xref: /linux/arch/mips/math-emu/cp1emu.c (revision 842dfc11ea9a21f9825167c8a4f2834b205b0a79)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/processor.h>
49 #include <asm/fpu_emulator.h>
50 #include <asm/fpu.h>
51 
52 #include "ieee754.h"
53 
54 /* Function which emulates a floating point instruction. */
55 
56 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
57 	mips_instruction);
58 
59 static int fpux_emu(struct pt_regs *,
60 	struct mips_fpu_struct *, mips_instruction, void *__user *);
61 
62 /* Control registers */
63 
64 #define FPCREG_RID	0	/* $0  = revision id */
65 #define FPCREG_CSR	31	/* $31 = csr */
66 
67 /* Determine rounding mode from the RM bits of the FCSR */
68 #define modeindex(v) ((v) & FPU_CSR_RM)
69 
70 /* convert condition code register number to csr bit */
71 static const unsigned int fpucondbit[8] = {
72 	FPU_CSR_COND0,
73 	FPU_CSR_COND1,
74 	FPU_CSR_COND2,
75 	FPU_CSR_COND3,
76 	FPU_CSR_COND4,
77 	FPU_CSR_COND5,
78 	FPU_CSR_COND6,
79 	FPU_CSR_COND7
80 };
81 
82 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
83 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
84 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
85 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
86 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
87 
88 /*
89  * This functions translates a 32-bit microMIPS instruction
90  * into a 32-bit MIPS32 instruction. Returns 0 on success
91  * and SIGILL otherwise.
92  */
93 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
94 {
95 	union mips_instruction insn = *insn_ptr;
96 	union mips_instruction mips32_insn = insn;
97 	int func, fmt, op;
98 
99 	switch (insn.mm_i_format.opcode) {
100 	case mm_ldc132_op:
101 		mips32_insn.mm_i_format.opcode = ldc1_op;
102 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
103 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
104 		break;
105 	case mm_lwc132_op:
106 		mips32_insn.mm_i_format.opcode = lwc1_op;
107 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
108 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
109 		break;
110 	case mm_sdc132_op:
111 		mips32_insn.mm_i_format.opcode = sdc1_op;
112 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
113 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
114 		break;
115 	case mm_swc132_op:
116 		mips32_insn.mm_i_format.opcode = swc1_op;
117 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
118 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
119 		break;
120 	case mm_pool32i_op:
121 		/* NOTE: offset is << by 1 if in microMIPS mode. */
122 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
123 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
124 			mips32_insn.fb_format.opcode = cop1_op;
125 			mips32_insn.fb_format.bc = bc_op;
126 			mips32_insn.fb_format.flag =
127 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
128 		} else
129 			return SIGILL;
130 		break;
131 	case mm_pool32f_op:
132 		switch (insn.mm_fp0_format.func) {
133 		case mm_32f_01_op:
134 		case mm_32f_11_op:
135 		case mm_32f_02_op:
136 		case mm_32f_12_op:
137 		case mm_32f_41_op:
138 		case mm_32f_51_op:
139 		case mm_32f_42_op:
140 		case mm_32f_52_op:
141 			op = insn.mm_fp0_format.func;
142 			if (op == mm_32f_01_op)
143 				func = madd_s_op;
144 			else if (op == mm_32f_11_op)
145 				func = madd_d_op;
146 			else if (op == mm_32f_02_op)
147 				func = nmadd_s_op;
148 			else if (op == mm_32f_12_op)
149 				func = nmadd_d_op;
150 			else if (op == mm_32f_41_op)
151 				func = msub_s_op;
152 			else if (op == mm_32f_51_op)
153 				func = msub_d_op;
154 			else if (op == mm_32f_42_op)
155 				func = nmsub_s_op;
156 			else
157 				func = nmsub_d_op;
158 			mips32_insn.fp6_format.opcode = cop1x_op;
159 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
160 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
161 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
162 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
163 			mips32_insn.fp6_format.func = func;
164 			break;
165 		case mm_32f_10_op:
166 			func = -1;	/* Invalid */
167 			op = insn.mm_fp5_format.op & 0x7;
168 			if (op == mm_ldxc1_op)
169 				func = ldxc1_op;
170 			else if (op == mm_sdxc1_op)
171 				func = sdxc1_op;
172 			else if (op == mm_lwxc1_op)
173 				func = lwxc1_op;
174 			else if (op == mm_swxc1_op)
175 				func = swxc1_op;
176 
177 			if (func != -1) {
178 				mips32_insn.r_format.opcode = cop1x_op;
179 				mips32_insn.r_format.rs =
180 					insn.mm_fp5_format.base;
181 				mips32_insn.r_format.rt =
182 					insn.mm_fp5_format.index;
183 				mips32_insn.r_format.rd = 0;
184 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
185 				mips32_insn.r_format.func = func;
186 			} else
187 				return SIGILL;
188 			break;
189 		case mm_32f_40_op:
190 			op = -1;	/* Invalid */
191 			if (insn.mm_fp2_format.op == mm_fmovt_op)
192 				op = 1;
193 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
194 				op = 0;
195 			if (op != -1) {
196 				mips32_insn.fp0_format.opcode = cop1_op;
197 				mips32_insn.fp0_format.fmt =
198 					sdps_format[insn.mm_fp2_format.fmt];
199 				mips32_insn.fp0_format.ft =
200 					(insn.mm_fp2_format.cc<<2) + op;
201 				mips32_insn.fp0_format.fs =
202 					insn.mm_fp2_format.fs;
203 				mips32_insn.fp0_format.fd =
204 					insn.mm_fp2_format.fd;
205 				mips32_insn.fp0_format.func = fmovc_op;
206 			} else
207 				return SIGILL;
208 			break;
209 		case mm_32f_60_op:
210 			func = -1;	/* Invalid */
211 			if (insn.mm_fp0_format.op == mm_fadd_op)
212 				func = fadd_op;
213 			else if (insn.mm_fp0_format.op == mm_fsub_op)
214 				func = fsub_op;
215 			else if (insn.mm_fp0_format.op == mm_fmul_op)
216 				func = fmul_op;
217 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
218 				func = fdiv_op;
219 			if (func != -1) {
220 				mips32_insn.fp0_format.opcode = cop1_op;
221 				mips32_insn.fp0_format.fmt =
222 					sdps_format[insn.mm_fp0_format.fmt];
223 				mips32_insn.fp0_format.ft =
224 					insn.mm_fp0_format.ft;
225 				mips32_insn.fp0_format.fs =
226 					insn.mm_fp0_format.fs;
227 				mips32_insn.fp0_format.fd =
228 					insn.mm_fp0_format.fd;
229 				mips32_insn.fp0_format.func = func;
230 			} else
231 				return SIGILL;
232 			break;
233 		case mm_32f_70_op:
234 			func = -1;	/* Invalid */
235 			if (insn.mm_fp0_format.op == mm_fmovn_op)
236 				func = fmovn_op;
237 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
