xref: /linux/arch/mips/math-emu/cp1emu.c (revision 8b2ada27dc1045e8191673bf769a1136ce8a0127)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/percpu-defs.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/branch.h>
42 #include <asm/inst.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/uaccess.h>
46 
47 #include <asm/cpu-info.h>
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 #include <asm/mips-r2-to-r6-emul.h>
52 
53 #include "ieee754.h"
54 
55 /* Function which emulates a floating point instruction. */
56 
57 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
58 	mips_instruction);
59 
60 static int fpux_emu(struct pt_regs *,
61 	struct mips_fpu_struct *, mips_instruction, void *__user *);
62 
63 /* Control registers */
64 
65 #define FPCREG_RID	0	/* $0  = revision id */
66 #define FPCREG_FCCR	25	/* $25 = fccr */
67 #define FPCREG_FEXR	26	/* $26 = fexr */
68 #define FPCREG_FENR	28	/* $28 = fenr */
69 #define FPCREG_CSR	31	/* $31 = csr */
70 
71 /* convert condition code register number to csr bit */
72 const unsigned int fpucondbit[8] = {
73 	FPU_CSR_COND,
74 	FPU_CSR_COND1,
75 	FPU_CSR_COND2,
76 	FPU_CSR_COND3,
77 	FPU_CSR_COND4,
78 	FPU_CSR_COND5,
79 	FPU_CSR_COND6,
80 	FPU_CSR_COND7
81 };
82 
83 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
84 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
85 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
86 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
87 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
88 
89 /*
90  * This functions translates a 32-bit microMIPS instruction
91  * into a 32-bit MIPS32 instruction. Returns 0 on success
92  * and SIGILL otherwise.
93  */
94 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
95 {
96 	union mips_instruction insn = *insn_ptr;
97 	union mips_instruction mips32_insn = insn;
98 	int func, fmt, op;
99 
100 	switch (insn.mm_i_format.opcode) {
101 	case mm_ldc132_op:
102 		mips32_insn.mm_i_format.opcode = ldc1_op;
103 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
104 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
105 		break;
106 	case mm_lwc132_op:
107 		mips32_insn.mm_i_format.opcode = lwc1_op;
108 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
109 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
110 		break;
111 	case mm_sdc132_op:
112 		mips32_insn.mm_i_format.opcode = sdc1_op;
113 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
114 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
115 		break;
116 	case mm_swc132_op:
117 		mips32_insn.mm_i_format.opcode = swc1_op;
118 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
119 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
120 		break;
121 	case mm_pool32i_op:
122 		/* NOTE: offset is << by 1 if in microMIPS mode. */
123 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
124 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
125 			mips32_insn.fb_format.opcode = cop1_op;
126 			mips32_insn.fb_format.bc = bc_op;
127 			mips32_insn.fb_format.flag =
128 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
129 		} else
130 			return SIGILL;
131 		break;
132 	case mm_pool32f_op:
133 		switch (insn.mm_fp0_format.func) {
134 		case mm_32f_01_op:
135 		case mm_32f_11_op:
136 		case mm_32f_02_op:
137 		case mm_32f_12_op:
138 		case mm_32f_41_op:
139 		case mm_32f_51_op:
140 		case mm_32f_42_op:
141 		case mm_32f_52_op:
142 			op = insn.mm_fp0_format.func;
143 			if (op == mm_32f_01_op)
144 				func = madd_s_op;
145 			else if (op == mm_32f_11_op)
146 				func = madd_d_op;
147 			else if (op == mm_32f_02_op)
148 				func = nmadd_s_op;
149 			else if (op == mm_32f_12_op)
150 				func = nmadd_d_op;
151 			else if (op == mm_32f_41_op)
152 				func = msub_s_op;
153 			else if (op == mm_32f_51_op)
154 				func = msub_d_op;
155 			else if (op == mm_32f_42_op)
156 				func = nmsub_s_op;
157 			else
158 				func = nmsub_d_op;
159 			mips32_insn.fp6_format.opcode = cop1x_op;
160 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
161 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
162 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
163 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
164 			mips32_insn.fp6_format.func = func;
165 			break;
166 		case mm_32f_10_op:
167 			func = -1;	/* Invalid */
168 			op = insn.mm_fp5_format.op & 0x7;
169 			if (op == mm_ldxc1_op)
170 				func = ldxc1_op;
171 			else if (op == mm_sdxc1_op)
172 				func = sdxc1_op;
173 			else if (op == mm_lwxc1_op)
174 				func = lwxc1_op;
175 			else if (op == mm_swxc1_op)
176 				func = swxc1_op;
177 
178 			if (func != -1) {
179 				mips32_insn.r_format.opcode = cop1x_op;
180 				mips32_insn.r_format.rs =
181 					insn.mm_fp5_format.base;
182 				mips32_insn.r_format.rt =
183 					insn.mm_fp5_format.index;
184 				mips32_insn.r_format.rd = 0;
185 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
186 				mips32_insn.r_format.func = func;
187 			} else
188 				return SIGILL;
189 			break;
190 		case mm_32f_40_op:
191 			op = -1;	/* Invalid */
192 			if (insn.mm_fp2_format.op == mm_fmovt_op)
193 				op = 1;
194 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
195 				op = 0;
196 			if (op != -1) {
197 				mips32_insn.fp0_format.opcode = cop1_op;
198 				mips32_insn.fp0_format.fmt =
199 					sdps_format[insn.mm_fp2_format.fmt];
200 				mips32_insn.fp0_format.ft =
201 					(insn.mm_fp2_format.cc<<2) + op;
202 				mips32_insn.fp0_format.fs =
203 					insn.mm_fp2_format.fs;
204 				mips32_insn.fp0_format.fd =
205 					insn.mm_fp2_format.fd;
206 				mips32_insn.fp0_format.func = fmovc_op;
207 			} else
208 				return SIGILL;
209 			break;
210 		case mm_32f_60_op:
211 			func = -1;	/* Invalid */
212 			if (insn.mm_fp0_format.op == mm_fadd_op)
213 				func = fadd_op;
214 			else if (insn.mm_fp0_format.op == mm_fsub_op)
215 				func = fsub_op;
216 			else if (insn.mm_fp0_format.op == mm_fmul_op)
217 				func = fmul_op;
218 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
219 				func = fdiv_op;
220 			if (func != -1) {
221 				mips32_insn.fp0_format.opcode = cop1_op;
222 				mips32_insn.fp0_format.fmt =
223 					sdps_format[insn.mm_fp0_format.fmt];
224 				mips32_insn.fp0_format.ft =
225 					insn.mm_fp0_format.ft;
226 				mips32_insn.fp0_format.fs =
227 					insn.mm_fp0_format.fs;
228 				mips32_insn.fp0_format.fd =
229 					insn.mm_fp0_format.fd;
230 				mips32_insn.fp0_format.func = func;
231 			} else
232 				return SIGILL;
233 			break;
234 		case mm_32f_70_op:
235 			func = -1;	/* Invalid */
236 			if (insn.mm_fp0_format.op == mm_fmovn_op)
237 				func = fmovn_op;
238 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
239 				func = fmovz_op;
240 			if (func != -1) {
241 				mips32_insn.fp0_format.opcode = cop1_op;
242 				mips32_insn.fp0_format.fmt =
243 					sdps_format[insn.mm_fp0_format.fmt];
244 				mips32_insn.fp0_format.ft =
245 					insn.mm_fp0_format.ft;
246 				mips32_insn.fp0_format.fs =
247 					insn.mm_fp0_format.fs;
248 				mips32_insn.fp0_format.fd =
249 					insn.mm_fp0_format.fd;
250 				mips32_insn.fp0_format.func = func;
251 			} else
252 				return SIGILL;
253 			break;
254 		case mm_32f_73_op:    /* POOL32FXF */
255 			switch (insn.mm_fp1_format.op) {
256 			case mm_movf0_op:
257 			case mm_movf1_op:
258 			case mm_movt0_op:
259 			case mm_movt1_op:
260 				if ((insn.mm_fp1_format.op & 0x7f) ==
261 				    mm_movf0_op)
262 					op = 0;
263 				else
264 					op = 1;
265 				mips32_insn.r_format.opcode = spec_op;
266 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
267 				mips32_insn.r_format.rt =
268 					(insn.mm_fp4_format.cc << 2) + op;
269 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
270 				mips32_insn.r_format.re = 0;
271 				mips32_insn.r_format.func = movc_op;
272 				break;
273 			case mm_fcvtd0_op:
274 			case mm_fcvtd1_op:
275 			case mm_fcvts0_op:
276 			case mm_fcvts1_op:
277 				if ((insn.mm_fp1_format.op & 0x7f) ==
278 				    mm_fcvtd0_op) {
279 					func = fcvtd_op;
280 					fmt = swl_format[insn.mm_fp3_format.fmt];
281 				} else {
282 					func = fcvts_op;
283 					fmt = dwl_format[insn.mm_fp3_format.fmt];
284 				}
285 				mips32_insn.fp0_format.opcode = cop1_op;
286 				mips32_insn.fp0_format.fmt = fmt;
287 				mips32_insn.fp0_format.ft = 0;
288 				mips32_insn.fp0_format.fs =
289 					insn.mm_fp3_format.fs;
290 				mips32_insn.fp0_format.fd =
291 					insn.mm_fp3_format.rt;
292 				mips32_insn.fp0_format.func = func;
293 				break;
294 			case mm_fmov0_op:
295 			case mm_fmov1_op:
296 			case mm_fabs0_op:
297 			case mm_fabs1_op:
298 			case mm_fneg0_op:
299 			case mm_fneg1_op:
300 				if ((insn.mm_fp1_format.op & 0x7f) ==
301 				    mm_fmov0_op)
302 					func = fmov_op;
303 				else if ((insn.mm_fp1_format.op & 0x7f) ==
304 					 mm_fabs0_op)
305 					func = fabs_op;
306 				else
307 					func = fneg_op;
308 				mips32_insn.fp0_format.opcode = cop1_op;
309 				mips32_insn.fp0_format.fmt =
310 					sdps_format[insn.mm_fp3_format.fmt];
311 				mips32_insn.fp0_format.ft = 0;
312 				mips32_insn.fp0_format.fs =
