xref: /linux/arch/mips/math-emu/cp1emu.c (revision b11918bdbe79bd002d00a9f1d78958167ccfad99)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/percpu-defs.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/branch.h>
42 #include <asm/inst.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <linux/uaccess.h>
46 
47 #include <asm/cpu-info.h>
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 
53 #include "ieee754.h"
54 
55 /* Function which emulates a floating point instruction. */
56 
57 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
58 	mips_instruction);
59 
60 static int fpux_emu(struct pt_regs *,
61 	struct mips_fpu_struct *, mips_instruction, void *__user *);
62 
63 /* Control registers */
64 
65 #define FPCREG_RID	0	/* $0  = revision id */
66 #define FPCREG_FCCR	25	/* $25 = fccr */
67 #define FPCREG_FEXR	26	/* $26 = fexr */
68 #define FPCREG_FENR	28	/* $28 = fenr */
69 #define FPCREG_CSR	31	/* $31 = csr */
70 
71 /* convert condition code register number to csr bit */
72 const unsigned int fpucondbit[8] = {
73 	FPU_CSR_COND,
74 	FPU_CSR_COND1,
75 	FPU_CSR_COND2,
76 	FPU_CSR_COND3,
77 	FPU_CSR_COND4,
78 	FPU_CSR_COND5,
79 	FPU_CSR_COND6,
80 	FPU_CSR_COND7
81 };
82 
83 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
84 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
85 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
86 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
87 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
88 
89 /*
90  * This functions translates a 32-bit microMIPS instruction
91  * into a 32-bit MIPS32 instruction. Returns 0 on success
92  * and SIGILL otherwise.
93  */
94 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
95 {
96 	union mips_instruction insn = *insn_ptr;
97 	union mips_instruction mips32_insn = insn;
98 	int func, fmt, op;
99 
100 	switch (insn.mm_i_format.opcode) {
101 	case mm_ldc132_op:
102 		mips32_insn.mm_i_format.opcode = ldc1_op;
103 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
104 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
105 		break;
106 	case mm_lwc132_op:
107 		mips32_insn.mm_i_format.opcode = lwc1_op;
108 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
109 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
110 		break;
111 	case mm_sdc132_op:
112 		mips32_insn.mm_i_format.opcode = sdc1_op;
113 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
114 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
115 		break;
116 	case mm_swc132_op:
117 		mips32_insn.mm_i_format.opcode = swc1_op;
118 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
119 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
120 		break;
121 	case mm_pool32i_op:
122 		/* NOTE: offset is << by 1 if in microMIPS mode. */
123 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
124 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
125 			mips32_insn.fb_format.opcode = cop1_op;
126 			mips32_insn.fb_format.bc = bc_op;
127 			mips32_insn.fb_format.flag =
128 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
129 		} else
130 			return SIGILL;
131 		break;
132 	case mm_pool32f_op:
133 		switch (insn.mm_fp0_format.func) {
134 		case mm_32f_01_op:
135 		case mm_32f_11_op:
136 		case mm_32f_02_op:
137 		case mm_32f_12_op:
138 		case mm_32f_41_op:
139 		case mm_32f_51_op:
140 		case mm_32f_42_op:
141 		case mm_32f_52_op:
142 			op = insn.mm_fp0_format.func;
143 			if (op == mm_32f_01_op)
144 				func = madd_s_op;
145 			else if (op == mm_32f_11_op)
146 				func = madd_d_op;
147 			else if (op == mm_32f_02_op)
148 				func = nmadd_s_op;
149 			else if (op == mm_32f_12_op)
150 				func = nmadd_d_op;
151 			else if (op == mm_32f_41_op)
152 				func = msub_s_op;
153 			else if (op == mm_32f_51_op)
154 				func = msub_d_op;
155 			else if (op == mm_32f_42_op)
156 				func = nmsub_s_op;
157 			else
158 				func = nmsub_d_op;
159 			mips32_insn.fp6_format.opcode = cop1x_op;
160 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
161 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
162 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
163 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
164 			mips32_insn.fp6_format.func = func;
165 			break;
166 		case mm_32f_10_op:
167 			func = -1;	/* Invalid */
168 			op = insn.mm_fp5_format.op & 0x7;
169 			if (op == mm_ldxc1_op)
170 				func = ldxc1_op;
171 			else if (op == mm_sdxc1_op)
172 				func = sdxc1_op;
173 			else if (op == mm_lwxc1_op)
174 				func = lwxc1_op;
175 			else if (op == mm_swxc1_op)
176 				func = swxc1_op;
177 
178 			if (func != -1) {
179 				mips32_insn.r_format.opcode = cop1x_op;
180 				mips32_insn.r_format.rs =
181 					insn.mm_fp5_format.base;
182 				mips32_insn.r_format.rt =
183 					insn.mm_fp5_format.index;
184 				mips32_insn.r_format.rd = 0;
185 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
186 				mips32_insn.r_format.func = func;
187 			} else
188 				return SIGILL;
189 			break;
190 		case mm_32f_40_op:
191 			op = -1;	/* Invalid */
192 			if (insn.mm_fp2_format.op == mm_fmovt_op)
193 				op = 1;
194 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
195 				op = 0;
196 			if (op != -1) {
197 				mips32_insn.fp0_format.opcode = cop1_op;
198 				mips32_insn.fp0_format.fmt =
199 					sdps_format[insn.mm_fp2_format.fmt];
200 				mips32_insn.fp0_format.ft =
201 					(insn.mm_fp2_format.cc<<2) + op;
202 				mips32_insn.fp0_format.fs =
203 					insn.mm_fp2_format.fs;
204 				mips32_insn.fp0_format.fd =
205 					insn.mm_fp2_format.fd;
206 				mips32_insn.fp0_format.func = fmovc_op;
207 			} else
208 				return SIGILL;
209 			break;
210 		case mm_32f_60_op:
211 			func = -1;	/* Invalid */
212 			if (insn.mm_fp0_format.op == mm_fadd_op)
213 				func = fadd_op;
214 			else if (insn.mm_fp0_format.op == mm_fsub_op)
215 				func = fsub_op;
216 			else if (insn.mm_fp0_format.op == mm_fmul_op)
217 				func = fmul_op;
218 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
219 				func = fdiv_op;
220 			if (func != -1) {
221 				mips32_insn.fp0_format.opcode = cop1_op;
222 				mips32_insn.fp0_format.fmt =
223 					sdps_format[insn.mm_fp0_format.fmt];
224 				mips32_insn.fp0_format.ft =
225 					insn.mm_fp0_format.ft;
226 				mips32_insn.fp0_format.fs =
227 					insn.mm_fp0_format.fs;
228 				mips32_insn.fp0_format.fd =
229 					insn.mm_fp0_format.fd;
230 				mips32_insn.fp0_format.func = func;
231 			} else
232 				return SIGILL;
233 			break;
234 		case mm_32f_70_op:
235 			func = -1;	/* Invalid */
236 			if (insn.mm_fp0_format.op == mm_fmovn_op)
237 				func = fmovn_op;
238 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
239 				func = fmovz_op;
240 			if (func != -1) {
241 				mips32_insn.fp0_format.opcode = cop1_op;
242 				mips32_insn.fp0_format.fmt =
243 					sdps_format[insn.mm_fp0_format.fmt];
244 				mips32_insn.fp0_format.ft =
245 					insn.mm_fp0_format.ft;
246 				mips32_insn.fp0_format.fs =
247 					insn.mm_fp0_format.fs;
248 				mips32_insn.fp0_format.fd =
249 					insn.mm_fp0_format.fd;
250 				mips32_insn.fp0_format.func = func;
251 			} else
252 				return SIGILL;
253 			break;
254 		case mm_32f_73_op:    /* POOL32FXF */
255 			switch (insn.mm_fp1_format.op) {
256 			case mm_movf0_op:
257 			case mm_movf1_op:
258 			case mm_movt0_op:
259 			case mm_movt1_op:
260 				if ((insn.mm_fp1_format.op & 0x7f) ==
261 				    mm_movf0_op)
262 					op = 0;
263 				else
264 					op = 1;
265 				mips32_insn.r_format.opcode = spec_op;
266 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
267 				mips32_insn.r_format.rt =
268 					(insn.mm_fp4_format.cc << 2) + op;
269 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
270 				mips32_insn.r_format.re = 0;
271 				mips32_insn.r_format.func = movc_op;
272 				break;
273 			case mm_fcvtd0_op:
274 			case mm_fcvtd1_op:
275 			case mm_fcvts0_op:
276 			case mm_fcvts1_op:
277 				if ((insn.mm_fp1_format.op & 0x7f) ==
278 				    mm_fcvtd0_op) {
279 					func = fcvtd_op;
280 					fmt = swl_format[insn.mm_fp3_format.fmt];
281 				} else {
282 					func = fcvts_op;
283 					fmt = dwl_format[insn.mm_fp3_format.fmt];
284 				}
285 				mips32_insn.fp0_format.opcode = cop1_op;
286 				mips32_insn.fp0_format.fmt = fmt;
287 				mips32_insn.fp0_format.ft = 0;
288 				mips32_insn.fp0_format.fs =
289 					insn.mm_fp3_format.fs;
290 				mips32_insn.fp0_format.fd =
291 					insn.mm_fp3_format.rt;
292 				mips32_insn.fp0_format.func = func;
293 				break;
294 			case mm_fmov0_op:
295 			case mm_fmov1_op:
296 			case mm_fabs0_op:
297 			case mm_fabs1_op:
298 			case mm_fneg0_op:
299 			case mm_fneg1_op:
300 				if ((insn.mm_fp1_format.op & 0x7f) ==
301 				    mm_fmov0_op)
302 					func = fmov_op;
303 				else if ((insn.mm_fp1_format.op & 0x7f) ==
304 					 mm_fabs0_op)
305 					func = fabs_op;
306 				else
307 					func = fneg_op;
308 				mips32_insn.fp0_format.opcode = cop1_op;
309 				mips32_insn.fp0_format.fmt =
310 					sdps_format[insn.mm_fp3_format.fmt];
311 				mips32_insn.fp0_format.ft = 0;
312 				mips32_insn.fp0_format.fs =
313 					insn.mm_fp3_format.fs;
