xref: /linux/arch/mips/math-emu/cp1emu.c (revision 4b820d95dc53c15e6e727da964430a3ed60e05ef)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  *
7  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8  * Copyright (C) 2000  MIPS Technologies, Inc.
9  *
10  *  This program is free software; you can distribute it and/or modify it
11  *  under the terms of the GNU General Public License (Version 2) as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope it will be useful, but WITHOUT
15  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17  *  for more details.
18  *
19  *  You should have received a copy of the GNU General Public License along
20  *  with this program; if not, write to the Free Software Foundation, Inc.,
21  *  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA.
22  *
23  * A complete emulator for MIPS coprocessor 1 instructions.  This is
24  * required for #float(switch) or #float(trap), where it catches all
25  * COP1 instructions via the "CoProcessor Unusable" exception.
26  *
27  * More surprisingly it is also required for #float(ieee), to help out
28  * the hardware FPU at the boundaries of the IEEE-754 representation
29  * (denormalised values, infinities, underflow, etc).  It is made
30  * quite nasty because emulation of some non-COP1 instructions is
31  * required, e.g. in branch delay slots.
32  *
33  * Note if you know that you won't have an FPU, then you'll get much
34  * better performance by compiling with -msoft-float!
35  */
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/branch.h>
43 #include <asm/inst.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
47 
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/fpu.h>
52 #include <asm/mips-r2-to-r6-emul.h>
53 
54 #include "ieee754.h"
55 
56 /* Function which emulates a floating point instruction. */
57 
58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
59 	mips_instruction);
60 
61 static int fpux_emu(struct pt_regs *,
62 	struct mips_fpu_struct *, mips_instruction, void *__user *);
63 
64 /* Control registers */
65 
66 #define FPCREG_RID	0	/* $0  = revision id */
67 #define FPCREG_FCCR	25	/* $25 = fccr */
68 #define FPCREG_FEXR	26	/* $26 = fexr */
69 #define FPCREG_FENR	28	/* $28 = fenr */
70 #define FPCREG_CSR	31	/* $31 = csr */
71 
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit[8] = {
74 	FPU_CSR_COND,
75 	FPU_CSR_COND1,
76 	FPU_CSR_COND2,
77 	FPU_CSR_COND3,
78 	FPU_CSR_COND4,
79 	FPU_CSR_COND5,
80 	FPU_CSR_COND6,
81 	FPU_CSR_COND7
82 };
83 
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0};
89 
90 /*
91  * This functions translates a 32-bit microMIPS instruction
92  * into a 32-bit MIPS32 instruction. Returns 0 on success
93  * and SIGILL otherwise.
94  */
95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr)
96 {
97 	union mips_instruction insn = *insn_ptr;
98 	union mips_instruction mips32_insn = insn;
99 	int func, fmt, op;
100 
101 	switch (insn.mm_i_format.opcode) {
102 	case mm_ldc132_op:
103 		mips32_insn.mm_i_format.opcode = ldc1_op;
104 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
105 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
106 		break;
107 	case mm_lwc132_op:
108 		mips32_insn.mm_i_format.opcode = lwc1_op;
109 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
110 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
111 		break;
112 	case mm_sdc132_op:
113 		mips32_insn.mm_i_format.opcode = sdc1_op;
114 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
115 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
116 		break;
117 	case mm_swc132_op:
118 		mips32_insn.mm_i_format.opcode = swc1_op;
119 		mips32_insn.mm_i_format.rt = insn.mm_i_format.rs;
120 		mips32_insn.mm_i_format.rs = insn.mm_i_format.rt;
121 		break;
122 	case mm_pool32i_op:
123 		/* NOTE: offset is << by 1 if in microMIPS mode. */
124 		if ((insn.mm_i_format.rt == mm_bc1f_op) ||
125 		    (insn.mm_i_format.rt == mm_bc1t_op)) {
126 			mips32_insn.fb_format.opcode = cop1_op;
127 			mips32_insn.fb_format.bc = bc_op;
128 			mips32_insn.fb_format.flag =
129 				(insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0;
130 		} else
131 			return SIGILL;
132 		break;
133 	case mm_pool32f_op:
134 		switch (insn.mm_fp0_format.func) {
135 		case mm_32f_01_op:
136 		case mm_32f_11_op:
137 		case mm_32f_02_op:
138 		case mm_32f_12_op:
139 		case mm_32f_41_op:
140 		case mm_32f_51_op:
141 		case mm_32f_42_op:
142 		case mm_32f_52_op:
143 			op = insn.mm_fp0_format.func;
144 			if (op == mm_32f_01_op)
145 				func = madd_s_op;
146 			else if (op == mm_32f_11_op)
147 				func = madd_d_op;
148 			else if (op == mm_32f_02_op)
149 				func = nmadd_s_op;
150 			else if (op == mm_32f_12_op)
151 				func = nmadd_d_op;
152 			else if (op == mm_32f_41_op)
153 				func = msub_s_op;
154 			else if (op == mm_32f_51_op)
155 				func = msub_d_op;
156 			else if (op == mm_32f_42_op)
157 				func = nmsub_s_op;
158 			else
159 				func = nmsub_d_op;
160 			mips32_insn.fp6_format.opcode = cop1x_op;
161 			mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr;
162 			mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft;
163 			mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs;
164 			mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd;
165 			mips32_insn.fp6_format.func = func;
166 			break;
167 		case mm_32f_10_op:
168 			func = -1;	/* Invalid */
169 			op = insn.mm_fp5_format.op & 0x7;
170 			if (op == mm_ldxc1_op)
171 				func = ldxc1_op;
172 			else if (op == mm_sdxc1_op)
173 				func = sdxc1_op;
174 			else if (op == mm_lwxc1_op)
175 				func = lwxc1_op;
176 			else if (op == mm_swxc1_op)
177 				func = swxc1_op;
178 
179 			if (func != -1) {
180 				mips32_insn.r_format.opcode = cop1x_op;
181 				mips32_insn.r_format.rs =
182 					insn.mm_fp5_format.base;
183 				mips32_insn.r_format.rt =
184 					insn.mm_fp5_format.index;
185 				mips32_insn.r_format.rd = 0;
186 				mips32_insn.r_format.re = insn.mm_fp5_format.fd;
187 				mips32_insn.r_format.func = func;
188 			} else
189 				return SIGILL;
190 			break;
191 		case mm_32f_40_op:
192 			op = -1;	/* Invalid */
193 			if (insn.mm_fp2_format.op == mm_fmovt_op)
194 				op = 1;
195 			else if (insn.mm_fp2_format.op == mm_fmovf_op)
196 				op = 0;
197 			if (op != -1) {
198 				mips32_insn.fp0_format.opcode = cop1_op;
199 				mips32_insn.fp0_format.fmt =
200 					sdps_format[insn.mm_fp2_format.fmt];
201 				mips32_insn.fp0_format.ft =
202 					(insn.mm_fp2_format.cc<<2) + op;
203 				mips32_insn.fp0_format.fs =
204 					insn.mm_fp2_format.fs;
205 				mips32_insn.fp0_format.fd =
206 					insn.mm_fp2_format.fd;
207 				mips32_insn.fp0_format.func = fmovc_op;
208 			} else
209 				return SIGILL;
210 			break;
211 		case mm_32f_60_op:
212 			func = -1;	/* Invalid */
213 			if (insn.mm_fp0_format.op == mm_fadd_op)
214 				func = fadd_op;
215 			else if (insn.mm_fp0_format.op == mm_fsub_op)
216 				func = fsub_op;
217 			else if (insn.mm_fp0_format.op == mm_fmul_op)
218 				func = fmul_op;
219 			else if (insn.mm_fp0_format.op == mm_fdiv_op)
220 				func = fdiv_op;
221 			if (func != -1) {
222 				mips32_insn.fp0_format.opcode = cop1_op;
223 				mips32_insn.fp0_format.fmt =
224 					sdps_format[insn.mm_fp0_format.fmt];
225 				mips32_insn.fp0_format.ft =
226 					insn.mm_fp0_format.ft;
227 				mips32_insn.fp0_format.fs =
228 					insn.mm_fp0_format.fs;
229 				mips32_insn.fp0_format.fd =
230 					insn.mm_fp0_format.fd;
231 				mips32_insn.fp0_format.func = func;
232 			} else
233 				return SIGILL;
234 			break;
235 		case mm_32f_70_op:
236 			func = -1;	/* Invalid */
237 			if (insn.mm_fp0_format.op == mm_fmovn_op)
238 				func = fmovn_op;
239 			else if (insn.mm_fp0_format.op == mm_fmovz_op)
240 				func = fmovz_op;
241 			if (func != -1) {
242 				mips32_insn.fp0_format.opcode = cop1_op;
243 				mips32_insn.fp0_format.fmt =
244 					sdps_format[insn.mm_fp0_format.fmt];
245 				mips32_insn.fp0_format.ft =
246 					insn.mm_fp0_format.ft;
247 				mips32_insn.fp0_format.fs =
248 					insn.mm_fp0_format.fs;
249 				mips32_insn.fp0_format.fd =
250 					insn.mm_fp0_format.fd;
251 				mips32_insn.fp0_format.func = func;
252 			} else
253 				return SIGILL;
254 			break;
255 		case mm_32f_73_op:    /* POOL32FXF */
256 			switch (insn.mm_fp1_format.op) {
257 			case mm_movf0_op:
258 			case mm_movf1_op:
259 			case mm_movt0_op:
260 			case mm_movt1_op:
261 				if ((insn.mm_fp1_format.op & 0x7f) ==
262 				    mm_movf0_op)
263 					op = 0;
264 				else
265 					op = 1;
266 				mips32_insn.r_format.opcode = spec_op;
267 				mips32_insn.r_format.rs = insn.mm_fp4_format.fs;
268 				mips32_insn.r_format.rt =
269 					(insn.mm_fp4_format.cc << 2) + op;
270 				mips32_insn.r_format.rd = insn.mm_fp4_format.rt;
271 				mips32_insn.r_format.re = 0;
272 				mips32_insn.r_format.func = movc_op;
273 				break;
274 			case mm_fcvtd0_op:
275 			case mm_fcvtd1_op:
276 			case mm_fcvts0_op:
277 			case mm_fcvts1_op:
278 				if ((insn.mm_fp1_format.op & 0x7f) ==
279 				    mm_fcvtd0_op) {
280 					func = fcvtd_op;
281 					fmt = swl_format[insn.mm_fp3_format.fmt];
282 				} else {
283 					func = fcvts_op;
284 					fmt = dwl_format[insn.mm_fp3_format.fmt];
285 				}
286 				mips32_insn.fp0_format.opcode = cop1_op;
287 				mips32_insn.fp0_format.fmt = fmt;
288 				mips32_insn.fp0_format.ft = 0;
