1 /* 2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator 3 * 4 * MIPS floating point support 5 * Copyright (C) 1994-2000 Algorithmics Ltd. 6 * 7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 8 * Copyright (C) 2000 MIPS Technologies, Inc. 9 * 10 * This program is free software; you can distribute it and/or modify it 11 * under the terms of the GNU General Public License (Version 2) as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 * for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write to the Free Software Foundation, Inc., 21 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 22 * 23 * A complete emulator for MIPS coprocessor 1 instructions. This is 24 * required for #float(switch) or #float(trap), where it catches all 25 * COP1 instructions via the "CoProcessor Unusable" exception. 26 * 27 * More surprisingly it is also required for #float(ieee), to help out 28 * the hardware FPU at the boundaries of the IEEE-754 representation 29 * (denormalised values, infinities, underflow, etc). It is made 30 * quite nasty because emulation of some non-COP1 instructions is 31 * required, e.g. in branch delay slots. 32 * 33 * Note if you know that you won't have an FPU, then you'll get much 34 * better performance by compiling with -msoft-float! 35 */ 36 #include <linux/sched.h> 37 #include <linux/debugfs.h> 38 #include <linux/kconfig.h> 39 #include <linux/percpu-defs.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/branch.h> 43 #include <asm/inst.h> 44 #include <asm/ptrace.h> 45 #include <asm/signal.h> 46 #include <asm/uaccess.h> 47 48 #include <asm/cpu-info.h> 49 #include <asm/processor.h> 50 #include <asm/fpu_emulator.h> 51 #include <asm/fpu.h> 52 #include <asm/mips-r2-to-r6-emul.h> 53 54 #include "ieee754.h" 55 56 /* Function which emulates a floating point instruction. */ 57 58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *, 59 mips_instruction); 60 61 static int fpux_emu(struct pt_regs *, 62 struct mips_fpu_struct *, mips_instruction, void *__user *); 63 64 /* Control registers */ 65 66 #define FPCREG_RID 0 /* $0 = revision id */ 67 #define FPCREG_FCCR 25 /* $25 = fccr */ 68 #define FPCREG_FEXR 26 /* $26 = fexr */ 69 #define FPCREG_FENR 28 /* $28 = fenr */ 70 #define FPCREG_CSR 31 /* $31 = csr */ 71 72 /* convert condition code register number to csr bit */ 73 const unsigned int fpucondbit[8] = { 74 FPU_CSR_COND, 75 FPU_CSR_COND1, 76 FPU_CSR_COND2, 77 FPU_CSR_COND3, 78 FPU_CSR_COND4, 79 FPU_CSR_COND5, 80 FPU_CSR_COND6, 81 FPU_CSR_COND7 82 }; 83 84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */ 85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0}; 86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0}; 87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0}; 88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0}; 89 90 /* 91 * This functions translates a 32-bit microMIPS instruction 92 * into a 32-bit MIPS32 instruction. Returns 0 on success 93 * and SIGILL otherwise. 94 */ 95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr) 96 { 97 union mips_instruction insn = *insn_ptr; 98 union mips_instruction mips32_insn = insn; 99 int func, fmt, op; 100 101 switch (insn.mm_i_format.opcode) { 102 case mm_ldc132_op: 103 mips32_insn.mm_i_format.opcode = ldc1_op; 104 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 105 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 106 break; 107 case mm_lwc132_op: 108 mips32_insn.mm_i_format.opcode = lwc1_op; 109 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 110 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 111 break; 112 case mm_sdc132_op: 113 mips32_insn.mm_i_format.opcode = sdc1_op; 114 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 115 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 116 break; 117 case mm_swc132_op: 118 mips32_insn.mm_i_format.opcode = swc1_op; 119 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 120 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 121 break; 122 case mm_pool32i_op: 123 /* NOTE: offset is << by 1 if in microMIPS mode. */ 124 if ((insn.mm_i_format.rt == mm_bc1f_op) || 125 (insn.mm_i_format.rt == mm_bc1t_op)) { 126 mips32_insn.fb_format.opcode = cop1_op; 127 mips32_insn.fb_format.bc = bc_op; 128 mips32_insn.fb_format.flag = 129 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0; 130 } else 131 return SIGILL; 132 break; 133 case mm_pool32f_op: 134 switch (insn.mm_fp0_format.func) { 135 case mm_32f_01_op: 136 case mm_32f_11_op: 137 case mm_32f_02_op: 138 case mm_32f_12_op: 139 case mm_32f_41_op: 140 case mm_32f_51_op: 141 case mm_32f_42_op: 142 case mm_32f_52_op: 143 op = insn.mm_fp0_format.func; 144 if (op == mm_32f_01_op) 145 func = madd_s_op; 146 else if (op == mm_32f_11_op) 147 func = madd_d_op; 148 else if (op == mm_32f_02_op) 149 func = nmadd_s_op; 150 else if (op == mm_32f_12_op) 151 func = nmadd_d_op; 152 else if (op == mm_32f_41_op) 153 func = msub_s_op; 154 else if (op == mm_32f_51_op) 155 func = msub_d_op; 156 else if (op == mm_32f_42_op) 157 func = nmsub_s_op; 158 else 159 func = nmsub_d_op; 160 mips32_insn.fp6_format.opcode = cop1x_op; 161 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr; 162 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft; 163 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs; 164 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd; 165 mips32_insn.fp6_format.func = func; 166 break; 167 case mm_32f_10_op: 168 func = -1; /* Invalid */ 169 op = insn.mm_fp5_format.op & 0x7; 170 if (op == mm_ldxc1_op) 171 func = ldxc1_op; 172 else if (op == mm_sdxc1_op) 173 func = sdxc1_op; 174 else if (op == mm_lwxc1_op) 175 func = lwxc1_op; 176 else if (op == mm_swxc1_op) 177 func = swxc1_op; 178 179 if (func != -1) { 180 mips32_insn.r_format.opcode = cop1x_op; 181 mips32_insn.r_format.rs = 182 insn.mm_fp5_format.base; 183 mips32_insn.r_format.rt = 184 insn.mm_fp5_format.index; 185 mips32_insn.r_format.rd = 0; 186 mips32_insn.r_format.re = insn.mm_fp5_format.fd; 187 mips32_insn.r_format.func = func; 188 } else 189 return SIGILL; 190 break; 191 case mm_32f_40_op: 192 op = -1; /* Invalid */ 193 if (insn.mm_fp2_format.op == mm_fmovt_op) 194 op = 1; 195 else if (insn.mm_fp2_format.op == mm_fmovf_op) 196 op = 0; 197 if (op != -1) { 198 mips32_insn.fp0_format.opcode = cop1_op; 199 mips32_insn.fp0_format.fmt = 200 sdps_format[insn.mm_fp2_format.fmt]; 201 mips32_insn.fp0_format.ft = 202 (insn.mm_fp2_format.cc<<2) + op; 203 mips32_insn.fp0_format.fs = 204 insn.mm_fp2_format.fs; 205 mips32_insn.fp0_format.fd = 206 insn.mm_fp2_format.fd; 207 mips32_insn.fp0_format.func = fmovc_op; 208 } else 209 return SIGILL; 210 break; 211 case mm_32f_60_op: 212 func = -1; /* Invalid */ 213 if (insn.mm_fp0_format.op == mm_fadd_op) 214 func = fadd_op; 215 else if (insn.mm_fp0_format.op == mm_fsub_op) 216 func = fsub_op; 217 else if (insn.mm_fp0_format.op == mm_fmul_op) 218 func = fmul_op; 219 else if (insn.mm_fp0_format.op == mm_fdiv_op) 220 func = fdiv_op; 221 if (func != -1) { 222 mips32_insn.fp0_format.opcode = cop1_op; 223 mips32_insn.fp0_format.fmt = 224 sdps_format[insn.mm_fp0_format.fmt]; 225 mips32_insn.fp0_format.ft = 226 insn.mm_fp0_format.ft; 227 mips32_insn.fp0_format.fs = 228 insn.mm_fp0_format.fs; 229 mips32_insn.fp0_format.fd = 230 insn.mm_fp0_format.fd; 231 mips32_insn.fp0_format.func = func; 232 } else 233 return SIGILL; 234 break; 235 case mm_32f_70_op: 236 func = -1; /* Invalid */ 237 if (insn.mm_fp0_format.op == mm_fmovn_op) 238 func = fmovn_op; 239 else if (insn.mm_fp0_format.op == mm_fmovz_op) 240 func = fmovz_op; 241 if (func != -1) { 242 mips32_insn.fp0_format.opcode = cop1_op; 243 mips32_insn.fp0_format.fmt = 244 sdps_format[insn.mm_fp0_format.fmt]; 245 mips32_insn.fp0_format.ft = 246 insn.mm_fp0_format.ft; 247 mips32_insn.fp0_format.fs = 248 insn.mm_fp0_format.fs; 249 mips32_insn.fp0_format.fd = 250 insn.mm_fp0_format.fd; 251 mips32_insn.fp0_format.func = func; 252 } else 253 return SIGILL; 254 break; 255 case mm_32f_73_op: /* POOL32FXF */ 256 switch (insn.mm_fp1_format.op) { 257 case mm_movf0_op: 258 case mm_movf1_op: 259 case mm_movt0_op: 260 case mm_movt1_op: 261 if ((insn.mm_fp1_format.op & 0x7f) == 262 mm_movf0_op) 263 op = 0; 264 else 265 op = 1; 266 mips32_insn.r_format.opcode = spec_op; 267 mips32_insn.r_format.rs = insn.mm_fp4_format.fs; 268 mips32_insn.r_format.rt = 269 (insn.mm_fp4_format.cc << 2) + op; 270 mips32_insn.r_format.rd = insn.mm_fp4_format.rt; 271 mips32_insn.r_format.re = 0; 272 mips32_insn.r_format.func = movc_op; 273 break; 274 case mm_fcvtd0_op: 