314 				mips32_insn.fp0_format.fd =
315 					insn.mm_fp3_format.rt;
316 				mips32_insn.fp0_format.func = func;
317 				break;
318 			case mm_ffloorl_op:
319 			case mm_ffloorw_op:
320 			case mm_fceill_op:
321 			case mm_fceilw_op:
322 			case mm_ftruncl_op:
323 			case mm_ftruncw_op:
324 			case mm_froundl_op:
325 			case mm_froundw_op:
326 			case mm_fcvtl_op:
327 			case mm_fcvtw_op:
328 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
329 					func = ffloorl_op;
330 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
331 					func = ffloor_op;
332 				else if (insn.mm_fp1_format.op == mm_fceill_op)
333 					func = fceill_op;
334 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
335 					func = fceil_op;
336 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
337 					func = ftruncl_op;
338 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
339 					func = ftrunc_op;
340 				else if (insn.mm_fp1_format.op == mm_froundl_op)
341 					func = froundl_op;
342 				else if (insn.mm_fp1_format.op == mm_froundw_op)
343 					func = fround_op;
344 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
345 					func = fcvtl_op;
346 				else
347 					func = fcvtw_op;
348 				mips32_insn.fp0_format.opcode = cop1_op;
349 				mips32_insn.fp0_format.fmt =
350 					sd_format[insn.mm_fp1_format.fmt];
351 				mips32_insn.fp0_format.ft = 0;
352 				mips32_insn.fp0_format.fs =
353 					insn.mm_fp1_format.fs;
354 				mips32_insn.fp0_format.fd =
355 					insn.mm_fp1_format.rt;
356 				mips32_insn.fp0_format.func = func;
357 				break;
358 			case mm_frsqrt_op:
359 			case mm_fsqrt_op:
360 			case mm_frecip_op:
361 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
362 					func = frsqrt_op;
363 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
364 					func = fsqrt_op;
365 				else
366 					func = frecip_op;
367 				mips32_insn.fp0_format.opcode = cop1_op;
368 				mips32_insn.fp0_format.fmt =
369 					sdps_format[insn.mm_fp1_format.fmt];
370 				mips32_insn.fp0_format.ft = 0;
371 				mips32_insn.fp0_format.fs =
372 					insn.mm_fp1_format.fs;
373 				mips32_insn.fp0_format.fd =
374 					insn.mm_fp1_format.rt;
375 				mips32_insn.fp0_format.func = func;
376 				break;
377 			case mm_mfc1_op:
378 			case mm_mtc1_op:
379 			case mm_cfc1_op:
380 			case mm_ctc1_op:
381 			case mm_mfhc1_op:
382 			case mm_mthc1_op:
383 				if (insn.mm_fp1_format.op == mm_mfc1_op)
384 					op = mfc_op;
385 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
386 					op = mtc_op;
387 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
388 					op = cfc_op;
389 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
390 					op = ctc_op;
391 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
392 					op = mfhc_op;
393 				else
394 					op = mthc_op;
395 				mips32_insn.fp1_format.opcode = cop1_op;
396 				mips32_insn.fp1_format.op = op;
397 				mips32_insn.fp1_format.rt =
398 					insn.mm_fp1_format.rt;
399 				mips32_insn.fp1_format.fs =
400 					insn.mm_fp1_format.fs;
401 				mips32_insn.fp1_format.fd = 0;
402 				mips32_insn.fp1_format.func = 0;
403 				break;
404 			default:
405 				return SIGILL;
406 			}
407 			break;
408 		case mm_32f_74_op:	/* c.cond.fmt */
409 			mips32_insn.fp0_format.opcode = cop1_op;
410 			mips32_insn.fp0_format.fmt =
411 				sdps_format[insn.mm_fp4_format.fmt];
412 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
413 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
414 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
415 			mips32_insn.fp0_format.func =
416 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
417 			break;
418 		default:
419 			return SIGILL;
420 		}
421 		break;
422 	default:
423 		return SIGILL;
424 	}
425 
426 	*insn_ptr = mips32_insn;
427 	return 0;
428 }
429 
430 /*
431  * Redundant with logic already in kernel/branch.c,
432  * embedded in compute_return_epc.  At some point,
433  * a single subroutine should be used across both
434  * modules.
435  */
436 int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
437 		  unsigned long *contpc)
438 {
439 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
440 	unsigned int fcr31;
441 	unsigned int bit = 0;
442 	unsigned int bit0;
443 	union fpureg *fpr;
444 
445 	switch (insn.i_format.opcode) {
446 	case spec_op:
447 		switch (insn.r_format.func) {
448 		case jalr_op:
449 			if (insn.r_format.rd != 0) {
450 				regs->regs[insn.r_format.rd] =
451 					regs->cp0_epc + dec_insn.pc_inc +
452 					dec_insn.next_pc_inc;
453 			}
454 			/* Fall through */
455 		case jr_op:
456 			/* For R6, JR already emulated in jalr_op */
457 			if (NO_R6EMU && insn.r_format.func == jr_op)
458 				break;
459 			*contpc = regs->regs[insn.r_format.rs];
460 			return 1;
461 		}
462 		break;
463 	case bcond_op:
464 		switch (insn.i_format.rt) {
465 		case bltzal_op:
466 		case bltzall_op:
467 			if (NO_R6EMU && (insn.i_format.rs ||
468 			    insn.i_format.rt == bltzall_op))
469 				break;
470 
471 			regs->regs[31] = regs->cp0_epc +
472 				dec_insn.pc_inc +
473 				dec_insn.next_pc_inc;
474 			/* Fall through */
475 		case bltzl_op:
476 			if (NO_R6EMU)
477 				break;
478 		case bltz_op:
479 			if ((long)regs->regs[insn.i_format.rs] < 0)
480 				*contpc = regs->cp0_epc +
481 					dec_insn.pc_inc +
482 					(insn.i_format.simmediate << 2);
483 			else
484 				*contpc = regs->cp0_epc +
485 					dec_insn.pc_inc +
486 					dec_insn.next_pc_inc;
487 			return 1;
488 		case bgezal_op:
489 		case bgezall_op:
490 			if (NO_R6EMU && (insn.i_format.rs ||
491 			    insn.i_format.rt == bgezall_op))
492 				break;
493 
494 			regs->regs[31] = regs->cp0_epc +
495 				dec_insn.pc_inc +
496 				dec_insn.next_pc_inc;
497 			/* Fall through */
498 		case bgezl_op:
499 			if (NO_R6EMU)
500 				break;
501 		case bgez_op:
502 			if ((long)regs->regs[insn.i_format.rs] >= 0)
503 				*contpc = regs->cp0_epc +
504 					dec_insn.pc_inc +
505 					(insn.i_format.simmediate << 2);
506 			else
507 				*contpc = regs->cp0_epc +
508 					dec_insn.pc_inc +
509 					dec_insn.next_pc_inc;
510 			return 1;
511 		}
512 		break;
513 	case jalx_op:
514 		set_isa16_mode(bit);
515 	case jal_op:
516 		regs->regs[31] = regs->cp0_epc +
517 			dec_insn.pc_inc +
518 			dec_insn.next_pc_inc;
519 		/* Fall through */
520 	case j_op:
521 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
522 		*contpc >>= 28;
523 		*contpc <<= 28;
524 		*contpc |= (insn.j_format.target << 2);
525 		/* Set microMIPS mode bit: XOR for jalx. */
526 		*contpc ^= bit;
527 		return 1;
528 	case beql_op:
529 		if (NO_R6EMU)
530 			break;
531 	case beq_op:
532 		if (regs->regs[insn.i_format.rs] ==
533 		    regs->regs[insn.i_format.rt])
534 			*contpc = regs->cp0_epc +
535 				dec_insn.pc_inc +
536 				(insn.i_format.simmediate << 2);
537 		else
538 			*contpc = regs->cp0_epc +
539 				dec_insn.pc_inc +
540 				dec_insn.next_pc_inc;
541 		return 1;
542 	case bnel_op:
543 		if (NO_R6EMU)
544 			break;
545 	case bne_op:
546 		if (regs->regs[insn.i_format.rs] !=
547 		    regs->regs[insn.i_format.rt])
548 			*contpc = regs->cp0_epc +
549 				dec_insn.pc_inc +
550 				(insn.i_format.simmediate << 2);
551 		else
552 			*contpc = regs->cp0_epc +
553 				dec_insn.pc_inc +
554 				dec_insn.next_pc_inc;
555 		return 1;
556 	case blezl_op:
557 		if (!insn.i_format.rt && NO_R6EMU)
558 			break;
559 	case blez_op:
560 
561 		/*
562 		 * Compact branches for R6 for the
563 		 * blez and blezl opcodes.
564 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
565 		 * BLEZ  | rs = rt != 0      == BGEZALC
566 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
567 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
568 		 * BLEZL | rs = rt != 0      == BGEZC
569 		 * BLEZL | rs != 0 | rt != 0 == BGEC
570 		 *
571 		 * For real BLEZ{,L}, rt is always 0.
572 		 */
573 		if (cpu_has_mips_r6 && insn.i_format.rt) {
574 			if ((insn.i_format.opcode == blez_op) &&
575 			    ((!insn.i_format.rs && insn.i_format.rt) ||
576 			     (insn.i_format.rs == insn.i_format.rt)))
577 				regs->regs[31] = regs->cp0_epc +
578 					dec_insn.pc_inc;
579 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
580 				dec_insn.next_pc_inc;
581 
582 			return 1;
583 		}
584 		if ((long)regs->regs[insn.i_format.rs] <= 0)
585 			*contpc = regs->cp0_epc +
586 				dec_insn.pc_inc +
587 				(insn.i_format.simmediate << 2);
588 		else
589 			*contpc = regs->cp0_epc +
590 				dec_insn.pc_inc +
591 				dec_insn.next_pc_inc;
592 		return 1;
593 	case bgtzl_op:
594 		if (!insn.i_format.rt && NO_R6EMU)
595 			break;
596 	case bgtz_op:
597 		/*
598 		 * Compact branches for R6 for the
599 		 * bgtz and bgtzl opcodes.
600 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
601 		 * BGTZ  | rs = rt != 0      == BLTZALC
602 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
603 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
604 		 * BGTZL | rs = rt != 0      == BLTZC
605 		 * BGTZL | rs != 0 | rt != 0 == BLTC
606 		 *
607 		 * *ZALC varint for BGTZ &&& rt != 0
608 		 * For real GTZ{,L}, rt is always 0.