289 				mips32_insn.fp0_format.fs =
290 					insn.mm_fp3_format.fs;
291 				mips32_insn.fp0_format.fd =
292 					insn.mm_fp3_format.rt;
293 				mips32_insn.fp0_format.func = func;
294 				break;
295 			case mm_fmov0_op:
296 			case mm_fmov1_op:
297 			case mm_fabs0_op:
298 			case mm_fabs1_op:
299 			case mm_fneg0_op:
300 			case mm_fneg1_op:
301 				if ((insn.mm_fp1_format.op & 0x7f) ==
302 				    mm_fmov0_op)
303 					func = fmov_op;
304 				else if ((insn.mm_fp1_format.op & 0x7f) ==
305 					 mm_fabs0_op)
306 					func = fabs_op;
307 				else
308 					func = fneg_op;
309 				mips32_insn.fp0_format.opcode = cop1_op;
310 				mips32_insn.fp0_format.fmt =
311 					sdps_format[insn.mm_fp3_format.fmt];
312 				mips32_insn.fp0_format.ft = 0;
313 				mips32_insn.fp0_format.fs =
314 					insn.mm_fp3_format.fs;
315 				mips32_insn.fp0_format.fd =
316 					insn.mm_fp3_format.rt;
317 				mips32_insn.fp0_format.func = func;
318 				break;
319 			case mm_ffloorl_op:
320 			case mm_ffloorw_op:
321 			case mm_fceill_op:
322 			case mm_fceilw_op:
323 			case mm_ftruncl_op:
324 			case mm_ftruncw_op:
325 			case mm_froundl_op:
326 			case mm_froundw_op:
327 			case mm_fcvtl_op:
328 			case mm_fcvtw_op:
329 				if (insn.mm_fp1_format.op == mm_ffloorl_op)
330 					func = ffloorl_op;
331 				else if (insn.mm_fp1_format.op == mm_ffloorw_op)
332 					func = ffloor_op;
333 				else if (insn.mm_fp1_format.op == mm_fceill_op)
334 					func = fceill_op;
335 				else if (insn.mm_fp1_format.op == mm_fceilw_op)
336 					func = fceil_op;
337 				else if (insn.mm_fp1_format.op == mm_ftruncl_op)
338 					func = ftruncl_op;
339 				else if (insn.mm_fp1_format.op == mm_ftruncw_op)
340 					func = ftrunc_op;
341 				else if (insn.mm_fp1_format.op == mm_froundl_op)
342 					func = froundl_op;
343 				else if (insn.mm_fp1_format.op == mm_froundw_op)
344 					func = fround_op;
345 				else if (insn.mm_fp1_format.op == mm_fcvtl_op)
346 					func = fcvtl_op;
347 				else
348 					func = fcvtw_op;
349 				mips32_insn.fp0_format.opcode = cop1_op;
350 				mips32_insn.fp0_format.fmt =
351 					sd_format[insn.mm_fp1_format.fmt];
352 				mips32_insn.fp0_format.ft = 0;
353 				mips32_insn.fp0_format.fs =
354 					insn.mm_fp1_format.fs;
355 				mips32_insn.fp0_format.fd =
356 					insn.mm_fp1_format.rt;
357 				mips32_insn.fp0_format.func = func;
358 				break;
359 			case mm_frsqrt_op:
360 			case mm_fsqrt_op:
361 			case mm_frecip_op:
362 				if (insn.mm_fp1_format.op == mm_frsqrt_op)
363 					func = frsqrt_op;
364 				else if (insn.mm_fp1_format.op == mm_fsqrt_op)
365 					func = fsqrt_op;
366 				else
367 					func = frecip_op;
368 				mips32_insn.fp0_format.opcode = cop1_op;
369 				mips32_insn.fp0_format.fmt =
370 					sdps_format[insn.mm_fp1_format.fmt];
371 				mips32_insn.fp0_format.ft = 0;
372 				mips32_insn.fp0_format.fs =
373 					insn.mm_fp1_format.fs;
374 				mips32_insn.fp0_format.fd =
375 					insn.mm_fp1_format.rt;
376 				mips32_insn.fp0_format.func = func;
377 				break;
378 			case mm_mfc1_op:
379 			case mm_mtc1_op:
380 			case mm_cfc1_op:
381 			case mm_ctc1_op:
382 			case mm_mfhc1_op:
383 			case mm_mthc1_op:
384 				if (insn.mm_fp1_format.op == mm_mfc1_op)
385 					op = mfc_op;
386 				else if (insn.mm_fp1_format.op == mm_mtc1_op)
387 					op = mtc_op;
388 				else if (insn.mm_fp1_format.op == mm_cfc1_op)
389 					op = cfc_op;
390 				else if (insn.mm_fp1_format.op == mm_ctc1_op)
391 					op = ctc_op;
392 				else if (insn.mm_fp1_format.op == mm_mfhc1_op)
393 					op = mfhc_op;
394 				else
395 					op = mthc_op;
396 				mips32_insn.fp1_format.opcode = cop1_op;
397 				mips32_insn.fp1_format.op = op;
398 				mips32_insn.fp1_format.rt =
399 					insn.mm_fp1_format.rt;
400 				mips32_insn.fp1_format.fs =
401 					insn.mm_fp1_format.fs;
402 				mips32_insn.fp1_format.fd = 0;
403 				mips32_insn.fp1_format.func = 0;
404 				break;
405 			default:
406 				return SIGILL;
407 			}
408 			break;
409 		case mm_32f_74_op:	/* c.cond.fmt */
410 			mips32_insn.fp0_format.opcode = cop1_op;
411 			mips32_insn.fp0_format.fmt =
412 				sdps_format[insn.mm_fp4_format.fmt];
413 			mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt;
414 			mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs;
415 			mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2;
416 			mips32_insn.fp0_format.func =
417 				insn.mm_fp4_format.cond | MM_MIPS32_COND_FC;
418 			break;
419 		default:
420 			return SIGILL;
421 		}
422 		break;
423 	default:
424 		return SIGILL;
425 	}
426 
427 	*insn_ptr = mips32_insn;
428 	return 0;
429 }
430 
431 /*
432  * Redundant with logic already in kernel/branch.c,
433  * embedded in compute_return_epc.  At some point,
434  * a single subroutine should be used across both
435  * modules.
436  */
437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn,
438 			 unsigned long *contpc)
439 {
440 	union mips_instruction insn = (union mips_instruction)dec_insn.insn;
441 	unsigned int fcr31;
442 	unsigned int bit = 0;
443 
444 	switch (insn.i_format.opcode) {
445 	case spec_op:
446 		switch (insn.r_format.func) {
447 		case jalr_op:
448 			regs->regs[insn.r_format.rd] =
449 				regs->cp0_epc + dec_insn.pc_inc +
450 				dec_insn.next_pc_inc;
451 			/* Fall through */
452 		case jr_op:
453 			/* For R6, JR already emulated in jalr_op */
454 			if (NO_R6EMU && insn.r_format.func == jr_op)
455 				break;
456 			*contpc = regs->regs[insn.r_format.rs];
457 			return 1;
458 		}
459 		break;
460 	case bcond_op:
461 		switch (insn.i_format.rt) {
462 		case bltzal_op:
463 		case bltzall_op:
464 			if (NO_R6EMU && (insn.i_format.rs ||
465 			    insn.i_format.rt == bltzall_op))
466 				break;
467 
468 			regs->regs[31] = regs->cp0_epc +
469 				dec_insn.pc_inc +
470 				dec_insn.next_pc_inc;
471 			/* Fall through */
472 		case bltzl_op:
473 			if (NO_R6EMU)
474 				break;
475 		case bltz_op:
476 			if ((long)regs->regs[insn.i_format.rs] < 0)
477 				*contpc = regs->cp0_epc +
478 					dec_insn.pc_inc +
479 					(insn.i_format.simmediate << 2);
480 			else
481 				*contpc = regs->cp0_epc +
482 					dec_insn.pc_inc +
483 					dec_insn.next_pc_inc;
484 			return 1;
485 		case bgezal_op:
486 		case bgezall_op:
487 			if (NO_R6EMU && (insn.i_format.rs ||
488 			    insn.i_format.rt == bgezall_op))
489 				break;
490 
491 			regs->regs[31] = regs->cp0_epc +
492 				dec_insn.pc_inc +
493 				dec_insn.next_pc_inc;
494 			/* Fall through */
495 		case bgezl_op:
496 			if (NO_R6EMU)
497 				break;
498 		case bgez_op:
499 			if ((long)regs->regs[insn.i_format.rs] >= 0)
500 				*contpc = regs->cp0_epc +
501 					dec_insn.pc_inc +
502 					(insn.i_format.simmediate << 2);
503 			else
504 				*contpc = regs->cp0_epc +
505 					dec_insn.pc_inc +
506 					dec_insn.next_pc_inc;
507 			return 1;
508 		}
509 		break;
510 	case jalx_op:
511 		set_isa16_mode(bit);
512 	case jal_op:
513 		regs->regs[31] = regs->cp0_epc +
514 			dec_insn.pc_inc +
515 			dec_insn.next_pc_inc;
516 		/* Fall through */
517 	case j_op:
518 		*contpc = regs->cp0_epc + dec_insn.pc_inc;
519 		*contpc >>= 28;
520 		*contpc <<= 28;
521 		*contpc |= (insn.j_format.target << 2);
522 		/* Set microMIPS mode bit: XOR for jalx. */
523 		*contpc ^= bit;
524 		return 1;
525 	case beql_op:
526 		if (NO_R6EMU)
527 			break;
528 	case beq_op:
529 		if (regs->regs[insn.i_format.rs] ==
530 		    regs->regs[insn.i_format.rt])
531 			*contpc = regs->cp0_epc +
532 				dec_insn.pc_inc +
533 				(insn.i_format.simmediate << 2);
534 		else
535 			*contpc = regs->cp0_epc +
536 				dec_insn.pc_inc +
537 				dec_insn.next_pc_inc;
538 		return 1;
539 	case bnel_op:
540 		if (NO_R6EMU)
541 			break;
542 	case bne_op:
543 		if (regs->regs[insn.i_format.rs] !=
544 		    regs->regs[insn.i_format.rt])
545 			*contpc = regs->cp0_epc +
546 				dec_insn.pc_inc +
547 				(insn.i_format.simmediate << 2);
548 		else
549 			*contpc = regs->cp0_epc +
550 				dec_insn.pc_inc +
551 				dec_insn.next_pc_inc;
552 		return 1;
553 	case blezl_op:
554 		if (!insn.i_format.rt && NO_R6EMU)
555 			break;
556 	case blez_op:
557 
558 		/*
559 		 * Compact branches for R6 for the
560 		 * blez and blezl opcodes.
561 		 * BLEZ  | rs = 0 | rt != 0  == BLEZALC
562 		 * BLEZ  | rs = rt != 0      == BGEZALC
563 		 * BLEZ  | rs != 0 | rt != 0 == BGEUC
564 		 * BLEZL | rs = 0 | rt != 0  == BLEZC
565 		 * BLEZL | rs = rt != 0      == BGEZC
566 		 * BLEZL | rs != 0 | rt != 0 == BGEC
567 		 *
568 		 * For real BLEZ{,L}, rt is always 0.
569 		 */
570 		if (cpu_has_mips_r6 && insn.i_format.rt) {
571 			if ((insn.i_format.opcode == blez_op) &&
572 			    ((!insn.i_format.rs && insn.i_format.rt) ||
573 			     (insn.i_format.rs == insn.i_format.rt)))
574 				regs->regs[31] = regs->cp0_epc +
575 					dec_insn.pc_inc;
576 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
577 				dec_insn.next_pc_inc;
578 
579 			return 1;
580 		}
581 		if ((long)regs->regs[insn.i_format.rs] <= 0)
582 			*contpc = regs->cp0_epc +
583 				dec_insn.pc_inc +
584 				(insn.i_format.simmediate << 2);
585 		else
586 			*contpc = regs->cp0_epc +
587 				dec_insn.pc_inc +
588 				dec_insn.next_pc_inc;
589 		return 1;
590 	case bgtzl_op:
591 		if (!insn.i_format.rt && NO_R6EMU)
592 			break;
593 	case bgtz_op:
594 		/*
595 		 * Compact branches for R6 for the
596 		 * bgtz and bgtzl opcodes.