275 case mm_fcvtd1_op: 276 case mm_fcvts0_op: 277 case mm_fcvts1_op: 278 if ((insn.mm_fp1_format.op & 0x7f) == 279 mm_fcvtd0_op) { 280 func = fcvtd_op; 281 fmt = swl_format[insn.mm_fp3_format.fmt]; 282 } else { 283 func = fcvts_op; 284 fmt = dwl_format[insn.mm_fp3_format.fmt]; 285 } 286 mips32_insn.fp0_format.opcode = cop1_op; 287 mips32_insn.fp0_format.fmt = fmt; 288 mips32_insn.fp0_format.ft = 0; 289 mips32_insn.fp0_format.fs = 290 insn.mm_fp3_format.fs; 291 mips32_insn.fp0_format.fd = 292 insn.mm_fp3_format.rt; 293 mips32_insn.fp0_format.func = func; 294 break; 295 case mm_fmov0_op: 296 case mm_fmov1_op: 297 case mm_fabs0_op: 298 case mm_fabs1_op: 299 case mm_fneg0_op: 300 case mm_fneg1_op: 301 if ((insn.mm_fp1_format.op & 0x7f) == 302 mm_fmov0_op) 303 func = fmov_op; 304 else if ((insn.mm_fp1_format.op & 0x7f) == 305 mm_fabs0_op) 306 func = fabs_op; 307 else 308 func = fneg_op; 309 mips32_insn.fp0_format.opcode = cop1_op; 310 mips32_insn.fp0_format.fmt = 311 sdps_format[insn.mm_fp3_format.fmt]; 312 mips32_insn.fp0_format.ft = 0; 313 mips32_insn.fp0_format.fs = 314 insn.mm_fp3_format.fs; 315 mips32_insn.fp0_format.fd = 316 insn.mm_fp3_format.rt; 317 mips32_insn.fp0_format.func = func; 318 break; 319 case mm_ffloorl_op: 320 case mm_ffloorw_op: 321 case mm_fceill_op: 322 case mm_fceilw_op: 323 case mm_ftruncl_op: 324 case mm_ftruncw_op: 325 case mm_froundl_op: 326 case mm_froundw_op: 327 case mm_fcvtl_op: 328 case mm_fcvtw_op: 329 if (insn.mm_fp1_format.op == mm_ffloorl_op) 330 func = ffloorl_op; 331 else if (insn.mm_fp1_format.op == mm_ffloorw_op) 332 func = ffloor_op; 333 else if (insn.mm_fp1_format.op == mm_fceill_op) 334 func = fceill_op; 335 else if (insn.mm_fp1_format.op == mm_fceilw_op) 336 func = fceil_op; 337 else if (insn.mm_fp1_format.op == mm_ftruncl_op) 338 func = ftruncl_op; 339 else if (insn.mm_fp1_format.op == mm_ftruncw_op) 340 func = ftrunc_op; 341 else if (insn.mm_fp1_format.op == mm_froundl_op) 342 func = froundl_op; 343 else if (insn.mm_fp1_format.op == mm_froundw_op) 344 func = fround_op; 345 else if (insn.mm_fp1_format.op == mm_fcvtl_op) 346 func = fcvtl_op; 347 else 348 func = fcvtw_op; 349 mips32_insn.fp0_format.opcode = cop1_op; 350 mips32_insn.fp0_format.fmt = 351 sd_format[insn.mm_fp1_format.fmt]; 352 mips32_insn.fp0_format.ft = 0; 353 mips32_insn.fp0_format.fs = 354 insn.mm_fp1_format.fs; 355 mips32_insn.fp0_format.fd = 356 insn.mm_fp1_format.rt; 357 mips32_insn.fp0_format.func = func; 358 break; 359 case mm_frsqrt_op: 360 case mm_fsqrt_op: 361 case mm_frecip_op: 362 if (insn.mm_fp1_format.op == mm_frsqrt_op) 363 func = frsqrt_op; 364 else if (insn.mm_fp1_format.op == mm_fsqrt_op) 365 func = fsqrt_op; 366 else 367 func = frecip_op; 368 mips32_insn.fp0_format.opcode = cop1_op; 369 mips32_insn.fp0_format.fmt = 370 sdps_format[insn.mm_fp1_format.fmt]; 371 mips32_insn.fp0_format.ft = 0; 372 mips32_insn.fp0_format.fs = 373 insn.mm_fp1_format.fs; 374 mips32_insn.fp0_format.fd = 375 insn.mm_fp1_format.rt; 376 mips32_insn.fp0_format.func = func; 377 break; 378 case mm_mfc1_op: 379 case mm_mtc1_op: 380 case mm_cfc1_op: 381 case mm_ctc1_op: 382 case mm_mfhc1_op: 383 case mm_mthc1_op: 384 if (insn.mm_fp1_format.op == mm_mfc1_op) 385 op = mfc_op; 386 else if (insn.mm_fp1_format.op == mm_mtc1_op) 387 op = mtc_op; 388 else if (insn.mm_fp1_format.op == mm_cfc1_op) 389 op = cfc_op; 390 else if (insn.mm_fp1_format.op == mm_ctc1_op) 391 op = ctc_op; 392 else if (insn.mm_fp1_format.op == mm_mfhc1_op) 393 op = mfhc_op; 394 else 395 op = mthc_op; 396 mips32_insn.fp1_format.opcode = cop1_op; 397 mips32_insn.fp1_format.op = op; 398 mips32_insn.fp1_format.rt = 399 insn.mm_fp1_format.rt; 400 mips32_insn.fp1_format.fs = 401 insn.mm_fp1_format.fs; 402 mips32_insn.fp1_format.fd = 0; 403 mips32_insn.fp1_format.func = 0; 404 break; 405 default: 406 return SIGILL; 407 } 408 break; 409 case mm_32f_74_op: /* c.cond.fmt */ 410 mips32_insn.fp0_format.opcode = cop1_op; 411 mips32_insn.fp0_format.fmt = 412 sdps_format[insn.mm_fp4_format.fmt]; 413 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt; 414 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs; 415 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2; 416 mips32_insn.fp0_format.func = 417 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC; 418 break; 419 default: 420 return SIGILL; 421 } 422 break; 423 default: 424 return SIGILL; 425 } 426 427 *insn_ptr = mips32_insn; 428 return 0; 429 } 430 431 /* 432 * Redundant with logic already in kernel/branch.c, 433 * embedded in compute_return_epc. At some point, 434 * a single subroutine should be used across both 435 * modules. 436 */ 437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, 438 unsigned long *contpc) 439 { 440 union mips_instruction insn = (union mips_instruction)dec_insn.insn; 441 unsigned int fcr31; 442 unsigned int bit = 0; 443 444 switch (insn.i_format.opcode) { 445 case spec_op: 446 switch (insn.r_format.func) { 447 case jalr_op: 448 regs->regs[insn.r_format.rd] = 449 regs->cp0_epc + dec_insn.pc_inc + 450 dec_insn.next_pc_inc; 451 /* Fall through */ 452 case jr_op: 453 /* For R6, JR already emulated in jalr_op */ 454 if (NO_R6EMU && insn.r_format.func == jr_op) 455 break; 456 *contpc = regs->regs[insn.r_format.rs]; 457 return 1; 458 } 459 break; 460 case bcond_op: 461 switch (insn.i_format.rt) { 462 case bltzal_op: 463 case bltzall_op: 464 if (NO_R6EMU && (insn.i_format.rs || 465 insn.i_format.rt == bltzall_op)) 466 break; 467 468 regs->regs[31] = regs->cp0_epc + 469 dec_insn.pc_inc + 470 dec_insn.next_pc_inc; 471 /* Fall through */ 472 case bltzl_op: 473 if (NO_R6EMU) 474 break; 475 case bltz_op: 476 if ((long)regs->regs[insn.i_format.rs] < 0) 477 *contpc = regs->cp0_epc + 478 dec_insn.pc_inc + 479 (insn.i_format.simmediate << 2); 480 else 481 *contpc = regs->cp0_epc + 482 dec_insn.pc_inc + 483 dec_insn.next_pc_inc; 484 return 1; 485 case bgezal_op: 486 case bgezall_op: 487 if (NO_R6EMU && (insn.i_format.rs || 488 insn.i_format.rt == bgezall_op)) 489 break; 490 491 regs->regs[31] = regs->cp0_epc + 492 dec_insn.pc_inc + 493 dec_insn.next_pc_inc; 494 /* Fall through */ 495 case bgezl_op: 496 if (NO_R6EMU) 497 break; 498 case bgez_op: 499 if ((long)regs->regs[insn.i_format.rs] >= 0) 500 *contpc = regs->cp0_epc + 501 dec_insn.pc_inc + 502 (insn.i_format.simmediate << 2); 503 else 504 *contpc = regs->cp0_epc + 505 dec_insn.pc_inc + 506 dec_insn.next_pc_inc; 507 return 1; 508 } 509 break; 510 case jalx_op: 511 set_isa16_mode(bit); 512 case jal_op: 513 regs->regs[31] = regs->cp0_epc + 514 dec_insn.pc_inc + 515 dec_insn.next_pc_inc; 516 /* Fall through */ 517 case j_op: 518 *contpc = regs->cp0_epc + dec_insn.pc_inc; 519 *contpc >>= 28; 520 *contpc <<= 28; 521 *contpc |= (insn.j_format.target << 2); 522 /* Set microMIPS mode bit: XOR for jalx. */ 523 *contpc ^= bit; 524 return 1; 525 case beql_op: 526 if (NO_R6EMU) 527 break; 528 case beq_op: 529 if (regs->regs[insn.i_format.rs] == 530 regs->regs[insn.i_format.rt]) 531 *contpc = regs->cp0_epc + 532 dec_insn.pc_inc + 533 (insn.i_format.simmediate << 2); 534 else 535 *contpc = regs->cp0_epc + 536 dec_insn.pc_inc + 537 dec_insn.next_pc_inc; 538 return 1; 539 case bnel_op: 540 if (NO_R6EMU) 541 break; 542 case bne_op: 543 if (regs->regs[insn.i_format.rs] != 544 regs->regs[insn.i_format.rt]) 545 *contpc = regs->cp0_epc + 546 dec_insn.pc_inc + 547 (insn.i_format.simmediate << 2); 548 else 549 *contpc = regs->cp0_epc + 550 dec_insn.pc_inc + 551 dec_insn.next_pc_inc; 552 return 1; 553 case blezl_op: 554 if (!insn.i_format.rt && NO_R6EMU) 555 break; 556 case blez_op: 557 558 /* 559 * Compact branches for R6 for the 560 * blez and blezl opcodes. 561 * BLEZ | rs = 0 | rt != 0 == BLEZALC 562 * BLEZ | rs = rt != 0 == BGEZALC 563 * BLEZ | rs != 0 | rt != 0 == BGEUC 564 * BLEZL | rs = 0 | rt != 0 == BLEZC 565 * BLEZL | rs = rt != 0 == BGEZC 566 * BLEZL | rs != 0 | rt != 0 == BGEC 567 * 568 * For real BLEZ{,L}, rt is always 0. 569 */ 570 if (cpu_has_mips_r6 && insn.i_format.rt) { 571 if ((insn.i_format.opcode == blez_op) && 572 ((!insn.i_format.rs && insn.i_format.rt) || 573 (insn.i_format.rs == insn.i_format.rt))) 574 regs->regs[31] = regs->cp0_epc + 575 dec_insn.pc_inc; 576 *contpc = regs->cp0_epc + dec_insn.pc_inc + 577 dec_insn.next_pc_inc; 578 579 return 1; 580 } 581 if ((long)regs->regs[insn.i_format.rs] <= 0) 582 *contpc = regs->cp0_epc + 583 dec_insn.pc_inc + 584 (insn.i_format.simmediate << 2); 585 else 586 *contpc = regs->cp0_epc + 587 dec_insn.pc_inc + 588 dec_insn.next_pc_inc; 589 return 1; 590 case bgtzl_op: 591 if (!insn.i_format.rt && NO_R6EMU) 592 break; 593 case bgtz_op: 594 /* 595 * Compact branches for R6 for the 596 * bgtz and bgtzl opcodes. 