609 		 */
610 		if (cpu_has_mips_r6 && insn.i_format.rt) {
611 			if ((insn.i_format.opcode == blez_op) &&
612 			    ((!insn.i_format.rs && insn.i_format.rt) ||
613 			     (insn.i_format.rs == insn.i_format.rt)))
614 				regs->regs[31] = regs->cp0_epc +
615 					dec_insn.pc_inc;
616 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
617 				dec_insn.next_pc_inc;
618 
619 			return 1;
620 		}
621 
622 		if ((long)regs->regs[insn.i_format.rs] > 0)
623 			*contpc = regs->cp0_epc +
624 				dec_insn.pc_inc +
625 				(insn.i_format.simmediate << 2);
626 		else
627 			*contpc = regs->cp0_epc +
628 				dec_insn.pc_inc +
629 				dec_insn.next_pc_inc;
630 		return 1;
631 	case pop10_op:
632 	case pop30_op:
633 		if (!cpu_has_mips_r6)
634 			break;
635 		if (insn.i_format.rt && !insn.i_format.rs)
636 			regs->regs[31] = regs->cp0_epc + 4;
637 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
638 			dec_insn.next_pc_inc;
639 
640 		return 1;
641 #ifdef CONFIG_CPU_CAVIUM_OCTEON
642 	case lwc2_op: /* This is bbit0 on Octeon */
643 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
644 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
645 		else
646 			*contpc = regs->cp0_epc + 8;
647 		return 1;
648 	case ldc2_op: /* This is bbit032 on Octeon */
649 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
650 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
651 		else
652 			*contpc = regs->cp0_epc + 8;
653 		return 1;
654 	case swc2_op: /* This is bbit1 on Octeon */
655 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
656 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
657 		else
658 			*contpc = regs->cp0_epc + 8;
659 		return 1;
660 	case sdc2_op: /* This is bbit132 on Octeon */
661 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
662 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
663 		else
664 			*contpc = regs->cp0_epc + 8;
665 		return 1;
666 #else
667 	case bc6_op:
668 		/*
669 		 * Only valid for MIPS R6 but we can still end up
670 		 * here from a broken userland so just tell emulator
671 		 * this is not a branch and let it break later on.
672 		 */
673 		if  (!cpu_has_mips_r6)
674 			break;
675 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
676 			dec_insn.next_pc_inc;
677 
678 		return 1;
679 	case balc6_op:
680 		if (!cpu_has_mips_r6)
681 			break;
682 		regs->regs[31] = regs->cp0_epc + 4;
683 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
684 			dec_insn.next_pc_inc;
685 
686 		return 1;
687 	case pop66_op:
688 		if (!cpu_has_mips_r6)
689 			break;
690 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
691 			dec_insn.next_pc_inc;
692 
693 		return 1;
694 	case pop76_op:
695 		if (!cpu_has_mips_r6)
696 			break;
697 		if (!insn.i_format.rs)
698 			regs->regs[31] = regs->cp0_epc + 4;
699 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
700 			dec_insn.next_pc_inc;
701 
702 		return 1;
703 #endif
704 	case cop0_op:
705 	case cop1_op:
706 		/* Need to check for R6 bc1nez and bc1eqz branches */
707 		if (cpu_has_mips_r6 &&
708 		    ((insn.i_format.rs == bc1eqz_op) ||
709 		     (insn.i_format.rs == bc1nez_op))) {
710 			bit = 0;
711 			fpr = &current->thread.fpu.fpr[insn.i_format.rt];
712 			bit0 = get_fpr32(fpr, 0) & 0x1;
713 			switch (insn.i_format.rs) {
714 			case bc1eqz_op:
715 				bit = bit0 == 0;
716 				break;
717 			case bc1nez_op:
718 				bit = bit0 != 0;
719 				break;
720 			}
721 			if (bit)
722 				*contpc = regs->cp0_epc +
723 					dec_insn.pc_inc +
724 					(insn.i_format.simmediate << 2);
725 			else
726 				*contpc = regs->cp0_epc +
727 					dec_insn.pc_inc +
728 					dec_insn.next_pc_inc;
729 
730 			return 1;
731 		}
732 		/* R2/R6 compatible cop1 instruction. Fall through */
733 	case cop2_op:
734 	case cop1x_op:
735 		if (insn.i_format.rs == bc_op) {
736 			preempt_disable();
737 			if (is_fpu_owner())
738 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
739 			else
740 				fcr31 = current->thread.fpu.fcr31;
741 			preempt_enable();
742 
743 			bit = (insn.i_format.rt >> 2);
744 			bit += (bit != 0);
745 			bit += 23;
746 			switch (insn.i_format.rt & 3) {
747 			case 0:	/* bc1f */
748 			case 2:	/* bc1fl */
749 				if (~fcr31 & (1 << bit))
750 					*contpc = regs->cp0_epc +
751 						dec_insn.pc_inc +
752 						(insn.i_format.simmediate << 2);
753 				else
754 					*contpc = regs->cp0_epc +
755 						dec_insn.pc_inc +
756 						dec_insn.next_pc_inc;
757 				return 1;
758 			case 1:	/* bc1t */
759 			case 3:	/* bc1tl */
760 				if (fcr31 & (1 << bit))
761 					*contpc = regs->cp0_epc +
762 						dec_insn.pc_inc +
763 						(insn.i_format.simmediate << 2);
764 				else
765 					*contpc = regs->cp0_epc +
766 						dec_insn.pc_inc +
767 						dec_insn.next_pc_inc;
768 				return 1;
769 			}
770 		}
771 		break;
772 	}
773 	return 0;
774 }
775 
776 /*
777  * In the Linux kernel, we support selection of FPR format on the
778  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
779  * is hardwired to zero, which would imply a 32-bit FPU even for
780  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
781  * FPU emu is slow and bulky and optimizing this function offers fairly
782  * sizeable benefits so we try to be clever and make this function return
783  * a constant whenever possible, that is on 64-bit kernels without O32
784  * compatibility enabled and on 32-bit without 64-bit FPU support.
785  */
786 static inline int cop1_64bit(struct pt_regs *xcp)
787 {
788 	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
789 		return 1;
790 	else if (IS_ENABLED(CONFIG_32BIT) &&
791 		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
792 		return 0;
793 
794 	return !test_thread_flag(TIF_32BIT_FPREGS);
795 }
796 
797 static inline bool hybrid_fprs(void)
798 {
799 	return test_thread_flag(TIF_HYBRID_FPREGS);
800 }
801 
802 #define SIFROMREG(si, x)						\
803 do {									\
804 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
805 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
806 	else								\
807 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
808 } while (0)
809 
810 #define SITOREG(si, x)							\
811 do {									\
812 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
813 		unsigned i;						\
814 		set_fpr32(&ctx->fpr[x], 0, si);				\
815 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
816 			set_fpr32(&ctx->fpr[x], i, 0);			\
817 	} else {							\
818 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
819 	}								\
820 } while (0)
821 
822 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
823 
824 #define SITOHREG(si, x)							\
825 do {									\
826 	unsigned i;							\
827 	set_fpr32(&ctx->fpr[x], 1, si);					\
828 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
829 		set_fpr32(&ctx->fpr[x], i, 0);				\
830 } while (0)
831 
832 #define DIFROMREG(di, x)						\
833 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
834 
835 #define DITOREG(di, x)							\
836 do {									\
837 	unsigned fpr, i;						\
838 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
839 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
840 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
841 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
842 } while (0)
843 
844 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
845 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
846 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
847 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
848 
849 /*
850  * Emulate a CFC1 instruction.
851  */
852 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
853 			    mips_instruction ir)
854 {
855 	u32 fcr31 = ctx->fcr31;
856 	u32 value = 0;
857 
858 	switch (MIPSInst_RD(ir)) {
859 	case FPCREG_CSR:
860 		value = fcr31;
861 		pr_debug("%p gpr[%d]<-csr=%08x\n",
862 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
863 		break;
864 
865 	case FPCREG_FENR:
866 		if (!cpu_has_mips_r)
867 			break;
868 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
869 			MIPS_FENR_FS;
870 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
871 		pr_debug("%p gpr[%d]<-enr=%08x\n",
872 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
873 		break;
874 
875 	case FPCREG_FEXR:
876 		if (!cpu_has_mips_r)
877 			break;
878 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
879 		pr_debug("%p gpr[%d]<-exr=%08x\n",
880 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
881 		break;
882 
883 	case FPCREG_FCCR:
884 		if (!cpu_has_mips_r)
885 			break;
886 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
887 			MIPS_FCCR_COND0;
888 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
889 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
890 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
891 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
892 		break;
893 
894 	case FPCREG_RID:
895 		value = boot_cpu_data.fpu_id;
896 		break;
897 
898 	default:
899 		break;
900 	}
901 
902 	if (MIPSInst_RT(ir))
903 		xcp->regs[MIPSInst_RT(ir)] = value;
904 }
905 
906 /*
907  * Emulate a CTC1 instruction.
908  */
909 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
910 			    mips_instruction ir)
911 {
912 	u32 fcr31 = ctx->fcr31;
913 	u32 value;
914 	u32 mask;
915 
916 	if (MIPSInst_RT(ir) == 0)
917 		value = 0;
918 	else
919 		value = xcp->regs[MIPSInst_RT(ir)];
920 
921 	switch (MIPSInst_RD(ir)) {
922 	case FPCREG_CSR:
923 		pr_debug("%p gpr[%d]->csr=%08x\n",
924 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
925 
926 		/* Preserve read-only bits.  */
927 		mask = boot_cpu_data.fpu_msk31;
928 		fcr31 = (value & ~mask) | (fcr31 & mask);
929 		break;
930 
931 	case FPCREG_FENR:
932 		if (!cpu_has_mips_r)
933 			break;
934 		pr_debug("%p gpr[%d]->enr=%08x\n",
935 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
936 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
937 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
938 			 FPU_CSR_FS;
939 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
940 		break;
941 
942 	case FPCREG_FEXR:
943 		if (!cpu_has_mips_r)
944 			break;
945 		pr_debug("%p gpr[%d]->exr=%08x\n",
946 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
947 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
948 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
949 		break;
950 
951 	case FPCREG_FCCR:
952 		if (!cpu_has_mips_r)
953 			break;
954 		pr_debug("%p gpr[%d]->ccr=%08x\n",
955 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
956 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
957 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
958 			 FPU_CSR_COND;
959 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
960 			 FPU_CSR_CONDX;
961 		break;
962 
963 	default:
964 		break;
965 	}
966 
967 	ctx->fcr31 = fcr31;
968 }
969 
970 /*
971  * Emulate the single floating point instruction pointed at by EPC.
972  * Two instructions if the instruction is in a branch delay slot.
973  */
974 
975 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
976 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
977 {
978 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
979 	unsigned int cond, cbit, bit0;
980 	mips_instruction ir;
981 	int likely, pc_inc;
982 	union fpureg *fpr;
983 	u32 __user *wva;
984 	u64 __user *dva;
985 	u32 wval;
986 	u64 dval;
987 	int sig;
988 
989 	/*
990 	 * These are giving gcc a gentle hint about what to expect in
991 	 * dec_inst in order to do better optimization.