313 					insn.mm_fp3_format.fs;
314 				mips32_insn.fp0_format.fd =
315 					insn.mm_fp3_format.rt;
316 				mips32_insn.fp0_format.func = func;
317 				break;
318 			case mm_ffloorl_op:
319 			case mm_ffloorw_op:
320 			case mm_fceill_op:
321 			case mm_fceilw_op:
322 			case mm_ftruncl_op:
323 			case mm_ftruncw_op:
324 			case mm_froundl_op:
325 			case mm_froundw_op:
326 			case mm_fcvtl_op:
327 			case mm_fcvtw_op:
328 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
329 					func = ffloorl_op;
330 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
331 					func = ffloor_op;
332 				else if (insn.mm_fp1_format.op == mm_fceill_op)
333 					func = fceill_op;
334 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
335 					func = fceil_op;
336 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
337 					func = ftruncl_op;
338 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
339 					func = ftrunc_op;
340 				else if (insn.mm_fp1_format.op == mm_froundl_op)
341 					func = froundl_op;
342 				else if (insn.mm_fp1_format.op == mm_froundw_op)
343 					func = fround_op;
344 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
345 					func = fcvtl_op;
346 				else
347 					func = fcvtw_op;
348 				mips32_insn.fp0_format.opcode = cop1_op;
349 				mips32_insn.fp0_format.fmt =
350 					sd_format[insn.mm_fp1_format.fmt];
351 				mips32_insn.fp0_format.ft = 0;
352 				mips32_insn.fp0_format.fs =
353 					insn.mm_fp1_format.fs;
354 				mips32_insn.fp0_format.fd =
355 					insn.mm_fp1_format.rt;
356 				mips32_insn.fp0_format.func = func;
357 				break;
358 			case mm_frsqrt_op:
359 			case mm_fsqrt_op:
360 			case mm_frecip_op:
361 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
362 					func = frsqrt_op;
363 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
364 					func = fsqrt_op;
365 				else
366 					func = frecip_op;
367 				mips32_insn.fp0_format.opcode = cop1_op;
368 				mips32_insn.fp0_format.fmt =
369 					sdps_format[insn.mm_fp1_format.fmt];
370 				mips32_insn.fp0_format.ft = 0;
371 				mips32_insn.fp0_format.fs =
372 					insn.mm_fp1_format.fs;
373 				mips32_insn.fp0_format.fd =
374 					insn.mm_fp1_format.rt;
375 				mips32_insn.fp0_format.func = func;
376 				break;
377 			case mm_mfc1_op:
378 			case mm_mtc1_op:
379 			case mm_cfc1_op:
380 			case mm_ctc1_op:
381 			case mm_mfhc1_op:
382 			case mm_mthc1_op:
383 				if (insn.mm_fp1_format.op == mm_mfc1_op)
384 					op = mfc_op;
385 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
386 					op = mtc_op;
387 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
388 					op = cfc_op;
389 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
390 					op = ctc_op;
391 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
392 					op = mfhc_op;
393 				else
394 					op = mthc_op;
395 				mips32_insn.fp1_format.opcode = cop1_op;
396 				mips32_insn.fp1_format.op = op;
397 				mips32_insn.fp1_format.rt =
398 					insn.mm_fp1_format.rt;
399 				mips32_insn.fp1_format.fs =
400 					insn.mm_fp1_format.fs;
401 				mips32_insn.fp1_format.fd = 0;
402 				mips32_insn.fp1_format.func = 0;
403 				break;
404 			default:
405 				return SIGILL;
406 			}
407 			break;
408 		case mm_32f_74_op:	/* c.cond.fmt */
409 			mips32_insn.fp0_format.opcode = cop1_op;
410 			mips32_insn.fp0_format.fmt =
411 				sdps_format[insn.mm_fp4_format.fmt];
412 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
413 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
414 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
415 			mips32_insn.fp0_format.func =
416 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
417 			break;
418 		default:
419 			return SIGILL;
420 		}
421 		break;
422 	default:
423 		return SIGILL;
424 	}
425 
426 	*insn_ptr = mips32_insn;
427 	return 0;
428 }
429 
430 /*
431  * Redundant with logic already in kernel/branch.c,
432  * embedded in compute_return_epc.  At some point,
433  * a single subroutine should be used across both
434  * modules.
435  */
436 int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
437 		  unsigned long *contpc)
438 {
439 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
440 	unsigned int fcr31;
441 	unsigned int bit = 0;
442 
443 	switch (insn.i_format.opcode) {
444 	case spec_op:
445 		switch (insn.r_format.func) {
446 		case jalr_op:
447 			if (insn.r_format.rd != 0) {
448 				regs->regs[insn.r_format.rd] =
449 					regs->cp0_epc + dec_insn.pc_inc +
450 					dec_insn.next_pc_inc;
451 			}
452 			/* Fall through */
453 		case jr_op:
454 			/* For R6, JR already emulated in jalr_op */
455 			if (NO_R6EMU && insn.r_format.func == jr_op)
456 				break;
457 			*contpc = regs->regs[insn.r_format.rs];
458 			return 1;
459 		}
460 		break;
461 	case bcond_op:
462 		switch (insn.i_format.rt) {
463 		case bltzal_op:
464 		case bltzall_op:
465 			if (NO_R6EMU && (insn.i_format.rs ||
466 			    insn.i_format.rt == bltzall_op))
467 				break;
468 
469 			regs->regs[31] = regs->cp0_epc +
470 				dec_insn.pc_inc +
471 				dec_insn.next_pc_inc;
472 			/* Fall through */
473 		case bltzl_op:
474 			if (NO_R6EMU)
475 				break;
476 		case bltz_op:
477 			if ((long)regs->regs[insn.i_format.rs] < 0)
478 				*contpc = regs->cp0_epc +
479 					dec_insn.pc_inc +
480 					(insn.i_format.simmediate << 2);
481 			else
482 				*contpc = regs->cp0_epc +
483 					dec_insn.pc_inc +
484 					dec_insn.next_pc_inc;
485 			return 1;
486 		case bgezal_op:
487 		case bgezall_op:
488 			if (NO_R6EMU && (insn.i_format.rs ||
489 			    insn.i_format.rt == bgezall_op))
490 				break;
491 
492 			regs->regs[31] = regs->cp0_epc +
493 				dec_insn.pc_inc +
494 				dec_insn.next_pc_inc;
495 			/* Fall through */
496 		case bgezl_op:
497 			if (NO_R6EMU)
498 				break;
499 		case bgez_op:
500 			if ((long)regs->regs[insn.i_format.rs] >= 0)
501 				*contpc = regs->cp0_epc +
502 					dec_insn.pc_inc +
503 					(insn.i_format.simmediate << 2);
504 			else
505 				*contpc = regs->cp0_epc +
506 					dec_insn.pc_inc +
507 					dec_insn.next_pc_inc;
508 			return 1;
509 		}
510 		break;
511 	case jalx_op:
512 		set_isa16_mode(bit);
513 	case jal_op:
514 		regs->regs[31] = regs->cp0_epc +
515 			dec_insn.pc_inc +
516 			dec_insn.next_pc_inc;
517 		/* Fall through */
518 	case j_op:
519 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
520 		*contpc >>= 28;
521 		*contpc <<= 28;
522 		*contpc |= (insn.j_format.target << 2);
523 		/* Set microMIPS mode bit: XOR for jalx. */
524 		*contpc ^= bit;
525 		return 1;
526 	case beql_op:
527 		if (NO_R6EMU)
528 			break;
529 	case beq_op:
530 		if (regs->regs[insn.i_format.rs] ==
531 		    regs->regs[insn.i_format.rt])
532 			*contpc = regs->cp0_epc +
533 				dec_insn.pc_inc +
534 				(insn.i_format.simmediate << 2);
535 		else
536 			*contpc = regs->cp0_epc +
537 				dec_insn.pc_inc +
538 				dec_insn.next_pc_inc;
539 		return 1;
540 	case bnel_op:
541 		if (NO_R6EMU)
542 			break;
543 	case bne_op:
544 		if (regs->regs[insn.i_format.rs] !=
545 		    regs->regs[insn.i_format.rt])
546 			*contpc = regs->cp0_epc +
547 				dec_insn.pc_inc +
548 				(insn.i_format.simmediate << 2);
549 		else
550 			*contpc = regs->cp0_epc +
551 				dec_insn.pc_inc +
552 				dec_insn.next_pc_inc;
553 		return 1;
554 	case blezl_op:
555 		if (!insn.i_format.rt && NO_R6EMU)
556 			break;
557 	case blez_op:
558 
559 		/*
560 		 * Compact branches for R6 for the
561 		 * blez and blezl opcodes.
562 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
563 		 * BLEZ  | rs = rt != 0      == BGEZALC
564 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
565 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
566 		 * BLEZL | rs = rt != 0      == BGEZC
567 		 * BLEZL | rs != 0 | rt != 0 == BGEC
568 		 *
569 		 * For real BLEZ{,L}, rt is always 0.
570 		 */
571 		if (cpu_has_mips_r6 && insn.i_format.rt) {
572 			if ((insn.i_format.opcode == blez_op) &&
573 			    ((!insn.i_format.rs && insn.i_format.rt) ||
574 			     (insn.i_format.rs == insn.i_format.rt)))
575 				regs->regs[31] = regs->cp0_epc +
576 					dec_insn.pc_inc;
577 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
578 				dec_insn.next_pc_inc;
579 
580 			return 1;
581 		}
582 		if ((long)regs->regs[insn.i_format.rs] <= 0)
583 			*contpc = regs->cp0_epc +
584 				dec_insn.pc_inc +
585 				(insn.i_format.simmediate << 2);
586 		else
587 			*contpc = regs->cp0_epc +
588 				dec_insn.pc_inc +
589 				dec_insn.next_pc_inc;
590 		return 1;
591 	case bgtzl_op:
592 		if (!insn.i_format.rt && NO_R6EMU)
593 			break;
594 	case bgtz_op:
595 		/*
596 		 * Compact branches for R6 for the
597 		 * bgtz and bgtzl opcodes.
598 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
599 		 * BGTZ  | rs = rt != 0      == BLTZALC
600 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
601 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
602 		 * BGTZL | rs = rt != 0      == BLTZC
603 		 * BGTZL | rs != 0 | rt != 0 == BLTC
604 		 *
605 		 * *ZALC varint for BGTZ &&& rt != 0
606 		 * For real GTZ{,L}, rt is always 0.