597 * BGTZ | rs = 0 | rt != 0 == BGTZALC 598 * BGTZ | rs = rt != 0 == BLTZALC 599 * BGTZ | rs != 0 | rt != 0 == BLTUC 600 * BGTZL | rs = 0 | rt != 0 == BGTZC 601 * BGTZL | rs = rt != 0 == BLTZC 602 * BGTZL | rs != 0 | rt != 0 == BLTC 603 * 604 * *ZALC varint for BGTZ &&& rt != 0 605 * For real GTZ{,L}, rt is always 0. 606 */ 607 if (cpu_has_mips_r6 && insn.i_format.rt) { 608 if ((insn.i_format.opcode == blez_op) && 609 ((!insn.i_format.rs && insn.i_format.rt) || 610 (insn.i_format.rs == insn.i_format.rt))) 611 regs->regs[31] = regs->cp0_epc + 612 dec_insn.pc_inc; 613 *contpc = regs->cp0_epc + dec_insn.pc_inc + 614 dec_insn.next_pc_inc; 615 616 return 1; 617 } 618 619 if ((long)regs->regs[insn.i_format.rs] > 0) 620 *contpc = regs->cp0_epc + 621 dec_insn.pc_inc + 622 (insn.i_format.simmediate << 2); 623 else 624 *contpc = regs->cp0_epc + 625 dec_insn.pc_inc + 626 dec_insn.next_pc_inc; 627 return 1; 628 case cbcond0_op: 629 case cbcond1_op: 630 if (!cpu_has_mips_r6) 631 break; 632 if (insn.i_format.rt && !insn.i_format.rs) 633 regs->regs[31] = regs->cp0_epc + 4; 634 *contpc = regs->cp0_epc + dec_insn.pc_inc + 635 dec_insn.next_pc_inc; 636 637 return 1; 638 #ifdef CONFIG_CPU_CAVIUM_OCTEON 639 case lwc2_op: /* This is bbit0 on Octeon */ 640 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) 641 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 642 else 643 *contpc = regs->cp0_epc + 8; 644 return 1; 645 case ldc2_op: /* This is bbit032 on Octeon */ 646 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0) 647 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 648 else 649 *contpc = regs->cp0_epc + 8; 650 return 1; 651 case swc2_op: /* This is bbit1 on Octeon */ 652 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) 653 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 654 else 655 *contpc = regs->cp0_epc + 8; 656 return 1; 657 case sdc2_op: /* This is bbit132 on Octeon */ 658 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) 659 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 660 else 661 *contpc = regs->cp0_epc + 8; 662 return 1; 663 #else 664 case bc6_op: 665 /* 666 * Only valid for MIPS R6 but we can still end up 667 * here from a broken userland so just tell emulator 668 * this is not a branch and let it break later on. 669 */ 670 if (!cpu_has_mips_r6) 671 break; 672 *contpc = regs->cp0_epc + dec_insn.pc_inc + 673 dec_insn.next_pc_inc; 674 675 return 1; 676 case balc6_op: 677 if (!cpu_has_mips_r6) 678 break; 679 regs->regs[31] = regs->cp0_epc + 4; 680 *contpc = regs->cp0_epc + dec_insn.pc_inc + 681 dec_insn.next_pc_inc; 682 683 return 1; 684 case beqzcjic_op: 685 if (!cpu_has_mips_r6) 686 break; 687 *contpc = regs->cp0_epc + dec_insn.pc_inc + 688 dec_insn.next_pc_inc; 689 690 return 1; 691 case bnezcjialc_op: 692 if (!cpu_has_mips_r6) 693 break; 694 if (!insn.i_format.rs) 695 regs->regs[31] = regs->cp0_epc + 4; 696 *contpc = regs->cp0_epc + dec_insn.pc_inc + 697 dec_insn.next_pc_inc; 698 699 return 1; 700 #endif 701 case cop0_op: 702 case cop1_op: 703 /* Need to check for R6 bc1nez and bc1eqz branches */ 704 if (cpu_has_mips_r6 && 705 ((insn.i_format.rs == bc1eqz_op) || 706 (insn.i_format.rs == bc1nez_op))) { 707 bit = 0; 708 switch (insn.i_format.rs) { 709 case bc1eqz_op: 710 if (get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1) 711 bit = 1; 712 break; 713 case bc1nez_op: 714 if (!(get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)) 715 bit = 1; 716 break; 717 } 718 if (bit) 719 *contpc = regs->cp0_epc + 720 dec_insn.pc_inc + 721 (insn.i_format.simmediate << 2); 722 else 723 *contpc = regs->cp0_epc + 724 dec_insn.pc_inc + 725 dec_insn.next_pc_inc; 726 727 return 1; 728 } 729 /* R2/R6 compatible cop1 instruction. Fall through */ 730 case cop2_op: 731 case cop1x_op: 732 if (insn.i_format.rs == bc_op) { 733 preempt_disable(); 734 if (is_fpu_owner()) 735 fcr31 = read_32bit_cp1_register(CP1_STATUS); 736 else 737 fcr31 = current->thread.fpu.fcr31; 738 preempt_enable(); 739 740 bit = (insn.i_format.rt >> 2); 741 bit += (bit != 0); 742 bit += 23; 743 switch (insn.i_format.rt & 3) { 744 case 0: /* bc1f */ 745 case 2: /* bc1fl */ 746 if (~fcr31 & (1 << bit)) 747 *contpc = regs->cp0_epc + 748 dec_insn.pc_inc + 749 (insn.i_format.simmediate << 2); 750 else 751 *contpc = regs->cp0_epc + 752 dec_insn.pc_inc + 753 dec_insn.next_pc_inc; 754 return 1; 755 case 1: /* bc1t */ 756 case 3: /* bc1tl */ 757 if (fcr31 & (1 << bit)) 758 *contpc = regs->cp0_epc + 759 dec_insn.pc_inc + 760 (insn.i_format.simmediate << 2); 761 else 762 *contpc = regs->cp0_epc + 763 dec_insn.pc_inc + 764 dec_insn.next_pc_inc; 765 return 1; 766 } 767 } 768 break; 769 } 770 return 0; 771 } 772 773 /* 774 * In the Linux kernel, we support selection of FPR format on the 775 * basis of the Status.FR bit. If an FPU is not present, the FR bit 776 * is hardwired to zero, which would imply a 32-bit FPU even for 777 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS. 778 * FPU emu is slow and bulky and optimizing this function offers fairly 779 * sizeable benefits so we try to be clever and make this function return 780 * a constant whenever possible, that is on 64-bit kernels without O32 781 * compatibility enabled and on 32-bit without 64-bit FPU support. 782 */ 783 static inline int cop1_64bit(struct pt_regs *xcp) 784 { 785 if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32)) 786 return 1; 787 else if (config_enabled(CONFIG_32BIT) && 788 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT)) 789 return 0; 790 791 return !test_thread_flag(TIF_32BIT_FPREGS); 792 } 793 794 static inline bool hybrid_fprs(void) 795 { 796 return test_thread_flag(TIF_HYBRID_FPREGS); 797 } 798 799 #define SIFROMREG(si, x) \ 800 do { \ 801 if (cop1_64bit(xcp) && !hybrid_fprs()) \ 802 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \ 803 else \ 804 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \ 805 } while (0) 806 807 #define SITOREG(si, x) \ 808 do { \ 809 if (cop1_64bit(xcp) && !hybrid_fprs()) { \ 810 unsigned i; \ 811 set_fpr32(&ctx->fpr[x], 0, si); \ 812 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 813 set_fpr32(&ctx->fpr[x], i, 0); \ 814 } else { \ 815 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \ 816 } \ 817 } while (0) 818 819 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1)) 820 821 #define SITOHREG(si, x) \ 822 do { \ 823 unsigned i; \ 824 set_fpr32(&ctx->fpr[x], 1, si); \ 825 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 826 set_fpr32(&ctx->fpr[x], i, 0); \ 827 } while (0) 828 829 #define DIFROMREG(di, x) \ 830 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0)) 831 832 #define DITOREG(di, x) \ 833 do { \ 834 unsigned fpr, i; \ 835 fpr = (x) & ~(cop1_64bit(xcp) == 0); \ 836 set_fpr64(&ctx->fpr[fpr], 0, di); \ 837 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \ 838 set_fpr64(&ctx->fpr[fpr], i, 0); \ 839 } while (0) 840 841 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x) 842 #define SPTOREG(sp, x) SITOREG((sp).bits, x) 843 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x) 844 #define DPTOREG(dp, x) DITOREG((dp).bits, x) 845 846 /* 847 * Emulate a CFC1 instruction. 848 */ 849 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 850 mips_instruction ir) 851 { 852 u32 fcr31 = ctx->fcr31; 853 u32 value = 0; 854 855 switch (MIPSInst_RD(ir)) { 856 case FPCREG_CSR: 857 value = fcr31; 858 pr_debug("%p gpr[%d]<-csr=%08x\n", 859 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 860 break; 861 862 case FPCREG_FENR: 863 if (!cpu_has_mips_r) 864 break; 865 value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 866 MIPS_FENR_FS; 867 value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM); 868 pr_debug("%p gpr[%d]<-enr=%08x\n", 869 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 870 break; 871 872 case FPCREG_FEXR: 873 if (!cpu_has_mips_r) 874 break; 875 value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 876 pr_debug("%p gpr[%d]<-exr=%08x\n", 877 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 878 break; 879 880 case FPCREG_FCCR: 881 if (!cpu_has_mips_r) 882 break; 883 value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 884 MIPS_FCCR_COND0; 885 value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 886 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0); 887 pr_debug("%p gpr[%d]<-ccr=%08x\n", 888 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 889 break; 890 891 case FPCREG_RID: 892 value = boot_cpu_data.fpu_id; 893 break; 894 895 default: 896 break; 897 } 898 899 if (MIPSInst_RT(ir)) 900 xcp->regs[MIPSInst_RT(ir)] = value; 901 } 902 903 /* 904 * Emulate a CTC1 instruction. 