597 		 * BGTZ  | rs = 0 | rt != 0  == BGTZALC
598 		 * BGTZ  | rs = rt != 0      == BLTZALC
599 		 * BGTZ  | rs != 0 | rt != 0 == BLTUC
600 		 * BGTZL | rs = 0 | rt != 0  == BGTZC
601 		 * BGTZL | rs = rt != 0      == BLTZC
602 		 * BGTZL | rs != 0 | rt != 0 == BLTC
603 		 *
604 		 * *ZALC varint for BGTZ &&& rt != 0
605 		 * For real GTZ{,L}, rt is always 0.
606 		 */
607 		if (cpu_has_mips_r6 && insn.i_format.rt) {
608 			if ((insn.i_format.opcode == blez_op) &&
609 			    ((!insn.i_format.rs && insn.i_format.rt) ||
610 			     (insn.i_format.rs == insn.i_format.rt)))
611 				regs->regs[31] = regs->cp0_epc +
612 					dec_insn.pc_inc;
613 			*contpc = regs->cp0_epc + dec_insn.pc_inc +
614 				dec_insn.next_pc_inc;
615 
616 			return 1;
617 		}
618 
619 		if ((long)regs->regs[insn.i_format.rs] > 0)
620 			*contpc = regs->cp0_epc +
621 				dec_insn.pc_inc +
622 				(insn.i_format.simmediate << 2);
623 		else
624 			*contpc = regs->cp0_epc +
625 				dec_insn.pc_inc +
626 				dec_insn.next_pc_inc;
627 		return 1;
628 	case cbcond0_op:
629 	case cbcond1_op:
630 		if (!cpu_has_mips_r6)
631 			break;
632 		if (insn.i_format.rt && !insn.i_format.rs)
633 			regs->regs[31] = regs->cp0_epc + 4;
634 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
635 			dec_insn.next_pc_inc;
636 
637 		return 1;
638 #ifdef CONFIG_CPU_CAVIUM_OCTEON
639 	case lwc2_op: /* This is bbit0 on Octeon */
640 		if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0)
641 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
642 		else
643 			*contpc = regs->cp0_epc + 8;
644 		return 1;
645 	case ldc2_op: /* This is bbit032 on Octeon */
646 		if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0)
647 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
648 		else
649 			*contpc = regs->cp0_epc + 8;
650 		return 1;
651 	case swc2_op: /* This is bbit1 on Octeon */
652 		if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt))
653 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
654 		else
655 			*contpc = regs->cp0_epc + 8;
656 		return 1;
657 	case sdc2_op: /* This is bbit132 on Octeon */
658 		if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32)))
659 			*contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2);
660 		else
661 			*contpc = regs->cp0_epc + 8;
662 		return 1;
663 #else
664 	case bc6_op:
665 		/*
666 		 * Only valid for MIPS R6 but we can still end up
667 		 * here from a broken userland so just tell emulator
668 		 * this is not a branch and let it break later on.
669 		 */
670 		if  (!cpu_has_mips_r6)
671 			break;
672 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
673 			dec_insn.next_pc_inc;
674 
675 		return 1;
676 	case balc6_op:
677 		if (!cpu_has_mips_r6)
678 			break;
679 		regs->regs[31] = regs->cp0_epc + 4;
680 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
681 			dec_insn.next_pc_inc;
682 
683 		return 1;
684 	case beqzcjic_op:
685 		if (!cpu_has_mips_r6)
686 			break;
687 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
688 			dec_insn.next_pc_inc;
689 
690 		return 1;
691 	case bnezcjialc_op:
692 		if (!cpu_has_mips_r6)
693 			break;
694 		if (!insn.i_format.rs)
695 			regs->regs[31] = regs->cp0_epc + 4;
696 		*contpc = regs->cp0_epc + dec_insn.pc_inc +
697 			dec_insn.next_pc_inc;
698 
699 		return 1;
700 #endif
701 	case cop0_op:
702 	case cop1_op:
703 		/* Need to check for R6 bc1nez and bc1eqz branches */
704 		if (cpu_has_mips_r6 &&
705 		    ((insn.i_format.rs == bc1eqz_op) ||
706 		     (insn.i_format.rs == bc1nez_op))) {
707 			bit = 0;
708 			switch (insn.i_format.rs) {
709 			case bc1eqz_op:
710 				if (get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)
711 				    bit = 1;
712 				break;
713 			case bc1nez_op:
714 				if (!(get_fpr32(&current->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1))
715 				    bit = 1;
716 				break;
717 			}
718 			if (bit)
719 				*contpc = regs->cp0_epc +
720 					dec_insn.pc_inc +
721 					(insn.i_format.simmediate << 2);
722 			else
723 				*contpc = regs->cp0_epc +
724 					dec_insn.pc_inc +
725 					dec_insn.next_pc_inc;
726 
727 			return 1;
728 		}
729 		/* R2/R6 compatible cop1 instruction. Fall through */
730 	case cop2_op:
731 	case cop1x_op:
732 		if (insn.i_format.rs == bc_op) {
733 			preempt_disable();
734 			if (is_fpu_owner())
735 			        fcr31 = read_32bit_cp1_register(CP1_STATUS);
736 			else
737 				fcr31 = current->thread.fpu.fcr31;
738 			preempt_enable();
739 
740 			bit = (insn.i_format.rt >> 2);
741 			bit += (bit != 0);
742 			bit += 23;
743 			switch (insn.i_format.rt & 3) {
744 			case 0:	/* bc1f */
745 			case 2:	/* bc1fl */
746 				if (~fcr31 & (1 << bit))
747 					*contpc = regs->cp0_epc +
748 						dec_insn.pc_inc +
749 						(insn.i_format.simmediate << 2);
750 				else
751 					*contpc = regs->cp0_epc +
752 						dec_insn.pc_inc +
753 						dec_insn.next_pc_inc;
754 				return 1;
755 			case 1:	/* bc1t */
756 			case 3:	/* bc1tl */
757 				if (fcr31 & (1 << bit))
758 					*contpc = regs->cp0_epc +
759 						dec_insn.pc_inc +
760 						(insn.i_format.simmediate << 2);
761 				else
762 					*contpc = regs->cp0_epc +
763 						dec_insn.pc_inc +
764 						dec_insn.next_pc_inc;
765 				return 1;
766 			}
767 		}
768 		break;
769 	}
770 	return 0;
771 }
772 
773 /*
774  * In the Linux kernel, we support selection of FPR format on the
775  * basis of the Status.FR bit.	If an FPU is not present, the FR bit
776  * is hardwired to zero, which would imply a 32-bit FPU even for
777  * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
778  * FPU emu is slow and bulky and optimizing this function offers fairly
779  * sizeable benefits so we try to be clever and make this function return
780  * a constant whenever possible, that is on 64-bit kernels without O32
781  * compatibility enabled and on 32-bit without 64-bit FPU support.
782  */
783 static inline int cop1_64bit(struct pt_regs *xcp)
784 {
785 	if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32))
786 		return 1;
787 	else if (config_enabled(CONFIG_32BIT) &&
788 		 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
789 		return 0;
790 
791 	return !test_thread_flag(TIF_32BIT_FPREGS);
792 }
793 
794 static inline bool hybrid_fprs(void)
795 {
796 	return test_thread_flag(TIF_HYBRID_FPREGS);
797 }
798 
799 #define SIFROMREG(si, x)						\
800 do {									\
801 	if (cop1_64bit(xcp) && !hybrid_fprs())				\
802 		(si) = (int)get_fpr32(&ctx->fpr[x], 0);			\
803 	else								\
804 		(si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1);	\
805 } while (0)
806 
807 #define SITOREG(si, x)							\
808 do {									\
809 	if (cop1_64bit(xcp) && !hybrid_fprs()) {			\
810 		unsigned i;						\
811 		set_fpr32(&ctx->fpr[x], 0, si);				\
812 		for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)	\
813 			set_fpr32(&ctx->fpr[x], i, 0);			\
814 	} else {							\
815 		set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si);		\
816 	}								\
817 } while (0)
818 
819 #define SIFROMHREG(si, x)	((si) = (int)get_fpr32(&ctx->fpr[x], 1))
820 
821 #define SITOHREG(si, x)							\
822 do {									\
823 	unsigned i;							\
824 	set_fpr32(&ctx->fpr[x], 1, si);					\
825 	for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++)		\
826 		set_fpr32(&ctx->fpr[x], i, 0);				\
827 } while (0)
828 
829 #define DIFROMREG(di, x)						\
830 	((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
831 
832 #define DITOREG(di, x)							\
833 do {									\
834 	unsigned fpr, i;						\
835 	fpr = (x) & ~(cop1_64bit(xcp) == 0);				\
836 	set_fpr64(&ctx->fpr[fpr], 0, di);				\
837 	for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++)		\
838 		set_fpr64(&ctx->fpr[fpr], i, 0);			\
839 } while (0)
840 
841 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
842 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
843 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
844 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
845 
846 /*
847  * Emulate a CFC1 instruction.
848  */
849 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
850 			    mips_instruction ir)
851 {
852 	u32 fcr31 = ctx->fcr31;
853 	u32 value = 0;
854 
855 	switch (MIPSInst_RD(ir)) {
856 	case FPCREG_CSR:
857 		value = fcr31;
858 		pr_debug("%p gpr[%d]<-csr=%08x\n",
859 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
860 		break;
861 
862 	case FPCREG_FENR:
863 		if (!cpu_has_mips_r)
864 			break;
865 		value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
866 			MIPS_FENR_FS;
867 		value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM);
868 		pr_debug("%p gpr[%d]<-enr=%08x\n",
869 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
870 		break;
871 
872 	case FPCREG_FEXR:
873 		if (!cpu_has_mips_r)
874 			break;
875 		value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
876 		pr_debug("%p gpr[%d]<-exr=%08x\n",
877 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
878 		break;
879 
880 	case FPCREG_FCCR:
881 		if (!cpu_has_mips_r)
882 			break;
883 		value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
884 			MIPS_FCCR_COND0;
885 		value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
886 			 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0);
887 		pr_debug("%p gpr[%d]<-ccr=%08x\n",
888 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
889 		break;
890 
891 	case FPCREG_RID:
892 		value = boot_cpu_data.fpu_id;
893 		break;
894 
895 	default:
896 		break;
897 	}
898 
899 	if (MIPSInst_RT(ir))
900 		xcp->regs[MIPSInst_RT(ir)] = value;
901 }
902 
903 /*
904  * Emulate a CTC1 instruction.