607 		 */
608 		if (cpu_has_mips_r6 && insn.i_format.rt) {
609 			if ((insn.i_format.opcode == blez_op) &&
610 			    ((!insn.i_format.rs && insn.i_format.rt) ||
611 			     (insn.i_format.rs == insn.i_format.rt)))
612 				regs->regs[31] = regs->cp0_epc +
613 					dec_insn.pc_inc;
614 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
615 				dec_insn.next_pc_inc;
616 
617 			return 1;
618 		}
619 
620 		if ((long)regs->regs[insn.i_format.rs] > 0)
621 			*contpc = regs->cp0_epc +
622 				dec_insn.pc_inc +
623 				(insn.i_format.simmediate << 2);
624 		else
625 			*contpc = regs->cp0_epc +
626 				dec_insn.pc_inc +
627 				dec_insn.next_pc_inc;
628 		return 1;
629 	case pop10_op:
630 	case pop30_op:
631 		if (!cpu_has_mips_r6)
632 			break;
633 		if (insn.i_format.rt && !insn.i_format.rs)
634 			regs->regs[31] = regs->cp0_epc + 4;
635 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
636 			dec_insn.next_pc_inc;
637 
638 		return 1;
639 #ifdef CONFIG_CPU_CAVIUM_OCTEON
640 	case lwc2_op: /* This is bbit0 on Octeon */
641 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
642 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
643 		else
644 			*contpc = regs->cp0_epc + 8;
645 		return 1;
646 	case ldc2_op: /* This is bbit032 on Octeon */
647 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
648 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
649 		else
650 			*contpc = regs->cp0_epc + 8;
651 		return 1;
652 	case swc2_op: /* This is bbit1 on Octeon */
653 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
654 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
655 		else
656 			*contpc = regs->cp0_epc + 8;
657 		return 1;
658 	case sdc2_op: /* This is bbit132 on Octeon */
659 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
660 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
661 		else
662 			*contpc = regs->cp0_epc + 8;
663 		return 1;
664 #else
665 	case bc6_op:
666 		/*
667 		 * Only valid for MIPS R6 but we can still end up
668 		 * here from a broken userland so just tell emulator
669 		 * this is not a branch and let it break later on.
670 		 */
671 		if  (!cpu_has_mips_r6)
672 			break;
673 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
674 			dec_insn.next_pc_inc;
675 
676 		return 1;
677 	case balc6_op:
678 		if (!cpu_has_mips_r6)
679 			break;
680 		regs->regs[31] = regs->cp0_epc + 4;
681 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
682 			dec_insn.next_pc_inc;
683 
684 		return 1;
685 	case pop66_op:
686 		if (!cpu_has_mips_r6)
687 			break;
688 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
689 			dec_insn.next_pc_inc;
690 
691 		return 1;
692 	case pop76_op:
693 		if (!cpu_has_mips_r6)
694 			break;
695 		if (!insn.i_format.rs)
696 			regs->regs[31] = regs->cp0_epc + 4;
697 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
698 			dec_insn.next_pc_inc;
699 
700 		return 1;
701 #endif
702 	case cop0_op:
703 	case cop1_op:
704 		/* Need to check for R6 bc1nez and bc1eqz branches */
705 		if (cpu_has_mips_r6 &&
706 		    ((insn.i_format.rs == bc1eqz_op) ||
707 		     (insn.i_format.rs == bc1nez_op))) {
708 			bit = 0;
709 			switch (insn.i_format.rs) {
710 			case bc1eqz_op:
711 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
712 				    bit = 1;
713 				break;
714 			case bc1nez_op:
715 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
716 				    bit = 1;
717 				break;
718 			}
719 			if (bit)
720 				*contpc = regs->cp0_epc +
721 					dec_insn.pc_inc +
722 					(insn.i_format.simmediate << 2);
723 			else
724 				*contpc = regs->cp0_epc +
725 					dec_insn.pc_inc +
726 					dec_insn.next_pc_inc;
727 
728 			return 1;
729 		}
730 		/* R2/R6 compatible cop1 instruction. Fall through */
731 	case cop2_op:
732 	case cop1x_op:
733 		if (insn.i_format.rs == bc_op) {
734 			preempt_disable();
735 			if (is_fpu_owner())
736 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
737 			else
738 				fcr31 = current->thread.fpu.fcr31;
739 			preempt_enable();
740 
741 			bit = (insn.i_format.rt >> 2);
742 			bit += (bit != 0);
743 			bit += 23;
744 			switch (insn.i_format.rt & 3) {
745 			case 0:	/* bc1f */
746 			case 2:	/* bc1fl */
747 				if (~fcr31 & (1 << bit))
748 					*contpc = regs->cp0_epc +
749 						dec_insn.pc_inc +
750 						(insn.i_format.simmediate << 2);
751 				else
752 					*contpc = regs->cp0_epc +
753 						dec_insn.pc_inc +
754 						dec_insn.next_pc_inc;
755 				return 1;
756 			case 1:	/* bc1t */
757 			case 3:	/* bc1tl */
758 				if (fcr31 & (1 << bit))
759 					*contpc = regs->cp0_epc +
760 						dec_insn.pc_inc +
761 						(insn.i_format.simmediate << 2);
762 				else
763 					*contpc = regs->cp0_epc +
764 						dec_insn.pc_inc +
765 						dec_insn.next_pc_inc;
766 				return 1;
767 			}
768 		}
769 		break;
770 	}
771 	return 0;
772 }
773 
774 /*
775  * In the Linux kernel, we support selection of FPR format on the
776  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
777  * is hardwired to zero, which would imply a 32-bit FPU even for
778  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
779  * FPU emu is slow and bulky and optimizing this function offers fairly
780  * sizeable benefits so we try to be clever and make this function return
781  * a constant whenever possible, that is on 64-bit kernels without O32
782  * compatibility enabled and on 32-bit without 64-bit FPU support.
783  */
784 static inline int cop1_64bit(struct pt_regs *xcp)
785 {
786 	if (IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_MIPS32_O32))
787 		return 1;
788 	else if (IS_ENABLED(CONFIG_32BIT) &&
789 		 !IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
790 		return 0;
791 
792 	return !test_thread_flag(TIF_32BIT_FPREGS);
793 }
794 
795 static inline bool hybrid_fprs(void)
796 {
797 	return test_thread_flag(TIF_HYBRID_FPREGS);
798 }
799 
800 #define SIFROMREG(si, x)						\
801 do {									\
802 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
803 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
804 	else								\
805 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
806 } while (0)
807 
808 #define SITOREG(si, x)							\
809 do {									\
810 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
811 		unsigned i;						\
812 		set_fpr32(&ctx->fpr[x], 0, si);				\
813 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
814 			set_fpr32(&ctx->fpr[x], i, 0);			\
815 	} else {							\
816 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
817 	}								\
818 } while (0)
819 
820 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
821 
822 #define SITOHREG(si, x)							\
823 do {									\
824 	unsigned i;							\
825 	set_fpr32(&ctx->fpr[x], 1, si);					\
826 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
827 		set_fpr32(&ctx->fpr[x], i, 0);				\
828 } while (0)
829 
830 #define DIFROMREG(di, x)						\
831 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
832 
833 #define DITOREG(di, x)							\
834 do {									\
835 	unsigned fpr, i;						\
836 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
837 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
838 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
839 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
840 } while (0)
841 
842 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
843 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
844 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
845 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
846 
847 /*
848  * Emulate a CFC1 instruction.
849  */
850 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
851 			    mips_instruction ir)
852 {
853 	u32 fcr31 = ctx->fcr31;
854 	u32 value = 0;
855 
856 	switch (MIPSInst_RD(ir)) {
857 	case FPCREG_CSR:
858 		value = fcr31;
859 		pr_debug("%p gpr[%d]<-csr=%08x\n",
860 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
861 		break;
862 
863 	case FPCREG_FENR:
864 		if (!cpu_has_mips_r)
865 			break;
866 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
867 			MIPS_FENR_FS;
868 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
869 		pr_debug("%p gpr[%d]<-enr=%08x\n",
870 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
871 		break;
872 
873 	case FPCREG_FEXR:
874 		if (!cpu_has_mips_r)
875 			break;
876 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
877 		pr_debug("%p gpr[%d]<-exr=%08x\n",
878 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
879 		break;
880 
881 	case FPCREG_FCCR:
882 		if (!cpu_has_mips_r)
883 			break;
884 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
885 			MIPS_FCCR_COND0;
886 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
887 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
888 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
889 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
890 		break;
891 
892 	case FPCREG_RID:
893 		value = boot_cpu_data.fpu_id;
894 		break;
895 
896 	default:
897 		break;
898 	}
899 
900 	if (MIPSInst_RT(ir))
901 		xcp->regs[MIPSInst_RT(ir)] = value;
902 }
903 
904 /*
905  * Emulate a CTC1 instruction.
906  */
907 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
908 			    mips_instruction ir)
909 {
910 	u32 fcr31 = ctx->fcr31;
911 	u32 value;
912 	u32 mask;
913 
914 	if (MIPSInst_RT(ir) == 0)
915 		value = 0;
916 	else
917 		value = xcp->regs[MIPSInst_RT(ir)];
918 
919 	switch (MIPSInst_RD(ir)) {
920 	case FPCREG_CSR:
921 		pr_debug("%p gpr[%d]->csr=%08x\n",
922 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
923 
924 		/* Preserve read-only bits.  */
925 		mask = boot_cpu_data.fpu_msk31;
926 		fcr31 = (value & ~mask) | (fcr31 & mask);
927 		break;
928 
929 	case FPCREG_FENR:
930 		if (!cpu_has_mips_r)
931 			break;
932 		pr_debug("%p gpr[%d]->enr=%08x\n",
933 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
934 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
935 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
936 			 FPU_CSR_FS;
937 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
938 		break;
939 
940 	case FPCREG_FEXR:
941 		if (!cpu_has_mips_r)
942 			break;
943 		pr_debug("%p gpr[%d]->exr=%08x\n",
944 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
945 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
946 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
947 		break;
948 
949 	case FPCREG_FCCR:
950 		if (!cpu_has_mips_r)
951 			break;
952 		pr_debug("%p gpr[%d]->ccr=%08x\n",
953 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
954 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
955 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
956 			 FPU_CSR_COND;
957 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
958 			 FPU_CSR_CONDX;
959 		break;
960 
961 	default:
962 		break;
963 	}
964 
965 	ctx->fcr31 = fcr31;
966 }
967 
968 /*
969  * Emulate the single floating point instruction pointed at by EPC.
970  * Two instructions if the instruction is in a branch delay slot.