238 				func = fmovz_op;
239 			if (func != -1) {
240 				mips32_insn.fp0_format.opcode = cop1_op;
241 				mips32_insn.fp0_format.fmt =
242 					sdps_format[insn.mm_fp0_format.fmt];
243 				mips32_insn.fp0_format.ft =
244 					insn.mm_fp0_format.ft;
245 				mips32_insn.fp0_format.fs =
246 					insn.mm_fp0_format.fs;
247 				mips32_insn.fp0_format.fd =
248 					insn.mm_fp0_format.fd;
249 				mips32_insn.fp0_format.func = func;
250 			} else
251 				return SIGILL;
252 			break;
253 		case mm_32f_73_op:    /* POOL32FXF */
254 			switch (insn.mm_fp1_format.op) {
255 			case mm_movf0_op:
256 			case mm_movf1_op:
257 			case mm_movt0_op:
258 			case mm_movt1_op:
259 				if ((insn.mm_fp1_format.op & 0x7f) ==
260 				    mm_movf0_op)
261 					op = 0;
262 				else
263 					op = 1;
264 				mips32_insn.r_format.opcode = spec_op;
265 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
266 				mips32_insn.r_format.rt =
267 					(insn.mm_fp4_format.cc << 2) + op;
268 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
269 				mips32_insn.r_format.re = 0;
270 				mips32_insn.r_format.func = movc_op;
271 				break;
272 			case mm_fcvtd0_op:
273 			case mm_fcvtd1_op:
274 			case mm_fcvts0_op:
275 			case mm_fcvts1_op:
276 				if ((insn.mm_fp1_format.op & 0x7f) ==
277 				    mm_fcvtd0_op) {
278 					func = fcvtd_op;
279 					fmt = swl_format[insn.mm_fp3_format.fmt];
280 				} else {
281 					func = fcvts_op;
282 					fmt = dwl_format[insn.mm_fp3_format.fmt];
283 				}
284 				mips32_insn.fp0_format.opcode = cop1_op;
285 				mips32_insn.fp0_format.fmt = fmt;
286 				mips32_insn.fp0_format.ft = 0;
287 				mips32_insn.fp0_format.fs =
288 					insn.mm_fp3_format.fs;
289 				mips32_insn.fp0_format.fd =
290 					insn.mm_fp3_format.rt;
291 				mips32_insn.fp0_format.func = func;
292 				break;
293 			case mm_fmov0_op:
294 			case mm_fmov1_op:
295 			case mm_fabs0_op:
296 			case mm_fabs1_op:
297 			case mm_fneg0_op:
298 			case mm_fneg1_op:
299 				if ((insn.mm_fp1_format.op & 0x7f) ==
300 				    mm_fmov0_op)
301 					func = fmov_op;
302 				else if ((insn.mm_fp1_format.op & 0x7f) ==
303 					 mm_fabs0_op)
304 					func = fabs_op;
305 				else
306 					func = fneg_op;
307 				mips32_insn.fp0_format.opcode = cop1_op;
308 				mips32_insn.fp0_format.fmt =
309 					sdps_format[insn.mm_fp3_format.fmt];
310 				mips32_insn.fp0_format.ft = 0;
311 				mips32_insn.fp0_format.fs =
312 					insn.mm_fp3_format.fs;
313 				mips32_insn.fp0_format.fd =
314 					insn.mm_fp3_format.rt;
315 				mips32_insn.fp0_format.func = func;
316 				break;
317 			case mm_ffloorl_op:
318 			case mm_ffloorw_op:
319 			case mm_fceill_op:
320 			case mm_fceilw_op:
321 			case mm_ftruncl_op:
322 			case mm_ftruncw_op:
323 			case mm_froundl_op:
324 			case mm_froundw_op:
325 			case mm_fcvtl_op:
326 			case mm_fcvtw_op:
327 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
328 					func = ffloorl_op;
329 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
330 					func = ffloor_op;
331 				else if (insn.mm_fp1_format.op == mm_fceill_op)
332 					func = fceill_op;
333 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
334 					func = fceil_op;
335 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
336 					func = ftruncl_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
338 					func = ftrunc_op;
339 				else if (insn.mm_fp1_format.op == mm_froundl_op)
340 					func = froundl_op;
341 				else if (insn.mm_fp1_format.op == mm_froundw_op)
342 					func = fround_op;
343 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
344 					func = fcvtl_op;
345 				else
346 					func = fcvtw_op;
347 				mips32_insn.fp0_format.opcode = cop1_op;
348 				mips32_insn.fp0_format.fmt =
349 					sd_format[insn.mm_fp1_format.fmt];
350 				mips32_insn.fp0_format.ft = 0;
351 				mips32_insn.fp0_format.fs =
352 					insn.mm_fp1_format.fs;
353 				mips32_insn.fp0_format.fd =
354 					insn.mm_fp1_format.rt;
355 				mips32_insn.fp0_format.func = func;
356 				break;
357 			case mm_frsqrt_op:
358 			case mm_fsqrt_op:
359 			case mm_frecip_op:
360 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
361 					func = frsqrt_op;
362 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
363 					func = fsqrt_op;
364 				else
365 					func = frecip_op;
366 				mips32_insn.fp0_format.opcode = cop1_op;
367 				mips32_insn.fp0_format.fmt =
368 					sdps_format[insn.mm_fp1_format.fmt];
369 				mips32_insn.fp0_format.ft = 0;
370 				mips32_insn.fp0_format.fs =
371 					insn.mm_fp1_format.fs;
372 				mips32_insn.fp0_format.fd =
373 					insn.mm_fp1_format.rt;
374 				mips32_insn.fp0_format.func = func;
375 				break;
376 			case mm_mfc1_op:
377 			case mm_mtc1_op:
378 			case mm_cfc1_op:
379 			case mm_ctc1_op:
380 			case mm_mfhc1_op:
381 			case mm_mthc1_op:
382 				if (insn.mm_fp1_format.op == mm_mfc1_op)
383 					op = mfc_op;
384 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
385 					op = mtc_op;
386 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
387 					op = cfc_op;
388 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
389 					op = ctc_op;
390 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
391 					op = mfhc_op;
392 				else
393 					op = mthc_op;
394 				mips32_insn.fp1_format.opcode = cop1_op;
395 				mips32_insn.fp1_format.op = op;
396 				mips32_insn.fp1_format.rt =
397 					insn.mm_fp1_format.rt;
398 				mips32_insn.fp1_format.fs =
399 					insn.mm_fp1_format.fs;
400 				mips32_insn.fp1_format.fd = 0;
401 				mips32_insn.fp1_format.func = 0;
402 				break;
403 			default:
404 				return SIGILL;
405 			}
406 			break;
407 		case mm_32f_74_op:	/* c.cond.fmt */
408 			mips32_insn.fp0_format.opcode = cop1_op;
409 			mips32_insn.fp0_format.fmt =
410 				sdps_format[insn.mm_fp4_format.fmt];
411 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
412 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
413 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
414 			mips32_insn.fp0_format.func =
415 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
416 			break;
417 		default:
418 			return SIGILL;
419 		}
420 		break;
421 	default:
422 		return SIGILL;
423 	}
424 
425 	*insn_ptr = mips32_insn;
426 	return 0;
427 }
428 
429 /*
430  * Redundant with logic already in kernel/branch.c,
431  * embedded in compute_return_epc.  At some point,
432  * a single subroutine should be used across both
433  * modules.