905 */ 906 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 907 mips_instruction ir) 908 { 909 u32 fcr31 = ctx->fcr31; 910 u32 value; 911 u32 mask; 912 913 if (MIPSInst_RT(ir) == 0) 914 value = 0; 915 else 916 value = xcp->regs[MIPSInst_RT(ir)]; 917 918 switch (MIPSInst_RD(ir)) { 919 case FPCREG_CSR: 920 pr_debug("%p gpr[%d]->csr=%08x\n", 921 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 922 923 /* Preserve read-only bits. */ 924 mask = boot_cpu_data.fpu_msk31; 925 fcr31 = (value & ~mask) | (fcr31 & mask); 926 break; 927 928 case FPCREG_FENR: 929 if (!cpu_has_mips_r) 930 break; 931 pr_debug("%p gpr[%d]->enr=%08x\n", 932 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 933 fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM); 934 fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 935 FPU_CSR_FS; 936 fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM); 937 break; 938 939 case FPCREG_FEXR: 940 if (!cpu_has_mips_r) 941 break; 942 pr_debug("%p gpr[%d]->exr=%08x\n", 943 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 944 fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S); 945 fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 946 break; 947 948 case FPCREG_FCCR: 949 if (!cpu_has_mips_r) 950 break; 951 pr_debug("%p gpr[%d]->ccr=%08x\n", 952 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 953 fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND); 954 fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 955 FPU_CSR_COND; 956 fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 957 FPU_CSR_CONDX; 958 break; 959 960 default: 961 break; 962 } 963 964 ctx->fcr31 = fcr31; 965 } 966 967 /* 968 * Emulate the single floating point instruction pointed at by EPC. 969 * Two instructions if the instruction is in a branch delay slot. 970 */ 971 972 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 973 struct mm_decoded_insn dec_insn, void *__user *fault_addr) 974 { 975 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc; 976 unsigned int cond, cbit, bit0; 977 mips_instruction ir; 978 int likely, pc_inc; 979 union fpureg *fpr; 980 u32 __user *wva; 981 u64 __user *dva; 982 u32 wval; 983 u64 dval; 984 int sig; 985 986 /* 987 * These are giving gcc a gentle hint about what to expect in 988 * dec_inst in order to do better optimization. 989 */ 990 if (!cpu_has_mmips && dec_insn.micro_mips_mode) 991 unreachable(); 992 993 /* XXX NEC Vr54xx bug workaround */ 994 if (delay_slot(xcp)) { 995 if (dec_insn.micro_mips_mode) { 996 if (!mm_isBranchInstr(xcp, dec_insn, &contpc)) 997 clear_delay_slot(xcp); 998 } else { 999 if (!isBranchInstr(xcp, dec_insn, &contpc)) 1000 clear_delay_slot(xcp); 1001 } 1002 } 1003 1004 if (delay_slot(xcp)) { 1005 /* 1006 * The instruction to be emulated is in a branch delay slot 1007 * which means that we have to emulate the branch instruction 1008 * BEFORE we do the cop1 instruction. 1009 * 1010 * This branch could be a COP1 branch, but in that case we 1011 * would have had a trap for that instruction, and would not 1012 * come through this route. 1013 * 1014 * Linux MIPS branch emulator operates on context, updating the 1015 * cp0_epc. 1016 */ 1017 ir = dec_insn.next_insn; /* process delay slot instr */ 1018 pc_inc = dec_insn.next_pc_inc; 1019 } else { 1020 ir = dec_insn.insn; /* process current instr */ 1021 pc_inc = dec_insn.pc_inc; 1022 } 1023 1024 /* 1025 * Since microMIPS FPU instructios are a subset of MIPS32 FPU 1026 * instructions, we want to convert microMIPS FPU instructions 1027 * into MIPS32 instructions so that we could reuse all of the 1028 * FPU emulation code. 1029 * 1030 * NOTE: We cannot do this for branch instructions since they 1031 * are not a subset. Example: Cannot emulate a 16-bit 1032 * aligned target address with a MIPS32 instruction. 1033 */ 1034 if (dec_insn.micro_mips_mode) { 1035 /* 1036 * If next instruction is a 16-bit instruction, then it 1037 * it cannot be a FPU instruction. This could happen 1038 * since we can be called for non-FPU instructions. 1039 */ 1040 if ((pc_inc == 2) || 1041 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) 1042 == SIGILL)) 1043 return SIGILL; 1044 } 1045 1046 emul: 1047 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0); 1048 MIPS_FPU_EMU_INC_STATS(emulated); 1049 switch (MIPSInst_OPCODE(ir)) { 1050 case ldc1_op: 1051 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1052 MIPSInst_SIMM(ir)); 1053 MIPS_FPU_EMU_INC_STATS(loads); 1054 1055 if (!access_ok(VERIFY_READ, dva, sizeof(u64))) { 1056 MIPS_FPU_EMU_INC_STATS(errors); 1057 *fault_addr = dva; 1058 return SIGBUS; 1059 } 1060 if (__get_user(dval, dva)) { 1061 MIPS_FPU_EMU_INC_STATS(errors); 1062 *fault_addr = dva; 1063 return SIGSEGV; 1064 } 1065 DITOREG(dval, MIPSInst_RT(ir)); 1066 break; 1067 1068 case sdc1_op: 1069 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1070 MIPSInst_SIMM(ir)); 1071 MIPS_FPU_EMU_INC_STATS(stores); 1072 DIFROMREG(dval, MIPSInst_RT(ir)); 1073 if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) { 1074 MIPS_FPU_EMU_INC_STATS(errors); 1075 *fault_addr = dva; 1076 return SIGBUS; 1077 } 1078 if (__put_user(dval, dva)) { 1079 MIPS_FPU_EMU_INC_STATS(errors); 1080 *fault_addr = dva; 1081 return SIGSEGV; 1082 } 1083 break; 1084 1085 case lwc1_op: 1086 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1087 MIPSInst_SIMM(ir)); 1088 MIPS_FPU_EMU_INC_STATS(loads); 1089 if (!access_ok(VERIFY_READ, wva, sizeof(u32))) { 1090 MIPS_FPU_EMU_INC_STATS(errors); 1091 *fault_addr = wva; 1092 return SIGBUS; 1093 } 1094 if (__get_user(wval, wva)) { 1095 MIPS_FPU_EMU_INC_STATS(errors); 1096 *fault_addr = wva; 1097 return SIGSEGV; 1098 } 1099 SITOREG(wval, MIPSInst_RT(ir)); 1100 break; 1101 1102 case swc1_op: 1103 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1104 MIPSInst_SIMM(ir)); 1105 MIPS_FPU_EMU_INC_STATS(stores); 1106 SIFROMREG(wval, MIPSInst_RT(ir)); 1107 if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) { 1108 MIPS_FPU_EMU_INC_STATS(errors); 1109 *fault_addr = wva; 1110 return SIGBUS; 1111 } 1112 if (__put_user(wval, wva)) { 1113 MIPS_FPU_EMU_INC_STATS(errors); 1114 *fault_addr = wva; 1115 return SIGSEGV; 1116 } 1117 break; 1118 1119 case cop1_op: 1120 switch (MIPSInst_RS(ir)) { 1121 case dmfc_op: 1122 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1123 return SIGILL; 1124 1125 /* copregister fs -> gpr[rt] */ 1126 if (MIPSInst_RT(ir) != 0) { 1127 DIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1128 MIPSInst_RD(ir)); 1129 } 1130 break; 1131 1132 case dmtc_op: 1133 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1134 return SIGILL; 1135 1136 /* copregister fs <- rt */ 1137 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1138 break; 1139 1140 case mfhc_op: 1141 if (!cpu_has_mips_r2_r6) 1142 goto sigill; 1143 1144 /* copregister rd -> gpr[rt] */ 1145 if (MIPSInst_RT(ir) != 0) { 1146 SIFROMHREG(xcp->regs[MIPSInst_RT(ir)], 1147 MIPSInst_RD(ir)); 1148 } 1149 break; 1150 1151 case mthc_op: 1152 if (!cpu_has_mips_r2_r6) 1153 goto sigill; 1154 1155 /* copregister rd <- gpr[rt] */ 1156 SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1157 break; 1158 1159 case mfc_op: 1160 /* copregister rd -> gpr[rt] */ 1161 if (MIPSInst_RT(ir) != 0) { 1162 SIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1163 MIPSInst_RD(ir)); 1164 } 1165 break; 1166 1167 case mtc_op: 1168 /* copregister rd <- rt */ 1169 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1170 break; 1171 1172 case cfc_op: 1173 /* cop control register rd -> gpr[rt] */ 1174 cop1_cfc(xcp, ctx, ir); 1175 break; 1176 1177 case ctc_op: 1178 /* copregister rd <- rt */ 1179 cop1_ctc(xcp, ctx, ir); 1180 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1181 return SIGFPE; 1182 } 1183 break; 1184 1185 case bc1eqz_op: 1186 case bc1nez_op: 1187 if (!cpu_has_mips_r6 || delay_slot(xcp)) 1188 return SIGILL; 1189 1190 cond = likely = 0; 1191 fpr = ¤t->thread.fpu.fpr[MIPSInst_RT(ir)]; 1192 bit0 = get_fpr32(fpr, 0) & 0x1; 1193 switch (MIPSInst_RS(ir)) { 1194 case bc1eqz_op: 1195 cond = bit0 == 0; 1196 break; 1197 case bc1nez_op: 1198 cond = bit0 != 0; 1199 break; 1200 } 1201 goto branch_common; 1202 1203 case bc_op: 1204 if (delay_slot(xcp)) 1205 return SIGILL; 1206 1207 if (cpu_has_mips_4_5_r) 1208 cbit = fpucondbit[MIPSInst_RT(ir) >> 2]; 1209 else 1210 cbit = FPU_CSR_COND; 1211 cond = ctx->fcr31 & cbit; 1212 1213 likely = 0; 1214 switch (MIPSInst_RT(ir) & 3) { 1215 case bcfl_op: 1216 if (cpu_has_mips_2_3_4_5_r) 1217 likely = 1; 1218 /* Fall through */ 1219 case bcf_op: 1220 cond = !cond; 1221 break; 1222 case bctl_op: 1223 if (cpu_has_mips_2_3_4_5_r) 1224 likely = 1; 1225 /* Fall through */ 1226 case bct_op: 1227 break; 1228 } 1229 branch_common: 1230 set_delay_slot(xcp); 1231 if (cond) { 1232 /* 1233 * Branch taken: emulate dslot instruction 1234 */ 1235 unsigned long bcpc; 1236 1237 /* 1238 * Remember EPC at the branch to point back 1239 * at so that any delay-slot instruction 1240 * signal is not silently ignored. 