992 	 */
993 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
994 		unreachable();
995 
996 	/* XXX NEC Vr54xx bug workaround */
997 	if (delay_slot(xcp)) {
998 		if (dec_insn.micro_mips_mode) {
999 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
1000 				clear_delay_slot(xcp);
1001 		} else {
1002 			if (!isBranchInstr(xcp, dec_insn, &contpc))
1003 				clear_delay_slot(xcp);
1004 		}
1005 	}
1006 
1007 	if (delay_slot(xcp)) {
1008 		/*
1009 		 * The instruction to be emulated is in a branch delay slot
1010 		 * which means that we have to	emulate the branch instruction
1011 		 * BEFORE we do the cop1 instruction.
1012 		 *
1013 		 * This branch could be a COP1 branch, but in that case we
1014 		 * would have had a trap for that instruction, and would not
1015 		 * come through this route.
1016 		 *
1017 		 * Linux MIPS branch emulator operates on context, updating the
1018 		 * cp0_epc.
1019 		 */
1020 		ir = dec_insn.next_insn;  /* process delay slot instr */
1021 		pc_inc = dec_insn.next_pc_inc;
1022 	} else {
1023 		ir = dec_insn.insn;       /* process current instr */
1024 		pc_inc = dec_insn.pc_inc;
1025 	}
1026 
1027 	/*
1028 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1029 	 * instructions, we want to convert microMIPS FPU instructions
1030 	 * into MIPS32 instructions so that we could reuse all of the
1031 	 * FPU emulation code.
1032 	 *
1033 	 * NOTE: We cannot do this for branch instructions since they
1034 	 *       are not a subset. Example: Cannot emulate a 16-bit
1035 	 *       aligned target address with a MIPS32 instruction.
1036 	 */
1037 	if (dec_insn.micro_mips_mode) {
1038 		/*
1039 		 * If next instruction is a 16-bit instruction, then it
1040 		 * it cannot be a FPU instruction. This could happen
1041 		 * since we can be called for non-FPU instructions.
1042 		 */
1043 		if ((pc_inc == 2) ||
1044 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1045 			 == SIGILL))
1046 			return SIGILL;
1047 	}
1048 
1049 emul:
1050 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1051 	MIPS_FPU_EMU_INC_STATS(emulated);
1052 	switch (MIPSInst_OPCODE(ir)) {
1053 	case ldc1_op:
1054 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1055 				     MIPSInst_SIMM(ir));
1056 		MIPS_FPU_EMU_INC_STATS(loads);
1057 
1058 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1059 			MIPS_FPU_EMU_INC_STATS(errors);
1060 			*fault_addr = dva;
1061 			return SIGBUS;
1062 		}
1063 		if (__get_user(dval, dva)) {
1064 			MIPS_FPU_EMU_INC_STATS(errors);
1065 			*fault_addr = dva;
1066 			return SIGSEGV;
1067 		}
1068 		DITOREG(dval, MIPSInst_RT(ir));
1069 		break;
1070 
1071 	case sdc1_op:
1072 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1073 				      MIPSInst_SIMM(ir));
1074 		MIPS_FPU_EMU_INC_STATS(stores);
1075 		DIFROMREG(dval, MIPSInst_RT(ir));
1076 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1077 			MIPS_FPU_EMU_INC_STATS(errors);
1078 			*fault_addr = dva;
1079 			return SIGBUS;
1080 		}
1081 		if (__put_user(dval, dva)) {
1082 			MIPS_FPU_EMU_INC_STATS(errors);
1083 			*fault_addr = dva;
1084 			return SIGSEGV;
1085 		}
1086 		break;
1087 
1088 	case lwc1_op:
1089 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1090 				      MIPSInst_SIMM(ir));
1091 		MIPS_FPU_EMU_INC_STATS(loads);
1092 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1093 			MIPS_FPU_EMU_INC_STATS(errors);
1094 			*fault_addr = wva;
1095 			return SIGBUS;
1096 		}
1097 		if (__get_user(wval, wva)) {
1098 			MIPS_FPU_EMU_INC_STATS(errors);
1099 			*fault_addr = wva;
1100 			return SIGSEGV;
1101 		}
1102 		SITOREG(wval, MIPSInst_RT(ir));
1103 		break;
1104 
1105 	case swc1_op:
1106 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1107 				      MIPSInst_SIMM(ir));
1108 		MIPS_FPU_EMU_INC_STATS(stores);
1109 		SIFROMREG(wval, MIPSInst_RT(ir));
1110 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1111 			MIPS_FPU_EMU_INC_STATS(errors);
1112 			*fault_addr = wva;
1113 			return SIGBUS;
1114 		}
1115 		if (__put_user(wval, wva)) {
1116 			MIPS_FPU_EMU_INC_STATS(errors);
1117 			*fault_addr = wva;
1118 			return SIGSEGV;
1119 		}
1120 		break;
1121 
1122 	case cop1_op:
1123 		switch (MIPSInst_RS(ir)) {
1124 		case dmfc_op:
1125 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1126 				return SIGILL;
1127 
1128 			/* copregister fs -> gpr[rt] */
1129 			if (MIPSInst_RT(ir) != 0) {
1130 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1131 					MIPSInst_RD(ir));
1132 			}
1133 			break;
1134 
1135 		case dmtc_op:
1136 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1137 				return SIGILL;
1138 
1139 			/* copregister fs <- rt */
1140 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1141 			break;
1142 
1143 		case mfhc_op:
1144 			if (!cpu_has_mips_r2_r6)
1145 				return SIGILL;
1146 
1147 			/* copregister rd -> gpr[rt] */
1148 			if (MIPSInst_RT(ir) != 0) {
1149 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1150 					MIPSInst_RD(ir));
1151 			}
1152 			break;
1153 
1154 		case mthc_op:
1155 			if (!cpu_has_mips_r2_r6)
1156 				return SIGILL;
1157 
1158 			/* copregister rd <- gpr[rt] */
1159 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1160 			break;
1161 
1162 		case mfc_op:
1163 			/* copregister rd -> gpr[rt] */
1164 			if (MIPSInst_RT(ir) != 0) {
1165 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1166 					MIPSInst_RD(ir));
1167 			}
1168 			break;
1169 
1170 		case mtc_op:
1171 			/* copregister rd <- rt */
1172 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1173 			break;
1174 
1175 		case cfc_op:
1176 			/* cop control register rd -> gpr[rt] */
1177 			cop1_cfc(xcp, ctx, ir);
1178 			break;
1179 
1180 		case ctc_op:
1181 			/* copregister rd <- rt */
1182 			cop1_ctc(xcp, ctx, ir);
1183 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1184 				return SIGFPE;
1185 			}
1186 			break;
1187 
1188 		case bc1eqz_op:
1189 		case bc1nez_op:
1190 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1191 				return SIGILL;
1192 
1193 			cond = likely = 0;
1194 			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1195 			bit0 = get_fpr32(fpr, 0) & 0x1;
1196 			switch (MIPSInst_RS(ir)) {
1197 			case bc1eqz_op:
1198 				cond = bit0 == 0;
1199 				break;
1200 			case bc1nez_op:
1201 				cond = bit0 != 0;
1202 				break;
1203 			}
1204 			goto branch_common;
1205 
1206 		case bc_op:
1207 			if (delay_slot(xcp))
1208 				return SIGILL;
1209 
1210 			if (cpu_has_mips_4_5_r)
1211 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1212 			else
1213 				cbit = FPU_CSR_COND;
1214 			cond = ctx->fcr31 & cbit;
1215 
1216 			likely = 0;
1217 			switch (MIPSInst_RT(ir) & 3) {
1218 			case bcfl_op:
1219 				if (cpu_has_mips_2_3_4_5_r)
1220 					likely = 1;
1221 				/* Fall through */
1222 			case bcf_op:
1223 				cond = !cond;
1224 				break;
1225 			case bctl_op:
1226 				if (cpu_has_mips_2_3_4_5_r)
1227 					likely = 1;
1228 				/* Fall through */
1229 			case bct_op:
1230 				break;
1231 			}
1232 branch_common:
1233 			set_delay_slot(xcp);
1234 			if (cond) {
1235 				/*
1236 				 * Branch taken: emulate dslot instruction
1237 				 */
1238 				unsigned long bcpc;
1239 
1240 				/*
1241 				 * Remember EPC at the branch to point back
1242 				 * at so that any delay-slot instruction
1243 				 * signal is not silently ignored.
1244 				 */
1245 				bcpc = xcp->cp0_epc;
1246 				xcp->cp0_epc += dec_insn.pc_inc;
1247 
1248 				contpc = MIPSInst_SIMM(ir);
1249 				ir = dec_insn.next_insn;
1250 				if (dec_insn.micro_mips_mode) {
1251 					contpc = (xcp->cp0_epc + (contpc << 1));
1252 
1253 					/* If 16-bit instruction, not FPU. */
1254 					if ((dec_insn.next_pc_inc == 2) ||
1255 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1256 
1257 						/*
1258 						 * Since this instruction will
1259 						 * be put on the stack with
1260 						 * 32-bit words, get around
1261 						 * this problem by putting a
1262 						 * NOP16 as the second one.
1263 						 */
1264 						if (dec_insn.next_pc_inc == 2)
1265 							ir = (ir & (~0xffff)) | MM_NOP16;
1266 
1267 						/*
1268 						 * Single step the non-CP1
1269 						 * instruction in the dslot.
1270 						 */
1271 						sig = mips_dsemul(xcp, ir,
1272 								  bcpc, contpc);
1273 						if (sig < 0)
1274 							break;
1275 						if (sig)
1276 							xcp->cp0_epc = bcpc;
1277 						/*
1278 						 * SIGILL forces out of
1279 						 * the emulation loop.