905  */
906 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
907 			    mips_instruction ir)
908 {
909 	u32 fcr31 = ctx->fcr31;
910 	u32 value;
911 	u32 mask;
912 
913 	if (MIPSInst_RT(ir) == 0)
914 		value = 0;
915 	else
916 		value = xcp->regs[MIPSInst_RT(ir)];
917 
918 	switch (MIPSInst_RD(ir)) {
919 	case FPCREG_CSR:
920 		pr_debug("%p gpr[%d]->csr=%08x\n",
921 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
922 
923 		/* Preserve read-only bits.  */
924 		mask = boot_cpu_data.fpu_msk31;
925 		fcr31 = (value & ~mask) | (fcr31 & mask);
926 		break;
927 
928 	case FPCREG_FENR:
929 		if (!cpu_has_mips_r)
930 			break;
931 		pr_debug("%p gpr[%d]->enr=%08x\n",
932 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
933 		fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM);
934 		fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) &
935 			 FPU_CSR_FS;
936 		fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM);
937 		break;
938 
939 	case FPCREG_FEXR:
940 		if (!cpu_has_mips_r)
941 			break;
942 		pr_debug("%p gpr[%d]->exr=%08x\n",
943 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
944 		fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S);
945 		fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S);
946 		break;
947 
948 	case FPCREG_FCCR:
949 		if (!cpu_has_mips_r)
950 			break;
951 		pr_debug("%p gpr[%d]->ccr=%08x\n",
952 			 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value);
953 		fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND);
954 		fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) &
955 			 FPU_CSR_COND;
956 		fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) &
957 			 FPU_CSR_CONDX;
958 		break;
959 
960 	default:
961 		break;
962 	}
963 
964 	ctx->fcr31 = fcr31;
965 }
966 
967 /*
968  * Emulate the single floating point instruction pointed at by EPC.
969  * Two instructions if the instruction is in a branch delay slot.
970  */
971 
972 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
973 		struct mm_decoded_insn dec_insn, void *__user *fault_addr)
974 {
975 	unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc;
976 	unsigned int cond, cbit, bit0;
977 	mips_instruction ir;
978 	int likely, pc_inc;
979 	union fpureg *fpr;
980 	u32 __user *wva;
981 	u64 __user *dva;
982 	u32 wval;
983 	u64 dval;
984 	int sig;
985 
986 	/*
987 	 * These are giving gcc a gentle hint about what to expect in
988 	 * dec_inst in order to do better optimization.
989 	 */
990 	if (!cpu_has_mmips && dec_insn.micro_mips_mode)
991 		unreachable();
992 
993 	/* XXX NEC Vr54xx bug workaround */
994 	if (delay_slot(xcp)) {
995 		if (dec_insn.micro_mips_mode) {
996 			if (!mm_isBranchInstr(xcp, dec_insn, &contpc))
997 				clear_delay_slot(xcp);
998 		} else {
999 			if (!isBranchInstr(xcp, dec_insn, &contpc))
1000 				clear_delay_slot(xcp);
1001 		}
1002 	}
1003 
1004 	if (delay_slot(xcp)) {
1005 		/*
1006 		 * The instruction to be emulated is in a branch delay slot
1007 		 * which means that we have to	emulate the branch instruction
1008 		 * BEFORE we do the cop1 instruction.
1009 		 *
1010 		 * This branch could be a COP1 branch, but in that case we
1011 		 * would have had a trap for that instruction, and would not
1012 		 * come through this route.
1013 		 *
1014 		 * Linux MIPS branch emulator operates on context, updating the
1015 		 * cp0_epc.
1016 		 */
1017 		ir = dec_insn.next_insn;  /* process delay slot instr */
1018 		pc_inc = dec_insn.next_pc_inc;
1019 	} else {
1020 		ir = dec_insn.insn;       /* process current instr */
1021 		pc_inc = dec_insn.pc_inc;
1022 	}
1023 
1024 	/*
1025 	 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1026 	 * instructions, we want to convert microMIPS FPU instructions
1027 	 * into MIPS32 instructions so that we could reuse all of the
1028 	 * FPU emulation code.
1029 	 *
1030 	 * NOTE: We cannot do this for branch instructions since they
1031 	 *       are not a subset. Example: Cannot emulate a 16-bit
1032 	 *       aligned target address with a MIPS32 instruction.
1033 	 */
1034 	if (dec_insn.micro_mips_mode) {
1035 		/*
1036 		 * If next instruction is a 16-bit instruction, then it
1037 		 * it cannot be a FPU instruction. This could happen
1038 		 * since we can be called for non-FPU instructions.
1039 		 */
1040 		if ((pc_inc == 2) ||
1041 			(microMIPS32_to_MIPS32((union mips_instruction *)&ir)
1042 			 == SIGILL))
1043 			return SIGILL;
1044 	}
1045 
1046 emul:
1047 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0);
1048 	MIPS_FPU_EMU_INC_STATS(emulated);
1049 	switch (MIPSInst_OPCODE(ir)) {
1050 	case ldc1_op:
1051 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1052 				     MIPSInst_SIMM(ir));
1053 		MIPS_FPU_EMU_INC_STATS(loads);
1054 
1055 		if (!access_ok(VERIFY_READ, dva, sizeof(u64))) {
1056 			MIPS_FPU_EMU_INC_STATS(errors);
1057 			*fault_addr = dva;
1058 			return SIGBUS;
1059 		}
1060 		if (__get_user(dval, dva)) {
1061 			MIPS_FPU_EMU_INC_STATS(errors);
1062 			*fault_addr = dva;
1063 			return SIGSEGV;
1064 		}
1065 		DITOREG(dval, MIPSInst_RT(ir));
1066 		break;
1067 
1068 	case sdc1_op:
1069 		dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1070 				      MIPSInst_SIMM(ir));
1071 		MIPS_FPU_EMU_INC_STATS(stores);
1072 		DIFROMREG(dval, MIPSInst_RT(ir));
1073 		if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) {
1074 			MIPS_FPU_EMU_INC_STATS(errors);
1075 			*fault_addr = dva;
1076 			return SIGBUS;
1077 		}
1078 		if (__put_user(dval, dva)) {
1079 			MIPS_FPU_EMU_INC_STATS(errors);
1080 			*fault_addr = dva;
1081 			return SIGSEGV;
1082 		}
1083 		break;
1084 
1085 	case lwc1_op:
1086 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1087 				      MIPSInst_SIMM(ir));
1088 		MIPS_FPU_EMU_INC_STATS(loads);
1089 		if (!access_ok(VERIFY_READ, wva, sizeof(u32))) {
1090 			MIPS_FPU_EMU_INC_STATS(errors);
1091 			*fault_addr = wva;
1092 			return SIGBUS;
1093 		}
1094 		if (__get_user(wval, wva)) {
1095 			MIPS_FPU_EMU_INC_STATS(errors);
1096 			*fault_addr = wva;
1097 			return SIGSEGV;
1098 		}
1099 		SITOREG(wval, MIPSInst_RT(ir));
1100 		break;
1101 
1102 	case swc1_op:
1103 		wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
1104 				      MIPSInst_SIMM(ir));
1105 		MIPS_FPU_EMU_INC_STATS(stores);
1106 		SIFROMREG(wval, MIPSInst_RT(ir));
1107 		if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) {
1108 			MIPS_FPU_EMU_INC_STATS(errors);
1109 			*fault_addr = wva;
1110 			return SIGBUS;
1111 		}
1112 		if (__put_user(wval, wva)) {
1113 			MIPS_FPU_EMU_INC_STATS(errors);
1114 			*fault_addr = wva;
1115 			return SIGSEGV;
1116 		}
1117 		break;
1118 
1119 	case cop1_op:
1120 		switch (MIPSInst_RS(ir)) {
1121 		case dmfc_op:
1122 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1123 				return SIGILL;
1124 
1125 			/* copregister fs -> gpr[rt] */
1126 			if (MIPSInst_RT(ir) != 0) {
1127 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1128 					MIPSInst_RD(ir));
1129 			}
1130 			break;
1131 
1132 		case dmtc_op:
1133 			if (!cpu_has_mips_3_4_5 && !cpu_has_mips64)
1134 				return SIGILL;
1135 
1136 			/* copregister fs <- rt */
1137 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1138 			break;
1139 
1140 		case mfhc_op:
1141 			if (!cpu_has_mips_r2_r6)
1142 				goto sigill;
1143 
1144 			/* copregister rd -> gpr[rt] */
1145 			if (MIPSInst_RT(ir) != 0) {
1146 				SIFROMHREG(xcp->regs[MIPSInst_RT(ir)],
1147 					MIPSInst_RD(ir));
1148 			}
1149 			break;
1150 
1151 		case mthc_op:
1152 			if (!cpu_has_mips_r2_r6)
1153 				goto sigill;
1154 
1155 			/* copregister rd <- gpr[rt] */
1156 			SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1157 			break;
1158 
1159 		case mfc_op:
1160 			/* copregister rd -> gpr[rt] */
1161 			if (MIPSInst_RT(ir) != 0) {
1162 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
1163 					MIPSInst_RD(ir));
1164 			}
1165 			break;
1166 
1167 		case mtc_op:
1168 			/* copregister rd <- rt */
1169 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
1170 			break;
1171 
1172 		case cfc_op:
1173 			/* cop control register rd -> gpr[rt] */
1174 			cop1_cfc(xcp, ctx, ir);
1175 			break;
1176 
1177 		case ctc_op:
1178 			/* copregister rd <- rt */
1179 			cop1_ctc(xcp, ctx, ir);
1180 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1181 				return SIGFPE;
1182 			}
1183 			break;
1184 
1185 		case bc1eqz_op:
1186 		case bc1nez_op:
1187 			if (!cpu_has_mips_r6 || delay_slot(xcp))
1188 				return SIGILL;
1189 
1190 			cond = likely = 0;
1191 			fpr = &current->thread.fpu.fpr[MIPSInst_RT(ir)];
1192 			bit0 = get_fpr32(fpr, 0) & 0x1;
1193 			switch (MIPSInst_RS(ir)) {
1194 			case bc1eqz_op:
1195 				cond = bit0 == 0;
1196 				break;
1197 			case bc1nez_op:
1198 				cond = bit0 != 0;
1199 				break;
1200 			}
1201 			goto branch_common;
1202 
1203 		case bc_op:
1204 			if (delay_slot(xcp))
1205 				return SIGILL;
1206 
1207 			if (cpu_has_mips_4_5_r)
1208 				cbit = fpucondbit[MIPSInst_RT(ir) >> 2];
1209 			else
1210 				cbit = FPU_CSR_COND;
1211 			cond = ctx->fcr31 & cbit;
1212 
1213 			likely = 0;
1214 			switch (MIPSInst_RT(ir) & 3) {
1215 			case bcfl_op:
1216 				if (cpu_has_mips_2_3_4_5_r)
1217 					likely = 1;
1218 				/* Fall through */
1219 			case bcf_op:
1220 				cond = !cond;
1221 				break;
1222 			case bctl_op:
1223 				if (cpu_has_mips_2_3_4_5_r)
1224 					likely = 1;
1225 				/* Fall through */
1226 			case bct_op:
1227 				break;
1228 			}
1229 branch_common:
1230 			set_delay_slot(xcp);
1231 			if (cond) {
1232 				/*
1233 				 * Branch taken: emulate dslot instruction
1234 				 */
1235 				unsigned long bcpc;
1236 
1237 				/*
1238 				 * Remember EPC at the branch to point back
1239 				 * at so that any delay-slot instruction
1240 				 * signal is not silently ignored.
1241 				 */
1242 				bcpc = xcp->cp0_epc;
1243 				xcp->cp0_epc += dec_insn.pc_inc;
1244 
1245 				contpc = MIPSInst_SIMM(ir);
1246 				ir = dec_insn.next_insn;
1247 				if (dec_insn.micro_mips_mode) {
1248 					contpc = (xcp->cp0_epc + (contpc << 1));
1249 
1250 					/* If 16-bit instruction, not FPU. */
1251 					if ((dec_insn.next_pc_inc == 2) ||
1252 						(microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) {
1253 
1254 						/*
1255 						 * Since this instruction will
1256 						 * be put on the stack with
1257 						 * 32-bit words, get around
1258 						 * this problem by putting a
1259 						 * NOP16 as the second one.