971  */
972 
973 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
974 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
975 {
976 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
977 	unsigned int cond, cbit, bit0;
978 	mips_instruction ir;
979 	int likely, pc_inc;
980 	union fpureg *fpr;
981 	u32 __user *wva;
982 	u64 __user *dva;
983 	u32 wval;
984 	u64 dval;
985 	int sig;
986 
987 	/*
988 	 * These are giving gcc a gentle hint about what to expect in
989 	 * dec_inst in order to do better optimization.
990 	 */
991 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
992 		unreachable();
993 
994 	/* XXX NEC Vr54xx bug workaround */
995 	if (delay_slot(xcp)) {
996 		if (dec_insn.micro_mips_mode) {
997 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
998 				clear_delay_slot(xcp);
999 		} else {
1000 			if (!isBranchInstr(xcp, dec_insn, &contpc))
1001 				clear_delay_slot(xcp);
1002 		}
1003 	}
1004 
1005 	if (delay_slot(xcp)) {
1006 		/*
1007 		 * The instruction to be emulated is in a branch delay slot
1008 		 * which means that we have to	emulate the branch instruction
1009 		 * BEFORE we do the cop1 instruction.
1010 		 *
1011 		 * This branch could be a COP1 branch, but in that case we
1012 		 * would have had a trap for that instruction, and would not
1013 		 * come through this route.
1014 		 *
1015 		 * Linux MIPS branch emulator operates on context, updating the
1016 		 * cp0_epc.
1017 		 */
1018 		ir = dec_insn.next_insn;  /* process delay slot instr */
1019 		pc_inc = dec_insn.next_pc_inc;
1020 	} else {
1021 		ir = dec_insn.insn;       /* process current instr */
1022 		pc_inc = dec_insn.pc_inc;
1023 	}
1024 
1025 	/*
1026 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1027 	 * instructions, we want to convert microMIPS FPU instructions
1028 	 * into MIPS32 instructions so that we could reuse all of the
1029 	 * FPU emulation code.
1030 	 *
1031 	 * NOTE: We cannot do this for branch instructions since they
1032 	 *       are not a subset. Example: Cannot emulate a 16-bit
1033 	 *       aligned target address with a MIPS32 instruction.
1034 	 */
1035 	if (dec_insn.micro_mips_mode) {
1036 		/*
1037 		 * If next instruction is a 16-bit instruction, then it
1038 		 * it cannot be a FPU instruction. This could happen
1039 		 * since we can be called for non-FPU instructions.
1040 		 */
1041 		if ((pc_inc == 2) ||
1042 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1043 			 == SIGILL))
1044 			return SIGILL;
1045 	}
1046 
1047 emul:
1048 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1049 	MIPS_FPU_EMU_INC_STATS(emulated);
1050 	switch (MIPSInst_OPCODE(ir)) {
1051 	case ldc1_op:
1052 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1053 				     MIPSInst_SIMM(ir));
1054 		MIPS_FPU_EMU_INC_STATS(loads);
1055 
1056 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1057 			MIPS_FPU_EMU_INC_STATS(errors);
1058 			*fault_addr = dva;
1059 			return SIGBUS;
1060 		}
1061 		if (__get_user(dval, dva)) {
1062 			MIPS_FPU_EMU_INC_STATS(errors);
1063 			*fault_addr = dva;
1064 			return SIGSEGV;
1065 		}
1066 		DITOREG(dval, MIPSInst_RT(ir));
1067 		break;
1068 
1069 	case sdc1_op:
1070 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1071 				      MIPSInst_SIMM(ir));
1072 		MIPS_FPU_EMU_INC_STATS(stores);
1073 		DIFROMREG(dval, MIPSInst_RT(ir));
1074 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1075 			MIPS_FPU_EMU_INC_STATS(errors);
1076 			*fault_addr = dva;
1077 			return SIGBUS;
1078 		}
1079 		if (__put_user(dval, dva)) {
1080 			MIPS_FPU_EMU_INC_STATS(errors);
1081 			*fault_addr = dva;
1082 			return SIGSEGV;
1083 		}
1084 		break;
1085 
1086 	case lwc1_op:
1087 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1088 				      MIPSInst_SIMM(ir));
1089 		MIPS_FPU_EMU_INC_STATS(loads);
1090 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1091 			MIPS_FPU_EMU_INC_STATS(errors);
1092 			*fault_addr = wva;
1093 			return SIGBUS;
1094 		}
1095 		if (__get_user(wval, wva)) {
1096 			MIPS_FPU_EMU_INC_STATS(errors);
1097 			*fault_addr = wva;
1098 			return SIGSEGV;
1099 		}
1100 		SITOREG(wval, MIPSInst_RT(ir));
1101 		break;
1102 
1103 	case swc1_op:
1104 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1105 				      MIPSInst_SIMM(ir));
1106 		MIPS_FPU_EMU_INC_STATS(stores);
1107 		SIFROMREG(wval, MIPSInst_RT(ir));
1108 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1109 			MIPS_FPU_EMU_INC_STATS(errors);
1110 			*fault_addr = wva;
1111 			return SIGBUS;
1112 		}
1113 		if (__put_user(wval, wva)) {
1114 			MIPS_FPU_EMU_INC_STATS(errors);
1115 			*fault_addr = wva;
1116 			return SIGSEGV;
1117 		}
1118 		break;
1119 
1120 	case cop1_op:
1121 		switch (MIPSInst_RS(ir)) {
1122 		case dmfc_op:
1123 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1124 				return SIGILL;
1125 
1126 			/* copregister fs -> gpr[rt] */
1127 			if (MIPSInst_RT(ir) != 0) {
1128 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1129 					MIPSInst_RD(ir));
1130 			}
1131 			break;
1132 
1133 		case dmtc_op:
1134 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1135 				return SIGILL;
1136 
1137 			/* copregister fs <- rt */
1138 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1139 			break;
1140 
1141 		case mfhc_op:
1142 			if (!cpu_has_mips_r2_r6)
1143 				goto sigill;
1144 
1145 			/* copregister rd -> gpr[rt] */
1146 			if (MIPSInst_RT(ir) != 0) {
1147 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1148 					MIPSInst_RD(ir));
1149 			}
1150 			break;
1151 
1152 		case mthc_op:
1153 			if (!cpu_has_mips_r2_r6)
1154 				goto sigill;
1155 
1156 			/* copregister rd <- gpr[rt] */
1157 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1158 			break;
1159 
1160 		case mfc_op:
1161 			/* copregister rd -> gpr[rt] */
1162 			if (MIPSInst_RT(ir) != 0) {
1163 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1164 					MIPSInst_RD(ir));
1165 			}
1166 			break;
1167 
1168 		case mtc_op:
1169 			/* copregister rd <- rt */
1170 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1171 			break;
1172 
1173 		case cfc_op:
1174 			/* cop control register rd -> gpr[rt] */
1175 			cop1_cfc(xcp, ctx, ir);
1176 			break;
1177 
1178 		case ctc_op:
1179 			/* copregister rd <- rt */
1180 			cop1_ctc(xcp, ctx, ir);
1181 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1182 				return SIGFPE;
1183 			}
1184 			break;
1185 
1186 		case bc1eqz_op:
1187 		case bc1nez_op:
1188 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1189 				return SIGILL;
1190 
1191 			cond = likely = 0;
1192 			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1193 			bit0 = get_fpr32(fpr, 0) & 0x1;
1194 			switch (MIPSInst_RS(ir)) {
1195 			case bc1eqz_op:
1196 				cond = bit0 == 0;
1197 				break;
1198 			case bc1nez_op:
1199 				cond = bit0 != 0;
1200 				break;
1201 			}
1202 			goto branch_common;
1203 
1204 		case bc_op:
1205 			if (delay_slot(xcp))
1206 				return SIGILL;
1207 
1208 			if (cpu_has_mips_4_5_r)
1209 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1210 			else
1211 				cbit = FPU_CSR_COND;
1212 			cond = ctx->fcr31 & cbit;
1213 
1214 			likely = 0;
1215 			switch (MIPSInst_RT(ir) & 3) {
1216 			case bcfl_op:
1217 				if (cpu_has_mips_2_3_4_5_r)
1218 					likely = 1;
1219 				/* Fall through */
1220 			case bcf_op:
1221 				cond = !cond;
1222 				break;
1223 			case bctl_op:
1224 				if (cpu_has_mips_2_3_4_5_r)
1225 					likely = 1;
1226 				/* Fall through */
1227 			case bct_op:
1228 				break;
1229 			}
1230 branch_common:
1231 			set_delay_slot(xcp);
1232 			if (cond) {
1233 				/*
1234 				 * Branch taken: emulate dslot instruction
1235 				 */
1236 				unsigned long bcpc;
1237 
1238 				/*
1239 				 * Remember EPC at the branch to point back
1240 				 * at so that any delay-slot instruction
1241 				 * signal is not silently ignored.
1242 				 */
1243 				bcpc = xcp->cp0_epc;
1244 				xcp->cp0_epc += dec_insn.pc_inc;
1245 
1246 				contpc = MIPSInst_SIMM(ir);
1247 				ir = dec_insn.next_insn;
1248 				if (dec_insn.micro_mips_mode) {
1249 					contpc = (xcp->cp0_epc + (contpc << 1));
1250 
1251 					/* If 16-bit instruction, not FPU. */
1252 					if ((dec_insn.next_pc_inc == 2) ||
1253 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1254 
1255 						/*
1256 						 * Since this instruction will
1257 						 * be put on the stack with
1258 						 * 32-bit words, get around
1259 						 * this problem by putting a
1260 						 * NOP16 as the second one.
1261 						 */
1262 						if (dec_insn.next_pc_inc == 2)
1263 							ir = (ir & (~0xffff)) | MM_NOP16;
1264 
1265 						/*
1266 						 * Single step the non-CP1
1267 						 * instruction in the dslot.
1268 						 */
1269 						sig = mips_dsemul(xcp, ir,
1270 								  bcpc, contpc);
1271 						if (sig < 0)
1272 							break;
1273 						if (sig)
1274 							xcp->cp0_epc = bcpc;
1275 						/*
1276 						 * SIGILL forces out of
1277 						 * the emulation loop.