1280 						 */
1281 						return sig ? sig : SIGILL;
1282 					}
1283 				} else
1284 					contpc = (xcp->cp0_epc + (contpc << 2));
1285 
1286 				switch (MIPSInst_OPCODE(ir)) {
1287 				case lwc1_op:
1288 				case swc1_op:
1289 					goto emul;
1290 
1291 				case ldc1_op:
1292 				case sdc1_op:
1293 					if (cpu_has_mips_2_3_4_5_r)
1294 						goto emul;
1295 
1296 					goto bc_sigill;
1297 
1298 				case cop1_op:
1299 					goto emul;
1300 
1301 				case cop1x_op:
1302 					if (cpu_has_mips_4_5_64_r2_r6)
1303 						/* its one of ours */
1304 						goto emul;
1305 
1306 					goto bc_sigill;
1307 
1308 				case spec_op:
1309 					switch (MIPSInst_FUNC(ir)) {
1310 					case movc_op:
1311 						if (cpu_has_mips_4_5_r)
1312 							goto emul;
1313 
1314 						goto bc_sigill;
1315 					}
1316 					break;
1317 
1318 				bc_sigill:
1319 					xcp->cp0_epc = bcpc;
1320 					return SIGILL;
1321 				}
1322 
1323 				/*
1324 				 * Single step the non-cp1
1325 				 * instruction in the dslot
1326 				 */
1327 				sig = mips_dsemul(xcp, ir, bcpc, contpc);
1328 				if (sig < 0)
1329 					break;
1330 				if (sig)
1331 					xcp->cp0_epc = bcpc;
1332 				/* SIGILL forces out of the emulation loop.  */
1333 				return sig ? sig : SIGILL;
1334 			} else if (likely) {	/* branch not taken */
1335 				/*
1336 				 * branch likely nullifies
1337 				 * dslot if not taken
1338 				 */
1339 				xcp->cp0_epc += dec_insn.pc_inc;
1340 				contpc += dec_insn.pc_inc;
1341 				/*
1342 				 * else continue & execute
1343 				 * dslot as normal insn
1344 				 */
1345 			}
1346 			break;
1347 
1348 		default:
1349 			if (!(MIPSInst_RS(ir) & 0x10))
1350 				return SIGILL;
1351 
1352 			/* a real fpu computation instruction */
1353 			if ((sig = fpu_emu(xcp, ctx, ir)))
1354 				return sig;
1355 		}
1356 		break;
1357 
1358 	case cop1x_op:
1359 		if (!cpu_has_mips_4_5_64_r2_r6)
1360 			return SIGILL;
1361 
1362 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1363 		if (sig)
1364 			return sig;
1365 		break;
1366 
1367 	case spec_op:
1368 		if (!cpu_has_mips_4_5_r)
1369 			return SIGILL;
1370 
1371 		if (MIPSInst_FUNC(ir) != movc_op)
1372 			return SIGILL;
1373 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1374 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1375 			xcp->regs[MIPSInst_RD(ir)] =
1376 				xcp->regs[MIPSInst_RS(ir)];
1377 		break;
1378 	default:
1379 		return SIGILL;
1380 	}
1381 
1382 	/* we did it !! */
1383 	xcp->cp0_epc = contpc;
1384 	clear_delay_slot(xcp);
1385 
1386 	return 0;
1387 }
1388 
1389 /*
1390  * Conversion table from MIPS compare ops 48-63
1391  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1392  */
1393 static const unsigned char cmptab[8] = {
1394 	0,			/* cmp_0 (sig) cmp_sf */
1395 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1396 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1397 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1398 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1399 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1400 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1401 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1402 };
1403 
1404 static const unsigned char negative_cmptab[8] = {
1405 	0, /* Reserved */
1406 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1407 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1408 	IEEE754_CLT | IEEE754_CGT,
1409 	/* Reserved */
1410 };
1411 
1412 
1413 /*
1414  * Additional MIPS4 instructions
1415  */
1416 
1417 #define DEF3OP(name, p, f1, f2, f3)					\
1418 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1419 	union ieee754##p s, union ieee754##p t)				\
1420 {									\
1421 	struct _ieee754_csr ieee754_csr_save;				\
1422 	s = f1(s, t);							\
1423 	ieee754_csr_save = ieee754_csr;					\
1424 	s = f2(s, r);							\
1425 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1426 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1427 	s = f3(s);							\
1428 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1429 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1430 	return s;							\
1431 }
1432 
1433 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1434 {
1435 	return ieee754dp_div(ieee754dp_one(0), d);
1436 }
1437 
1438 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1439 {
1440 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1441 }
1442 
1443 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1444 {
1445 	return ieee754sp_div(ieee754sp_one(0), s);
1446 }
1447 
1448 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1449 {
1450 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1451 }
1452 
1453 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1454 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1455 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1456 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1457 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1458 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1459 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1460 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1461 
1462 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1463 	mips_instruction ir, void *__user *fault_addr)
1464 {
1465 	unsigned rcsr = 0;	/* resulting csr */
1466 
1467 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1468 
1469 	switch (MIPSInst_FMA_FFMT(ir)) {
1470 	case s_fmt:{		/* 0 */
1471 
1472 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1473 		union ieee754sp fd, fr, fs, ft;
1474 		u32 __user *va;
1475 		u32 val;
1476 
1477 		switch (MIPSInst_FUNC(ir)) {
1478 		case lwxc1_op:
1479 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1480 				xcp->regs[MIPSInst_FT(ir)]);
1481 
1482 			MIPS_FPU_EMU_INC_STATS(loads);
1483 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1484 				MIPS_FPU_EMU_INC_STATS(errors);
1485 				*fault_addr = va;
1486 				return SIGBUS;
1487 			}
1488 			if (__get_user(val, va)) {
1489 				MIPS_FPU_EMU_INC_STATS(errors);
1490 				*fault_addr = va;
1491 				return SIGSEGV;
1492 			}
1493 			SITOREG(val, MIPSInst_FD(ir));
1494 			break;
1495 
1496 		case swxc1_op:
1497 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1498 				xcp->regs[MIPSInst_FT(ir)]);
1499 
1500 			MIPS_FPU_EMU_INC_STATS(stores);
1501 
1502 			SIFROMREG(val, MIPSInst_FS(ir));
1503 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1504 				MIPS_FPU_EMU_INC_STATS(errors);
1505 				*fault_addr = va;
1506 				return SIGBUS;
1507 			}
1508 			if (put_user(val, va)) {
1509 				MIPS_FPU_EMU_INC_STATS(errors);
1510 				*fault_addr = va;
1511 				return SIGSEGV;
1512 			}
1513 			break;
1514 
1515 		case madd_s_op:
1516 			handler = fpemu_sp_madd;
1517 			goto scoptop;
1518 		case msub_s_op:
1519 			handler = fpemu_sp_msub;
1520 			goto scoptop;
1521 		case nmadd_s_op:
1522 			handler = fpemu_sp_nmadd;
1523 			goto scoptop;
1524 		case nmsub_s_op:
1525 			handler = fpemu_sp_nmsub;
1526 			goto scoptop;
1527 
1528 		      scoptop:
1529 			SPFROMREG(fr, MIPSInst_FR(ir));
1530 			SPFROMREG(fs, MIPSInst_FS(ir));
1531 			SPFROMREG(ft, MIPSInst_FT(ir));
1532 			fd = (*handler) (fr, fs, ft);
1533 			SPTOREG(fd, MIPSInst_FD(ir));
1534 
1535 		      copcsr:
1536 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1537 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1538 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1539 			}
1540 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1541 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1542 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1543 			}
1544 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1545 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1546 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1547 			}
1548 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1549 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1550 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1551 			}
1552 
1553 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1554 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1555 				/*printk ("SIGFPE: FPU csr = %08x\n",
1556 				   ctx->fcr31); */
1557 				return SIGFPE;
1558 			}
1559 
1560 			break;
1561 
1562 		default:
1563 			return SIGILL;
1564 		}
1565 		break;
1566 	}
1567 
1568 	case d_fmt:{		/* 1 */
1569 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1570 		union ieee754dp fd, fr, fs, ft;
1571 		u64 __user *va;
1572 		u64 val;
1573 
1574 		switch (MIPSInst_FUNC(ir)) {
1575 		case ldxc1_op:
1576 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1577 				xcp->regs[MIPSInst_FT(ir)]);
1578 
1579 			MIPS_FPU_EMU_INC_STATS(loads);
1580 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1581 				MIPS_FPU_EMU_INC_STATS(errors);
1582 				*fault_addr = va;
1583 				return SIGBUS;
1584 			}
1585 			if (__get_user(val, va)) {
1586 				MIPS_FPU_EMU_INC_STATS(errors);
1587 				*fault_addr = va;
1588 				return SIGSEGV;
1589 			}
1590 			DITOREG(val, MIPSInst_FD(ir));
1591 			break;
1592 
1593 		case sdxc1_op:
1594 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1595 				xcp->regs[MIPSInst_FT(ir)]);
1596 
1597 			MIPS_FPU_EMU_INC_STATS(stores);
1598 			DIFROMREG(val, MIPSInst_FS(ir));
1599 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1600 				MIPS_FPU_EMU_INC_STATS(errors);
1601 				*fault_addr = va;
1602 				return SIGBUS;
1603 			}
1604 			if (__put_user(val, va)) {
1605 				MIPS_FPU_EMU_INC_STATS(errors);
1606 				*fault_addr = va;
1607 				return SIGSEGV;
1608 			}
1609 			break;
1610 
1611 		case madd_d_op:
1612 			handler = fpemu_dp_madd;
1613 			goto dcoptop;
1614 		case msub_d_op:
1615 			handler = fpemu_dp_msub;
1616 			goto dcoptop;
1617 		case nmadd_d_op:
1618 			handler = fpemu_dp_nmadd;
1619 			goto dcoptop;
1620 		case nmsub_d_op:
1621 			handler = fpemu_dp_nmsub;
1622 			goto dcoptop;
1623 
1624 		      dcoptop:
1625 			DPFROMREG(fr, MIPSInst_FR(ir));
1626 			DPFROMREG(fs, MIPSInst_FS(ir));
1627 			DPFROMREG(ft, MIPSInst_FT(ir));
1628 			fd = (*handler) (fr, fs, ft);
1629 			DPTOREG(fd, MIPSInst_FD(ir));
1630 			goto copcsr;
1631 
1632 		default:
1633 			return SIGILL;
1634 		}
1635 		break;
1636 	}
1637 
1638 	case 0x3:
1639 		if (MIPSInst_FUNC(ir) != pfetch_op)
1640 			return SIGILL;
1641 
1642 		/* ignore prefx operation */
1643 		break;
1644 
1645 	default:
1646 		return SIGILL;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 
1653 
1654 /*
1655  * Emulate a single COP1 arithmetic instruction.
1656  */
1657 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1658 	mips_instruction ir)
1659 {
1660 	int rfmt;		/* resulting format */
1661 	unsigned rcsr = 0;	/* resulting csr */
1662 	unsigned int oldrm;
1663 	unsigned int cbit;
1664 	unsigned cond;
1665 	union {
1666 		union ieee754dp d;
1667 		union ieee754sp s;
1668 		int w;
1669 		s64 l;
1670 	} rv;			/* resulting value */
1671 	u64 bits;
1672 
1673 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1674 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1675 	case s_fmt: {		/* 0 */
1676 		union {
1677 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1678 			union ieee754sp(*u) (union ieee754sp);
1679 		} handler;
1680 		union ieee754sp fd, fs, ft;
1681 
1682 		switch (MIPSInst_FUNC(ir)) {
1683 			/* binary ops */
1684 		case fadd_op:
1685 			handler.b = ieee754sp_add;
1686 			goto scopbop;
1687 		case fsub_op:
1688 			handler.b = ieee754sp_sub;
1689 			goto scopbop;
1690 		case fmul_op:
1691 			handler.b = ieee754sp_mul;
1692 			goto scopbop;
1693 		case fdiv_op:
1694 			handler.b = ieee754sp_div;
1695 			goto scopbop;
1696 
1697 			/* unary  ops */
1698 		case fsqrt_op:
1699 			if (!cpu_has_mips_2_3_4_5_r)
1700 				return SIGILL;
1701 
1702 			handler.u = ieee754sp_sqrt;
1703 			goto scopuop;
1704 
1705 		/*
1706 		 * Note that on some MIPS IV implementations such as the
1707 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1708 		 * achieve full IEEE-754 accuracy - however this emulator does.