1260 						 */
1261 						if (dec_insn.next_pc_inc == 2)
1262 							ir = (ir & (~0xffff)) | MM_NOP16;
1263 
1264 						/*
1265 						 * Single step the non-CP1
1266 						 * instruction in the dslot.
1267 						 */
1268 						sig = mips_dsemul(xcp, ir,
1269 								  contpc);
1270 						if (sig < 0)
1271 							break;
1272 						if (sig)
1273 							xcp->cp0_epc = bcpc;
1274 						/*
1275 						 * SIGILL forces out of
1276 						 * the emulation loop.
1277 						 */
1278 						return sig ? sig : SIGILL;
1279 					}
1280 				} else
1281 					contpc = (xcp->cp0_epc + (contpc << 2));
1282 
1283 				switch (MIPSInst_OPCODE(ir)) {
1284 				case lwc1_op:
1285 				case swc1_op:
1286 					goto emul;
1287 
1288 				case ldc1_op:
1289 				case sdc1_op:
1290 					if (cpu_has_mips_2_3_4_5_r)
1291 						goto emul;
1292 
1293 					goto bc_sigill;
1294 
1295 				case cop1_op:
1296 					goto emul;
1297 
1298 				case cop1x_op:
1299 					if (cpu_has_mips_4_5_64_r2_r6)
1300 						/* its one of ours */
1301 						goto emul;
1302 
1303 					goto bc_sigill;
1304 
1305 				case spec_op:
1306 					switch (MIPSInst_FUNC(ir)) {
1307 					case movc_op:
1308 						if (cpu_has_mips_4_5_r)
1309 							goto emul;
1310 
1311 						goto bc_sigill;
1312 					}
1313 					break;
1314 
1315 				bc_sigill:
1316 					xcp->cp0_epc = bcpc;
1317 					return SIGILL;
1318 				}
1319 
1320 				/*
1321 				 * Single step the non-cp1
1322 				 * instruction in the dslot
1323 				 */
1324 				sig = mips_dsemul(xcp, ir, contpc);
1325 				if (sig < 0)
1326 					break;
1327 				if (sig)
1328 					xcp->cp0_epc = bcpc;
1329 				/* SIGILL forces out of the emulation loop.  */
1330 				return sig ? sig : SIGILL;
1331 			} else if (likely) {	/* branch not taken */
1332 				/*
1333 				 * branch likely nullifies
1334 				 * dslot if not taken
1335 				 */
1336 				xcp->cp0_epc += dec_insn.pc_inc;
1337 				contpc += dec_insn.pc_inc;
1338 				/*
1339 				 * else continue & execute
1340 				 * dslot as normal insn
1341 				 */
1342 			}
1343 			break;
1344 
1345 		default:
1346 			if (!(MIPSInst_RS(ir) & 0x10))
1347 				return SIGILL;
1348 
1349 			/* a real fpu computation instruction */
1350 			if ((sig = fpu_emu(xcp, ctx, ir)))
1351 				return sig;
1352 		}
1353 		break;
1354 
1355 	case cop1x_op:
1356 		if (!cpu_has_mips_4_5_64_r2_r6)
1357 			return SIGILL;
1358 
1359 		sig = fpux_emu(xcp, ctx, ir, fault_addr);
1360 		if (sig)
1361 			return sig;
1362 		break;
1363 
1364 	case spec_op:
1365 		if (!cpu_has_mips_4_5_r)
1366 			return SIGILL;
1367 
1368 		if (MIPSInst_FUNC(ir) != movc_op)
1369 			return SIGILL;
1370 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
1371 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
1372 			xcp->regs[MIPSInst_RD(ir)] =
1373 				xcp->regs[MIPSInst_RS(ir)];
1374 		break;
1375 	default:
1376 sigill:
1377 		return SIGILL;
1378 	}
1379 
1380 	/* we did it !! */
1381 	xcp->cp0_epc = contpc;
1382 	clear_delay_slot(xcp);
1383 
1384 	return 0;
1385 }
1386 
1387 /*
1388  * Conversion table from MIPS compare ops 48-63
1389  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1390  */
1391 static const unsigned char cmptab[8] = {
1392 	0,			/* cmp_0 (sig) cmp_sf */
1393 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
1394 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
1395 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
1396 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
1397 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
1398 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
1399 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
1400 };
1401 
1402 static const unsigned char negative_cmptab[8] = {
1403 	0, /* Reserved */
1404 	IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ,
1405 	IEEE754_CLT | IEEE754_CGT | IEEE754_CUN,
1406 	IEEE754_CLT | IEEE754_CGT,
1407 	/* Reserved */
1408 };
1409 
1410 
1411 /*
1412  * Additional MIPS4 instructions
1413  */
1414 
1415 #define DEF3OP(name, p, f1, f2, f3)					\
1416 static union ieee754##p fpemu_##p##_##name(union ieee754##p r,		\
1417 	union ieee754##p s, union ieee754##p t)				\
1418 {									\
1419 	struct _ieee754_csr ieee754_csr_save;				\
1420 	s = f1(s, t);							\
1421 	ieee754_csr_save = ieee754_csr;					\
1422 	s = f2(s, r);							\
1423 	ieee754_csr_save.cx |= ieee754_csr.cx;				\
1424 	ieee754_csr_save.sx |= ieee754_csr.sx;				\
1425 	s = f3(s);							\
1426 	ieee754_csr.cx |= ieee754_csr_save.cx;				\
1427 	ieee754_csr.sx |= ieee754_csr_save.sx;				\
1428 	return s;							\
1429 }
1430 
1431 static union ieee754dp fpemu_dp_recip(union ieee754dp d)
1432 {
1433 	return ieee754dp_div(ieee754dp_one(0), d);
1434 }
1435 
1436 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d)
1437 {
1438 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
1439 }
1440 
1441 static union ieee754sp fpemu_sp_recip(union ieee754sp s)
1442 {
1443 	return ieee754sp_div(ieee754sp_one(0), s);
1444 }
1445 
1446 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s)
1447 {
1448 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
1449 }
1450 
1451 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
1452 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
1453 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
1454 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
1455 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
1456 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
1457 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
1458 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
1459 
1460 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1461 	mips_instruction ir, void *__user *fault_addr)
1462 {
1463 	unsigned rcsr = 0;	/* resulting csr */
1464 
1465 	MIPS_FPU_EMU_INC_STATS(cp1xops);
1466 
1467 	switch (MIPSInst_FMA_FFMT(ir)) {
1468 	case s_fmt:{		/* 0 */
1469 
1470 		union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp);
1471 		union ieee754sp fd, fr, fs, ft;
1472 		u32 __user *va;
1473 		u32 val;
1474 
1475 		switch (MIPSInst_FUNC(ir)) {
1476 		case lwxc1_op:
1477 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1478 				xcp->regs[MIPSInst_FT(ir)]);
1479 
1480 			MIPS_FPU_EMU_INC_STATS(loads);
1481 			if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
1482 				MIPS_FPU_EMU_INC_STATS(errors);
1483 				*fault_addr = va;
1484 				return SIGBUS;
1485 			}
1486 			if (__get_user(val, va)) {
1487 				MIPS_FPU_EMU_INC_STATS(errors);
1488 				*fault_addr = va;
1489 				return SIGSEGV;
1490 			}
1491 			SITOREG(val, MIPSInst_FD(ir));
1492 			break;
1493 
1494 		case swxc1_op:
1495 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1496 				xcp->regs[MIPSInst_FT(ir)]);
1497 
1498 			MIPS_FPU_EMU_INC_STATS(stores);
1499 
1500 			SIFROMREG(val, MIPSInst_FS(ir));
1501 			if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
1502 				MIPS_FPU_EMU_INC_STATS(errors);
1503 				*fault_addr = va;
1504 				return SIGBUS;
1505 			}
1506 			if (put_user(val, va)) {
1507 				MIPS_FPU_EMU_INC_STATS(errors);
1508 				*fault_addr = va;
1509 				return SIGSEGV;
1510 			}
1511 			break;
1512 
1513 		case madd_s_op:
1514 			handler = fpemu_sp_madd;
1515 			goto scoptop;
1516 		case msub_s_op:
1517 			handler = fpemu_sp_msub;
1518 			goto scoptop;
1519 		case nmadd_s_op:
1520 			handler = fpemu_sp_nmadd;
1521 			goto scoptop;
1522 		case nmsub_s_op:
1523 			handler = fpemu_sp_nmsub;
1524 			goto scoptop;
1525 
1526 		      scoptop:
1527 			SPFROMREG(fr, MIPSInst_FR(ir));
1528 			SPFROMREG(fs, MIPSInst_FS(ir));
1529 			SPFROMREG(ft, MIPSInst_FT(ir));
1530 			fd = (*handler) (fr, fs, ft);
1531 			SPTOREG(fd, MIPSInst_FD(ir));
1532 
1533 		      copcsr:
1534 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1535 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1536 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1537 			}
1538 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1539 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1540 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1541 			}
1542 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1543 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1544 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1545 			}
1546 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1547 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1548 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1549 			}
1550 
1551 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1552 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1553 				/*printk ("SIGFPE: FPU csr = %08x\n",
1554 				   ctx->fcr31); */
1555 				return SIGFPE;
1556 			}
1557 
1558 			break;
1559 
1560 		default:
1561 			return SIGILL;
1562 		}
1563 		break;
1564 	}
1565 
1566 	case d_fmt:{		/* 1 */
1567 		union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp);
1568 		union ieee754dp fd, fr, fs, ft;
1569 		u64 __user *va;
1570 		u64 val;
1571 
1572 		switch (MIPSInst_FUNC(ir)) {
1573 		case ldxc1_op:
1574 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1575 				xcp->regs[MIPSInst_FT(ir)]);
1576 
1577 			MIPS_FPU_EMU_INC_STATS(loads);
1578 			if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
1579 				MIPS_FPU_EMU_INC_STATS(errors);
1580 				*fault_addr = va;
1581 				return SIGBUS;
1582 			}
1583 			if (__get_user(val, va)) {
1584 				MIPS_FPU_EMU_INC_STATS(errors);
1585 				*fault_addr = va;
1586 				return SIGSEGV;
1587 			}
1588 			DITOREG(val, MIPSInst_FD(ir));
1589 			break;
1590 
1591 		case sdxc1_op:
1592 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
1593 				xcp->regs[MIPSInst_FT(ir)]);
1594 
1595 			MIPS_FPU_EMU_INC_STATS(stores);
1596 			DIFROMREG(val, MIPSInst_FS(ir));
1597 			if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
1598 				MIPS_FPU_EMU_INC_STATS(errors);
1599 				*fault_addr = va;
1600 				return SIGBUS;
1601 			}
1602 			if (__put_user(val, va)) {
1603 				MIPS_FPU_EMU_INC_STATS(errors);
1604 				*fault_addr = va;
1605 				return SIGSEGV;
1606 			}
1607 			break;
1608 
1609 		case madd_d_op:
1610 			handler = fpemu_dp_madd;
1611 			goto dcoptop;
1612 		case msub_d_op:
1613 			handler = fpemu_dp_msub;
1614 			goto dcoptop;
1615 		case nmadd_d_op:
1616 			handler = fpemu_dp_nmadd;
1617 			goto dcoptop;
1618 		case nmsub_d_op:
1619 			handler = fpemu_dp_nmsub;
1620 			goto dcoptop;
1621 
1622 		      dcoptop:
1623 			DPFROMREG(fr, MIPSInst_FR(ir));
1624 			DPFROMREG(fs, MIPSInst_FS(ir));
1625 			DPFROMREG(ft, MIPSInst_FT(ir));
1626 			fd = (*handler) (fr, fs, ft);
1627 			DPTOREG(fd, MIPSInst_FD(ir));
1628 			goto copcsr;
1629 
1630 		default:
1631 			return SIGILL;
1632 		}
1633 		break;
1634 	}
1635 
1636 	case 0x3:
1637 		if (MIPSInst_FUNC(ir) != pfetch_op)
1638 			return SIGILL;
1639 
1640 		/* ignore prefx operation */
1641 		break;
1642 
1643 	default:
1644 		return SIGILL;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 
1651 
1652 /*
1653  * Emulate a single COP1 arithmetic instruction.