1241 */ 1242 bcpc = xcp->cp0_epc; 1243 xcp->cp0_epc += dec_insn.pc_inc; 1244 1245 contpc = MIPSInst_SIMM(ir); 1246 ir = dec_insn.next_insn; 1247 if (dec_insn.micro_mips_mode) { 1248 contpc = (xcp->cp0_epc + (contpc << 1)); 1249 1250 /* If 16-bit instruction, not FPU. */ 1251 if ((dec_insn.next_pc_inc == 2) || 1252 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) { 1253 1254 /* 1255 * Since this instruction will 1256 * be put on the stack with 1257 * 32-bit words, get around 1258 * this problem by putting a 1259 * NOP16 as the second one. 1260 */ 1261 if (dec_insn.next_pc_inc == 2) 1262 ir = (ir & (~0xffff)) | MM_NOP16; 1263 1264 /* 1265 * Single step the non-CP1 1266 * instruction in the dslot. 1267 */ 1268 sig = mips_dsemul(xcp, ir, 1269 contpc); 1270 if (sig < 0) 1271 break; 1272 if (sig) 1273 xcp->cp0_epc = bcpc; 1274 /* 1275 * SIGILL forces out of 1276 * the emulation loop. 1277 */ 1278 return sig ? sig : SIGILL; 1279 } 1280 } else 1281 contpc = (xcp->cp0_epc + (contpc << 2)); 1282 1283 switch (MIPSInst_OPCODE(ir)) { 1284 case lwc1_op: 1285 case swc1_op: 1286 goto emul; 1287 1288 case ldc1_op: 1289 case sdc1_op: 1290 if (cpu_has_mips_2_3_4_5_r) 1291 goto emul; 1292 1293 goto bc_sigill; 1294 1295 case cop1_op: 1296 goto emul; 1297 1298 case cop1x_op: 1299 if (cpu_has_mips_4_5_64_r2_r6) 1300 /* its one of ours */ 1301 goto emul; 1302 1303 goto bc_sigill; 1304 1305 case spec_op: 1306 switch (MIPSInst_FUNC(ir)) { 1307 case movc_op: 1308 if (cpu_has_mips_4_5_r) 1309 goto emul; 1310 1311 goto bc_sigill; 1312 } 1313 break; 1314 1315 bc_sigill: 1316 xcp->cp0_epc = bcpc; 1317 return SIGILL; 1318 } 1319 1320 /* 1321 * Single step the non-cp1 1322 * instruction in the dslot 1323 */ 1324 sig = mips_dsemul(xcp, ir, contpc); 1325 if (sig < 0) 1326 break; 1327 if (sig) 1328 xcp->cp0_epc = bcpc; 1329 /* SIGILL forces out of the emulation loop. */ 1330 return sig ? sig : SIGILL; 1331 } else if (likely) { /* branch not taken */ 1332 /* 1333 * branch likely nullifies 1334 * dslot if not taken 1335 */ 1336 xcp->cp0_epc += dec_insn.pc_inc; 1337 contpc += dec_insn.pc_inc; 1338 /* 1339 * else continue & execute 1340 * dslot as normal insn 1341 */ 1342 } 1343 break; 1344 1345 default: 1346 if (!(MIPSInst_RS(ir) & 0x10)) 1347 return SIGILL; 1348 1349 /* a real fpu computation instruction */ 1350 if ((sig = fpu_emu(xcp, ctx, ir))) 1351 return sig; 1352 } 1353 break; 1354 1355 case cop1x_op: 1356 if (!cpu_has_mips_4_5_64_r2_r6) 1357 return SIGILL; 1358 1359 sig = fpux_emu(xcp, ctx, ir, fault_addr); 1360 if (sig) 1361 return sig; 1362 break; 1363 1364 case spec_op: 1365 if (!cpu_has_mips_4_5_r) 1366 return SIGILL; 1367 1368 if (MIPSInst_FUNC(ir) != movc_op) 1369 return SIGILL; 1370 cond = fpucondbit[MIPSInst_RT(ir) >> 2]; 1371 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) 1372 xcp->regs[MIPSInst_RD(ir)] = 1373 xcp->regs[MIPSInst_RS(ir)]; 1374 break; 1375 default: 1376 sigill: 1377 return SIGILL; 1378 } 1379 1380 /* we did it !! */ 1381 xcp->cp0_epc = contpc; 1382 clear_delay_slot(xcp); 1383 1384 return 0; 1385 } 1386 1387 /* 1388 * Conversion table from MIPS compare ops 48-63 1389 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); 1390 */ 1391 static const unsigned char cmptab[8] = { 1392 0, /* cmp_0 (sig) cmp_sf */ 1393 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ 1394 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ 1395 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ 1396 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ 1397 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ 1398 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ 1399 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */ 1400 }; 1401 1402 static const unsigned char negative_cmptab[8] = { 1403 0, /* Reserved */ 1404 IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ, 1405 IEEE754_CLT | IEEE754_CGT | IEEE754_CUN, 1406 IEEE754_CLT | IEEE754_CGT, 1407 /* Reserved */ 1408 }; 1409 1410 1411 /* 1412 * Additional MIPS4 instructions 1413 */ 1414 1415 #define DEF3OP(name, p, f1, f2, f3) \ 1416 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \ 1417 union ieee754##p s, union ieee754##p t) \ 1418 { \ 1419 struct _ieee754_csr ieee754_csr_save; \ 1420 s = f1(s, t); \ 1421 ieee754_csr_save = ieee754_csr; \ 1422 s = f2(s, r); \ 1423 ieee754_csr_save.cx |= ieee754_csr.cx; \ 1424 ieee754_csr_save.sx |= ieee754_csr.sx; \ 1425 s = f3(s); \ 1426 ieee754_csr.cx |= ieee754_csr_save.cx; \ 1427 ieee754_csr.sx |= ieee754_csr_save.sx; \ 1428 return s; \ 1429 } 1430 1431 static union ieee754dp fpemu_dp_recip(union ieee754dp d) 1432 { 1433 return ieee754dp_div(ieee754dp_one(0), d); 1434 } 1435 1436 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d) 1437 { 1438 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d)); 1439 } 1440 1441 static union ieee754sp fpemu_sp_recip(union ieee754sp s) 1442 { 1443 return ieee754sp_div(ieee754sp_one(0), s); 1444 } 1445 1446 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s) 1447 { 1448 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s)); 1449 } 1450 1451 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, ); 1452 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, ); 1453 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg); 1454 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg); 1455 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, ); 1456 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, ); 1457 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg); 1458 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg); 1459 1460 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1461 mips_instruction ir, void *__user *fault_addr) 1462 { 1463 unsigned rcsr = 0; /* resulting csr */ 1464 1465 MIPS_FPU_EMU_INC_STATS(cp1xops); 1466 1467 switch (MIPSInst_FMA_FFMT(ir)) { 1468 case s_fmt:{ /* 0 */ 1469 1470 union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp); 1471 union ieee754sp fd, fr, fs, ft; 1472 u32 __user *va; 1473 u32 val; 1474 1475 switch (MIPSInst_FUNC(ir)) { 1476 case lwxc1_op: 1477 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1478 xcp->regs[MIPSInst_FT(ir)]); 1479 1480 MIPS_FPU_EMU_INC_STATS(loads); 1481 if (!access_ok(VERIFY_READ, va, sizeof(u32))) { 1482 MIPS_FPU_EMU_INC_STATS(errors); 1483 *fault_addr = va; 1484 return SIGBUS; 1485 } 1486 if (__get_user(val, va)) { 1487 MIPS_FPU_EMU_INC_STATS(errors); 1488 *fault_addr = va; 1489 return SIGSEGV; 1490 } 1491 SITOREG(val, MIPSInst_FD(ir)); 1492 break; 1493 1494 case swxc1_op: 1495 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1496 xcp->regs[MIPSInst_FT(ir)]); 1497 1498 MIPS_FPU_EMU_INC_STATS(stores); 1499 1500 SIFROMREG(val, MIPSInst_FS(ir)); 1501 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) { 1502 MIPS_FPU_EMU_INC_STATS(errors); 1503 *fault_addr = va; 1504 return SIGBUS; 1505 } 1506 if (put_user(val, va)) { 1507 MIPS_FPU_EMU_INC_STATS(errors); 1508 *fault_addr = va; 1509 return SIGSEGV; 1510 } 1511 break; 1512 1513 case madd_s_op: 1514 handler = fpemu_sp_madd; 1515 goto scoptop; 1516 case msub_s_op: 1517 handler = fpemu_sp_msub; 1518 goto scoptop; 1519 case nmadd_s_op: 1520 handler = fpemu_sp_nmadd; 1521 goto scoptop; 1522 case nmsub_s_op: 1523 handler = fpemu_sp_nmsub; 1524 goto scoptop; 1525 1526 scoptop: 1527 SPFROMREG(fr, MIPSInst_FR(ir)); 1528 SPFROMREG(fs, MIPSInst_FS(ir)); 1529 SPFROMREG(ft, MIPSInst_FT(ir)); 1530 fd = (*handler) (fr, fs, ft); 1531 SPTOREG(fd, MIPSInst_FD(ir)); 1532 1533 copcsr: 1534 if (ieee754_cxtest(IEEE754_INEXACT)) { 1535 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1536 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1537 } 1538 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1539 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1540 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1541 } 1542 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1543 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1544 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1545 } 1546 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1547 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1548 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1549 } 1550 1551 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 1552 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1553 /*printk ("SIGFPE: FPU csr = %08x\n", 1554 ctx->fcr31); */ 1555 return SIGFPE; 1556 } 1557 1558 break; 1559 1560 default: 1561 return SIGILL; 1562 } 1563 break; 1564 } 1565 1566 case d_fmt:{ /* 1 */ 1567 union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp); 1568 union ieee754dp fd, fr, fs, ft; 1569 u64 __user *va; 1570 u64 val; 1571 1572 switch (MIPSInst_FUNC(ir)) { 1573 case ldxc1_op: 1574 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1575 xcp->regs[MIPSInst_FT(ir)]); 1576 1577 MIPS_FPU_EMU_INC_STATS(loads); 1578 if (!access_ok(VERIFY_READ, va, sizeof(u64))) { 1579 MIPS_FPU_EMU_INC_STATS(errors); 1580 *fault_addr = va; 1581 return SIGBUS; 1582 } 1583 if (__get_user(val, va)) { 1584 MIPS_FPU_EMU_INC_STATS(errors); 1585 *fault_addr = va; 1586 return SIGSEGV; 1587 } 1588 DITOREG(val, MIPSInst_FD(ir)); 1589 break; 1590 1591 case sdxc1_op: 1592 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1593 xcp->regs[MIPSInst_FT(ir)]); 1594 1595 MIPS_FPU_EMU_INC_STATS(stores); 1596 DIFROMREG(val, MIPSInst_FS(ir)); 1597 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) { 1598 MIPS_FPU_EMU_INC_STATS(errors); 1599 *fault_addr = va; 1600 return SIGBUS; 1601 } 1602 if (__put_user(val, va)) { 1603 MIPS_FPU_EMU_INC_STATS(errors); 1604 *fault_addr = va; 1605 return SIGSEGV; 1606 } 1607 break; 1608 1609 case madd_d_op: 1610 handler = fpemu_dp_madd; 1611 goto dcoptop; 1612 case msub_d_op: 1613 handler = fpemu_dp_msub; 1614 goto dcoptop; 1615 case nmadd_d_op: 1616 handler = fpemu_dp_nmadd; 1617 goto dcoptop; 1618 case nmsub_d_op: 1619 handler = fpemu_dp_nmsub; 1620 goto dcoptop; 1621 1622 dcoptop: 1623 DPFROMREG(fr, MIPSInst_FR(ir)); 1624 DPFROMREG(fs, MIPSInst_FS(ir)); 1625 DPFROMREG(ft, MIPSInst_FT(ir)); 1626 fd = (*handler) (fr, fs, ft); 1627 DPTOREG(fd, MIPSInst_FD(ir)); 1628 goto copcsr; 1629 1630 default: 1631 return SIGILL; 1632 } 1633 break; 1634 } 1635 1636 case 0x3: 1637 if (MIPSInst_FUNC(ir) != pfetch_op) 1638 return SIGILL; 1639 1640 /* ignore prefx operation */ 1641 break; 1642 1643 default: 1644 return SIGILL; 1645 } 1646 1647 return 0; 1648 } 1649 1650 1651 1652 /* 1653 * Emulate a single COP1 arithmetic instruction. 1654 */ 1655 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1656 mips_instruction ir) 1657 { 1658 int rfmt; /* resulting format */ 1659 unsigned rcsr = 0; /* resulting csr */ 1660 unsigned int oldrm; 1661 unsigned int cbit; 1662 unsigned cond; 1663 union { 1664 union ieee754dp d; 1665 union ieee754sp s; 1666 int w; 1667 s64 l; 1668 } rv; /* resulting value */ 1669 u64 bits; 1670 1671 MIPS_FPU_EMU_INC_STATS(cp1ops); 1672 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) { 1673 case s_fmt: { /* 0 */ 1674 union { 1675 union ieee754sp(*b) (union ieee754sp, union ieee754sp); 1676 union ieee754sp(*u) (union ieee754sp); 1677 } handler; 1678 union ieee754sp fs, ft; 1679 1680 switch (MIPSInst_FUNC(ir)) { 1681 /* binary ops */ 1682 case fadd_op: 1683 handler.b = ieee754sp_add; 1684 goto scopbop; 1685 case fsub_op: 1686 handler.b = ieee754sp_sub; 1687 goto scopbop; 1688 case fmul_op: 1689 handler.b = ieee754sp_mul; 1690 goto scopbop; 1691 case fdiv_op: 1692 handler.b = ieee754sp_div; 1693 goto scopbop; 1694 1695 /* unary ops */ 1696 case fsqrt_op: 1697 if (!cpu_has_mips_2_3_4_5_r) 1698 return SIGILL; 1699 1700 handler.u = ieee754sp_sqrt; 1701 goto scopuop; 1702 1703 /* 1704 * Note that on some MIPS IV implementations such as the 1705 * R5000 and R8000 the FSQRT and FRECIP instructions do not 1706 * achieve full IEEE-754 accuracy - however this emulator does. 1707 */ 1708 case frsqrt_op: 1709 if (!cpu_has_mips_4_5_64_r2_r6) 1710 return SIGILL; 1711 1712 handler.u = fpemu_sp_rsqrt; 1713 goto scopuop; 1714 1715 case frecip_op: 1716 if (!cpu_has_mips_4_5_64_r2_r6) 1717 return SIGILL; 1718 1719 handler.u = fpemu_sp_recip; 1720 goto scopuop; 1721 1722 case fmovc_op: 1723 if (!cpu_has_mips_4_5_r) 1724 return SIGILL; 1725 1726 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 1727 if (((ctx->fcr31 & cond) != 0) != 1728 ((MIPSInst_FT(ir) & 1) != 0)) 1729 return 0; 1730 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1731 break; 1732 1733 case fmovz_op: 1734 if (!cpu_has_mips_4_5_r) 1735 return SIGILL; 1736 1737 if (xcp->regs[MIPSInst_FT(ir)] != 0) 1738 return 0; 1739 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1740 break; 1741 1742 case fmovn_op: 1743 if (!cpu_has_mips_4_5_r) 1744 return SIGILL; 1745 1746 if (xcp->regs[MIPSInst_FT(ir)] == 0) 1747 return 0; 1748 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1749 break; 1750 1751 case fseleqz_op: 1752 if (!cpu_has_mips_r6) 1753 return SIGILL; 1754 1755 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1756 if (rv.w & 0x1) 1757 rv.w = 0; 1758 else 1759 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1760 break; 1761 1762 case fselnez_op: 1763 if (!cpu_has_mips_r6) 1764 return SIGILL; 1765 1766 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1767 if (rv.w & 0x1) 1768 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1769 else 1770 rv.w = 0; 1771 break; 1772 1773 case fmaddf_op: { 1774 union ieee754sp ft, fs, fd; 1775 1776 if (!cpu_has_mips_r6) 1777 return SIGILL; 1778 1779 SPFROMREG(ft, MIPSInst_FT(ir)); 1780 SPFROMREG(fs, MIPSInst_FS(ir)); 1781 SPFROMREG(fd, MIPSInst_FD(ir)); 1782 rv.s = ieee754sp_maddf(fd, fs, ft); 1783 break; 1784 } 1785 1786 case fmsubf_op: { 1787 union ieee754sp ft, fs, fd; 1788 1789 if (!cpu_has_mips_r6) 1790 return SIGILL; 1791 1792 SPFROMREG(ft, MIPSInst_FT(ir)); 1793 SPFROMREG(fs, MIPSInst_FS(ir)); 1794 SPFROMREG(fd, MIPSInst_FD(ir)); 1795 rv.s = ieee754sp_msubf(fd, fs, ft); 1796 break; 1797 } 1798 1799 case frint_op: { 1800 union ieee754sp fs; 1801 1802 if (!cpu_has_mips_r6) 1803 return SIGILL; 1804 1805 SPFROMREG(fs, MIPSInst_FS(ir)); 1806 rv.l = ieee754sp_tlong(fs); 1807 rv.s = ieee754sp_flong(rv.l); 1808 goto copcsr; 1809 } 1810 1811 case fclass_op: { 1812 union ieee754sp fs; 1813 1814 if (!cpu_has_mips_r6) 1815 return SIGILL; 1816 1817 SPFROMREG(fs, MIPSInst_FS(ir)); 1818 rv.w = ieee754sp_2008class(fs); 1819 rfmt = w_fmt; 1820 break; 1821 } 1822 1823 case fmin_op: { 1824 union ieee754sp fs, ft; 1825 1826 if (!cpu_has_mips_r6) 1827 return SIGILL; 1828 1829 SPFROMREG(ft, MIPSInst_FT(ir)); 1830 SPFROMREG(fs, MIPSInst_FS(ir)); 1831 rv.s = ieee754sp_fmin(fs, ft); 1832 break; 1833 } 1834 1835 case fmina_op: { 1836 union ieee754sp fs, ft; 1837 1838 if (!cpu_has_mips_r6) 1839 return SIGILL; 1840 1841 SPFROMREG(ft, MIPSInst_FT(ir)); 1842 SPFROMREG(fs, MIPSInst_FS(ir)); 1843 rv.s = ieee754sp_fmina(fs, ft); 1844 break; 1845 } 1846 1847 case fmax_op: { 1848 union ieee754sp fs, ft; 1849 1850 if (!cpu_has_mips_r6) 1851 return SIGILL; 1852 1853 SPFROMREG(ft, MIPSInst_FT(ir)); 1854 SPFROMREG(fs, MIPSInst_FS(ir)); 1855 rv.s = ieee754sp_fmax(fs, ft); 1856 break; 1857 } 1858 1859 case fmaxa_op: { 1860 union ieee754sp fs, ft; 1861 1862 if (!cpu_has_mips_r6) 1863 return SIGILL; 1864 1865 SPFROMREG(ft, MIPSInst_FT(ir)); 1866 SPFROMREG(fs, MIPSInst_FS(ir)); 1867 rv.s = ieee754sp_fmaxa(fs, ft); 1868 break; 1869 } 1870 1871 case fabs_op: 1872 handler.u = ieee754sp_abs; 1873 goto scopuop; 1874 1875 case fneg_op: 1876 handler.u = ieee754sp_neg; 1877 goto scopuop; 1878 1879 case fmov_op: 1880 /* an easy one */ 1881 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1882 goto copcsr; 1883 1884 /* binary op on handler */ 1885 scopbop: 1886 SPFROMREG(fs, MIPSInst_FS(ir)); 1887 SPFROMREG(ft, MIPSInst_FT(ir)); 1888 1889 rv.s = (*handler.b) (fs, ft); 1890 goto copcsr; 1891 scopuop: 1892 SPFROMREG(fs, MIPSInst_FS(ir)); 1893 rv.s = (*handler.u) (fs); 1894 goto copcsr; 1895 copcsr: 1896 if (ieee754_cxtest(IEEE754_INEXACT)) { 1897 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1898 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1899 } 1900 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1901 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1902 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1903 } 1904 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1905 