1278 						 */
1279 						return sig ? sig : SIGILL;
1280 					}
1281 				} else
1282 					contpc = (xcp->cp0_epc + (contpc << 2));
1283 
1284 				switch (MIPSInst_OPCODE(ir)) {
1285 				case lwc1_op:
1286 				case swc1_op:
1287 					goto emul;
1288 
1289 				case ldc1_op:
1290 				case sdc1_op:
1291 					if (cpu_has_mips_2_3_4_5_r)
1292 						goto emul;
1293 
1294 					goto bc_sigill;
1295 
1296 				case cop1_op:
1297 					goto emul;
1298 
1299 				case cop1x_op:
1300 					if (cpu_has_mips_4_5_64_r2_r6)
1301 						/* its one of ours */
1302 						goto emul;
1303 
1304 					goto bc_sigill;
1305 
1306 				case spec_op:
1307 					switch (MIPSInst_FUNC(ir)) {
1308 					case movc_op:
1309 						if (cpu_has_mips_4_5_r)
1310 							goto emul;
1311 
1312 						goto bc_sigill;
1313 					}
1314 					break;
1315 
1316 				bc_sigill:
1317 					xcp->cp0_epc = bcpc;
1318 					return SIGILL;
1319 				}
1320 
1321 				/*
1322 				 * Single step the non-cp1
1323 				 * instruction in the dslot
1324 				 */
1325 				sig = mips_dsemul(xcp, ir, bcpc, contpc);
1326 				if (sig < 0)
1327 					break;
1328 				if (sig)
1329 					xcp->cp0_epc = bcpc;
1330 				/* SIGILL forces out of the emulation loop.  */
1331 				return sig ? sig : SIGILL;
1332 			} else if (likely) {	/* branch not taken */
1333 				/*
1334 				 * branch likely nullifies
1335 				 * dslot if not taken
1336 				 */
1337 				xcp->cp0_epc += dec_insn.pc_inc;
1338 				contpc += dec_insn.pc_inc;
1339 				/*
1340 				 * else continue & execute
1341 				 * dslot as normal insn
1342 				 */
1343 			}
1344 			break;
1345 
1346 		default:
1347 			if (!(MIPSInst_RS(ir) & 0x10))
1348 				return SIGILL;
1349 
1350 			/* a real fpu computation instruction */
1351 			if ((sig = fpu_emu(xcp, ctx, ir)))
1352 				return sig;
1353 		}
1354 		break;
1355 
1356 	case cop1x_op:
1357 		if (!cpu_has_mips_4_5_64_r2_r6)
1358 			return SIGILL;
1359 
1360 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1361 		if (sig)
1362 			return sig;
1363 		break;
1364 
1365 	case spec_op:
1366 		if (!cpu_has_mips_4_5_r)
1367 			return SIGILL;
1368 
1369 		if (MIPSInst_FUNC(ir) != movc_op)
1370 			return SIGILL;
1371 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1372 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1373 			xcp->regs[MIPSInst_RD(ir)] =
1374 				xcp->regs[MIPSInst_RS(ir)];
1375 		break;
1376 	default:
1377 sigill:
1378 		return SIGILL;
1379 	}
1380 
1381 	/* we did it !! */
1382 	xcp->cp0_epc = contpc;
1383 	clear_delay_slot(xcp);
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * Conversion table from MIPS compare ops 48-63
1390  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1391  */
1392 static const unsigned char cmptab[8] = {
1393 	0,			/* cmp_0 (sig) cmp_sf */
1394 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1395 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1396 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1397 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1398 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1399 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1400 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1401 };
1402 
1403 static const unsigned char negative_cmptab[8] = {
1404 	0, /* Reserved */
1405 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1406 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1407 	IEEE754_CLT | IEEE754_CGT,
1408 	/* Reserved */
1409 };
1410 
1411 
1412 /*
1413  * Additional MIPS4 instructions
1414  */
1415 
1416 #define DEF3OP(name, p, f1, f2, f3)					\
1417 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1418 	union ieee754##p s, union ieee754##p t)				\
1419 {									\
1420 	struct _ieee754_csr ieee754_csr_save;				\
1421 	s = f1(s, t);							\
1422 	ieee754_csr_save = ieee754_csr;					\
1423 	s = f2(s, r);							\
1424 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1425 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1426 	s = f3(s);							\
1427 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1428 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1429 	return s;							\
1430 }
1431 
1432 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1433 {
1434 	return ieee754dp_div(ieee754dp_one(0), d);
1435 }
1436 
1437 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1438 {
1439 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1440 }
1441 
1442 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1443 {
1444 	return ieee754sp_div(ieee754sp_one(0), s);
1445 }
1446 
1447 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1448 {
1449 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1450 }
1451 
1452 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1453 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1454 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1455 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1456 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1457 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1458 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1459 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1460 
1461 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1462 	mips_instruction ir, void *__user *fault_addr)
1463 {
1464 	unsigned rcsr = 0;	/* resulting csr */
1465 
1466 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1467 
1468 	switch (MIPSInst_FMA_FFMT(ir)) {
1469 	case s_fmt:{		/* 0 */
1470 
1471 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1472 		union ieee754sp fd, fr, fs, ft;
1473 		u32 __user *va;
1474 		u32 val;
1475 
1476 		switch (MIPSInst_FUNC(ir)) {
1477 		case lwxc1_op:
1478 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1479 				xcp->regs[MIPSInst_FT(ir)]);
1480 
1481 			MIPS_FPU_EMU_INC_STATS(loads);
1482 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1483 				MIPS_FPU_EMU_INC_STATS(errors);
1484 				*fault_addr = va;
1485 				return SIGBUS;
1486 			}
1487 			if (__get_user(val, va)) {
1488 				MIPS_FPU_EMU_INC_STATS(errors);
1489 				*fault_addr = va;
1490 				return SIGSEGV;
1491 			}
1492 			SITOREG(val, MIPSInst_FD(ir));
1493 			break;
1494 
1495 		case swxc1_op:
1496 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1497 				xcp->regs[MIPSInst_FT(ir)]);
1498 
1499 			MIPS_FPU_EMU_INC_STATS(stores);
1500 
1501 			SIFROMREG(val, MIPSInst_FS(ir));
1502 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1503 				MIPS_FPU_EMU_INC_STATS(errors);
1504 				*fault_addr = va;
1505 				return SIGBUS;
1506 			}
1507 			if (put_user(val, va)) {
1508 				MIPS_FPU_EMU_INC_STATS(errors);
1509 				*fault_addr = va;
1510 				return SIGSEGV;
1511 			}
1512 			break;
1513 
1514 		case madd_s_op:
1515 			handler = fpemu_sp_madd;
1516 			goto scoptop;
1517 		case msub_s_op:
1518 			handler = fpemu_sp_msub;
1519 			goto scoptop;
1520 		case nmadd_s_op:
1521 			handler = fpemu_sp_nmadd;
1522 			goto scoptop;
1523 		case nmsub_s_op:
1524 			handler = fpemu_sp_nmsub;
1525 			goto scoptop;
1526 
1527 		      scoptop:
1528 			SPFROMREG(fr, MIPSInst_FR(ir));
1529 			SPFROMREG(fs, MIPSInst_FS(ir));
1530 			SPFROMREG(ft, MIPSInst_FT(ir));
1531 			fd = (*handler) (fr, fs, ft);
1532 			SPTOREG(fd, MIPSInst_FD(ir));
1533 
1534 		      copcsr:
1535 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1536 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1537 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1538 			}
1539 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1540 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1541 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1542 			}
1543 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1544 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1545 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1546 			}
1547 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1548 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1549 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1550 			}
1551 
1552 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1553 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1554 				/*printk ("SIGFPE: FPU csr = %08x\n",
1555 				   ctx->fcr31); */
1556 				return SIGFPE;
1557 			}
1558 
1559 			break;
1560 
1561 		default:
1562 			return SIGILL;
1563 		}
1564 		break;
1565 	}
1566 
1567 	case d_fmt:{		/* 1 */
1568 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1569 		union ieee754dp fd, fr, fs, ft;
1570 		u64 __user *va;
1571 		u64 val;
1572 
1573 		switch (MIPSInst_FUNC(ir)) {
1574 		case ldxc1_op:
1575 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1576 				xcp->regs[MIPSInst_FT(ir)]);
1577 
1578 			MIPS_FPU_EMU_INC_STATS(loads);
1579 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1580 				MIPS_FPU_EMU_INC_STATS(errors);
1581 				*fault_addr = va;
1582 				return SIGBUS;
1583 			}
1584 			if (__get_user(val, va)) {
1585 				MIPS_FPU_EMU_INC_STATS(errors);
1586 				*fault_addr = va;
1587 				return SIGSEGV;
1588 			}
1589 			DITOREG(val, MIPSInst_FD(ir));
1590 			break;
1591 
1592 		case sdxc1_op:
1593 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1594 				xcp->regs[MIPSInst_FT(ir)]);
1595 
1596 			MIPS_FPU_EMU_INC_STATS(stores);
1597 			DIFROMREG(val, MIPSInst_FS(ir));
1598 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1599 				MIPS_FPU_EMU_INC_STATS(errors);
1600 				*fault_addr = va;
1601 				return SIGBUS;
1602 			}
1603 			if (__put_user(val, va)) {
1604 				MIPS_FPU_EMU_INC_STATS(errors);
1605 				*fault_addr = va;
1606 				return SIGSEGV;
1607 			}
1608 			break;
1609 
1610 		case madd_d_op:
1611 			handler = fpemu_dp_madd;
1612 			goto dcoptop;
1613 		case msub_d_op:
1614 			handler = fpemu_dp_msub;
1615 			goto dcoptop;
1616 		case nmadd_d_op:
1617 			handler = fpemu_dp_nmadd;
1618 			goto dcoptop;
1619 		case nmsub_d_op:
1620 			handler = fpemu_dp_nmsub;
1621 			goto dcoptop;
1622 
1623 		      dcoptop:
1624 			DPFROMREG(fr, MIPSInst_FR(ir));
1625 			DPFROMREG(fs, MIPSInst_FS(ir));
1626 			DPFROMREG(ft, MIPSInst_FT(ir));
1627 			fd = (*handler) (fr, fs, ft);
1628 			DPTOREG(fd, MIPSInst_FD(ir));
1629 			goto copcsr;
1630 
1631 		default:
1632 			return SIGILL;
1633 		}
1634 		break;
1635 	}
1636 
1637 	case 0x3:
1638 		if (MIPSInst_FUNC(ir) != pfetch_op)
1639 			return SIGILL;
1640 
1641 		/* ignore prefx operation */
1642 		break;
1643 
1644 	default:
1645 		return SIGILL;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 
1652 
1653 /*
1654  * Emulate a single COP1 arithmetic instruction.