434  */
435 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
436 			 unsigned long *contpc)
437 {
438 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
439 	unsigned int fcr31;
440 	unsigned int bit = 0;
441 
442 	switch (insn.i_format.opcode) {
443 	case spec_op:
444 		switch (insn.r_format.func) {
445 		case jalr_op:
446 			regs->regs[insn.r_format.rd] =
447 				regs->cp0_epc + dec_insn.pc_inc +
448 				dec_insn.next_pc_inc;
449 			/* Fall through */
450 		case jr_op:
451 			*contpc = regs->regs[insn.r_format.rs];
452 			return 1;
453 		}
454 		break;
455 	case bcond_op:
456 		switch (insn.i_format.rt) {
457 		case bltzal_op:
458 		case bltzall_op:
459 			regs->regs[31] = regs->cp0_epc +
460 				dec_insn.pc_inc +
461 				dec_insn.next_pc_inc;
462 			/* Fall through */
463 		case bltz_op:
464 		case bltzl_op:
465 			if ((long)regs->regs[insn.i_format.rs] < 0)
466 				*contpc = regs->cp0_epc +
467 					dec_insn.pc_inc +
468 					(insn.i_format.simmediate << 2);
469 			else
470 				*contpc = regs->cp0_epc +
471 					dec_insn.pc_inc +
472 					dec_insn.next_pc_inc;
473 			return 1;
474 		case bgezal_op:
475 		case bgezall_op:
476 			regs->regs[31] = regs->cp0_epc +
477 				dec_insn.pc_inc +
478 				dec_insn.next_pc_inc;
479 			/* Fall through */
480 		case bgez_op:
481 		case bgezl_op:
482 			if ((long)regs->regs[insn.i_format.rs] >= 0)
483 				*contpc = regs->cp0_epc +
484 					dec_insn.pc_inc +
485 					(insn.i_format.simmediate << 2);
486 			else
487 				*contpc = regs->cp0_epc +
488 					dec_insn.pc_inc +
489 					dec_insn.next_pc_inc;
490 			return 1;
491 		}
492 		break;
493 	case jalx_op:
494 		set_isa16_mode(bit);
495 	case jal_op:
496 		regs->regs[31] = regs->cp0_epc +
497 			dec_insn.pc_inc +
498 			dec_insn.next_pc_inc;
499 		/* Fall through */
500 	case j_op:
501 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
502 		*contpc >>= 28;
503 		*contpc <<= 28;
504 		*contpc |= (insn.j_format.target << 2);
505 		/* Set microMIPS mode bit: XOR for jalx. */
506 		*contpc ^= bit;
507 		return 1;
508 	case beq_op:
509 	case beql_op:
510 		if (regs->regs[insn.i_format.rs] ==
511 		    regs->regs[insn.i_format.rt])
512 			*contpc = regs->cp0_epc +
513 				dec_insn.pc_inc +
514 				(insn.i_format.simmediate << 2);
515 		else
516 			*contpc = regs->cp0_epc +
517 				dec_insn.pc_inc +
518 				dec_insn.next_pc_inc;
519 		return 1;
520 	case bne_op:
521 	case bnel_op:
522 		if (regs->regs[insn.i_format.rs] !=
523 		    regs->regs[insn.i_format.rt])
524 			*contpc = regs->cp0_epc +
525 				dec_insn.pc_inc +
526 				(insn.i_format.simmediate << 2);
527 		else
528 			*contpc = regs->cp0_epc +
529 				dec_insn.pc_inc +
530 				dec_insn.next_pc_inc;
531 		return 1;
532 	case blez_op:
533 	case blezl_op:
534 		if ((long)regs->regs[insn.i_format.rs] <= 0)
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				(insn.i_format.simmediate << 2);
538 		else
539 			*contpc = regs->cp0_epc +
540 				dec_insn.pc_inc +
541 				dec_insn.next_pc_inc;
542 		return 1;
543 	case bgtz_op:
544 	case bgtzl_op:
545 		if ((long)regs->regs[insn.i_format.rs] > 0)
546 			*contpc = regs->cp0_epc +
547 				dec_insn.pc_inc +
548 				(insn.i_format.simmediate << 2);
549 		else
550 			*contpc = regs->cp0_epc +
551 				dec_insn.pc_inc +
552 				dec_insn.next_pc_inc;
553 		return 1;
554 #ifdef CONFIG_CPU_CAVIUM_OCTEON
555 	case lwc2_op: /* This is bbit0 on Octeon */
556 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
557 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
558 		else
559 			*contpc = regs->cp0_epc + 8;
560 		return 1;
561 	case ldc2_op: /* This is bbit032 on Octeon */
562 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
563 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
564 		else
565 			*contpc = regs->cp0_epc + 8;
566 		return 1;
567 	case swc2_op: /* This is bbit1 on Octeon */
568 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
569 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
570 		else
571 			*contpc = regs->cp0_epc + 8;
572 		return 1;
573 	case sdc2_op: /* This is bbit132 on Octeon */
574 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
575 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
576 		else
577 			*contpc = regs->cp0_epc + 8;
578 		return 1;
579 #endif
580 	case cop0_op:
581 	case cop1_op:
582 	case cop2_op:
583 	case cop1x_op:
584 		if (insn.i_format.rs == bc_op) {
585 			preempt_disable();
586 			if (is_fpu_owner())
587 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
588 			else
589 				fcr31 = current->thread.fpu.fcr31;
590 			preempt_enable();
591 
592 			bit = (insn.i_format.rt >> 2);
593 			bit += (bit != 0);
594 			bit += 23;
595 			switch (insn.i_format.rt & 3) {
596 			case 0:	/* bc1f */
597 			case 2:	/* bc1fl */
598 				if (~fcr31 & (1 << bit))
599 					*contpc = regs->cp0_epc +
600 						dec_insn.pc_inc +
601 						(insn.i_format.simmediate << 2);
602 				else
603 					*contpc = regs->cp0_epc +
604 						dec_insn.pc_inc +
605 						dec_insn.next_pc_inc;
606 				return 1;
607 			case 1:	/* bc1t */
608 			case 3:	/* bc1tl */
609 				if (fcr31 & (1 << bit))
610 					*contpc = regs->cp0_epc +
611 						dec_insn.pc_inc +
612 						(insn.i_format.simmediate << 2);
613 				else
614 					*contpc = regs->cp0_epc +
615 						dec_insn.pc_inc +
616 						dec_insn.next_pc_inc;
617 				return 1;
618 			}
619 		}
620 		break;
621 	}
622 	return 0;
623 }
624 
625 /*
626  * In the Linux kernel, we support selection of FPR format on the
627  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
628  * is hardwired to zero, which would imply a 32-bit FPU even for
629  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
630  * FPU emu is slow and bulky and optimizing this function offers fairly
631  * sizeable benefits so we try to be clever and make this function return
632  * a constant whenever possible, that is on 64-bit kernels without O32
633  * compatibility enabled and on 32-bit without 64-bit FPU support.
634  */
635 static inline int cop1_64bit(struct pt_regs *xcp)
636 {
637 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
638 		return 1;
639 	else if (config_enabled(CONFIG_32BIT) &&
640 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
641 		return 0;
642 
643 	return !test_thread_flag(TIF_32BIT_FPREGS);
644 }
645 
646 #define SIFROMREG(si, x)						\
647 do {									\
648 	if (cop1_64bit(xcp))						\
649 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
650 	else								\
651 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
652 } while (0)
653 
654 #define SITOREG(si, x)							\
655 do {									\
656 	if (cop1_64bit(xcp)) {						\
657 		unsigned i;						\
658 		set_fpr32(&ctx->fpr[x], 0, si);				\
659 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
660 			set_fpr32(&ctx->fpr[x], i, 0);			\
661 	} else {							\
662 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
663 	}								\
664 } while (0)
665 
666 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
667 
668 #define SITOHREG(si, x)							\
669 do {									\
670 	unsigned i;							\
671 	set_fpr32(&ctx->fpr[x], 1, si);					\
672 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
673 		set_fpr32(&ctx->fpr[x], i, 0);				\
674 } while (0)
675 
676 #define DIFROMREG(di, x)						\
677 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
678 
679 #define DITOREG(di, x)							\
680 do {									\
681 	unsigned fpr, i;						\
682 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
683 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
684 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
685 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
686 } while (0)
687 
688 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
689 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
690 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
691 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
692 
693 /*
694  * Emulate the single floating point instruction pointed at by EPC.
695  * Two instructions if the instruction is in a branch delay slot.
696  */
697 
698 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
699 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
700 {
701 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
702 	unsigned int cond, cbit;
703 	mips_instruction ir;
704 	int likely, pc_inc;
705 	u32 __user *wva;
706 	u64 __user *dva;
707 	u32 value;
708 	u32 wval;
709 	u64 dval;
710 	int sig;
711 
712 	/*
713 	 * These are giving gcc a gentle hint about what to expect in
714 	 * dec_inst in order to do better optimization.