1654  */
1655 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1656 	mips_instruction ir)
1657 {
1658 	int rfmt;		/* resulting format */
1659 	unsigned rcsr = 0;	/* resulting csr */
1660 	unsigned int oldrm;
1661 	unsigned int cbit;
1662 	unsigned cond;
1663 	union {
1664 		union ieee754dp d;
1665 		union ieee754sp s;
1666 		int w;
1667 		s64 l;
1668 	} rv;			/* resulting value */
1669 	u64 bits;
1670 
1671 	MIPS_FPU_EMU_INC_STATS(cp1ops);
1672 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
1673 	case s_fmt: {		/* 0 */
1674 		union {
1675 			union ieee754sp(*b) (union ieee754sp, union ieee754sp);
1676 			union ieee754sp(*u) (union ieee754sp);
1677 		} handler;
1678 		union ieee754sp fd, fs, ft;
1679 
1680 		switch (MIPSInst_FUNC(ir)) {
1681 			/* binary ops */
1682 		case fadd_op:
1683 			handler.b = ieee754sp_add;
1684 			goto scopbop;
1685 		case fsub_op:
1686 			handler.b = ieee754sp_sub;
1687 			goto scopbop;
1688 		case fmul_op:
1689 			handler.b = ieee754sp_mul;
1690 			goto scopbop;
1691 		case fdiv_op:
1692 			handler.b = ieee754sp_div;
1693 			goto scopbop;
1694 
1695 			/* unary  ops */
1696 		case fsqrt_op:
1697 			if (!cpu_has_mips_2_3_4_5_r)
1698 				return SIGILL;
1699 
1700 			handler.u = ieee754sp_sqrt;
1701 			goto scopuop;
1702 
1703 		/*
1704 		 * Note that on some MIPS IV implementations such as the
1705 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1706 		 * achieve full IEEE-754 accuracy - however this emulator does.
1707 		 */
1708 		case frsqrt_op:
1709 			if (!cpu_has_mips_4_5_64_r2_r6)
1710 				return SIGILL;
1711 
1712 			handler.u = fpemu_sp_rsqrt;
1713 			goto scopuop;
1714 
1715 		case frecip_op:
1716 			if (!cpu_has_mips_4_5_64_r2_r6)
1717 				return SIGILL;
1718 
1719 			handler.u = fpemu_sp_recip;
1720 			goto scopuop;
1721 
1722 		case fmovc_op:
1723 			if (!cpu_has_mips_4_5_r)
1724 				return SIGILL;
1725 
1726 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1727 			if (((ctx->fcr31 & cond) != 0) !=
1728 				((MIPSInst_FT(ir) & 1) != 0))
1729 				return 0;
1730 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1731 			break;
1732 
1733 		case fmovz_op:
1734 			if (!cpu_has_mips_4_5_r)
1735 				return SIGILL;
1736 
1737 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1738 				return 0;
1739 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1740 			break;
1741 
1742 		case fmovn_op:
1743 			if (!cpu_has_mips_4_5_r)
1744 				return SIGILL;
1745 
1746 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1747 				return 0;
1748 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1749 			break;
1750 
1751 		case fseleqz_op:
1752 			if (!cpu_has_mips_r6)
1753 				return SIGILL;
1754 
1755 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1756 			if (rv.w & 0x1)
1757 				rv.w = 0;
1758 			else
1759 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1760 			break;
1761 
1762 		case fselnez_op:
1763 			if (!cpu_has_mips_r6)
1764 				return SIGILL;
1765 
1766 			SPFROMREG(rv.s, MIPSInst_FT(ir));
1767 			if (rv.w & 0x1)
1768 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1769 			else
1770 				rv.w = 0;
1771 			break;
1772 
1773 		case fmaddf_op: {
1774 			union ieee754sp ft, fs, fd;
1775 
1776 			if (!cpu_has_mips_r6)
1777 				return SIGILL;
1778 
1779 			SPFROMREG(ft, MIPSInst_FT(ir));
1780 			SPFROMREG(fs, MIPSInst_FS(ir));
1781 			SPFROMREG(fd, MIPSInst_FD(ir));
1782 			rv.s = ieee754sp_maddf(fd, fs, ft);
1783 			break;
1784 		}
1785 
1786 		case fmsubf_op: {
1787 			union ieee754sp ft, fs, fd;
1788 
1789 			if (!cpu_has_mips_r6)
1790 				return SIGILL;
1791 
1792 			SPFROMREG(ft, MIPSInst_FT(ir));
1793 			SPFROMREG(fs, MIPSInst_FS(ir));
1794 			SPFROMREG(fd, MIPSInst_FD(ir));
1795 			rv.s = ieee754sp_msubf(fd, fs, ft);
1796 			break;
1797 		}
1798 
1799 		case frint_op: {
1800 			union ieee754sp fs;
1801 
1802 			if (!cpu_has_mips_r6)
1803 				return SIGILL;
1804 
1805 			SPFROMREG(fs, MIPSInst_FS(ir));
1806 			rv.l = ieee754sp_tlong(fs);
1807 			rv.s = ieee754sp_flong(rv.l);
1808 			goto copcsr;
1809 		}
1810 
1811 		case fclass_op: {
1812 			union ieee754sp fs;
1813 
1814 			if (!cpu_has_mips_r6)
1815 				return SIGILL;
1816 
1817 			SPFROMREG(fs, MIPSInst_FS(ir));
1818 			rv.w = ieee754sp_2008class(fs);
1819 			rfmt = w_fmt;
1820 			break;
1821 		}
1822 
1823 		case fmin_op: {
1824 			union ieee754sp fs, ft;
1825 
1826 			if (!cpu_has_mips_r6)
1827 				return SIGILL;
1828 
1829 			SPFROMREG(ft, MIPSInst_FT(ir));
1830 			SPFROMREG(fs, MIPSInst_FS(ir));
1831 			rv.s = ieee754sp_fmin(fs, ft);
1832 			break;
1833 		}
1834 
1835 		case fmina_op: {
1836 			union ieee754sp fs, ft;
1837 
1838 			if (!cpu_has_mips_r6)
1839 				return SIGILL;
1840 
1841 			SPFROMREG(ft, MIPSInst_FT(ir));
1842 			SPFROMREG(fs, MIPSInst_FS(ir));
1843 			rv.s = ieee754sp_fmina(fs, ft);
1844 			break;
1845 		}
1846 
1847 		case fmax_op: {
1848 			union ieee754sp fs, ft;
1849 
1850 			if (!cpu_has_mips_r6)
1851 				return SIGILL;
1852 
1853 			SPFROMREG(ft, MIPSInst_FT(ir));
1854 			SPFROMREG(fs, MIPSInst_FS(ir));
1855 			rv.s = ieee754sp_fmax(fs, ft);
1856 			break;
1857 		}
1858 
1859 		case fmaxa_op: {
1860 			union ieee754sp fs, ft;
1861 
1862 			if (!cpu_has_mips_r6)
1863 				return SIGILL;
1864 
1865 			SPFROMREG(ft, MIPSInst_FT(ir));
1866 			SPFROMREG(fs, MIPSInst_FS(ir));
1867 			rv.s = ieee754sp_fmaxa(fs, ft);
1868 			break;
1869 		}
1870 
1871 		case fabs_op:
1872 			handler.u = ieee754sp_abs;
1873 			goto scopuop;
1874 
1875 		case fneg_op:
1876 			handler.u = ieee754sp_neg;
1877 			goto scopuop;
1878 
1879 		case fmov_op:
1880 			/* an easy one */
1881 			SPFROMREG(rv.s, MIPSInst_FS(ir));
1882 			goto copcsr;
1883 
1884 			/* binary op on handler */
1885 scopbop:
1886 			SPFROMREG(fs, MIPSInst_FS(ir));
1887 			SPFROMREG(ft, MIPSInst_FT(ir));
1888 
1889 			rv.s = (*handler.b) (fs, ft);
1890 			goto copcsr;
1891 scopuop:
1892 			SPFROMREG(fs, MIPSInst_FS(ir));
1893 			rv.s = (*handler.u) (fs);
1894 			goto copcsr;
1895 copcsr:
1896 			if (ieee754_cxtest(IEEE754_INEXACT)) {
1897 				MIPS_FPU_EMU_INC_STATS(ieee754_inexact);
1898 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
1899 			}
1900 			if (ieee754_cxtest(IEEE754_UNDERFLOW)) {
1901 				MIPS_FPU_EMU_INC_STATS(ieee754_underflow);
1902 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
1903 			}
1904 			if (ieee754_cxtest(IEEE754_OVERFLOW)) {
1905 				MIPS_FPU_EMU_INC_STATS(ieee754_overflow);
1906 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
1907 			}
1908 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) {
1909 				MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv);
1910 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
1911 			}
1912 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) {
1913 				MIPS_FPU_EMU_INC_STATS(ieee754_invalidop);
1914 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
1915 			}
1916 			break;
1917 
1918 			/* unary conv ops */
1919 		case fcvts_op:
1920 			return SIGILL;	/* not defined */
1921 
1922 		case fcvtd_op:
1923 			SPFROMREG(fs, MIPSInst_FS(ir));
1924 			rv.d = ieee754dp_fsp(fs);
1925 			rfmt = d_fmt;
1926 			goto copcsr;
1927 
1928 		case fcvtw_op:
1929 			SPFROMREG(fs, MIPSInst_FS(ir));
1930 			rv.w = ieee754sp_tint(fs);
1931 			rfmt = w_fmt;
1932 			goto copcsr;
1933 
1934 		case fround_op:
1935 		case ftrunc_op:
1936 		case fceil_op:
1937 		case ffloor_op:
1938 			if (!cpu_has_mips_2_3_4_5_r)
1939 				return SIGILL;
1940 
1941 			oldrm = ieee754_csr.rm;
1942 			SPFROMREG(fs, MIPSInst_FS(ir));
1943 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1944 			rv.w = ieee754sp_tint(fs);
1945 			ieee754_csr.rm = oldrm;
1946 			rfmt = w_fmt;
1947 			goto copcsr;
1948 
1949 		case fsel_op:
1950 			if (!cpu_has_mips_r6)
1951 				return SIGILL;
1952 
1953 			SPFROMREG(fd, MIPSInst_FD(ir));
1954 			if (fd.bits & 0x1)
1955 				SPFROMREG(rv.s, MIPSInst_FT(ir));
1956 			else
1957 				SPFROMREG(rv.s, MIPSInst_FS(ir));
1958 			break;
1959 
1960 		case fcvtl_op:
1961 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1962 				return SIGILL;
1963 
1964 			SPFROMREG(fs, MIPSInst_FS(ir));
1965 			rv.l = ieee754sp_tlong(fs);
1966 			rfmt = l_fmt;
1967 			goto copcsr;
1968 
1969 		case froundl_op:
1970 		case ftruncl_op:
1971 		case fceill_op:
1972 		case ffloorl_op:
1973 			if (!cpu_has_mips_3_4_5_64_r2_r6)
1974 				return SIGILL;
1975 
1976 			oldrm = ieee754_csr.rm;
1977 			SPFROMREG(fs, MIPSInst_FS(ir));
1978 			ieee754_csr.rm = MIPSInst_FUNC(ir);
1979 			rv.l = ieee754sp_tlong(fs);
1980 			ieee754_csr.rm = oldrm;
1981 			rfmt = l_fmt;
1982 			goto copcsr;
1983 
1984 		default:
1985 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
1986 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1987 				union ieee754sp fs, ft;
1988 
1989 				SPFROMREG(fs, MIPSInst_FS(ir));
1990 				SPFROMREG(ft, MIPSInst_FT(ir));
1991 				rv.w = ieee754sp_cmp(fs, ft,
1992 					cmptab[cmpop & 0x7], cmpop & 0x8);
1993 				rfmt = -1;
1994 				if ((cmpop & 0x8) && ieee754_cxtest
1995 					(IEEE754_INVALID_OPERATION))
1996 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1997 				else
1998 					goto copcsr;
1999 
2000 			} else
2001 				return SIGILL;
2002 			break;
2003 		}
2004 		break;
2005 	}
2006 
2007 	case d_fmt: {
2008 		union ieee754dp fd, fs, ft;
2009 		union {
2010 			union ieee754dp(*b) (union ieee754dp, union ieee754dp);
2011 			union ieee754dp(*u) (union ieee754dp);
2012 		} handler;
2013 
2014 		switch (MIPSInst_FUNC(ir)) {
2015 			/* binary ops */
2016 		case fadd_op:
2017 			handler.b = ieee754dp_add;
2018 			goto dcopbop;
2019 		case fsub_op:
2020 			handler.b = ieee754dp_sub;
2021 			goto dcopbop;
2022 		case fmul_op:
2023 			handler.b = ieee754dp_mul;
2024 			goto dcopbop;
2025 		case fdiv_op:
2026 			handler.b = ieee754dp_div;
2027 			goto dcopbop;
2028 
2029 			/* unary  ops */
2030 		case fsqrt_op:
2031 			if (!cpu_has_mips_2_3_4_5_r)
2032 				return SIGILL;
2033 
2034 			handler.u = ieee754dp_sqrt;
2035 			goto dcopuop;
2036 		/*
2037 		 * Note that on some MIPS IV implementations such as the
2038 		 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2039 		 * achieve full IEEE-754 accuracy - however this emulator does.
