xref: /linux/arch/mips/math-emu/cp1emu.c (revision 3e1d7a6219ab64e13b10b1a77c0625db9a8bd8db)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  * http://www.algor.co.uk
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * A complete emulator for MIPS coprocessor 1 instructions.  This is
25  * required for #float(switch) or #float(trap), where it catches all
26  * COP1 instructions via the "CoProcessor Unusable" exception.
27  *
28  * More surprisingly it is also required for #float(ieee), to help out
29  * the hardware fpu at the boundaries of the IEEE-754 representation
30  * (denormalised values, infinities, underflow, etc).  It is made
31  * quite nasty because emulation of some non-COP1 instructions is
32  * required, e.g. in branch delay slots.
33  *
34  * Note if you know that you won't have an fpu, then you'll get much
35  * better performance by compiling with -msoft-float!
36  */
37 #include <linux/sched.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/inst.h>
41 #include <asm/bootinfo.h>
42 #include <asm/processor.h>
43 #include <asm/ptrace.h>
44 #include <asm/signal.h>
45 #include <asm/mipsregs.h>
46 #include <asm/fpu_emulator.h>
47 #include <asm/uaccess.h>
48 #include <asm/branch.h>
49 
50 #include "ieee754.h"
51 
52 /* Strap kernel emulator for full MIPS IV emulation */
53 
54 #ifdef __mips
55 #undef __mips
56 #endif
57 #define __mips 4
58 
59 /* Function which emulates a floating point instruction. */
60 
61 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
62 	mips_instruction);
63 
64 #if __mips >= 4 && __mips != 32
65 static int fpux_emu(struct pt_regs *,
66 	struct mips_fpu_struct *, mips_instruction);
67 #endif
68 
69 /* Further private data for which no space exists in mips_fpu_struct */
70 
71 struct mips_fpu_emulator_stats fpuemustats;
72 
73 /* Control registers */
74 
75 #define FPCREG_RID	0	/* $0  = revision id */
76 #define FPCREG_CSR	31	/* $31 = csr */
77 
78 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
79 static const unsigned char ieee_rm[4] = {
80 	[FPU_CSR_RN] = IEEE754_RN,
81 	[FPU_CSR_RZ] = IEEE754_RZ,
82 	[FPU_CSR_RU] = IEEE754_RU,
83 	[FPU_CSR_RD] = IEEE754_RD,
84 };
85 /* Convert IEEE library modes to Mips rounding mode (0..3). */
86 static const unsigned char mips_rm[4] = {
87 	[IEEE754_RN] = FPU_CSR_RN,
88 	[IEEE754_RZ] = FPU_CSR_RZ,
89 	[IEEE754_RD] = FPU_CSR_RD,
90 	[IEEE754_RU] = FPU_CSR_RU,
91 };
92 
93 #if __mips >= 4
94 /* convert condition code register number to csr bit */
95 static const unsigned int fpucondbit[8] = {
96 	FPU_CSR_COND0,
97 	FPU_CSR_COND1,
98 	FPU_CSR_COND2,
99 	FPU_CSR_COND3,
100 	FPU_CSR_COND4,
101 	FPU_CSR_COND5,
102 	FPU_CSR_COND6,
103 	FPU_CSR_COND7
104 };
105 #endif
106 
107 
108 /*
109  * Redundant with logic already in kernel/branch.c,
110  * embedded in compute_return_epc.  At some point,
111  * a single subroutine should be used across both
112  * modules.
113  */
114 static int isBranchInstr(mips_instruction * i)
115 {
116 	switch (MIPSInst_OPCODE(*i)) {
117 	case spec_op:
118 		switch (MIPSInst_FUNC(*i)) {
119 		case jalr_op:
120 		case jr_op:
121 			return 1;
122 		}
123 		break;
124 
125 	case bcond_op:
126 		switch (MIPSInst_RT(*i)) {
127 		case bltz_op:
128 		case bgez_op:
129 		case bltzl_op:
130 		case bgezl_op:
131 		case bltzal_op:
132 		case bgezal_op:
133 		case bltzall_op:
134 		case bgezall_op:
135 			return 1;
136 		}
137 		break;
138 
139 	case j_op:
140 	case jal_op:
141 	case jalx_op:
142 	case beq_op:
143 	case bne_op:
144 	case blez_op:
145 	case bgtz_op:
146 	case beql_op:
147 	case bnel_op:
148 	case blezl_op:
149 	case bgtzl_op:
150 		return 1;
151 
152 	case cop0_op:
153 	case cop1_op:
154 	case cop2_op:
155 	case cop1x_op:
156 		if (MIPSInst_RS(*i) == bc_op)
157 			return 1;
158 		break;
159 	}
160 
161 	return 0;
162 }
163 
164 /*
165  * In the Linux kernel, we support selection of FPR format on the
166  * basis of the Status.FR bit.  This does imply that, if a full 32
167  * FPRs are desired, there needs to be a flip-flop that can be written
168  * to one at that bit position.  In any case, O32 MIPS ABI uses
169  * only the even FPRs (Status.FR = 0).