715 	 */
716 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
717 		unreachable();
718 
719 	/* XXX NEC Vr54xx bug workaround */
720 	if (delay_slot(xcp)) {
721 		if (dec_insn.micro_mips_mode) {
722 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
723 				clear_delay_slot(xcp);
724 		} else {
725 			if (!isBranchInstr(xcp, dec_insn, &contpc))
726 				clear_delay_slot(xcp);
727 		}
728 	}
729 
730 	if (delay_slot(xcp)) {
731 		/*
732 		 * The instruction to be emulated is in a branch delay slot
733 		 * which means that we have to	emulate the branch instruction
734 		 * BEFORE we do the cop1 instruction.
735 		 *
736 		 * This branch could be a COP1 branch, but in that case we
737 		 * would have had a trap for that instruction, and would not
738 		 * come through this route.
739 		 *
740 		 * Linux MIPS branch emulator operates on context, updating the
741 		 * cp0_epc.
742 		 */
743 		ir = dec_insn.next_insn;  /* process delay slot instr */
744 		pc_inc = dec_insn.next_pc_inc;
745 	} else {
746 		ir = dec_insn.insn;       /* process current instr */
747 		pc_inc = dec_insn.pc_inc;
748 	}
749 
750 	/*
751 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
752 	 * instructions, we want to convert microMIPS FPU instructions
753 	 * into MIPS32 instructions so that we could reuse all of the
754 	 * FPU emulation code.
755 	 *
756 	 * NOTE: We cannot do this for branch instructions since they
757 	 *       are not a subset. Example: Cannot emulate a 16-bit
758 	 *       aligned target address with a MIPS32 instruction.
759 	 */
760 	if (dec_insn.micro_mips_mode) {
761 		/*
762 		 * If next instruction is a 16-bit instruction, then it
763 		 * it cannot be a FPU instruction. This could happen
764 		 * since we can be called for non-FPU instructions.
765 		 */
766 		if ((pc_inc == 2) ||
767 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
768 			 == SIGILL))
769 			return SIGILL;
770 	}
771 
772 emul:
773 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
774 	MIPS_FPU_EMU_INC_STATS(emulated);
775 	switch (MIPSInst_OPCODE(ir)) {
776 	case ldc1_op:
777 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
778 				     MIPSInst_SIMM(ir));
779 		MIPS_FPU_EMU_INC_STATS(loads);
780 
781 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
782 			MIPS_FPU_EMU_INC_STATS(errors);
783 			*fault_addr = dva;
784 			return SIGBUS;
785 		}
786 		if (__get_user(dval, dva)) {
787 			MIPS_FPU_EMU_INC_STATS(errors);
788 			*fault_addr = dva;
789 			return SIGSEGV;
790 		}
791 		DITOREG(dval, MIPSInst_RT(ir));
792 		break;
793 
794 	case sdc1_op:
795 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
796 				      MIPSInst_SIMM(ir));
797 		MIPS_FPU_EMU_INC_STATS(stores);
798 		DIFROMREG(dval, MIPSInst_RT(ir));
799 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
800 			MIPS_FPU_EMU_INC_STATS(errors);
801 			*fault_addr = dva;
802 			return SIGBUS;
803 		}
804 		if (__put_user(dval, dva)) {
805 			MIPS_FPU_EMU_INC_STATS(errors);
806 			*fault_addr = dva;
807 			return SIGSEGV;
808 		}
809 		break;
810 
811 	case lwc1_op:
812 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
813 				      MIPSInst_SIMM(ir));
814 		MIPS_FPU_EMU_INC_STATS(loads);
815 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
816 			MIPS_FPU_EMU_INC_STATS(errors);
817 			*fault_addr = wva;
818 			return SIGBUS;
819 		}
820 		if (__get_user(wval, wva)) {
821 			MIPS_FPU_EMU_INC_STATS(errors);
822 			*fault_addr = wva;
823 			return SIGSEGV;
824 		}
825 		SITOREG(wval, MIPSInst_RT(ir));
826 		break;
827 
828 	case swc1_op:
829 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
830 				      MIPSInst_SIMM(ir));
831 		MIPS_FPU_EMU_INC_STATS(stores);
832 		SIFROMREG(wval, MIPSInst_RT(ir));
833 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
834 			MIPS_FPU_EMU_INC_STATS(errors);
835 			*fault_addr = wva;
836 			return SIGBUS;
837 		}
838 		if (__put_user(wval, wva)) {
839 			MIPS_FPU_EMU_INC_STATS(errors);
840 			*fault_addr = wva;
841 			return SIGSEGV;
842 		}
843 		break;
844 
845 	case cop1_op:
846 		switch (MIPSInst_RS(ir)) {
847 		case dmfc_op:
848 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
849 				return SIGILL;
850 
851 			/* copregister fs -> gpr[rt] */
852 			if (MIPSInst_RT(ir) != 0) {
853 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
854 					MIPSInst_RD(ir));
855 			}
856 			break;
857 
858 		case dmtc_op:
859 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
860 				return SIGILL;
861 
862 			/* copregister fs <- rt */
863 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
864 			break;
865 
866 		case mfhc_op:
867 			if (!cpu_has_mips_r2)
868 				goto sigill;
869 
870 			/* copregister rd -> gpr[rt] */
871 			if (MIPSInst_RT(ir) != 0) {
872 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
873 					MIPSInst_RD(ir));
874 			}
875 			break;
876 
877 		case mthc_op:
878 			if (!cpu_has_mips_r2)
879 				goto sigill;
880 
881 			/* copregister rd <- gpr[rt] */
882 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
883 			break;
884 
885 		case mfc_op:
886 			/* copregister rd -> gpr[rt] */
887 			if (MIPSInst_RT(ir) != 0) {
888 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
889 					MIPSInst_RD(ir));
890 			}
891 			break;
892 
893 		case mtc_op:
894 			/* copregister rd <- rt */
895 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
896 			break;
897 
898 		case cfc_op:
899 			/* cop control register rd -> gpr[rt] */
900 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
901 				value = ctx->fcr31;
902 				value = (value & ~FPU_CSR_RM) | modeindex(value);
903 				pr_debug("%p gpr[%d]<-csr=%08x\n",
904 					 (void *) (xcp->cp0_epc),
905 					 MIPSInst_RT(ir), value);
906 			}
907 			else if (MIPSInst_RD(ir) == FPCREG_RID)
908 				value = 0;
909 			else
910 				value = 0;
911 			if (MIPSInst_RT(ir))
912 				xcp->regs[MIPSInst_RT(ir)] = value;
913 			break;
914 
915 		case ctc_op:
916 			/* copregister rd <- rt */
917 			if (MIPSInst_RT(ir) == 0)
918 				value = 0;
919 			else
920 				value = xcp->regs[MIPSInst_RT(ir)];
921 
922 			/* we only have one writable control reg
923 			 */
924 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
925 				pr_debug("%p gpr[%d]->csr=%08x\n",
926 					 (void *) (xcp->cp0_epc),
927 					 MIPSInst_RT(ir), value);
928 
929 				/*
930 				 * Don't write reserved bits,
931 				 * and convert to ieee library modes
932 				 */
933 				ctx->fcr31 = (value & ~(FPU_CSR_RSVD | FPU_CSR_RM)) |
934 					     modeindex(value);
935 			}
936 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
937 				return SIGFPE;
938 			}
939 			break;
940 
941 		case bc_op:
942 			if (delay_slot(xcp))
943 				return SIGILL;
944 
945 			if (cpu_has_mips_4_5_r)
946 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
947 			else
948 				cbit = FPU_CSR_COND;
949 			cond = ctx->fcr31 & cbit;
950 
951 			likely = 0;
952 			switch (MIPSInst_RT(ir) & 3) {
953 			case bcfl_op:
954 				likely = 1;
955 			case bcf_op:
956 				cond = !cond;
957 				break;
958 			case bctl_op:
959 				likely = 1;
960 			case bct_op:
961 				break;
962 			default:
963 				/* thats an illegal instruction */
964 				return SIGILL;
965 			}
966 
967 			set_delay_slot(xcp);
968 			if (cond) {
969 				/*
970 				 * Branch taken: emulate dslot instruction
971 				 */
972 				xcp->cp0_epc += dec_insn.pc_inc;
973 
974 				contpc = MIPSInst_SIMM(ir);
975 				ir = dec_insn.next_insn;
976 				if (dec_insn.micro_mips_mode) {
977 					contpc = (xcp->cp0_epc + (contpc << 1));
978 
979 					/* If 16-bit instruction, not FPU. */
980 					if ((dec_insn.next_pc_inc == 2) ||
981 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
982 
983 						/*
984 						 * Since this instruction will
985 						 * be put on the stack with
986 						 * 32-bit words, get around
987 						 * this problem by putting a
988 						 * NOP16 as the second one.