2040 		 */
2041 		case frsqrt_op:
2042 			if (!cpu_has_mips_4_5_64_r2_r6)
2043 				return SIGILL;
2044 
2045 			handler.u = fpemu_dp_rsqrt;
2046 			goto dcopuop;
2047 		case frecip_op:
2048 			if (!cpu_has_mips_4_5_64_r2_r6)
2049 				return SIGILL;
2050 
2051 			handler.u = fpemu_dp_recip;
2052 			goto dcopuop;
2053 		case fmovc_op:
2054 			if (!cpu_has_mips_4_5_r)
2055 				return SIGILL;
2056 
2057 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
2058 			if (((ctx->fcr31 & cond) != 0) !=
2059 				((MIPSInst_FT(ir) & 1) != 0))
2060 				return 0;
2061 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2062 			break;
2063 		case fmovz_op:
2064 			if (!cpu_has_mips_4_5_r)
2065 				return SIGILL;
2066 
2067 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
2068 				return 0;
2069 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2070 			break;
2071 		case fmovn_op:
2072 			if (!cpu_has_mips_4_5_r)
2073 				return SIGILL;
2074 
2075 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
2076 				return 0;
2077 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2078 			break;
2079 
2080 		case fseleqz_op:
2081 			if (!cpu_has_mips_r6)
2082 				return SIGILL;
2083 
2084 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2085 			if (rv.l & 0x1)
2086 				rv.l = 0;
2087 			else
2088 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2089 			break;
2090 
2091 		case fselnez_op:
2092 			if (!cpu_has_mips_r6)
2093 				return SIGILL;
2094 
2095 			DPFROMREG(rv.d, MIPSInst_FT(ir));
2096 			if (rv.l & 0x1)
2097 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2098 			else
2099 				rv.l = 0;
2100 			break;
2101 
2102 		case fmaddf_op: {
2103 			union ieee754dp ft, fs, fd;
2104 
2105 			if (!cpu_has_mips_r6)
2106 				return SIGILL;
2107 
2108 			DPFROMREG(ft, MIPSInst_FT(ir));
2109 			DPFROMREG(fs, MIPSInst_FS(ir));
2110 			DPFROMREG(fd, MIPSInst_FD(ir));
2111 			rv.d = ieee754dp_maddf(fd, fs, ft);
2112 			break;
2113 		}
2114 
2115 		case fmsubf_op: {
2116 			union ieee754dp ft, fs, fd;
2117 
2118 			if (!cpu_has_mips_r6)
2119 				return SIGILL;
2120 
2121 			DPFROMREG(ft, MIPSInst_FT(ir));
2122 			DPFROMREG(fs, MIPSInst_FS(ir));
2123 			DPFROMREG(fd, MIPSInst_FD(ir));
2124 			rv.d = ieee754dp_msubf(fd, fs, ft);
2125 			break;
2126 		}
2127 
2128 		case frint_op: {
2129 			union ieee754dp fs;
2130 
2131 			if (!cpu_has_mips_r6)
2132 				return SIGILL;
2133 
2134 			DPFROMREG(fs, MIPSInst_FS(ir));
2135 			rv.l = ieee754dp_tlong(fs);
2136 			rv.d = ieee754dp_flong(rv.l);
2137 			goto copcsr;
2138 		}
2139 
2140 		case fclass_op: {
2141 			union ieee754dp fs;
2142 
2143 			if (!cpu_has_mips_r6)
2144 				return SIGILL;
2145 
2146 			DPFROMREG(fs, MIPSInst_FS(ir));
2147 			rv.w = ieee754dp_2008class(fs);
2148 			rfmt = w_fmt;
2149 			break;
2150 		}
2151 
2152 		case fmin_op: {
2153 			union ieee754dp fs, ft;
2154 
2155 			if (!cpu_has_mips_r6)
2156 				return SIGILL;
2157 
2158 			DPFROMREG(ft, MIPSInst_FT(ir));
2159 			DPFROMREG(fs, MIPSInst_FS(ir));
2160 			rv.d = ieee754dp_fmin(fs, ft);
2161 			break;
2162 		}
2163 
2164 		case fmina_op: {
2165 			union ieee754dp fs, ft;
2166 
2167 			if (!cpu_has_mips_r6)
2168 				return SIGILL;
2169 
2170 			DPFROMREG(ft, MIPSInst_FT(ir));
2171 			DPFROMREG(fs, MIPSInst_FS(ir));
2172 			rv.d = ieee754dp_fmina(fs, ft);
2173 			break;
2174 		}
2175 
2176 		case fmax_op: {
2177 			union ieee754dp fs, ft;
2178 
2179 			if (!cpu_has_mips_r6)
2180 				return SIGILL;
2181 
2182 			DPFROMREG(ft, MIPSInst_FT(ir));
2183 			DPFROMREG(fs, MIPSInst_FS(ir));
2184 			rv.d = ieee754dp_fmax(fs, ft);
2185 			break;
2186 		}
2187 
2188 		case fmaxa_op: {
2189 			union ieee754dp fs, ft;
2190 
2191 			if (!cpu_has_mips_r6)
2192 				return SIGILL;
2193 
2194 			DPFROMREG(ft, MIPSInst_FT(ir));
2195 			DPFROMREG(fs, MIPSInst_FS(ir));
2196 			rv.d = ieee754dp_fmaxa(fs, ft);
2197 			break;
2198 		}
2199 
2200 		case fabs_op:
2201 			handler.u = ieee754dp_abs;
2202 			goto dcopuop;
2203 
2204 		case fneg_op:
2205 			handler.u = ieee754dp_neg;
2206 			goto dcopuop;
2207 
2208 		case fmov_op:
2209 			/* an easy one */
2210 			DPFROMREG(rv.d, MIPSInst_FS(ir));
2211 			goto copcsr;
2212 
2213 			/* binary op on handler */
2214 dcopbop:
2215 			DPFROMREG(fs, MIPSInst_FS(ir));
2216 			DPFROMREG(ft, MIPSInst_FT(ir));
2217 
2218 			rv.d = (*handler.b) (fs, ft);
2219 			goto copcsr;
2220 dcopuop:
2221 			DPFROMREG(fs, MIPSInst_FS(ir));
2222 			rv.d = (*handler.u) (fs);
2223 			goto copcsr;
2224 
2225 		/*
2226 		 * unary conv ops
2227 		 */
2228 		case fcvts_op:
2229 			DPFROMREG(fs, MIPSInst_FS(ir));
2230 			rv.s = ieee754sp_fdp(fs);
2231 			rfmt = s_fmt;
2232 			goto copcsr;
2233 
2234 		case fcvtd_op:
2235 			return SIGILL;	/* not defined */
2236 
2237 		case fcvtw_op:
2238 			DPFROMREG(fs, MIPSInst_FS(ir));
2239 			rv.w = ieee754dp_tint(fs);	/* wrong */
2240 			rfmt = w_fmt;
2241 			goto copcsr;
2242 
2243 		case fround_op:
2244 		case ftrunc_op:
2245 		case fceil_op:
2246 		case ffloor_op:
2247 			if (!cpu_has_mips_2_3_4_5_r)
2248 				return SIGILL;
2249 
2250 			oldrm = ieee754_csr.rm;
2251 			DPFROMREG(fs, MIPSInst_FS(ir));
2252 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2253 			rv.w = ieee754dp_tint(fs);
2254 			ieee754_csr.rm = oldrm;
2255 			rfmt = w_fmt;
2256 			goto copcsr;
2257 
2258 		case fsel_op:
2259 			if (!cpu_has_mips_r6)
2260 				return SIGILL;
2261 
2262 			DPFROMREG(fd, MIPSInst_FD(ir));
2263 			if (fd.bits & 0x1)
2264 				DPFROMREG(rv.d, MIPSInst_FT(ir));
2265 			else
2266 				DPFROMREG(rv.d, MIPSInst_FS(ir));
2267 			break;
2268 
2269 		case fcvtl_op:
2270 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2271 				return SIGILL;
2272 
2273 			DPFROMREG(fs, MIPSInst_FS(ir));
2274 			rv.l = ieee754dp_tlong(fs);
2275 			rfmt = l_fmt;
2276 			goto copcsr;
2277 
2278 		case froundl_op:
2279 		case ftruncl_op:
2280 		case fceill_op:
2281 		case ffloorl_op:
2282 			if (!cpu_has_mips_3_4_5_64_r2_r6)
2283 				return SIGILL;
2284 
2285 			oldrm = ieee754_csr.rm;
2286 			DPFROMREG(fs, MIPSInst_FS(ir));
2287 			ieee754_csr.rm = MIPSInst_FUNC(ir);
2288 			rv.l = ieee754dp_tlong(fs);
2289 			ieee754_csr.rm = oldrm;
2290 			rfmt = l_fmt;
2291 			goto copcsr;
2292 
2293 		default:
2294 			if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) {
2295 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
2296 				union ieee754dp fs, ft;
2297 
2298 				DPFROMREG(fs, MIPSInst_FS(ir));
2299 				DPFROMREG(ft, MIPSInst_FT(ir));
2300 				rv.w = ieee754dp_cmp(fs, ft,
2301 					cmptab[cmpop & 0x7], cmpop & 0x8);
2302 				rfmt = -1;
2303 				if ((cmpop & 0x8)
2304 					&&
2305 					ieee754_cxtest
2306 					(IEEE754_INVALID_OPERATION))
2307 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2308 				else
2309 					goto copcsr;
2310 
2311 			}
2312 			else {
2313 				return SIGILL;
2314 			}
2315 			break;
2316 		}
2317 		break;
2318 	}
2319 
2320 	case w_fmt: {
2321 		union ieee754dp fs;
2322 
2323 		switch (MIPSInst_FUNC(ir)) {
2324 		case fcvts_op:
2325 			/* convert word to single precision real */
2326 			SPFROMREG(fs, MIPSInst_FS(ir));
2327 			rv.s = ieee754sp_fint(fs.bits);
2328 			rfmt = s_fmt;
2329 			goto copcsr;
2330 		case fcvtd_op:
2331 			/* convert word to double precision real */
2332 			SPFROMREG(fs, MIPSInst_FS(ir));
2333 			rv.d = ieee754dp_fint(fs.bits);
2334 			rfmt = d_fmt;
2335 			goto copcsr;
2336 		default: {
2337 			/* Emulating the new CMP.condn.fmt R6 instruction */
2338 #define CMPOP_MASK	0x7
2339 #define SIGN_BIT	(0x1 << 3)
2340 #define PREDICATE_BIT	(0x1 << 4)
2341 
2342 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2343 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2344 			union ieee754sp fs, ft;
2345 
2346 			/* This is an R6 only instruction */
2347 			if (!cpu_has_mips_r6 ||
2348 			    (MIPSInst_FUNC(ir) & 0x20))
2349 				return SIGILL;