1709 		 */
1710 		case frsqrt_op:
1711 			if (!cpu_has_mips_4_5_64_r2_r6)
1712 				return SIGILL;
1713 
1714 			handler.u = fpemu_sp_rsqrt;
1715 			goto scopuop;
1716 
1717 		case frecip_op:
1718 			if (!cpu_has_mips_4_5_64_r2_r6)
1719 				return SIGILL;
1720 
1721 			handler.u = fpemu_sp_recip;
1722 			goto scopuop;
1723 
1724 		case fmovc_op:
1725 			if (!cpu_has_mips_4_5_r)
1726 				return SIGILL;
1727 
1728 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1729 			if (((ctx->fcr31 & cond) != 0) !=
1730 				((MIPSInst_FT(ir) & 1) != 0))
1731 				return 0;
1732 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1733 			break;
1734 
1735 		case fmovz_op:
1736 			if (!cpu_has_mips_4_5_r)
1737 				return SIGILL;
1738 
1739 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1740 				return 0;
1741 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1742 			break;
1743 
1744 		case fmovn_op:
1745 			if (!cpu_has_mips_4_5_r)
1746 				return SIGILL;
1747 
1748 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1749 				return 0;
1750 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1751 			break;
1752 
1753 		case fseleqz_op:
1754 			if (!cpu_has_mips_r6)
1755 				return SIGILL;
1756 
1757 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1758 			if (rv.w & 0x1)
1759 				rv.w = 0;
1760 			else
1761 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1762 			break;
1763 
1764 		case fselnez_op:
1765 			if (!cpu_has_mips_r6)
1766 				return SIGILL;
1767 
1768 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1769 			if (rv.w & 0x1)
1770 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1771 			else
1772 				rv.w = 0;
1773 			break;
1774 
1775 		case fmaddf_op: {
1776 			union ieee754sp ft, fs, fd;
1777 
1778 			if (!cpu_has_mips_r6)
1779 				return SIGILL;
1780 
1781 			SPFROMREG(ft, MIPSInst_FT(ir));
1782 			SPFROMREG(fs, MIPSInst_FS(ir));
1783 			SPFROMREG(fd, MIPSInst_FD(ir));
1784 			rv.s = ieee754sp_maddf(fd, fs, ft);
1785 			break;
1786 		}
1787 
1788 		case fmsubf_op: {
1789 			union ieee754sp ft, fs, fd;
1790 
1791 			if (!cpu_has_mips_r6)
1792 				return SIGILL;
1793 
1794 			SPFROMREG(ft, MIPSInst_FT(ir));
1795 			SPFROMREG(fs, MIPSInst_FS(ir));
1796 			SPFROMREG(fd, MIPSInst_FD(ir));
1797 			rv.s = ieee754sp_msubf(fd, fs, ft);
1798 			break;
1799 		}
1800 
1801 		case frint_op: {
1802 			union ieee754sp fs;
1803 
1804 			if (!cpu_has_mips_r6)
1805 				return SIGILL;
1806 
1807 			SPFROMREG(fs, MIPSInst_FS(ir));
1808 			rv.l = ieee754sp_tlong(fs);
1809 			rv.s = ieee754sp_flong(rv.l);
1810 			goto copcsr;
1811 		}
1812 
1813 		case fclass_op: {
1814 			union ieee754sp fs;
1815 
1816 			if (!cpu_has_mips_r6)
1817 				return SIGILL;
1818 
1819 			SPFROMREG(fs, MIPSInst_FS(ir));
1820 			rv.w = ieee754sp_2008class(fs);
1821 			rfmt = w_fmt;
1822 			break;
1823 		}
1824 
1825 		case fmin_op: {
1826 			union ieee754sp fs, ft;
1827 
1828 			if (!cpu_has_mips_r6)
1829 				return SIGILL;
1830 
1831 			SPFROMREG(ft, MIPSInst_FT(ir));
1832 			SPFROMREG(fs, MIPSInst_FS(ir));
1833 			rv.s = ieee754sp_fmin(fs, ft);
1834 			break;
1835 		}
1836 
1837 		case fmina_op: {
1838 			union ieee754sp fs, ft;
1839 
1840 			if (!cpu_has_mips_r6)
1841 				return SIGILL;
1842 
1843 			SPFROMREG(ft, MIPSInst_FT(ir));
1844 			SPFROMREG(fs, MIPSInst_FS(ir));
1845 			rv.s = ieee754sp_fmina(fs, ft);
1846 			break;
1847 		}
1848 
1849 		case fmax_op: {
1850 			union ieee754sp fs, ft;
1851 
1852 			if (!cpu_has_mips_r6)
1853 				return SIGILL;
1854 
1855 			SPFROMREG(ft, MIPSInst_FT(ir));
1856 			SPFROMREG(fs, MIPSInst_FS(ir));
1857 			rv.s = ieee754sp_fmax(fs, ft);
1858 			break;
1859 		}
1860 
1861 		case fmaxa_op: {
1862 			union ieee754sp fs, ft;
1863 
1864 			if (!cpu_has_mips_r6)
1865 				return SIGILL;
1866 
1867 			SPFROMREG(ft, MIPSInst_FT(ir));
1868 			SPFROMREG(fs, MIPSInst_FS(ir));
1869 			rv.s = ieee754sp_fmaxa(fs, ft);
1870 			break;
1871 		}
1872 
1873 		case fabs_op:
1874 			handler.u = ieee754sp_abs;
1875 			goto scopuop;
1876 
1877 		case fneg_op:
1878 			handler.u = ieee754sp_neg;
1879 			goto scopuop;
1880 
1881 		case fmov_op:
1882 			/* an easy one */
1883 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1884 			goto copcsr;
1885 
1886 			/* binary op on handler */
1887 scopbop:
1888 			SPFROMREG(fs, MIPSInst_FS(ir));
1889 			SPFROMREG(ft, MIPSInst_FT(ir));
1890 
1891 			rv.s = (*handler.b) (fs, ft);
1892 			goto copcsr;
1893 scopuop:
1894 			SPFROMREG(fs, MIPSInst_FS(ir));
1895 			rv.s = (*handler.u) (fs);
1896 			goto copcsr;
1897 copcsr:
1898 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1899 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1900 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1901 			}
1902 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1903 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1904 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1905 			}
1906 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1907 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1908 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1909 			}
1910 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1911 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1912 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1913 			}
1914 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1915 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1916 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1917 			}
1918 			break;
1919 
1920 			/* unary conv ops */
1921 		case fcvts_op:
1922 			return SIGILL;	/* not defined */
1923 
1924 		case fcvtd_op:
1925 			SPFROMREG(fs, MIPSInst_FS(ir));
1926 			rv.d = ieee754dp_fsp(fs);
1927 			rfmt = d_fmt;
1928 			goto copcsr;
1929 
1930 		case fcvtw_op:
1931 			SPFROMREG(fs, MIPSInst_FS(ir));
1932 			rv.w = ieee754sp_tint(fs);
1933 			rfmt = w_fmt;
1934 			goto copcsr;
1935 
1936 		case fround_op:
1937 		case ftrunc_op:
1938 		case fceil_op:
1939 		case ffloor_op:
1940 			if (!cpu_has_mips_2_3_4_5_r)
1941 				return SIGILL;
1942 
1943 			oldrm = ieee754_csr.rm;
1944 			SPFROMREG(fs, MIPSInst_FS(ir));
1945 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1946 			rv.w = ieee754sp_tint(fs);
1947 			ieee754_csr.rm = oldrm;
1948 			rfmt = w_fmt;
1949 			goto copcsr;
1950 
1951 		case fsel_op:
1952 			if (!cpu_has_mips_r6)
1953 				return SIGILL;
1954 
1955 			SPFROMREG(fd, MIPSInst_FD(ir));
1956 			if (fd.bits & 0x1)
1957 				SPFROMREG(rv.s, MIPSInst_FT(ir));
1958 			else
1959 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1960 			break;
1961 
1962 		case fcvtl_op:
1963 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1964 				return SIGILL;
1965 
1966 			SPFROMREG(fs, MIPSInst_FS(ir));
1967 			rv.l = ieee754sp_tlong(fs);
1968 			rfmt = l_fmt;
1969 			goto copcsr;
1970 
1971 		case froundl_op:
1972 		case ftruncl_op:
1973 		case fceill_op:
1974 		case ffloorl_op:
1975 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1976 				return SIGILL;
1977 
1978 			oldrm = ieee754_csr.rm;
1979 			SPFROMREG(fs, MIPSInst_FS(ir));
1980 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1981 			rv.l = ieee754sp_tlong(fs);
1982 			ieee754_csr.rm = oldrm;
1983 			rfmt = l_fmt;
1984 			goto copcsr;
1985 
1986 		default:
1987 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1988 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1989 				union ieee754sp fs, ft;
1990 
1991 				SPFROMREG(fs, MIPSInst_FS(ir));
1992 				SPFROMREG(ft, MIPSInst_FT(ir));
1993 				rv.w = ieee754sp_cmp(fs, ft,
1994 					cmptab[cmpop & 0x7], cmpop & 0x8);
1995 				rfmt = -1;
1996 				if ((cmpop & 0x8) && ieee754_cxtest
1997 					(IEEE754_INVALID_OPERATION))
1998 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1999 				else
2000 					goto copcsr;
2001 
2002 			} else
2003 				return SIGILL;
2004 			break;
2005 		}
2006 		break;
2007 	}
2008 
2009 	case d_fmt: {
2010 		union ieee754dp fd, fs, ft;
2011 		union {
2012 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2013 			union ieee754dp(*u) (union ieee754dp);
2014 		} handler;
2015 
2016 		switch (MIPSInst_FUNC(ir)) {
2017 			/* binary ops */
2018 		case fadd_op:
2019 			handler.b = ieee754dp_add;
2020 			goto dcopbop;
2021 		case fsub_op:
2022 			handler.b = ieee754dp_sub;
2023 			goto dcopbop;
2024 		case fmul_op:
2025 			handler.b = ieee754dp_mul;
2026 			goto dcopbop;
2027 		case fdiv_op:
2028 			handler.b = ieee754dp_div;
2029 			goto dcopbop;
2030 
2031 			/* unary  ops */
2032 		case fsqrt_op:
2033 			if (!cpu_has_mips_2_3_4_5_r)
2034 				return SIGILL;
2035 
2036 			handler.u = ieee754dp_sqrt;
2037 			goto dcopuop;
2038 		/*
2039 		 * Note that on some MIPS IV implementations such as the
2040 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2041 		 * achieve full IEEE-754 accuracy - however this emulator does.