989 						 */
990 						if (dec_insn.next_pc_inc == 2)
991 							ir = (ir & (~0xffff)) | MM_NOP16;
992 
993 						/*
994 						 * Single step the non-CP1
995 						 * instruction in the dslot.
996 						 */
997 						return mips_dsemul(xcp, ir, contpc);
998 					}
999 				} else
1000 					contpc = (xcp->cp0_epc + (contpc << 2));
1001 
1002 				switch (MIPSInst_OPCODE(ir)) {
1003 				case lwc1_op:
1004 					goto emul;
1005 
1006 				case swc1_op:
1007 					goto emul;
1008 
1009 				case ldc1_op:
1010 				case sdc1_op:
1011 					if (cpu_has_mips_2_3_4_5 ||
1012 					    cpu_has_mips64)
1013 						goto emul;
1014 
1015 					return SIGILL;
1016 					goto emul;
1017 
1018 				case cop1_op:
1019 					goto emul;
1020 
1021 				case cop1x_op:
1022 					if (cpu_has_mips_4_5 || cpu_has_mips64 || cpu_has_mips32r2)
1023 						/* its one of ours */
1024 						goto emul;
1025 
1026 					return SIGILL;
1027 
1028 				case spec_op:
1029 					if (!cpu_has_mips_4_5_r)
1030 						return SIGILL;
1031 
1032 					if (MIPSInst_FUNC(ir) == movc_op)
1033 						goto emul;
1034 					break;
1035 				}
1036 
1037 				/*
1038 				 * Single step the non-cp1
1039 				 * instruction in the dslot
1040 				 */
1041 				return mips_dsemul(xcp, ir, contpc);
1042 			} else if (likely) {	/* branch not taken */
1043 					/*
1044 					 * branch likely nullifies
1045 					 * dslot if not taken
1046 					 */
1047 					xcp->cp0_epc += dec_insn.pc_inc;
1048 					contpc += dec_insn.pc_inc;
1049 					/*
1050 					 * else continue & execute
1051 					 * dslot as normal insn
1052 					 */
1053 				}
1054 			break;
1055 
1056 		default:
1057 			if (!(MIPSInst_RS(ir) & 0x10))
1058 				return SIGILL;
1059 
1060 			/* a real fpu computation instruction */
1061 			if ((sig = fpu_emu(xcp, ctx, ir)))
1062 				return sig;
1063 		}
1064 		break;
1065 
1066 	case cop1x_op:
1067 		if (!cpu_has_mips_4_5 && !cpu_has_mips64 && !cpu_has_mips32r2)
1068 			return SIGILL;
1069 
1070 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1071 		if (sig)
1072 			return sig;
1073 		break;
1074 
1075 	case spec_op:
1076 		if (!cpu_has_mips_4_5_r)
1077 			return SIGILL;
1078 
1079 		if (MIPSInst_FUNC(ir) != movc_op)
1080 			return SIGILL;
1081 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1082 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1083 			xcp->regs[MIPSInst_RD(ir)] =
1084 				xcp->regs[MIPSInst_RS(ir)];
1085 		break;
1086 	default:
1087 sigill:
1088 		return SIGILL;
1089 	}
1090 
1091 	/* we did it !! */
1092 	xcp->cp0_epc = contpc;
1093 	clear_delay_slot(xcp);
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * Conversion table from MIPS compare ops 48-63
1100  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1101  */
1102 static const unsigned char cmptab[8] = {
1103 	0,			/* cmp_0 (sig) cmp_sf */
1104 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1105 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1106 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1107 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1108 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1109 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1110 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1111 };
1112 
1113 
1114 /*
1115  * Additional MIPS4 instructions
1116  */
1117 
1118 #define DEF3OP(name, p, f1, f2, f3)					\
1119 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1120 	union ieee754##p s, union ieee754##p t)				\
1121 {									\
1122 	struct _ieee754_csr ieee754_csr_save;				\
1123 	s = f1(s, t);							\
1124 	ieee754_csr_save = ieee754_csr;					\
1125 	s = f2(s, r);							\
1126 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1127 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1128 	s = f3(s);							\
1129 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1130 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1131 	return s;							\
1132 }
1133 
1134 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1135 {
1136 	return ieee754dp_div(ieee754dp_one(0), d);
1137 }
1138 
1139 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1140 {
1141 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1142 }
1143 
1144 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1145 {
1146 	return ieee754sp_div(ieee754sp_one(0), s);
1147 }
1148 
1149 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1150 {
1151 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1152 }
1153 
1154 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1155 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1156 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1157 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1158 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1159 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1160 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1161 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1162 
1163 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1164 	mips_instruction ir, void *__user *fault_addr)
1165 {
1166 	unsigned rcsr = 0;	/* resulting csr */
1167 
1168 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1169 
1170 	switch (MIPSInst_FMA_FFMT(ir)) {
1171 	case s_fmt:{		/* 0 */
1172 
1173 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1174 		union ieee754sp fd, fr, fs, ft;
1175 		u32 __user *va;
1176 		u32 val;
1177 
1178 		switch (MIPSInst_FUNC(ir)) {
1179 		case lwxc1_op:
1180 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1181 				xcp->regs[MIPSInst_FT(ir)]);
1182 
1183 			MIPS_FPU_EMU_INC_STATS(loads);
1184 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1185 				MIPS_FPU_EMU_INC_STATS(errors);
1186 				*fault_addr = va;
1187 				return SIGBUS;
1188 			}
1189 			if (__get_user(val, va)) {
1190 				MIPS_FPU_EMU_INC_STATS(errors);
1191 				*fault_addr = va;
1192 				return SIGSEGV;
1193 			}
1194 			SITOREG(val, MIPSInst_FD(ir));