2350 
2351 			/* fmt is w_fmt for single precision so fix it */
2352 			rfmt = s_fmt;
2353 			/* default to false */
2354 			rv.w = 0;
2355 
2356 			/* CMP.condn.S */
2357 			SPFROMREG(fs, MIPSInst_FS(ir));
2358 			SPFROMREG(ft, MIPSInst_FT(ir));
2359 
2360 			/* positive predicates */
2361 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2362 				if (ieee754sp_cmp(fs, ft, cmptab[cmpop],
2363 						  sig))
2364 				    rv.w = -1; /* true, all 1s */
2365 				if ((sig) &&
2366 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2367 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2368 				else
2369 					goto copcsr;
2370 			} else {
2371 				/* negative predicates */
2372 				switch (cmpop) {
2373 				case 1:
2374 				case 2:
2375 				case 3:
2376 					if (ieee754sp_cmp(fs, ft,
2377 							  negative_cmptab[cmpop],
2378 							  sig))
2379 						rv.w = -1; /* true, all 1s */
2380 					if (sig &&
2381 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2382 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2383 					else
2384 						goto copcsr;
2385 					break;
2386 				default:
2387 					/* Reserved R6 ops */
2388 					pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2389 					return SIGILL;
2390 				}
2391 			}
2392 			break;
2393 			}
2394 		}
2395 	}
2396 
2397 	case l_fmt:
2398 
2399 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2400 			return SIGILL;
2401 
2402 		DIFROMREG(bits, MIPSInst_FS(ir));
2403 
2404 		switch (MIPSInst_FUNC(ir)) {
2405 		case fcvts_op:
2406 			/* convert long to single precision real */
2407 			rv.s = ieee754sp_flong(bits);
2408 			rfmt = s_fmt;
2409 			goto copcsr;
2410 		case fcvtd_op:
2411 			/* convert long to double precision real */
2412 			rv.d = ieee754dp_flong(bits);
2413 			rfmt = d_fmt;
2414 			goto copcsr;
2415 		default: {
2416 			/* Emulating the new CMP.condn.fmt R6 instruction */
2417 			int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK;
2418 			int sig = MIPSInst_FUNC(ir) & SIGN_BIT;
2419 			union ieee754dp fs, ft;
2420 
2421 			if (!cpu_has_mips_r6 ||
2422 			    (MIPSInst_FUNC(ir) & 0x20))
2423 				return SIGILL;
2424 
2425 			/* fmt is l_fmt for double precision so fix it */
2426 			rfmt = d_fmt;
2427 			/* default to false */
2428 			rv.l = 0;
2429 
2430 			/* CMP.condn.D */
2431 			DPFROMREG(fs, MIPSInst_FS(ir));
2432 			DPFROMREG(ft, MIPSInst_FT(ir));
2433 
2434 			/* positive predicates */
2435 			if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) {
2436 				if (ieee754dp_cmp(fs, ft,
2437 						  cmptab[cmpop], sig))
2438 				    rv.l = -1LL; /* true, all 1s */
2439 				if (sig &&
2440 				    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2441 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2442 				else
2443 					goto copcsr;
2444 			} else {
2445 				/* negative predicates */
2446 				switch (cmpop) {
2447 				case 1:
2448 				case 2:
2449 				case 3:
2450 					if (ieee754dp_cmp(fs, ft,
2451 							  negative_cmptab[cmpop],
2452 							  sig))
2453 						rv.l = -1LL; /* true, all 1s */
2454 					if (sig &&
2455 					    ieee754_cxtest(IEEE754_INVALID_OPERATION))
2456 						rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
2457 					else
2458 						goto copcsr;
2459 					break;
2460 				default:
2461 					/* Reserved R6 ops */
2462 					pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2463 					return SIGILL;
2464 				}
2465 			}
2466 			break;
2467 			}
2468 		}
2469 	default:
2470 		return SIGILL;
2471 	}
2472 
2473 	/*
2474 	 * Update the fpu CSR register for this operation.
2475 	 * If an exception is required, generate a tidy SIGFPE exception,
2476 	 * without updating the result register.
2477 	 * Note: cause exception bits do not accumulate, they are rewritten
2478 	 * for each op; only the flag/sticky bits accumulate.
2479 	 */
2480 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
2481 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
2482 		/*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2483 		return SIGFPE;
2484 	}
2485 
2486 	/*
2487 	 * Now we can safely write the result back to the register file.
2488 	 */
2489 	switch (rfmt) {
2490 	case -1:
2491 
2492 		if (cpu_has_mips_4_5_r)
2493 			cbit = fpucondbit[MIPSInst_FD(ir) >> 2];
2494 		else
2495 			cbit = FPU_CSR_COND;
2496 		if (rv.w)
2497 			ctx->fcr31 |= cbit;
2498 		else
2499 			ctx->fcr31 &= ~cbit;
2500 		break;
2501 
2502 	case d_fmt:
2503 		DPTOREG(rv.d, MIPSInst_FD(ir));
2504 		break;
2505 	case s_fmt:
2506 		SPTOREG(rv.s, MIPSInst_FD(ir));
2507 		break;
2508 	case w_fmt:
2509 		SITOREG(rv.w, MIPSInst_FD(ir));
2510 		break;
2511 	case l_fmt:
2512 		if (!cpu_has_mips_3_4_5_64_r2_r6)
2513 			return SIGILL;
2514 
2515 		DITOREG(rv.l, MIPSInst_FD(ir));
2516 		break;
2517 	default:
2518 		return SIGILL;
2519 	}
2520 
2521 	return 0;
2522 }
2523 
2524 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
2525 	int has_fpu, void *__user *fault_addr)
2526 {
2527 	unsigned long oldepc, prevepc;
2528 	struct mm_decoded_insn dec_insn;
2529 	u16 instr[4];
2530 	u16 *instr_ptr;
2531 	int sig = 0;
2532 
2533 	oldepc = xcp->cp0_epc;
2534 	do {
2535 		prevepc = xcp->cp0_epc;
2536 
2537 		if (get_isa16_mode(prevepc) && cpu_has_mmips) {
2538 			/*
2539 			 * Get next 2 microMIPS instructions and convert them
2540 			 * into 32-bit instructions.
2541 			 */
2542 			if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) ||
2543 			    (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) ||
2544 			    (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) ||
2545 			    (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) {
2546 				MIPS_FPU_EMU_INC_STATS(errors);
2547 				return SIGBUS;
2548 			}
2549 			instr_ptr = instr;
2550 
2551 			/* Get first instruction. */
2552 			if (mm_insn_16bit(*instr_ptr)) {
2553 				/* Duplicate the half-word. */
2554 				dec_insn.insn = (*instr_ptr << 16) |
2555 					(*instr_ptr);
2556 				/* 16-bit instruction. */
2557 				dec_insn.pc_inc = 2;
2558 				instr_ptr += 1;
2559 			} else {
2560 				dec_insn.insn = (*instr_ptr << 16) |
2561 					*(instr_ptr+1);
2562 				/* 32-bit instruction. */
2563 				dec_insn.pc_inc = 4;
2564 				instr_ptr += 2;
2565 			}
2566 			/* Get second instruction. */
2567 			if (mm_insn_16bit(*instr_ptr)) {
2568 				/* Duplicate the half-word. */
2569 				dec_insn.next_insn = (*instr_ptr << 16) |
2570 					(*instr_ptr);
2571 				/* 16-bit instruction. */
2572 				dec_insn.next_pc_inc = 2;
2573 			} else {
2574 				dec_insn.next_insn = (*instr_ptr << 16) |
2575 					*(instr_ptr+1);
2576 				/* 32-bit instruction. */
2577 				dec_insn.next_pc_inc = 4;
2578 			}
2579 			dec_insn.micro_mips_mode = 1;
2580 		} else {
2581 			if ((get_user(dec_insn.insn,
2582 			    (mips_instruction __user *) xcp->cp0_epc)) ||
2583 			    (get_user(dec_insn.next_insn,
2584 			    (mips_instruction __user *)(xcp->cp0_epc+4)))) {
2585 				MIPS_FPU_EMU_INC_STATS(errors);
2586 				return SIGBUS;
2587 			}
2588 			dec_insn.pc_inc = 4;
2589 			dec_insn.next_pc_inc = 4;
2590 			dec_insn.micro_mips_mode = 0;
2591 		}
2592 
2593 		if ((dec_insn.insn == 0) ||
2594 		   ((dec_insn.pc_inc == 2) &&
2595 		   ((dec_insn.insn & 0xffff) == MM_NOP16)))
2596 			xcp->cp0_epc += dec_insn.pc_inc;	/* Skip NOPs */
2597 		else {
2598 			/*
2599 			 * The 'ieee754_csr' is an alias of ctx->fcr31.
2600 			 * No need to copy ctx->fcr31 to ieee754_csr.
2601 			 */
2602 			sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr);
2603 		}
2604 
2605 		if (has_fpu)
2606 			break;
2607 		if (sig)
2608 			break;
2609 
2610 		cond_resched();
2611 	} while (xcp->cp0_epc > prevepc);
2612 
2613 	/* SIGILL indicates a non-fpu instruction */
2614 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
2615 		/* but if EPC has advanced, then ignore it */
2616 		sig = 0;
2617 
2618 	return sig;
2619 }
2620