptr+1); 2882 /* 32-bit instruction. */ 2883 dec_insn.pc_inc = 4; 2884 instr_ptr += 2; 2885 } 2886 /* Get second instruction. */ 2887 if (mm_insn_16bit(*instr_ptr)) { 2888 /* Duplicate the half-word. */ 2889 dec_insn.next_insn = (*instr_ptr << 16) | 2890 (*instr_ptr); 2891 /* 16-bit instruction. */ 2892 dec_insn.next_pc_inc = 2; 2893 } else { 2894 dec_insn.next_insn = (*instr_ptr << 16) | 2895 *(instr_ptr+1); 2896 /* 32-bit instruction. */ 2897 dec_insn.next_pc_inc = 4; 2898 } 2899 dec_insn.micro_mips_mode = 1; 2900 } else { 2901 if ((get_user(dec_insn.insn, 2902 (mips_instruction __user *) xcp->cp0_epc)) || 2903 (get_user(dec_insn.next_insn, 2904 (mips_instruction __user *)(xcp->cp0_epc+4)))) { 2905 MIPS_FPU_EMU_INC_STATS(errors); 2906 return SIGBUS; 2907 } 2908 dec_insn.pc_inc = 4; 2909 dec_insn.next_pc_inc = 4; 2910 dec_insn.micro_mips_mode = 0; 2911 } 2912 2913 if ((dec_insn.insn == 0) || 2914 ((dec_insn.pc_inc == 2) && 2915 ((dec_insn.insn & 0xffff) == MM_NOP16))) 2916 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */ 2917 else { 2918 /* 2919 * The 'ieee754_csr' is an alias of ctx->fcr31. 2920 * No need to copy ctx->fcr31 to ieee754_csr. 2921 */ 2922 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr); 2923 } 2924 2925 if (has_fpu) 2926 break; 2927 if (sig) 2928 break; 2929 /* 2930 * We have to check for the ISA bit explicitly here, 2931 * because `get_isa16_mode' may return 0 if support 2932 * for code compression has been globally disabled, 2933 * or otherwise we may produce the wrong signal or 2934 * even proceed successfully where we must not. 2935 */ 2936 if ((xcp->cp0_epc ^ prevepc) & 0x1) 2937 break; 2938 2939 cond_resched(); 2940 } while (xcp->cp0_epc > prevepc); 2941 2942 /* SIGILL indicates a non-fpu instruction */ 2943 if (sig == SIGILL && xcp->cp0_epc != oldepc) 2944 /* but if EPC has advanced, then ignore it */ 2945 sig = 0; 2946 2947 return sig; 2948 } 2949