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1906 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1907 } 1908 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) { 1909 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv); 1910 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S; 1911 } 1912 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1913 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1914 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1915 } 1916 break; 1917 1918 /* unary conv ops */ 1919 case fcvts_op: 1920 return SIGILL; /* not defined */ 1921 1922 case fcvtd_op: 1923 SPFROMREG(fs, MIPSInst_FS(ir)); 1924 rv.d = ieee754dp_fsp(fs); 1925 rfmt = d_fmt; 1926 goto copcsr; 1927 1928 case fcvtw_op: 1929 SPFROMREG(fs, MIPSInst_FS(ir)); 1930 rv.w = ieee754sp_tint(fs); 1931 rfmt = w_fmt; 1932 goto copcsr; 1933 1934 case fround_op: 1935 case ftrunc_op: 1936 case fceil_op: 1937 case ffloor_op: 1938 if (!cpu_has_mips_2_3_4_5_r) 1939 return SIGILL; 1940 1941 oldrm = ieee754_csr.rm; 1942 SPFROMREG(fs, MIPSInst_FS(ir)); 1943 ieee754_csr.rm = MIPSInst_FUNC(ir); 1944 rv.w = ieee754sp_tint(fs); 1945 ieee754_csr.rm = oldrm; 1946 rfmt = w_fmt; 1947 goto copcsr; 1948 1949 case fcvtl_op: 1950 if (!cpu_has_mips_3_4_5_64_r2_r6) 1951 return SIGILL; 1952 1953 SPFROMREG(fs, MIPSInst_FS(ir)); 1954 rv.l = ieee754sp_tlong(fs); 1955 rfmt = l_fmt; 1956 goto copcsr; 1957 1958 case froundl_op: 1959 case ftruncl_op: 1960 case fceill_op: 1961 case ffloorl_op: 1962 if (!cpu_has_mips_3_4_5_64_r2_r6) 1963 return SIGILL; 1964 1965 oldrm = ieee754_csr.rm; 1966 SPFROMREG(fs, MIPSInst_FS(ir)); 1967 ieee754_csr.rm = MIPSInst_FUNC(ir); 1968 rv.l = ieee754sp_tlong(fs); 1969 ieee754_csr.rm = oldrm; 1970 rfmt = l_fmt; 1971 goto copcsr; 1972 1973 default: 1974 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 1975 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; 1976 union ieee754sp fs, ft; 1977 1978 SPFROMREG(fs, MIPSInst_FS(ir)); 1979 SPFROMREG(ft, MIPSInst_FT(ir)); 1980 rv.w = ieee754sp_cmp(fs, ft, 1981 cmptab[cmpop & 0x7], cmpop & 0x8); 1982 rfmt = -1; 1983 if ((cmpop & 0x8) && ieee754_cxtest 1984 (IEEE754_INVALID_OPERATION)) 1985 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 1986 else 1987 goto copcsr; 1988 1989 } else 1990 return SIGILL; 1991 break; 1992 } 1993 break; 1994 } 1995 1996 case d_fmt: { 1997 union ieee754dp fs, ft; 1998 union { 1999 union ieee754dp(*b) (union ieee754dp, union ieee754dp); 2000 union ieee754dp(*u) (union ieee754dp); 2001 } handler; 2002 2003 switch (MIPSInst_FUNC(ir)) { 2004 /* binary ops */ 2005 case fadd_op: 2006 handler.b = ieee754dp_add; 2007 goto dcopbop; 2008 case fsub_op: 2009 handler.b = ieee754dp_sub; 2010 goto dcopbop; 2011 case fmul_op: 2012 handler.b = ieee754dp_mul; 2013 goto dcopbop; 2014 case fdiv_op: 2015 handler.b = ieee754dp_div; 2016 goto dcopbop; 2017 2018 /* unary ops */ 2019 case fsqrt_op: 2020 if (!cpu_has_mips_2_3_4_5_r) 2021 return SIGILL; 2022 2023 handler.u = ieee754dp_sqrt; 2024 goto dcopuop; 2025 /* 2026 * Note that on some MIPS IV implementations such as the 2027 * R5000 and R8000 the FSQRT and FRECIP instructions do not 2028 * achieve full IEEE-754 accuracy - however this emulator does. 2029 */ 2030 case frsqrt_op: 2031 if (!cpu_has_mips_4_5_64_r2_r6) 2032 return SIGILL; 2033 2034 handler.u = fpemu_dp_rsqrt; 2035 goto dcopuop; 2036 case frecip_op: 2037 if (!cpu_has_mips_4_5_64_r2_r6) 2038 return SIGILL; 2039 2040 handler.u = fpemu_dp_recip; 2041 goto dcopuop; 2042 case fmovc_op: 2043 if (!cpu_has_mips_4_5_r) 2044 return SIGILL; 2045 2046 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 2047 if (((ctx->fcr31 & cond) != 0) != 2048 ((MIPSInst_FT(ir) & 1) != 0)) 2049 return 0; 2050 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2051 break; 2052 case fmovz_op: 2053 if (!cpu_has_mips_4_5_r) 2054 return SIGILL; 2055 2056 if (xcp->regs[MIPSInst_FT(ir)] != 0) 2057 return 0; 2058 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2059 break; 2060 case fmovn_op: 2061 if (!cpu_has_mips_4_5_r) 2062 return SIGILL; 2063 2064 if (xcp->regs[MIPSInst_FT(ir)] == 0) 2065 return 0; 2066 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2067 break; 2068 2069 case fseleqz_op: 2070 if (!cpu_has_mips_r6) 2071 return SIGILL; 2072 2073 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2074 if (rv.l & 0x1) 2075 rv.l = 0; 2076 else 2077 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2078 break; 2079 2080 case fselnez_op: 2081 if (!cpu_has_mips_r6) 2082 return SIGILL; 2083 2084 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2085 if (rv.l & 0x1) 2086 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2087 else 2088 rv.l = 0; 2089 break; 2090 2091 case fmaddf_op: { 2092 union ieee754dp ft, fs, fd; 2093 2094 if (!cpu_has_mips_r6) 2095 return SIGILL; 2096 2097 DPFROMREG(ft, MIPSInst_FT(ir)); 2098 DPFROMREG(fs, MIPSInst_FS(ir)); 2099 DPFROMREG(fd, MIPSInst_FD(ir)); 2100 rv.d = ieee754dp_maddf(fd, fs, ft); 2101 break; 2102 } 2103 2104 case fmsubf_op: { 2105 union ieee754dp ft, fs, fd; 2106 2107 if (!cpu_has_mips_r6) 2108 return SIGILL; 2109 2110 DPFROMREG(ft, MIPSInst_FT(ir)); 2111 DPFROMREG(fs, MIPSInst_FS(ir)); 2112 DPFROMREG(fd, MIPSInst_FD(ir)); 2113 rv.d = ieee754dp_msubf(fd, fs, ft); 2114 break; 2115 } 2116 2117 case frint_op: { 2118 union ieee754dp fs; 2119 2120 if (!cpu_has_mips_r6) 2121 return SIGILL; 2122 2123 DPFROMREG(fs, MIPSInst_FS(ir)); 2124 rv.l = ieee754dp_tlong(fs); 2125 rv.d = ieee754dp_flong(rv.l); 2126 goto copcsr; 2127 } 2128 2129 case fclass_op: { 2130 union ieee754dp fs; 2131 2132 if (!cpu_has_mips_r6) 2133 return SIGILL; 2134 2135 DPFROMREG(fs, MIPSInst_FS(ir)); 2136 rv.w = ieee754dp_2008class(fs); 2137 rfmt = w_fmt; 2138 break; 2139 } 2140 2141 case fmin_op: { 2142 union ieee754dp fs, ft; 2143 2144 if (!cpu_has_mips_r6) 2145 return SIGILL; 2146 2147 DPFROMREG(ft, MIPSInst_FT(ir)); 2148 DPFROMREG(fs, MIPSInst_FS(ir)); 2149 rv.d = ieee754dp_fmin(fs, ft); 2150 break; 2151 } 2152 2153 case fmina_op: { 2154 union ieee754dp fs, ft; 2155 2156 if (!cpu_has_mips_r6) 2157 return SIGILL; 2158 2159 DPFROMREG(ft, MIPSInst_FT(ir)); 2160 DPFROMREG(fs, MIPSInst_FS(ir)); 2161 rv.d = ieee754dp_fmina(fs, ft); 2162 break; 2163 } 2164 2165 case fmax_op: { 2166 union ieee754dp fs, ft; 2167 2168 if (!cpu_has_mips_r6) 2169 return SIGILL; 2170 2171 DPFROMREG(ft, MIPSInst_FT(ir)); 2172 DPFROMREG(fs, MIPSInst_FS(ir)); 2173 rv.d = ieee754dp_fmax(fs, ft); 2174 break; 2175 } 2176 2177 case fmaxa_op: { 2178 union ieee754dp fs, ft; 2179 2180 if (!cpu_has_mips_r6) 2181 return SIGILL; 2182 2183 DPFROMREG(ft, MIPSInst_FT(ir)); 2184 DPFROMREG(fs, MIPSInst_FS(ir)); 2185 rv.d = ieee754dp_fmaxa(fs, ft); 2186 break; 2187 } 2188 2189 case fabs_op: 2190 handler.u = ieee754dp_abs; 2191 goto dcopuop; 2192 2193 case fneg_op: 2194 handler.u = ieee754dp_neg; 2195 goto dcopuop; 2196 2197 case fmov_op: 2198 /* an easy one */ 2199 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2200 goto copcsr; 2201 2202 /* binary op on handler */ 2203 dcopbop: 2204 DPFROMREG(fs, MIPSInst_FS(ir)); 2205 DPFROMREG(ft, MIPSInst_FT(ir)); 2206 2207 rv.d = (*handler.b) (fs, ft); 2208 goto copcsr; 2209 dcopuop: 2210 DPFROMREG(fs, MIPSInst_FS(ir)); 2211 rv.d = (*handler.u) (fs); 2212 goto copcsr; 2213 2214 /* 2215 * unary conv ops 2216 */ 2217 case fcvts_op: 2218 DPFROMREG(fs, MIPSInst_FS(ir)); 2219 rv.s = ieee754sp_fdp(fs); 2220 rfmt = s_fmt; 2221 goto copcsr; 2222 2223 case fcvtd_op: 2224 return SIGILL; /* not defined */ 2225 2226 case fcvtw_op: 2227 DPFROMREG(fs, MIPSInst_FS(ir)); 2228 rv.w = ieee754dp_tint(fs); /* wrong */ 2229 rfmt = w_fmt; 2230 goto copcsr; 2231 2232 case fround_op: 2233 case ftrunc_op: 2234 case fceil_op: 2235 case ffloor_op: 2236 if (!cpu_has_mips_2_3_4_5_r) 2237 return SIGILL; 2238 2239 oldrm = ieee754_csr.rm; 2240 DPFROMREG(fs, MIPSInst_FS(ir)); 2241 ieee754_csr.rm = MIPSInst_FUNC(ir); 2242 rv.w = ieee754dp_tint(fs); 2243 ieee754_csr.rm = oldrm; 2244 rfmt = w_fmt; 2245 goto copcsr; 2246 2247 case fcvtl_op: 2248 if (!cpu_has_mips_3_4_5_64_r2_r6) 2249 return SIGILL; 2250 2251 DPFROMREG(fs, MIPSInst_FS(ir)); 2252 rv.l = ieee754dp_tlong(fs); 2253 rfmt = l_fmt; 2254 goto copcsr; 2255 2256 case froundl_op: 2257 case ftruncl_op: 2258 case fceill_op: 2259 case ffloorl_op: 2260 if (!cpu_has_mips_3_4_5_64_r2_r6) 2261 return SIGILL; 2262 2263 oldrm = ieee754_csr.rm; 2264 DPFROMREG(fs, MIPSInst_FS(ir)); 2265 ieee754_csr.rm = MIPSInst_FUNC(ir); 2266 rv.l = ieee754dp_tlong(fs); 2267 ieee754_csr.rm = oldrm; 2268 rfmt = l_fmt; 2269 goto copcsr; 2270 2271 default: 2272 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 2273 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; 2274 union ieee754dp fs, ft; 2275 2276 DPFROMREG(fs, MIPSInst_FS(ir)); 2277 DPFROMREG(ft, MIPSInst_FT(ir)); 2278 rv.w = ieee754dp_cmp(fs, ft, 2279 cmptab[cmpop & 0x7], cmpop & 0x8); 2280 rfmt = -1; 2281 if ((cmpop & 0x8) 2282 && 2283 ieee754_cxtest 2284 (IEEE754_INVALID_OPERATION)) 2285 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2286 else 2287 goto copcsr; 2288 2289 } 2290 else { 2291 return SIGILL; 2292 } 2293 break; 2294 } 2295 break; 2296 } 2297 2298 case w_fmt: { 2299 union ieee754dp fs; 2300 2301 switch (MIPSInst_FUNC(ir)) { 2302 case fcvts_op: 2303 /* convert word to single precision real */ 2304 SPFROMREG(fs, MIPSInst_FS(ir)); 2305 rv.s = ieee754sp_fint(fs.bits); 2306 rfmt = s_fmt; 2307 goto copcsr; 2308 case fcvtd_op: 2309 /* convert word to double precision real */ 2310 SPFROMREG(fs, MIPSInst_FS(ir)); 2311 rv.d = ieee754dp_fint(fs.bits); 2312 rfmt = d_fmt; 2313 goto copcsr; 2314 default: { 2315 /* Emulating the new CMP.condn.fmt R6 instruction */ 2316 #define CMPOP_MASK 0x7 2317 #define SIGN_BIT (0x1 << 3) 2318 #define PREDICATE_BIT (0x1 << 4) 2319 2320 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2321 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2322 union ieee754sp fs, ft; 2323 2324 /* This is an R6 only instruction */ 2325 if (!cpu_has_mips_r6 || 2326 (MIPSInst_FUNC(ir) & 0x20)) 2327 return SIGILL; 2328 2329 /* fmt is w_fmt for single precision so fix it */ 2330 rfmt = s_fmt; 2331 /* default to false */ 2332 rv.w = 0; 2333 2334 /* CMP.condn.S */ 2335 SPFROMREG(fs, MIPSInst_FS(ir)); 2336 SPFROMREG(ft, MIPSInst_FT(ir)); 2337 2338 /* positive predicates */ 2339 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2340 if (ieee754sp_cmp(fs, ft, cmptab[cmpop], 2341 sig)) 2342 rv.w = -1; /* true, all 1s */ 2343 if ((sig) && 2344 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2345 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2346 else 2347 goto copcsr; 2348 } else { 2349 /* negative predicates */ 2350 switch (cmpop) { 2351 case 1: 2352 case 2: 2353 case 3: 2354 if (ieee754sp_cmp(fs, ft, 2355 negative_cmptab[cmpop], 2356 sig)) 2357 rv.w = -1; /* true, all 1s */ 2358 if (sig && 2359 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2360 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2361 else 2362 goto copcsr; 2363 break; 2364 default: 2365 /* Reserved R6 ops */ 2366 pr_err("Reserved MIPS R6 CMP.condn.S operation\n"); 2367 return SIGILL; 2368 } 2369 } 2370 break; 2371 } 2372 } 2373 } 2374 2375 case l_fmt: 2376 2377 if (!cpu_has_mips_3_4_5_64_r2_r6) 2378 return SIGILL; 2379 2380 DIFROMREG(bits, MIPSInst_FS(ir)); 2381 2382 switch (MIPSInst_FUNC(ir)) { 2383 case fcvts_op: 2384 /* convert long to single precision real */ 2385 rv.s = ieee754sp_flong(bits); 2386 rfmt = s_fmt; 2387 goto copcsr; 2388 case fcvtd_op: 2389 /* convert long to double precision real */ 2390 rv.d = ieee754dp_flong(bits); 2391 rfmt = d_fmt; 2392 goto copcsr; 2393 default: { 2394 /* Emulating the new CMP.condn.fmt R6 instruction */ 2395 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2396 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2397 union ieee754dp fs, ft; 2398 2399 if (!cpu_has_mips_r6 || 2400 (MIPSInst_FUNC(ir) & 0x20)) 2401 return SIGILL; 2402 2403 /* fmt is l_fmt for double precision so fix it */ 2404 rfmt = d_fmt; 2405 /* default to false */ 2406 rv.l = 0; 2407 2408 /* CMP.condn.D */ 2409 DPFROMREG(fs, MIPSInst_FS(ir)); 2410 DPFROMREG(ft, MIPSInst_FT(ir)); 2411 2412 /* positive predicates */ 2413 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2414 if (ieee754dp_cmp(fs, ft, 2415 cmptab[cmpop], sig)) 2416 rv.l = -1LL; /* true, all 1s */ 2417 if (sig && 2418 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2419 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2420 else 2421 goto copcsr; 2422 } else { 2423 /* negative predicates */ 2424 switch (cmpop) { 2425 case 1: 2426 case 2: 2427 case 3: 2428 if (ieee754dp_cmp(fs, ft, 2429 negative_cmptab[cmpop], 2430 sig)) 2431 rv.l = -1LL; /* true, all 1s */ 2432 if (sig && 2433 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2434 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2435 else 2436 goto copcsr; 2437 break; 2438 default: 2439 /* Reserved R6 ops */ 2440 pr_err("Reserved MIPS R6 CMP.condn.D operation\n"); 2441 return SIGILL; 2442 } 2443 } 2444 break; 2445 } 2446 } 2447 default: 2448 return SIGILL; 2449 } 2450 2451 /* 2452 * Update the fpu CSR register for this operation. 2453 * If an exception is required, generate a tidy SIGFPE exception, 2454 * without updating the result register. 2455 * Note: cause exception bits do not accumulate, they are rewritten 2456 * for each op; only the flag/sticky bits accumulate. 2457 */ 2458 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 2459 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 2460 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */ 2461 return SIGFPE; 2462 } 2463 2464 /* 2465 * Now we can safely write the result back to the register file. 2466 */ 2467 switch (rfmt) { 2468 case -1: 2469 2470 if (cpu_has_mips_4_5_r) 2471 cbit = fpucondbit[MIPSInst_FD(ir) >> 2]; 2472 else 2473 cbit = FPU_CSR_COND; 2474 if (rv.w) 2475 ctx->fcr31 |= cbit; 2476 else 2477 ctx->fcr31 &= ~cbit; 2478 break; 2479 2480 case d_fmt: 2481 DPTOREG(rv.d, MIPSInst_FD(ir)); 2482 break; 2483 case s_fmt: 2484 SPTOREG(rv.s, MIPSInst_FD(ir)); 2485 break; 2486 case w_fmt: 2487 SITOREG(rv.w, MIPSInst_FD(ir)); 2488 break; 2489 case l_fmt: 2490 if (!cpu_has_mips_3_4_5_64_r2_r6) 2491 return SIGILL; 2492 2493 DITOREG(rv.l, MIPSInst_FD(ir)); 2494 break; 2495 default: 2496 return SIGILL; 2497 } 2498 2499 return 0; 2500 } 2501 2502 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 2503 int has_fpu, void *__user *fault_addr) 2504 { 2505 unsigned long oldepc, prevepc; 2506 struct mm_decoded_insn dec_insn; 2507 u16 instr[4]; 2508 u16 *instr_ptr; 2509 int sig = 0; 2510 2511 oldepc = xcp->cp0_epc; 2512 do { 2513 prevepc = xcp->cp0_epc; 2514 2515 if (get_isa16_mode(prevepc) && cpu_has_mmips) { 2516 /* 2517 * Get next 2 microMIPS instructions and convert them 2518 * into 32-bit instructions. 2519 */ 2520 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) || 2521 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) || 2522 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) || 2523 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) { 2524 MIPS_FPU_EMU_INC_STATS(errors); 2525 return SIGBUS; 2526 } 2527 instr_ptr = instr; 2528 2529 /* Get first instruction. */ 2530 if (mm_insn_16bit(*instr_ptr)) { 2531 /* Duplicate the half-word. */ 2532 dec_insn.insn = (*instr_ptr << 16) | 2533 (*instr_ptr); 2534 /* 16-bit instruction. */ 2535 dec_insn.pc_inc = 2; 2536 instr_ptr += 1; 2537 } else { 2538 dec_insn.insn = (*instr_ptr << 16) | 2539 *(instr_ptr+1); 2540 /* 32-bit instruction. */ 2541 dec_insn.pc_inc = 4; 2542 instr_ptr += 2; 2543 } 2544 /* Get second instruction. */ 2545 if (mm_insn_16bit(*instr_ptr)) { 2546 /* Duplicate the half-word. */ 2547 dec_insn.next_insn = (*instr_ptr << 16) | 2548 (*instr_ptr); 2549 /* 16-bit instruction. */ 2550 dec_insn.next_pc_inc = 2; 2551 } else { 2552 dec_insn.next_insn = (*instr_ptr << 16) | 2553 *(instr_ptr+1); 2554 /* 32-bit instruction. */ 2555 dec_insn.next_pc_inc = 4; 2556 } 2557 dec_insn.micro_mips_mode = 1; 2558 } else { 2559 if ((get_user(dec_insn.insn, 2560 (mips_instruction __user *) xcp->cp0_epc)) || 2561 (get_user(dec_insn.next_insn, 2562 (mips_instruction __user *)(xcp->cp0_epc+4)))) { 2563 MIPS_FPU_EMU_INC_STATS(errors); 2564 return SIGBUS; 2565 } 2566 dec_insn.pc_inc = 4; 2567 dec_insn.next_pc_inc = 4; 2568 dec_insn.micro_mips_mode = 0; 2569 } 2570 2571 if ((dec_insn.insn == 0) || 2572 ((dec_insn.pc_inc == 2) && 2573 ((dec_insn.insn & 0xffff) == MM_NOP16))) 2574 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */ 2575 else { 2576 /* 2577 * The 'ieee754_csr' is an alias of ctx->fcr31. 2578 * No need to copy ctx->fcr31 to ieee754_csr. 2579 */ 2580 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr); 2581 } 2582 2583 if (has_fpu) 2584 break; 2585 if (sig) 2586 break; 2587 2588 cond_resched(); 2589 } while (xcp->cp0_epc > prevepc); 2590 2591 /* SIGILL indicates a non-fpu instruction */ 2592 if (sig == SIGILL && xcp->cp0_epc != oldepc) 2593 /* but if EPC has advanced, then ignore it */ 2594 sig = 0; 2595 2596 return sig; 2597 } 2598