1655  */
1656 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1657 	mips_instruction ir)
1658 {
1659 	int rfmt;		/* resulting format */
1660 	unsigned rcsr = 0;	/* resulting csr */
1661 	unsigned int oldrm;
1662 	unsigned int cbit;
1663 	unsigned cond;
1664 	union {
1665 		union ieee754dp d;
1666 		union ieee754sp s;
1667 		int w;
1668 		s64 l;
1669 	} rv;			/* resulting value */
1670 	u64 bits;
1671 
1672 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1673 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1674 	case s_fmt: {		/* 0 */
1675 		union {
1676 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1677 			union ieee754sp(*u) (union ieee754sp);
1678 		} handler;
1679 		union ieee754sp fd, fs, ft;
1680 
1681 		switch (MIPSInst_FUNC(ir)) {
1682 			/* binary ops */
1683 		case fadd_op:
1684 			handler.b = ieee754sp_add;
1685 			goto scopbop;
1686 		case fsub_op:
1687 			handler.b = ieee754sp_sub;
1688 			goto scopbop;
1689 		case fmul_op:
1690 			handler.b = ieee754sp_mul;
1691 			goto scopbop;
1692 		case fdiv_op:
1693 			handler.b = ieee754sp_div;
1694 			goto scopbop;
1695 
1696 			/* unary  ops */
1697 		case fsqrt_op:
1698 			if (!cpu_has_mips_2_3_4_5_r)
1699 				return SIGILL;
1700 
1701 			handler.u = ieee754sp_sqrt;
1702 			goto scopuop;
1703 
1704 		/*
1705 		 * Note that on some MIPS IV implementations such as the
1706 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1707 		 * achieve full IEEE-754 accuracy - however this emulator does.
1708 		 */
1709 		case frsqrt_op:
1710 			if (!cpu_has_mips_4_5_64_r2_r6)
1711 				return SIGILL;
1712 
1713 			handler.u = fpemu_sp_rsqrt;
1714 			goto scopuop;
1715 
1716 		case frecip_op:
1717 			if (!cpu_has_mips_4_5_64_r2_r6)
1718 				return SIGILL;
1719 
1720 			handler.u = fpemu_sp_recip;
1721 			goto scopuop;
1722 
1723 		case fmovc_op:
1724 			if (!cpu_has_mips_4_5_r)
1725 				return SIGILL;
1726 
1727 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1728 			if (((ctx->fcr31 & cond) != 0) !=
1729 				((MIPSInst_FT(ir) & 1) != 0))
1730 				return 0;
1731 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1732 			break;
1733 
1734 		case fmovz_op:
1735 			if (!cpu_has_mips_4_5_r)
1736 				return SIGILL;
1737 
1738 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1739 				return 0;
1740 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1741 			break;
1742 
1743 		case fmovn_op:
1744 			if (!cpu_has_mips_4_5_r)
1745 				return SIGILL;
1746 
1747 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1748 				return 0;
1749 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1750 			break;
1751 
1752 		case fseleqz_op:
1753 			if (!cpu_has_mips_r6)
1754 				return SIGILL;
1755 
1756 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1757 			if (rv.w & 0x1)
1758 				rv.w = 0;
1759 			else
1760 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1761 			break;
1762 
1763 		case fselnez_op:
1764 			if (!cpu_has_mips_r6)
1765 				return SIGILL;
1766 
1767 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1768 			if (rv.w & 0x1)
1769 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1770 			else
1771 				rv.w = 0;
1772 			break;
1773 
1774 		case fmaddf_op: {
1775 			union ieee754sp ft, fs, fd;
1776 
1777 			if (!cpu_has_mips_r6)
1778 				return SIGILL;
1779 
1780 			SPFROMREG(ft, MIPSInst_FT(ir));
1781 			SPFROMREG(fs, MIPSInst_FS(ir));
1782 			SPFROMREG(fd, MIPSInst_FD(ir));
1783 			rv.s = ieee754sp_maddf(fd, fs, ft);
1784 			break;
1785 		}
1786 
1787 		case fmsubf_op: {
1788 			union ieee754sp ft, fs, fd;
1789 
1790 			if (!cpu_has_mips_r6)
1791 				return SIGILL;
1792 
1793 			SPFROMREG(ft, MIPSInst_FT(ir));
1794 			SPFROMREG(fs, MIPSInst_FS(ir));
1795 			SPFROMREG(fd, MIPSInst_FD(ir));
1796 			rv.s = ieee754sp_msubf(fd, fs, ft);
1797 			break;
1798 		}
1799 
1800 		case frint_op: {
1801 			union ieee754sp fs;
1802 
1803 			if (!cpu_has_mips_r6)
1804 				return SIGILL;
1805 
1806 			SPFROMREG(fs, MIPSInst_FS(ir));
1807 			rv.l = ieee754sp_tlong(fs);
1808 			rv.s = ieee754sp_flong(rv.l);
1809 			goto copcsr;
1810 		}
1811 
1812 		case fclass_op: {
1813 			union ieee754sp fs;
1814 
1815 			if (!cpu_has_mips_r6)
1816 				return SIGILL;
1817 
1818 			SPFROMREG(fs, MIPSInst_FS(ir));
1819 			rv.w = ieee754sp_2008class(fs);
1820 			rfmt = w_fmt;
1821 			break;
1822 		}
1823 
1824 		case fmin_op: {
1825 			union ieee754sp fs, ft;
1826 
1827 			if (!cpu_has_mips_r6)
1828 				return SIGILL;
1829 
1830 			SPFROMREG(ft, MIPSInst_FT(ir));
1831 			SPFROMREG(fs, MIPSInst_FS(ir));
1832 			rv.s = ieee754sp_fmin(fs, ft);
1833 			break;
1834 		}
1835 
1836 		case fmina_op: {
1837 			union ieee754sp fs, ft;
1838 
1839 			if (!cpu_has_mips_r6)
1840 				return SIGILL;
1841 
1842 			SPFROMREG(ft, MIPSInst_FT(ir));
1843 			SPFROMREG(fs, MIPSInst_FS(ir));
1844 			rv.s = ieee754sp_fmina(fs, ft);
1845 			break;
1846 		}
1847 
1848 		case fmax_op: {
1849 			union ieee754sp fs, ft;
1850 
1851 			if (!cpu_has_mips_r6)
1852 				return SIGILL;
1853 
1854 			SPFROMREG(ft, MIPSInst_FT(ir));
1855 			SPFROMREG(fs, MIPSInst_FS(ir));
1856 			rv.s = ieee754sp_fmax(fs, ft);
1857 			break;
1858 		}
1859 
1860 		case fmaxa_op: {
1861 			union ieee754sp fs, ft;
1862 
1863 			if (!cpu_has_mips_r6)
1864 				return SIGILL;
1865 
1866 			SPFROMREG(ft, MIPSInst_FT(ir));
1867 			SPFROMREG(fs, MIPSInst_FS(ir));
1868 			rv.s = ieee754sp_fmaxa(fs, ft);
1869 			break;
1870 		}
1871 
1872 		case fabs_op:
1873 			handler.u = ieee754sp_abs;
1874 			goto scopuop;
1875 
1876 		case fneg_op:
1877 			handler.u = ieee754sp_neg;
1878 			goto scopuop;
1879 
1880 		case fmov_op:
1881 			/* an easy one */
1882 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1883 			goto copcsr;
1884 
1885 			/* binary op on handler */
1886 scopbop:
1887 			SPFROMREG(fs, MIPSInst_FS(ir));
1888 			SPFROMREG(ft, MIPSInst_FT(ir));
1889 
1890 			rv.s = (*handler.b) (fs, ft);
1891 			goto copcsr;
1892 scopuop:
1893 			SPFROMREG(fs, MIPSInst_FS(ir));
1894 			rv.s = (*handler.u) (fs);
1895 			goto copcsr;
1896 copcsr:
1897 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1898 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1899 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1900 			}
1901 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1902 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1903 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1904 			}
1905 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1906 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1907 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1908 			}
1909 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1910 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1911 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1912 			}
1913 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1914 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1915 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1916 			}
1917 			break;
1918 
1919 			/* unary conv ops */
1920 		case fcvts_op:
1921 			return SIGILL;	/* not defined */
1922 
1923 		case fcvtd_op:
1924 			SPFROMREG(fs, MIPSInst_FS(ir));
1925 			rv.d = ieee754dp_fsp(fs);
1926 			rfmt = d_fmt;
1927 			goto copcsr;
1928 
1929 		case fcvtw_op:
1930 			SPFROMREG(fs, MIPSInst_FS(ir));
1931 			rv.w = ieee754sp_tint(fs);
1932 			rfmt = w_fmt;
1933 			goto copcsr;
1934 
1935 		case fround_op:
1936 		case ftrunc_op:
1937 		case fceil_op:
1938 		case ffloor_op:
1939 			if (!cpu_has_mips_2_3_4_5_r)
1940 				return SIGILL;
1941 
1942 			oldrm = ieee754_csr.rm;
1943 			SPFROMREG(fs, MIPSInst_FS(ir));
1944 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1945 			rv.w = ieee754sp_tint(fs);
1946 			ieee754_csr.rm = oldrm;
1947 			rfmt = w_fmt;
1948 			goto copcsr;
1949 
1950 		case fsel_op:
1951 			if (!cpu_has_mips_r6)
1952 				return SIGILL;
1953 
1954 			SPFROMREG(fd, MIPSInst_FD(ir));
1955 			if (fd.bits & 0x1)
1956 				SPFROMREG(rv.s, MIPSInst_FT(ir));
1957 			else
1958 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1959 			break;
1960 
1961 		case fcvtl_op:
1962 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1963 				return SIGILL;
1964 
1965 			SPFROMREG(fs, MIPSInst_FS(ir));
1966 			rv.l = ieee754sp_tlong(fs);
1967 			rfmt = l_fmt;
1968 			goto copcsr;
1969 
1970 		case froundl_op:
1971 		case ftruncl_op:
1972 		case fceill_op:
1973 		case ffloorl_op:
1974 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1975 				return SIGILL;
1976 
1977 			oldrm = ieee754_csr.rm;
1978 			SPFROMREG(fs, MIPSInst_FS(ir));
1979 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1980 			rv.l = ieee754sp_tlong(fs);
1981 			ieee754_csr.rm = oldrm;
1982 			rfmt = l_fmt;
1983 			goto copcsr;
1984 
1985 		default:
1986 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1987 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1988 				union ieee754sp fs, ft;
1989 
1990 				SPFROMREG(fs, MIPSInst_FS(ir));
1991 				SPFROMREG(ft, MIPSInst_FT(ir));
1992 				rv.w = ieee754sp_cmp(fs, ft,
1993 					cmptab[cmpop & 0x7], cmpop & 0x8);
1994 				rfmt = -1;
1995 				if ((cmpop & 0x8) && ieee754_cxtest
1996 					(IEEE754_INVALID_OPERATION))
1997 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1998 				else
1999 					goto copcsr;
2000 
2001 			} else
2002 				return SIGILL;
2003 			break;
2004 		}
2005 		break;
2006 	}
2007 
2008 	case d_fmt: {
2009 		union ieee754dp fd, fs, ft;
2010 		union {
2011 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2012 			union ieee754dp(*u) (union ieee754dp);
2013 		} handler;
2014 
2015 		switch (MIPSInst_FUNC(ir)) {
2016 			/* binary ops */
2017 		case fadd_op:
2018 			handler.b = ieee754dp_add;
2019 			goto dcopbop;
2020 		case fsub_op:
2021 			handler.b = ieee754dp_sub;
2022 			goto dcopbop;
2023 		case fmul_op:
2024 			handler.b = ieee754dp_mul;
2025 			goto dcopbop;
2026 		case fdiv_op:
2027 			handler.b = ieee754dp_div;
2028 			goto dcopbop;
2029 
2030 			/* unary  ops */
2031 		case fsqrt_op:
2032 			if (!cpu_has_mips_2_3_4_5_r)
2033 				return SIGILL;
2034 
2035 			handler.u = ieee754dp_sqrt;
2036 			goto dcopuop;
2037 		/*
2038 		 * Note that on some MIPS IV implementations such as the
2039 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2040 		 * achieve full IEEE-754 accuracy - however this emulator does.