1195 			break;
1196 
1197 		case swxc1_op:
1198 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1199 				xcp->regs[MIPSInst_FT(ir)]);
1200 
1201 			MIPS_FPU_EMU_INC_STATS(stores);
1202 
1203 			SIFROMREG(val, MIPSInst_FS(ir));
1204 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1205 				MIPS_FPU_EMU_INC_STATS(errors);
1206 				*fault_addr = va;
1207 				return SIGBUS;
1208 			}
1209 			if (put_user(val, va)) {
1210 				MIPS_FPU_EMU_INC_STATS(errors);
1211 				*fault_addr = va;
1212 				return SIGSEGV;
1213 			}
1214 			break;
1215 
1216 		case madd_s_op:
1217 			handler = fpemu_sp_madd;
1218 			goto scoptop;
1219 		case msub_s_op:
1220 			handler = fpemu_sp_msub;
1221 			goto scoptop;
1222 		case nmadd_s_op:
1223 			handler = fpemu_sp_nmadd;
1224 			goto scoptop;
1225 		case nmsub_s_op:
1226 			handler = fpemu_sp_nmsub;
1227 			goto scoptop;
1228 
1229 		      scoptop:
1230 			SPFROMREG(fr, MIPSInst_FR(ir));
1231 			SPFROMREG(fs, MIPSInst_FS(ir));
1232 			SPFROMREG(ft, MIPSInst_FT(ir));
1233 			fd = (*handler) (fr, fs, ft);
1234 			SPTOREG(fd, MIPSInst_FD(ir));
1235 
1236 		      copcsr:
1237 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1238 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1239 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1240 			}
1241 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1242 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1243 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1244 			}
1245 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1246 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1247 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1248 			}
1249 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1250 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1251 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1252 			}
1253 
1254 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1255 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1256 				/*printk ("SIGFPE: FPU csr = %08x\n",
1257 				   ctx->fcr31); */
1258 				return SIGFPE;
1259 			}
1260 
1261 			break;
1262 
1263 		default:
1264 			return SIGILL;
1265 		}
1266 		break;
1267 	}
1268 
1269 	case d_fmt:{		/* 1 */
1270 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1271 		union ieee754dp fd, fr, fs, ft;
1272 		u64 __user *va;
1273 		u64 val;
1274 
1275 		switch (MIPSInst_FUNC(ir)) {
1276 		case ldxc1_op:
1277 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1278 				xcp->regs[MIPSInst_FT(ir)]);
1279 
1280 			MIPS_FPU_EMU_INC_STATS(loads);
1281 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1282 				MIPS_FPU_EMU_INC_STATS(errors);
1283 				*fault_addr = va;
1284 				return SIGBUS;
1285 			}
1286 			if (__get_user(val, va)) {
1287 				MIPS_FPU_EMU_INC_STATS(errors);
1288 				*fault_addr = va;
1289 				return SIGSEGV;
1290 			}
1291 			DITOREG(val, MIPSInst_FD(ir));
1292 			break;
1293 
1294 		case sdxc1_op:
1295 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1296 				xcp->regs[MIPSInst_FT(ir)]);
1297 
1298 			MIPS_FPU_EMU_INC_STATS(stores);
1299 			DIFROMREG(val, MIPSInst_FS(ir));
1300 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1301 				MIPS_FPU_EMU_INC_STATS(errors);
1302 				*fault_addr = va;
1303 				return SIGBUS;
1304 			}
1305 			if (__put_user(val, va)) {
1306 				MIPS_FPU_EMU_INC_STATS(errors);
1307 				*fault_addr = va;
1308 				return SIGSEGV;
1309 			}
1310 			break;
1311 
1312 		case madd_d_op:
1313 			handler = fpemu_dp_madd;
1314 			goto dcoptop;
1315 		case msub_d_op:
1316 			handler = fpemu_dp_msub;
1317 			goto dcoptop;
1318 		case nmadd_d_op:
1319 			handler = fpemu_dp_nmadd;
1320 			goto dcoptop;
1321 		case nmsub_d_op:
1322 			handler = fpemu_dp_nmsub;
1323 			goto dcoptop;
1324 
1325 		      dcoptop:
1326 			DPFROMREG(fr, MIPSInst_FR(ir));
1327 			DPFROMREG(fs, MIPSInst_FS(ir));
1328 			DPFROMREG(ft, MIPSInst_FT(ir));
1329 			fd = (*handler) (fr, fs, ft);
1330 			DPTOREG(fd, MIPSInst_FD(ir));
1331 			goto copcsr;
1332 
1333 		default:
1334 			return SIGILL;
1335 		}
1336 		break;
1337 	}
1338 
1339 	case 0x3:
1340 		if (MIPSInst_FUNC(ir) != pfetch_op)
1341 			return SIGILL;
1342 
1343 		/* ignore prefx operation */
1344 		break;
1345 
1346 	default:
1347 		return SIGILL;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 
1354 
1355 /*
1356  * Emulate a single COP1 arithmetic instruction.
1357  */
1358 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1359 	mips_instruction ir)
1360 {
1361 	int rfmt;		/* resulting format */
1362 	unsigned rcsr = 0;	/* resulting csr */
1363 	unsigned int oldrm;
1364 	unsigned int cbit;
1365 	unsigned cond;
1366 	union {
1367 		union ieee754dp d;
1368 		union ieee754sp s;
1369 		int w;
1370 		s64 l;
1371 	} rv;			/* resulting value */
1372 	u64 bits;
1373 
1374 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1375 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1376 	case s_fmt: {		/* 0 */
1377 		union {
1378 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1379 			union ieee754sp(*u) (union ieee754sp);
1380 		} handler;
1381 		union ieee754sp fs, ft;
1382 
1383 		switch (MIPSInst_FUNC(ir)) {
1384 			/* binary ops */
1385 		case fadd_op:
1386 			handler.b = ieee754sp_add;
1387 			goto scopbop;
1388 		case fsub_op:
1389 			handler.b = ieee754sp_sub;
1390 			goto scopbop;
1391 		case fmul_op:
1392 			handler.b = ieee754sp_mul;
1393 			goto scopbop;
1394 		case fdiv_op:
1395 			handler.b = ieee754sp_div;
1396 			goto scopbop;
1397 
1398 			/* unary  ops */
1399 		case fsqrt_op:
1400 			if (!cpu_has_mips_4_5_r)
1401 				return SIGILL;
1402 
1403 			handler.u = ieee754sp_sqrt;
1404 			goto scopuop;
1405 
1406 		/*
1407 		 * Note that on some MIPS IV implementations such as the
1408 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1409 		 * achieve full IEEE-754 accuracy - however this emulator does.