2042 		 */
2043 		case frsqrt_op:
2044 			if (!cpu_has_mips_4_5_64_r2_r6)
2045 				return SIGILL;
2046 
2047 			handler.u = fpemu_dp_rsqrt;
2048 			goto dcopuop;
2049 		case frecip_op:
2050 			if (!cpu_has_mips_4_5_64_r2_r6)
2051 				return SIGILL;
2052 
2053 			handler.u = fpemu_dp_recip;
2054 			goto dcopuop;
2055 		case fmovc_op:
2056 			if (!cpu_has_mips_4_5_r)
2057 				return SIGILL;
2058 
2059 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2060 			if (((ctx->fcr31 & cond) != 0) !=
2061 				((MIPSInst_FT(ir) & 1) != 0))
2062 				return 0;
2063 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2064 			break;
2065 		case fmovz_op:
2066 			if (!cpu_has_mips_4_5_r)
2067 				return SIGILL;
2068 
2069 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2070 				return 0;
2071 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2072 			break;
2073 		case fmovn_op:
2074 			if (!cpu_has_mips_4_5_r)
2075 				return SIGILL;
2076 
2077 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2078 				return 0;
2079 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2080 			break;
2081 
2082 		case fseleqz_op:
2083 			if (!cpu_has_mips_r6)
2084 				return SIGILL;
2085 
2086 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2087 			if (rv.l & 0x1)
2088 				rv.l = 0;
2089 			else
2090 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2091 			break;
2092 
2093 		case fselnez_op:
2094 			if (!cpu_has_mips_r6)
2095 				return SIGILL;
2096 
2097 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2098 			if (rv.l & 0x1)
2099 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2100 			else
2101 				rv.l = 0;
2102 			break;
2103 
2104 		case fmaddf_op: {
2105 			union ieee754dp ft, fs, fd;
2106 
2107 			if (!cpu_has_mips_r6)
2108 				return SIGILL;
2109 
2110 			DPFROMREG(ft, MIPSInst_FT(ir));
2111 			DPFROMREG(fs, MIPSInst_FS(ir));
2112 			DPFROMREG(fd, MIPSInst_FD(ir));
2113 			rv.d = ieee754dp_maddf(fd, fs, ft);
2114 			break;
2115 		}
2116 
2117 		case fmsubf_op: {
2118 			union ieee754dp ft, fs, fd;
2119 
2120 			if (!cpu_has_mips_r6)
2121 				return SIGILL;
2122 
2123 			DPFROMREG(ft, MIPSInst_FT(ir));
2124 			DPFROMREG(fs, MIPSInst_FS(ir));
2125 			DPFROMREG(fd, MIPSInst_FD(ir));
2126 			rv.d = ieee754dp_msubf(fd, fs, ft);
2127 			break;
2128 		}
2129 
2130 		case frint_op: {
2131 			union ieee754dp fs;
2132 
2133 			if (!cpu_has_mips_r6)
2134 				return SIGILL;
2135 
2136 			DPFROMREG(fs, MIPSInst_FS(ir));
2137 			rv.l = ieee754dp_tlong(fs);
2138 			rv.d = ieee754dp_flong(rv.l);
2139 			goto copcsr;
2140 		}
2141 
2142 		case fclass_op: {
2143 			union ieee754dp fs;
2144 
2145 			if (!cpu_has_mips_r6)
2146 				return SIGILL;
2147 
2148 			DPFROMREG(fs, MIPSInst_FS(ir));
2149 			rv.w = ieee754dp_2008class(fs);
2150 			rfmt = w_fmt;
2151 			break;
2152 		}
2153 
2154 		case fmin_op: {
2155 			union ieee754dp fs, ft;
2156 
2157 			if (!cpu_has_mips_r6)
2158 				return SIGILL;
2159 
2160 			DPFROMREG(ft, MIPSInst_FT(ir));
2161 			DPFROMREG(fs, MIPSInst_FS(ir));
2162 			rv.d = ieee754dp_fmin(fs, ft);
2163 			break;
2164 		}
2165 
2166 		case fmina_op: {
2167 			union ieee754dp fs, ft;
2168 
2169 			if (!cpu_has_mips_r6)
2170 				return SIGILL;
2171 
2172 			DPFROMREG(ft, MIPSInst_FT(ir));
2173 			DPFROMREG(fs, MIPSInst_FS(ir));
2174 			rv.d = ieee754dp_fmina(fs, ft);
2175 			break;
2176 		}
2177 
2178 		case fmax_op: {
2179 			union ieee754dp fs, ft;
2180 
2181 			if (!cpu_has_mips_r6)
2182 				return SIGILL;
2183 
2184 			DPFROMREG(ft, MIPSInst_FT(ir));
2185 			DPFROMREG(fs, MIPSInst_FS(ir));
2186 			rv.d = ieee754dp_fmax(fs, ft);
2187 			break;
2188 		}
2189 
2190 		case fmaxa_op: {
2191 			union ieee754dp fs, ft;
2192 
2193 			if (!cpu_has_mips_r6)
2194 				return SIGILL;
2195 
2196 			DPFROMREG(ft, MIPSInst_FT(ir));
2197 			DPFROMREG(fs, MIPSInst_FS(ir));
2198 			rv.d = ieee754dp_fmaxa(fs, ft);
2199 			break;
2200 		}
2201 
2202 		case fabs_op:
2203 			handler.u = ieee754dp_abs;
2204 			goto dcopuop;
2205 
2206 		case fneg_op:
2207 			handler.u = ieee754dp_neg;
2208 			goto dcopuop;
2209 
2210 		case fmov_op:
2211 			/* an easy one */
2212 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2213 			goto copcsr;
2214 
2215 			/* binary op on handler */
2216 dcopbop:
2217 			DPFROMREG(fs, MIPSInst_FS(ir));
2218 			DPFROMREG(ft, MIPSInst_FT(ir));
2219 
2220 			rv.d = (*handler.b) (fs, ft);
2221 			goto copcsr;
2222 dcopuop:
2223 			DPFROMREG(fs, MIPSInst_FS(ir));
2224 			rv.d = (*handler.u) (fs);
2225 			goto copcsr;
2226 
2227 		/*
2228 		 * unary conv ops
2229 		 */
2230 		case fcvts_op:
2231 			DPFROMREG(fs, MIPSInst_FS(ir));
2232 			rv.s = ieee754sp_fdp(fs);
2233 			rfmt = s_fmt;
2234 			goto copcsr;
2235 
2236 		case fcvtd_op:
2237 			return SIGILL;	/* not defined */
2238 
2239 		case fcvtw_op:
2240 			DPFROMREG(fs, MIPSInst_FS(ir));
2241 			rv.w = ieee754dp_tint(fs);	/* wrong */
2242 			rfmt = w_fmt;
2243 			goto copcsr;
2244 
2245 		case fround_op:
2246 		case ftrunc_op:
2247 		case fceil_op:
2248 		case ffloor_op:
2249 			if (!cpu_has_mips_2_3_4_5_r)
2250 				return SIGILL;
2251 
2252 			oldrm = ieee754_csr.rm;
2253 			DPFROMREG(fs, MIPSInst_FS(ir));
2254 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2255 			rv.w = ieee754dp_tint(fs);
2256 			ieee754_csr.rm = oldrm;
2257 			rfmt = w_fmt;
2258 			goto copcsr;
2259 
2260 		case fsel_op:
2261 			if (!cpu_has_mips_r6)
2262 				return SIGILL;
2263 
2264 			DPFROMREG(fd, MIPSInst_FD(ir));
2265 			if (fd.bits & 0x1)
2266 				DPFROMREG(rv.d, MIPSInst_FT(ir));
2267 			else
2268 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2269 			break;
2270 
2271 		case fcvtl_op:
2272 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2273 				return SIGILL;
2274 
2275 			DPFROMREG(fs, MIPSInst_FS(ir));
2276 			rv.l = ieee754dp_tlong(fs);
2277 			rfmt = l_fmt;
2278 			goto copcsr;
2279 
2280 		case froundl_op:
2281 		case ftruncl_op:
2282 		case fceill_op:
2283 		case ffloorl_op:
2284 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2285 				return SIGILL;
2286 
2287 			oldrm = ieee754_csr.rm;
2288 			DPFROMREG(fs, MIPSInst_FS(ir));
2289 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2290 			rv.l = ieee754dp_tlong(fs);
2291 			ieee754_csr.rm = oldrm;
2292 			rfmt = l_fmt;
2293 			goto copcsr;
2294 
2295 		default:
2296 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2297 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2298 				union ieee754dp fs, ft;
2299 
2300 				DPFROMREG(fs, MIPSInst_FS(ir));
2301 				DPFROMREG(ft, MIPSInst_FT(ir));
2302 				rv.w = ieee754dp_cmp(fs, ft,
2303 					cmptab[cmpop & 0x7], cmpop & 0x8);
2304 				rfmt = -1;
2305 				if ((cmpop & 0x8)
2306 					&&
2307 					ieee754_cxtest
2308 					(IEEE754_INVALID_OPERATION))
2309 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2310 				else
2311 					goto copcsr;
2312 
2313 			}
2314 			else {
2315 				return SIGILL;
2316 			}
2317 			break;
2318 		}
2319 		break;
2320 	}
2321 
2322 	case w_fmt: {
2323 		union ieee754dp fs;
2324 
2325 		switch (MIPSInst_FUNC(ir)) {
2326 		case fcvts_op:
2327 			/* convert word to single precision real */
2328 			SPFROMREG(fs, MIPSInst_FS(ir));
2329 			rv.s = ieee754sp_fint(fs.bits);
2330 			rfmt = s_fmt;
2331 			goto copcsr;
2332 		case fcvtd_op:
2333 			/* convert word to double precision real */
2334 			SPFROMREG(fs, MIPSInst_FS(ir));
2335 			rv.d = ieee754dp_fint(fs.bits);
2336 			rfmt = d_fmt;
2337 			goto copcsr;
2338 		default: {
2339 			/* Emulating the new CMP.condn.fmt R6 instruction */
2340 #define CMPOP_MASK	0x7
2341 #define SIGN_BIT	(0x1 << 3)
2342 #define PREDICATE_BIT	(0x1 << 4)
2343 
2344 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2345 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2346 			union ieee754sp fs, ft;
2347 
2348 			/* This is an R6 only instruction */
2349 			if (!cpu_has_mips_r6 ||
2350 			    (MIPSInst_FUNC(ir) & 0x20))
2351 				return SIGILL;
2352 
2353 			/* fmt is w_fmt for single precision so fix it */
2354 			rfmt = s_fmt;
2355 			/* default to false */
2356 			rv.w = 0;
2357 
2358 			/* CMP.condn.S */
2359 			SPFROMREG(fs, MIPSInst_FS(ir));
2360 			SPFROMREG(ft, MIPSInst_FT(ir));
2361 
2362 			/* positive predicates */
2363 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2364 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2365 						  sig))
2366 				    rv.w = -1; /* true, all 1s */
2367 				if ((sig) &&
2368 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2369 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2370 				else
2371 					goto copcsr;
2372 			} else {
2373 				/* negative predicates */
2374 				switch (cmpop) {
2375 				case 1:
2376 				case 2:
2377 				case 3:
2378 					if (ieee754sp_cmp(fs, ft,
2379 							  negative_cmptab[cmpop],
2380 							  sig))