2041 		 */
2042 		case frsqrt_op:
2043 			if (!cpu_has_mips_4_5_64_r2_r6)
2044 				return SIGILL;
2045 
2046 			handler.u = fpemu_dp_rsqrt;
2047 			goto dcopuop;
2048 		case frecip_op:
2049 			if (!cpu_has_mips_4_5_64_r2_r6)
2050 				return SIGILL;
2051 
2052 			handler.u = fpemu_dp_recip;
2053 			goto dcopuop;
2054 		case fmovc_op:
2055 			if (!cpu_has_mips_4_5_r)
2056 				return SIGILL;
2057 
2058 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2059 			if (((ctx->fcr31 & cond) != 0) !=
2060 				((MIPSInst_FT(ir) & 1) != 0))
2061 				return 0;
2062 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2063 			break;
2064 		case fmovz_op:
2065 			if (!cpu_has_mips_4_5_r)
2066 				return SIGILL;
2067 
2068 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2069 				return 0;
2070 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2071 			break;
2072 		case fmovn_op:
2073 			if (!cpu_has_mips_4_5_r)
2074 				return SIGILL;
2075 
2076 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2077 				return 0;
2078 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2079 			break;
2080 
2081 		case fseleqz_op:
2082 			if (!cpu_has_mips_r6)
2083 				return SIGILL;
2084 
2085 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2086 			if (rv.l & 0x1)
2087 				rv.l = 0;
2088 			else
2089 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2090 			break;
2091 
2092 		case fselnez_op:
2093 			if (!cpu_has_mips_r6)
2094 				return SIGILL;
2095 
2096 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2097 			if (rv.l & 0x1)
2098 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2099 			else
2100 				rv.l = 0;
2101 			break;
2102 
2103 		case fmaddf_op: {
2104 			union ieee754dp ft, fs, fd;
2105 
2106 			if (!cpu_has_mips_r6)
2107 				return SIGILL;
2108 
2109 			DPFROMREG(ft, MIPSInst_FT(ir));
2110 			DPFROMREG(fs, MIPSInst_FS(ir));
2111 			DPFROMREG(fd, MIPSInst_FD(ir));
2112 			rv.d = ieee754dp_maddf(fd, fs, ft);
2113 			break;
2114 		}
2115 
2116 		case fmsubf_op: {
2117 			union ieee754dp ft, fs, fd;
2118 
2119 			if (!cpu_has_mips_r6)
2120 				return SIGILL;
2121 
2122 			DPFROMREG(ft, MIPSInst_FT(ir));
2123 			DPFROMREG(fs, MIPSInst_FS(ir));
2124 			DPFROMREG(fd, MIPSInst_FD(ir));
2125 			rv.d = ieee754dp_msubf(fd, fs, ft);
2126 			break;
2127 		}
2128 
2129 		case frint_op: {
2130 			union ieee754dp fs;
2131 
2132 			if (!cpu_has_mips_r6)
2133 				return SIGILL;
2134 
2135 			DPFROMREG(fs, MIPSInst_FS(ir));
2136 			rv.l = ieee754dp_tlong(fs);
2137 			rv.d = ieee754dp_flong(rv.l);
2138 			goto copcsr;
2139 		}
2140 
2141 		case fclass_op: {
2142 			union ieee754dp fs;
2143 
2144 			if (!cpu_has_mips_r6)
2145 				return SIGILL;
2146 
2147 			DPFROMREG(fs, MIPSInst_FS(ir));
2148 			rv.w = ieee754dp_2008class(fs);
2149 			rfmt = w_fmt;
2150 			break;
2151 		}
2152 
2153 		case fmin_op: {
2154 			union ieee754dp fs, ft;
2155 
2156 			if (!cpu_has_mips_r6)
2157 				return SIGILL;
2158 
2159 			DPFROMREG(ft, MIPSInst_FT(ir));
2160 			DPFROMREG(fs, MIPSInst_FS(ir));
2161 			rv.d = ieee754dp_fmin(fs, ft);
2162 			break;
2163 		}
2164 
2165 		case fmina_op: {
2166 			union ieee754dp fs, ft;
2167 
2168 			if (!cpu_has_mips_r6)
2169 				return SIGILL;
2170 
2171 			DPFROMREG(ft, MIPSInst_FT(ir));
2172 			DPFROMREG(fs, MIPSInst_FS(ir));
2173 			rv.d = ieee754dp_fmina(fs, ft);
2174 			break;
2175 		}
2176 
2177 		case fmax_op: {
2178 			union ieee754dp fs, ft;
2179 
2180 			if (!cpu_has_mips_r6)
2181 				return SIGILL;
2182 
2183 			DPFROMREG(ft, MIPSInst_FT(ir));
2184 			DPFROMREG(fs, MIPSInst_FS(ir));
2185 			rv.d = ieee754dp_fmax(fs, ft);
2186 			break;
2187 		}
2188 
2189 		case fmaxa_op: {
2190 			union ieee754dp fs, ft;
2191 
2192 			if (!cpu_has_mips_r6)
2193 				return SIGILL;
2194 
2195 			DPFROMREG(ft, MIPSInst_FT(ir));
2196 			DPFROMREG(fs, MIPSInst_FS(ir));
2197 			rv.d = ieee754dp_fmaxa(fs, ft);
2198 			break;
2199 		}
2200 
2201 		case fabs_op:
2202 			handler.u = ieee754dp_abs;
2203 			goto dcopuop;
2204 
2205 		case fneg_op:
2206 			handler.u = ieee754dp_neg;
2207 			goto dcopuop;
2208 
2209 		case fmov_op:
2210 			/* an easy one */
2211 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2212 			goto copcsr;
2213 
2214 			/* binary op on handler */
2215 dcopbop:
2216 			DPFROMREG(fs, MIPSInst_FS(ir));
2217 			DPFROMREG(ft, MIPSInst_FT(ir));
2218 
2219 			rv.d = (*handler.b) (fs, ft);
2220 			goto copcsr;
2221 dcopuop:
2222 			DPFROMREG(fs, MIPSInst_FS(ir));
2223 			rv.d = (*handler.u) (fs);
2224 			goto copcsr;
2225 
2226 		/*
2227 		 * unary conv ops
2228 		 */
2229 		case fcvts_op:
2230 			DPFROMREG(fs, MIPSInst_FS(ir));
2231 			rv.s = ieee754sp_fdp(fs);
2232 			rfmt = s_fmt;
2233 			goto copcsr;
2234 
2235 		case fcvtd_op:
2236 			return SIGILL;	/* not defined */
2237 
2238 		case fcvtw_op:
2239 			DPFROMREG(fs, MIPSInst_FS(ir));
2240 			rv.w = ieee754dp_tint(fs);	/* wrong */
2241 			rfmt = w_fmt;
2242 			goto copcsr;
2243 
2244 		case fround_op:
2245 		case ftrunc_op:
2246 		case fceil_op:
2247 		case ffloor_op:
2248 			if (!cpu_has_mips_2_3_4_5_r)
2249 				return SIGILL;
2250 
2251 			oldrm = ieee754_csr.rm;
2252 			DPFROMREG(fs, MIPSInst_FS(ir));
2253 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2254 			rv.w = ieee754dp_tint(fs);
2255 			ieee754_csr.rm = oldrm;
2256 			rfmt = w_fmt;
2257 			goto copcsr;
2258 
2259 		case fsel_op:
2260 			if (!cpu_has_mips_r6)
2261 				return SIGILL;
2262 
2263 			DPFROMREG(fd, MIPSInst_FD(ir));
2264 			if (fd.bits & 0x1)
2265 				DPFROMREG(rv.d, MIPSInst_FT(ir));
2266 			else
2267 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2268 			break;
2269 
2270 		case fcvtl_op:
2271 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2272 				return SIGILL;
2273 
2274 			DPFROMREG(fs, MIPSInst_FS(ir));
2275 			rv.l = ieee754dp_tlong(fs);
2276 			rfmt = l_fmt;
2277 			goto copcsr;
2278 
2279 		case froundl_op:
2280 		case ftruncl_op:
2281 		case fceill_op:
2282 		case ffloorl_op:
2283 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2284 				return SIGILL;
2285 
2286 			oldrm = ieee754_csr.rm;
2287 			DPFROMREG(fs, MIPSInst_FS(ir));
2288 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2289 			rv.l = ieee754dp_tlong(fs);
2290 			ieee754_csr.rm = oldrm;
2291 			rfmt = l_fmt;
2292 			goto copcsr;
2293 
2294 		default:
2295 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2296 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2297 				union ieee754dp fs, ft;
2298 
2299 				DPFROMREG(fs, MIPSInst_FS(ir));
2300 				DPFROMREG(ft, MIPSInst_FT(ir));
2301 				rv.w = ieee754dp_cmp(fs, ft,
2302 					cmptab[cmpop & 0x7], cmpop & 0x8);
2303 				rfmt = -1;
2304 				if ((cmpop & 0x8)
2305 					&&
2306 					ieee754_cxtest
2307 					(IEEE754_INVALID_OPERATION))
2308 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2309 				else
2310 					goto copcsr;
2311 
2312 			}
2313 			else {
2314 				return SIGILL;
2315 			}
2316 			break;
2317 		}
2318 		break;
2319 	}
2320 
2321 	case w_fmt: {
2322 		union ieee754dp fs;
2323 
2324 		switch (MIPSInst_FUNC(ir)) {
2325 		case fcvts_op:
2326 			/* convert word to single precision real */
2327 			SPFROMREG(fs, MIPSInst_FS(ir));
2328 			rv.s = ieee754sp_fint(fs.bits);
2329 			rfmt = s_fmt;
2330 			goto copcsr;
2331 		case fcvtd_op:
2332 			/* convert word to double precision real */
2333 			SPFROMREG(fs, MIPSInst_FS(ir));
2334 			rv.d = ieee754dp_fint(fs.bits);
2335 			rfmt = d_fmt;
2336 			goto copcsr;
2337 		default: {
2338 			/* Emulating the new CMP.condn.fmt R6 instruction */
2339 #define CMPOP_MASK	0x7
2340 #define SIGN_BIT	(0x1 << 3)
2341 #define PREDICATE_BIT	(0x1 << 4)
2342 
2343 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2344 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2345 			union ieee754sp fs, ft;
2346 
2347 			/* This is an R6 only instruction */
2348 			if (!cpu_has_mips_r6 ||