1410 		 */
1411 		case frsqrt_op:
1412 			if (!cpu_has_mips_4_5_r2)
1413 				return SIGILL;
1414 
1415 			handler.u = fpemu_sp_rsqrt;
1416 			goto scopuop;
1417 
1418 		case frecip_op:
1419 			if (!cpu_has_mips_4_5_r2)
1420 				return SIGILL;
1421 
1422 			handler.u = fpemu_sp_recip;
1423 			goto scopuop;
1424 
1425 		case fmovc_op:
1426 			if (!cpu_has_mips_4_5_r)
1427 				return SIGILL;
1428 
1429 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1430 			if (((ctx->fcr31 & cond) != 0) !=
1431 				((MIPSInst_FT(ir) & 1) != 0))
1432 				return 0;
1433 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1434 			break;
1435 
1436 		case fmovz_op:
1437 			if (!cpu_has_mips_4_5_r)
1438 				return SIGILL;
1439 
1440 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1441 				return 0;
1442 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1443 			break;
1444 
1445 		case fmovn_op:
1446 			if (!cpu_has_mips_4_5_r)
1447 				return SIGILL;
1448 
1449 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1450 				return 0;
1451 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1452 			break;
1453 
1454 		case fabs_op:
1455 			handler.u = ieee754sp_abs;
1456 			goto scopuop;
1457 
1458 		case fneg_op:
1459 			handler.u = ieee754sp_neg;
1460 			goto scopuop;
1461 
1462 		case fmov_op:
1463 			/* an easy one */
1464 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1465 			goto copcsr;
1466 
1467 			/* binary op on handler */
1468 scopbop:
1469 			SPFROMREG(fs, MIPSInst_FS(ir));
1470 			SPFROMREG(ft, MIPSInst_FT(ir));
1471 
1472 			rv.s = (*handler.b) (fs, ft);
1473 			goto copcsr;
1474 scopuop:
1475 			SPFROMREG(fs, MIPSInst_FS(ir));
1476 			rv.s = (*handler.u) (fs);
1477 			goto copcsr;
1478 copcsr:
1479 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1480 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1481 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1482 			}
1483 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1484 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1485 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1486 			}
1487 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1488 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1489 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1490 			}
1491 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1492 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1493 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1494 			}
1495 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1496 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1497 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1498 			}
1499 			break;
1500 
1501 			/* unary conv ops */
1502 		case fcvts_op:
1503 			return SIGILL;	/* not defined */
1504 
1505 		case fcvtd_op:
1506 			SPFROMREG(fs, MIPSInst_FS(ir));
1507 			rv.d = ieee754dp_fsp(fs);
1508 			rfmt = d_fmt;
1509 			goto copcsr;
1510 
1511 		case fcvtw_op:
1512 			SPFROMREG(fs, MIPSInst_FS(ir));
1513 			rv.w = ieee754sp_tint(fs);
1514 			rfmt = w_fmt;
1515 			goto copcsr;
1516 
1517 		case fround_op:
1518 		case ftrunc_op:
1519 		case fceil_op:
1520 		case ffloor_op:
1521 			if (!cpu_has_mips_2_3_4_5 && !cpu_has_mips64)
1522 				return SIGILL;
1523 
1524 			oldrm = ieee754_csr.rm;
1525 			SPFROMREG(fs, MIPSInst_FS(ir));
1526 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1527 			rv.w = ieee754sp_tint(fs);
1528 			ieee754_csr.rm = oldrm;
1529 			rfmt = w_fmt;
1530 			goto copcsr;
1531 
1532 		case fcvtl_op:
1533 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1534 				return SIGILL;
1535 
1536 			SPFROMREG(fs, MIPSInst_FS(ir));
1537 			rv.l = ieee754sp_tlong(fs);
1538 			rfmt = l_fmt;
1539 			goto copcsr;
1540 
1541 		case froundl_op:
1542 		case ftruncl_op:
1543 		case fceill_op:
1544 		case ffloorl_op:
1545 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1546 				return SIGILL;
1547 
1548 			oldrm = ieee754_csr.rm;
1549 			SPFROMREG(fs, MIPSInst_FS(ir));
1550 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1551 			rv.l = ieee754sp_tlong(fs);
1552 			ieee754_csr.rm = oldrm;
1553 			rfmt = l_fmt;
1554 			goto copcsr;
1555 
1556 		default:
1557 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1558 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1559 				union ieee754sp fs, ft;
1560 
1561 				SPFROMREG(fs, MIPSInst_FS(ir));
1562 				SPFROMREG(ft, MIPSInst_FT(ir));
1563 				rv.w = ieee754sp_cmp(fs, ft,
1564 					cmptab[cmpop & 0x7], cmpop & 0x8);
1565 				rfmt = -1;
1566 				if ((cmpop & 0x8) && ieee754_cxtest
1567 					(IEEE754_INVALID_OPERATION))
1568 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1569 				else
1570 					goto copcsr;
1571 
1572 			} else
1573 				return SIGILL;
1574 			break;
1575 		}
1576 		break;
1577 	}
1578 
1579 	case d_fmt: {
1580 		union ieee754dp fs, ft;
1581 		union {
1582 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
1583 			union ieee754dp(*u) (union ieee754dp);
1584 		} handler;
1585 
1586 		switch (MIPSInst_FUNC(ir)) {
1587 			/* binary ops */
1588 		case fadd_op:
1589 			handler.b = ieee754dp_add;
1590 			goto dcopbop;
1591 		case fsub_op:
1592 			handler.b = ieee754dp_sub;
1593 			goto dcopbop;
1594 		case fmul_op:
1595 			handler.b = ieee754dp_mul;
1596 			goto dcopbop;
1597 		case fdiv_op:
1598 			handler.b = ieee754dp_div;
1599 			goto dcopbop;
1600 
1601 			/* unary  ops */
1602 		case fsqrt_op:
1603 			if (!cpu_has_mips_2_3_4_5_r)
1604 				return SIGILL;
1605 
1606 			handler.u = ieee754dp_sqrt;
1607 			goto dcopuop;
1608 		/*
1609 		 * Note that on some MIPS IV implementations such as the
1610 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1611 		 * achieve full IEEE-754 accuracy - however this emulator does.
1612 		 */
1613 		case frsqrt_op:
1614 			if (!cpu_has_mips_4_5_r2)
1615 				return SIGILL;
1616 
1617 			handler.u = fpemu_dp_rsqrt;
1618 			goto dcopuop;
1619 		case frecip_op:
1620 			if (!cpu_has_mips_4_5_r2)
1621 				return SIGILL;
1622 
1623 			handler.u = fpemu_dp_recip;
1624 			goto dcopuop;
1625 		case fmovc_op:
1626 			if (!cpu_has_mips_4_5_r)
1627 				return SIGILL;
1628 
1629 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1630 			if (((ctx->fcr31 & cond) != 0) !=
1631 				((MIPSInst_FT(ir) & 1) != 0))
1632 				return 0;
1633 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1634 			break;
1635 		case fmovz_op:
1636 			if (!cpu_has_mips_4_5_r)
1637 				return SIGILL;
1638 
1639 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1640 				return 0;
1641 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1642 			break;
1643 		case fmovn_op:
1644 			if (!cpu_has_mips_4_5_r)
1645 				return SIGILL;
1646 
1647 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1648 				return 0;
1649 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1650 			break;
1651 		case fabs_op:
1652 			handler.u = ieee754dp_abs;
1653 			goto dcopuop;
1654 
1655 		case fneg_op:
1656 			handler.u = ieee754dp_neg;
1657 			goto dcopuop;
1658 
1659 		case fmov_op:
1660 			/* an easy one */
1661 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1662 			goto copcsr;
1663 
1664 			/* binary op on handler */
1665 dcopbop:
1666 			DPFROMREG(fs, MIPSInst_FS(ir));
1667 			DPFROMREG(ft, MIPSInst_FT(ir));
1668 
1669 			rv.d = (*handler.b) (fs, ft);
1670 			goto copcsr;
1671 dcopuop:
1672 			DPFROMREG(fs, MIPSInst_FS(ir));
1673 			rv.d = (*handler.u) (fs);
1674 			goto copcsr;
1675 
1676 		/*
1677 		 * unary conv ops
1678 		 */
1679 		case fcvts_op:
1680 			DPFROMREG(fs, MIPSInst_FS(ir));