2381 						rv.w = -1; /* true, all 1s */
2382 					if (sig &&
2383 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2384 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2385 					else
2386 						goto copcsr;
2387 					break;
2388 				default:
2389 					/* Reserved R6 ops */
2390 					pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2391 					return SIGILL;
2392 				}
2393 			}
2394 			break;
2395 			}
2396 		}
2397 	}
2398 
2399 	case l_fmt:
2400 
2401 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2402 			return SIGILL;
2403 
2404 		DIFROMREG(bits, MIPSInst_FS(ir));
2405 
2406 		switch (MIPSInst_FUNC(ir)) {
2407 		case fcvts_op:
2408 			/* convert long to single precision real */
2409 			rv.s = ieee754sp_flong(bits);
2410 			rfmt = s_fmt;
2411 			goto copcsr;
2412 		case fcvtd_op:
2413 			/* convert long to double precision real */
2414 			rv.d = ieee754dp_flong(bits);
2415 			rfmt = d_fmt;
2416 			goto copcsr;
2417 		default: {
2418 			/* Emulating the new CMP.condn.fmt R6 instruction */
2419 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2420 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2421 			union ieee754dp fs, ft;
2422 
2423 			if (!cpu_has_mips_r6 ||
2424 			    (MIPSInst_FUNC(ir) & 0x20))
2425 				return SIGILL;
2426 
2427 			/* fmt is l_fmt for double precision so fix it */
2428 			rfmt = d_fmt;
2429 			/* default to false */
2430 			rv.l = 0;
2431 
2432 			/* CMP.condn.D */
2433 			DPFROMREG(fs, MIPSInst_FS(ir));
2434 			DPFROMREG(ft, MIPSInst_FT(ir));
2435 
2436 			/* positive predicates */
2437 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2438 				if (ieee754dp_cmp(fs, ft,
2439 						  cmptab[cmpop], sig))
2440 				    rv.l = -1LL; /* true, all 1s */
2441 				if (sig &&
2442 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2443 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2444 				else
2445 					goto copcsr;
2446 			} else {
2447 				/* negative predicates */
2448 				switch (cmpop) {
2449 				case 1:
2450 				case 2:
2451 				case 3:
2452 					if (ieee754dp_cmp(fs, ft,
2453 							  negative_cmptab[cmpop],
2454 							  sig))
2455 						rv.l = -1LL; /* true, all 1s */
2456 					if (sig &&
2457 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2458 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2459 					else
2460 						goto copcsr;
2461 					break;
2462 				default:
2463 					/* Reserved R6 ops */
2464 					pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2465 					return SIGILL;
2466 				}
2467 			}
2468 			break;
2469 			}
2470 		}
2471 	default:
2472 		return SIGILL;
2473 	}
2474 
2475 	/*
2476 	 * Update the fpu CSR register for this operation.
2477 	 * If an exception is required, generate a tidy SIGFPE exception,
2478 	 * without updating the result register.
2479 	 * Note: cause exception bits do not accumulate, they are rewritten
2480 	 * for each op; only the flag/sticky bits accumulate.
2481 	 */
2482 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2483 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2484 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2485 		return SIGFPE;
2486 	}
2487 
2488 	/*
2489 	 * Now we can safely write the result back to the register file.
2490 	 */
2491 	switch (rfmt) {
2492 	case -1:
2493 
2494 		if (cpu_has_mips_4_5_r)
2495 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2496 		else
2497 			cbit = FPU_CSR_COND;
2498 		if (rv.w)
2499 			ctx->fcr31 |= cbit;
2500 		else
2501 			ctx->fcr31 &= ~cbit;
2502 		break;
2503 
2504 	case d_fmt:
2505 		DPTOREG(rv.d, MIPSInst_FD(ir));
2506 		break;
2507 	case s_fmt:
2508 		SPTOREG(rv.s, MIPSInst_FD(ir));
2509 		break;
2510 	case w_fmt:
2511 		SITOREG(rv.w, MIPSInst_FD(ir));
2512 		break;
2513 	case l_fmt:
2514 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2515 			return SIGILL;
2516 
2517 		DITOREG(rv.l, MIPSInst_FD(ir));
2518 		break;
2519 	default:
2520 		return SIGILL;
2521 	}
2522 
2523 	return 0;
2524 }
2525 
2526 /*
2527  * Emulate FPU instructions.
2528  *
2529  * If we use FPU hardware, then we have been typically called to handle
2530  * an unimplemented operation, such as where an operand is a NaN or
2531  * denormalized.  In that case exit the emulation loop after a single
2532  * iteration so as to let hardware execute any subsequent instructions.
2533  *
2534  * If we have no FPU hardware or it has been disabled, then continue
2535  * emulating floating-point instructions until one of these conditions
2536  * has occurred:
2537  *
2538  * - a non-FPU instruction has been encountered,
2539  *
2540  * - an attempt to emulate has ended with a signal,
2541  *
2542  * - the ISA mode has been switched.
2543  *
2544  * We need to terminate the emulation loop if we got switched to the
2545  * MIPS16 mode, whether supported or not, so that we do not attempt
2546  * to emulate a MIPS16 instruction as a regular MIPS FPU instruction.
2547  * Similarly if we got switched to the microMIPS mode and only the
2548  * regular MIPS mode is supported, so that we do not attempt to emulate
2549  * a microMIPS instruction as a regular MIPS FPU instruction.  Or if
2550  * we got switched to the regular MIPS mode and only the microMIPS mode
2551  * is supported, so that we do not attempt to emulate a regular MIPS
2552  * instruction that should cause an Address Error exception instead.
2553  * For simplicity we always terminate upon an ISA mode switch.
2554  */
2555 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2556 	int has_fpu, void *__user *fault_addr)
2557 {
2558 	unsigned long oldepc, prevepc;
2559 	struct mm_decoded_insn dec_insn;
2560 	u16 instr[4];
2561 	u16 *instr_ptr;
2562 	int sig = 0;
2563 
2564 	oldepc = xcp->cp0_epc;
2565 	do {
2566 		prevepc = xcp->cp0_epc;
2567 
2568 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2569 			/*
2570 			 * Get next 2 microMIPS instructions and convert them
2571 			 * into 32-bit instructions.
2572 			 */
2573 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2574 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2575 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2576 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2577 				MIPS_FPU_EMU_INC_STATS(errors);
2578 				return SIGBUS;
2579 			}
2580 			instr_ptr = instr;
2581 
2582 			/* Get first instruction. */
2583 			if (mm_insn_16bit(*instr_ptr)) {
2584 				/* Duplicate the half-word. */
2585 				dec_insn.insn = (*instr_ptr << 16) |
2586 					(*instr_ptr);
2587 				/* 16-bit instruction. */
2588 				dec_insn.pc_inc = 2;
2589 				instr_ptr += 1;
2590 			} else {
2591 				dec_insn.insn = (*instr_ptr << 16) |
2592 					*(instr_ptr+1);
2593 				/* 32-bit instruction. */
2594 				dec_insn.pc_inc = 4;
2595 				instr_ptr += 2;
2596 			}
2597 			/* Get second instruction. */
2598 			if (mm_insn_16bit(*instr_ptr)) {
2599 				/* Duplicate the half-word. */
2600 				dec_insn.next_insn = (*instr_ptr << 16) |
2601 					(*instr_ptr);
2602 				/* 16-bit instruction. */
2603 				dec_insn.next_pc_inc = 2;
2604 			} else {
2605 				dec_insn.next_insn = (*instr_ptr << 16) |
2606 					*(instr_ptr+1);
2607 				/* 32-bit instruction. */
2608 				dec_insn.next_pc_inc = 4;
2609 			}
2610 			dec_insn.micro_mips_mode = 1;
2611 		} else {
2612 			if ((get_user(dec_insn.insn,
2613 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2614 			    (get_user(dec_insn.next_insn,
2615 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2616 				MIPS_FPU_EMU_INC_STATS(errors);
2617 				return SIGBUS;
2618 			}
2619 			dec_insn.pc_inc = 4;
2620 			dec_insn.next_pc_inc = 4;
2621 			dec_insn.micro_mips_mode = 0;
2622 		}
2623 
2624 		if ((dec_insn.insn == 0) ||
2625 		   ((dec_insn.pc_inc == 2) &&
2626 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2627 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2628 		else {
2629 			/*
2630 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2631 			 * No need to copy ctx->fcr31 to ieee754_csr.
2632 			 */
2633 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2634 		}
2635 
2636 		if (has_fpu)
2637 			break;
2638 		if (sig)
2639 			break;
2640 		/*
2641 		 * We have to check for the ISA bit explicitly here,
2642 		 * because `get_isa16_mode' may return 0 if support
2643 		 * for code compression has been globally disabled,
2644 		 * or otherwise we may produce the wrong signal or
2645 		 * even proceed successfully where we must not.
2646 		 */
2647 		if ((xcp->cp0_epc ^ prevepc) & 0x1)
2648 			break;
2649 
2650 		cond_resched();
2651 	} while (xcp->cp0_epc > prevepc);
2652 
2653 	/* SIGILL indicates a non-fpu instruction */
2654 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2655 		/* but if EPC has advanced, then ignore it */
2656 		sig = 0;
2657 
2658 	return sig;
2659 }
2660