2349 			    (MIPSInst_FUNC(ir) & 0x20))
2350 				return SIGILL;
2351 
2352 			/* fmt is w_fmt for single precision so fix it */
2353 			rfmt = s_fmt;
2354 			/* default to false */
2355 			rv.w = 0;
2356 
2357 			/* CMP.condn.S */
2358 			SPFROMREG(fs, MIPSInst_FS(ir));
2359 			SPFROMREG(ft, MIPSInst_FT(ir));
2360 
2361 			/* positive predicates */
2362 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2363 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2364 						  sig))
2365 				    rv.w = -1; /* true, all 1s */
2366 				if ((sig) &&
2367 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2368 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2369 				else
2370 					goto copcsr;
2371 			} else {
2372 				/* negative predicates */
2373 				switch (cmpop) {
2374 				case 1:
2375 				case 2:
2376 				case 3:
2377 					if (ieee754sp_cmp(fs, ft,
2378 							  negative_cmptab[cmpop],
2379 							  sig))
2380 						rv.w = -1; /* true, all 1s */
2381 					if (sig &&
2382 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2383 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2384 					else
2385 						goto copcsr;
2386 					break;
2387 				default:
2388 					/* Reserved R6 ops */
2389 					pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2390 					return SIGILL;
2391 				}
2392 			}
2393 			break;
2394 			}
2395 		}
2396 	}
2397 
2398 	case l_fmt:
2399 
2400 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2401 			return SIGILL;
2402 
2403 		DIFROMREG(bits, MIPSInst_FS(ir));
2404 
2405 		switch (MIPSInst_FUNC(ir)) {
2406 		case fcvts_op:
2407 			/* convert long to single precision real */
2408 			rv.s = ieee754sp_flong(bits);
2409 			rfmt = s_fmt;
2410 			goto copcsr;
2411 		case fcvtd_op:
2412 			/* convert long to double precision real */
2413 			rv.d = ieee754dp_flong(bits);
2414 			rfmt = d_fmt;
2415 			goto copcsr;
2416 		default: {
2417 			/* Emulating the new CMP.condn.fmt R6 instruction */
2418 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2419 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2420 			union ieee754dp fs, ft;
2421 
2422 			if (!cpu_has_mips_r6 ||
2423 			    (MIPSInst_FUNC(ir) & 0x20))
2424 				return SIGILL;
2425 
2426 			/* fmt is l_fmt for double precision so fix it */
2427 			rfmt = d_fmt;
2428 			/* default to false */
2429 			rv.l = 0;
2430 
2431 			/* CMP.condn.D */
2432 			DPFROMREG(fs, MIPSInst_FS(ir));
2433 			DPFROMREG(ft, MIPSInst_FT(ir));
2434 
2435 			/* positive predicates */
2436 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2437 				if (ieee754dp_cmp(fs, ft,
2438 						  cmptab[cmpop], sig))
2439 				    rv.l = -1LL; /* true, all 1s */
2440 				if (sig &&
2441 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2442 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2443 				else
2444 					goto copcsr;
2445 			} else {
2446 				/* negative predicates */
2447 				switch (cmpop) {
2448 				case 1:
2449 				case 2:
2450 				case 3:
2451 					if (ieee754dp_cmp(fs, ft,
2452 							  negative_cmptab[cmpop],
2453 							  sig))
2454 						rv.l = -1LL; /* true, all 1s */
2455 					if (sig &&
2456 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2457 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2458 					else
2459 						goto copcsr;
2460 					break;
2461 				default:
2462 					/* Reserved R6 ops */
2463 					pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2464 					return SIGILL;
2465 				}
2466 			}
2467 			break;
2468 			}
2469 		}
2470 	default:
2471 		return SIGILL;
2472 	}
2473 
2474 	/*
2475 	 * Update the fpu CSR register for this operation.
2476 	 * If an exception is required, generate a tidy SIGFPE exception,
2477 	 * without updating the result register.
2478 	 * Note: cause exception bits do not accumulate, they are rewritten
2479 	 * for each op; only the flag/sticky bits accumulate.
2480 	 */
2481 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2482 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2483 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2484 		return SIGFPE;
2485 	}
2486 
2487 	/*
2488 	 * Now we can safely write the result back to the register file.
2489 	 */
2490 	switch (rfmt) {
2491 	case -1:
2492 
2493 		if (cpu_has_mips_4_5_r)
2494 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2495 		else
2496 			cbit = FPU_CSR_COND;
2497 		if (rv.w)
2498 			ctx->fcr31 |= cbit;
2499 		else
2500 			ctx->fcr31 &= ~cbit;
2501 		break;
2502 
2503 	case d_fmt:
2504 		DPTOREG(rv.d, MIPSInst_FD(ir));
2505 		break;
2506 	case s_fmt:
2507 		SPTOREG(rv.s, MIPSInst_FD(ir));
2508 		break;
2509 	case w_fmt:
2510 		SITOREG(rv.w, MIPSInst_FD(ir));
2511 		break;
2512 	case l_fmt:
2513 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2514 			return SIGILL;
2515 
2516 		DITOREG(rv.l, MIPSInst_FD(ir));
2517 		break;
2518 	default:
2519 		return SIGILL;
2520 	}
2521 
2522 	return 0;
2523 }
2524 
2525 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2526 	int has_fpu, void *__user *fault_addr)
2527 {
2528 	unsigned long oldepc, prevepc;
2529 	struct mm_decoded_insn dec_insn;
2530 	u16 instr[4];
2531 	u16 *instr_ptr;
2532 	int sig = 0;
2533 
2534 	oldepc = xcp->cp0_epc;
2535 	do {
2536 		prevepc = xcp->cp0_epc;
2537 
2538 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2539 			/*
2540 			 * Get next 2 microMIPS instructions and convert them
2541 			 * into 32-bit instructions.
2542 			 */
2543 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2544 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2545 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2546 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2547 				MIPS_FPU_EMU_INC_STATS(errors);
2548 				return SIGBUS;
2549 			}
2550 			instr_ptr = instr;
2551 
2552 			/* Get first instruction. */
2553 			if (mm_insn_16bit(*instr_ptr)) {
2554 				/* Duplicate the half-word. */
2555 				dec_insn.insn = (*instr_ptr << 16) |
2556 					(*instr_ptr);
2557 				/* 16-bit instruction. */
2558 				dec_insn.pc_inc = 2;
2559 				instr_ptr += 1;
2560 			} else {
2561 				dec_insn.insn = (*instr_ptr << 16) |
2562 					*(instr_ptr+1);
2563 				/* 32-bit instruction. */
2564 				dec_insn.pc_inc = 4;
2565 				instr_ptr += 2;
2566 			}
2567 			/* Get second instruction. */
2568 			if (mm_insn_16bit(*instr_ptr)) {
2569 				/* Duplicate the half-word. */
2570 				dec_insn.next_insn = (*instr_ptr << 16) |
2571 					(*instr_ptr);
2572 				/* 16-bit instruction. */
2573 				dec_insn.next_pc_inc = 2;
2574 			} else {
2575 				dec_insn.next_insn = (*instr_ptr << 16) |
2576 					*(instr_ptr+1);
2577 				/* 32-bit instruction. */
2578 				dec_insn.next_pc_inc = 4;
2579 			}
2580 			dec_insn.micro_mips_mode = 1;
2581 		} else {
2582 			if ((get_user(dec_insn.insn,
2583 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2584 			    (get_user(dec_insn.next_insn,
2585 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2586 				MIPS_FPU_EMU_INC_STATS(errors);
2587 				return SIGBUS;
2588 			}
2589 			dec_insn.pc_inc = 4;
2590 			dec_insn.next_pc_inc = 4;
2591 			dec_insn.micro_mips_mode = 0;
2592 		}
2593 
2594 		if ((dec_insn.insn == 0) ||
2595 		   ((dec_insn.pc_inc == 2) &&
2596 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2597 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2598 		else {
2599 			/*
2600 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2601 			 * No need to copy ctx->fcr31 to ieee754_csr.
2602 			 */
2603 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2604 		}
2605 
2606 		if (has_fpu)
2607 			break;
2608 		if (sig)
2609 			break;
2610 
2611 		cond_resched();
2612 	} while (xcp->cp0_epc > prevepc);
2613 
2614 	/* SIGILL indicates a non-fpu instruction */
2615 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2616 		/* but if EPC has advanced, then ignore it */
2617 		sig = 0;
2618 
2619 	return sig;
2620 }
2621