1681 			rv.s = ieee754sp_fdp(fs);
1682 			rfmt = s_fmt;
1683 			goto copcsr;
1684 
1685 		case fcvtd_op:
1686 			return SIGILL;	/* not defined */
1687 
1688 		case fcvtw_op:
1689 			DPFROMREG(fs, MIPSInst_FS(ir));
1690 			rv.w = ieee754dp_tint(fs);	/* wrong */
1691 			rfmt = w_fmt;
1692 			goto copcsr;
1693 
1694 		case fround_op:
1695 		case ftrunc_op:
1696 		case fceil_op:
1697 		case ffloor_op:
1698 			if (!cpu_has_mips_2_3_4_5_r)
1699 				return SIGILL;
1700 
1701 			oldrm = ieee754_csr.rm;
1702 			DPFROMREG(fs, MIPSInst_FS(ir));
1703 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1704 			rv.w = ieee754dp_tint(fs);
1705 			ieee754_csr.rm = oldrm;
1706 			rfmt = w_fmt;
1707 			goto copcsr;
1708 
1709 		case fcvtl_op:
1710 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1711 				return SIGILL;
1712 
1713 			DPFROMREG(fs, MIPSInst_FS(ir));
1714 			rv.l = ieee754dp_tlong(fs);
1715 			rfmt = l_fmt;
1716 			goto copcsr;
1717 
1718 		case froundl_op:
1719 		case ftruncl_op:
1720 		case fceill_op:
1721 		case ffloorl_op:
1722 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1723 				return SIGILL;
1724 
1725 			oldrm = ieee754_csr.rm;
1726 			DPFROMREG(fs, MIPSInst_FS(ir));
1727 			ieee754_csr.rm = modeindex(MIPSInst_FUNC(ir));
1728 			rv.l = ieee754dp_tlong(fs);
1729 			ieee754_csr.rm = oldrm;
1730 			rfmt = l_fmt;
1731 			goto copcsr;
1732 
1733 		default:
1734 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1735 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1736 				union ieee754dp fs, ft;
1737 
1738 				DPFROMREG(fs, MIPSInst_FS(ir));
1739 				DPFROMREG(ft, MIPSInst_FT(ir));
1740 				rv.w = ieee754dp_cmp(fs, ft,
1741 					cmptab[cmpop & 0x7], cmpop & 0x8);
1742 				rfmt = -1;
1743 				if ((cmpop & 0x8)
1744 					&&
1745 					ieee754_cxtest
1746 					(IEEE754_INVALID_OPERATION))
1747 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1748 				else
1749 					goto copcsr;
1750 
1751 			}
1752 			else {
1753 				return SIGILL;
1754 			}
1755 			break;
1756 		}
1757 		break;
1758 
1759 	case w_fmt:
1760 		switch (MIPSInst_FUNC(ir)) {
1761 		case fcvts_op:
1762 			/* convert word to single precision real */
1763 			SPFROMREG(fs, MIPSInst_FS(ir));
1764 			rv.s = ieee754sp_fint(fs.bits);
1765 			rfmt = s_fmt;
1766 			goto copcsr;
1767 		case fcvtd_op:
1768 			/* convert word to double precision real */
1769 			SPFROMREG(fs, MIPSInst_FS(ir));
1770 			rv.d = ieee754dp_fint(fs.bits);
1771 			rfmt = d_fmt;
1772 			goto copcsr;
1773 		default:
1774 			return SIGILL;
1775 		}
1776 		break;
1777 	}
1778 
1779 	case l_fmt:
1780 
1781 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1782 			return SIGILL;
1783 
1784 		DIFROMREG(bits, MIPSInst_FS(ir));
1785 
1786 		switch (MIPSInst_FUNC(ir)) {
1787 		case fcvts_op:
1788 			/* convert long to single precision real */
1789 			rv.s = ieee754sp_flong(bits);
1790 			rfmt = s_fmt;
1791 			goto copcsr;
1792 		case fcvtd_op:
1793 			/* convert long to double precision real */
1794 			rv.d = ieee754dp_flong(bits);
1795 			rfmt = d_fmt;
1796 			goto copcsr;
1797 		default:
1798 			return SIGILL;
1799 		}
1800 		break;
1801 
1802 	default:
1803 		return SIGILL;
1804 	}
1805 
1806 	/*
1807 	 * Update the fpu CSR register for this operation.
1808 	 * If an exception is required, generate a tidy SIGFPE exception,
1809 	 * without updating the result register.
1810 	 * Note: cause exception bits do not accumulate, they are rewritten
1811 	 * for each op; only the flag/sticky bits accumulate.
1812 	 */
1813 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1814 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1815 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
1816 		return SIGFPE;
1817 	}
1818 
1819 	/*
1820 	 * Now we can safely write the result back to the register file.
1821 	 */
1822 	switch (rfmt) {
1823 	case -1:
1824 
1825 		if (cpu_has_mips_4_5_r)
1826 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
1827 		else
1828 			cbit = FPU_CSR_COND;
1829 		if (rv.w)
1830 			ctx->fcr31 |= cbit;
1831 		else
1832 			ctx->fcr31 &= ~cbit;
1833 		break;
1834 
1835 	case d_fmt:
1836 		DPTOREG(rv.d, MIPSInst_FD(ir));
1837 		break;
1838 	case s_fmt:
1839 		SPTOREG(rv.s, MIPSInst_FD(ir));
1840 		break;
1841 	case w_fmt:
1842 		SITOREG(rv.w, MIPSInst_FD(ir));
1843 		break;
1844 	case l_fmt:
1845 		if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1846 			return SIGILL;
1847 
1848 		DITOREG(rv.l, MIPSInst_FD(ir));
1849 		break;
1850 	default:
1851 		return SIGILL;
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1858 	int has_fpu, void *__user *fault_addr)
1859 {
1860 	unsigned long oldepc, prevepc;
1861 	struct mm_decoded_insn dec_insn;
1862 	u16 instr[4];
1863 	u16 *instr_ptr;
1864 	int sig = 0;
1865 
1866 	oldepc = xcp->cp0_epc;
1867 	do {
1868 		prevepc = xcp->cp0_epc;
1869 
1870 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
1871 			/*
1872 			 * Get next 2 microMIPS instructions and convert them
1873 			 * into 32-bit instructions.
1874 			 */
1875 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
1876 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
1877 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
1878 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
1879 				MIPS_FPU_EMU_INC_STATS(errors);
1880 				return SIGBUS;
1881 			}
1882 			instr_ptr = instr;
1883 
1884 			/* Get first instruction. */
1885 			if (mm_insn_16bit(*instr_ptr)) {
1886 				/* Duplicate the half-word. */
1887 				dec_insn.insn = (*instr_ptr << 16) |
1888 					(*instr_ptr);
1889 				/* 16-bit instruction. */
1890 				dec_insn.pc_inc = 2;
1891 				instr_ptr += 1;
1892 			} else {
1893 				dec_insn.insn = (*instr_ptr << 16) |
1894 					*(instr_ptr+1);
1895 				/* 32-bit instruction. */
1896 				dec_insn.pc_inc = 4;
1897 				instr_ptr += 2;
1898 			}
1899 			/* Get second instruction. */
1900 			if (mm_insn_16bit(*instr_ptr)) {
1901 				/* Duplicate the half-word. */
1902 				dec_insn.next_insn = (*instr_ptr << 16) |
1903 					(*instr_ptr);
1904 				/* 16-bit instruction. */
1905 				dec_insn.next_pc_inc = 2;
1906 			} else {
1907 				dec_insn.next_insn = (*instr_ptr << 16) |
1908 					*(instr_ptr+1);
1909 				/* 32-bit instruction. */
1910 				dec_insn.next_pc_inc = 4;
1911 			}
1912 			dec_insn.micro_mips_mode = 1;
1913 		} else {
1914 			if ((get_user(dec_insn.insn,
1915 			    (mips_instruction __user *) xcp->cp0_epc)) ||
1916 			    (get_user(dec_insn.next_insn,
1917 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
1918 				MIPS_FPU_EMU_INC_STATS(errors);
1919 				return SIGBUS;
1920 			}
1921 			dec_insn.pc_inc = 4;
1922 			dec_insn.next_pc_inc = 4;
1923 			dec_insn.micro_mips_mode = 0;
1924 		}
1925 
1926 		if ((dec_insn.insn == 0) ||
1927 		   ((dec_insn.pc_inc == 2) &&
1928 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
1929 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
1930 		else {
1931 			/*
1932 			 * The 'ieee754_csr' is an alias of
1933 			 * ctx->fcr31.	No need to copy ctx->fcr31 to
1934 			 * ieee754_csr.	 But ieee754_csr.rm is ieee
1935 			 * library modes. (not mips rounding mode)
1936 			 */
1937 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
1938 		}
1939 
1940 		if (has_fpu)
1941 			break;
1942 		if (sig)
1943 			break;
1944 
1945 		cond_resched();
1946 	} while (xcp->cp0_epc > prevepc);
1947 
1948 	/* SIGILL indicates a non-fpu instruction */
1949 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1950 		/* but if EPC has advanced, then ignore it */
1951 		sig = 0;
1952 
1953 	return sig;
1954 }
1955