170  */
171 
172 #define CP0_STATUS_FR_SUPPORT
173 
174 #ifdef CP0_STATUS_FR_SUPPORT
175 #define FR_BIT ST0_FR
176 #else
177 #define FR_BIT 0
178 #endif
179 
180 #define SIFROMREG(si, x) ((si) = \
181 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
182 			(int)ctx->fpr[x] : \
183 			(int)(ctx->fpr[x & ~1] >> 32 ))
184 #define SITOREG(si, x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
185 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
186 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
187 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
188 
189 #define DIFROMREG(di, x) ((di) = \
190 			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
191 #define DITOREG(di, x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
192 			= (di))
193 
194 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
195 #define SPTOREG(sp, x)	SITOREG((sp).bits, x)
196 #define DPFROMREG(dp, x)	DIFROMREG((dp).bits, x)
197 #define DPTOREG(dp, x)	DITOREG((dp).bits, x)
198 
199 /*
200  * Emulate the single floating point instruction pointed at by EPC.
201  * Two instructions if the instruction is in a branch delay slot.
202  */
203 
204 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
205 {
206 	mips_instruction ir;
207 	unsigned long emulpc, contpc;
208 	unsigned int cond;
209 
210 	if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
211 		fpuemustats.errors++;
212 		return SIGBUS;
213 	}
214 
215 	/* XXX NEC Vr54xx bug workaround */
216 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
217 		xcp->cp0_cause &= ~CAUSEF_BD;
218 
219 	if (xcp->cp0_cause & CAUSEF_BD) {
220 		/*
221 		 * The instruction to be emulated is in a branch delay slot
222 		 * which means that we have to  emulate the branch instruction
223 		 * BEFORE we do the cop1 instruction.
224 		 *
225 		 * This branch could be a COP1 branch, but in that case we
226 		 * would have had a trap for that instruction, and would not
227 		 * come through this route.
228 		 *
229 		 * Linux MIPS branch emulator operates on context, updating the
230 		 * cp0_epc.
231 		 */
232 		emulpc = xcp->cp0_epc + 4;	/* Snapshot emulation target */
233 
234 		if (__compute_return_epc(xcp)) {
235 #ifdef CP1DBG
236 			printk("failed to emulate branch at %p\n",
237 				(void *) (xcp->cp0_epc));
238 #endif
239 			return SIGILL;
240 		}
241 		if (get_user(ir, (mips_instruction __user *) emulpc)) {
242 			fpuemustats.errors++;
243 			return SIGBUS;
244 		}
245 		/* __compute_return_epc() will have updated cp0_epc */
246 		contpc = xcp->cp0_epc;
247 		/* In order not to confuse ptrace() et al, tweak context */
248 		xcp->cp0_epc = emulpc - 4;
249 	} else {
250 		emulpc = xcp->cp0_epc;
251 		contpc = xcp->cp0_epc + 4;
252 	}
253 
254       emul:
255 	fpuemustats.emulated++;
256 	switch (MIPSInst_OPCODE(ir)) {
257 	case ldc1_op:{
258 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
259 			MIPSInst_SIMM(ir));
260 		u64 val;
261 
262 		fpuemustats.loads++;
263 		if (get_user(val, va)) {
264 			fpuemustats.errors++;
265 			return SIGBUS;
266 		}
267 		DITOREG(val, MIPSInst_RT(ir));
268 		break;
269 	}
270 
271 	case sdc1_op:{
272 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
273 			MIPSInst_SIMM(ir));
274 		u64 val;
275 
276 		fpuemustats.stores++;
277 		DIFROMREG(val, MIPSInst_RT(ir));
278 		if (put_user(val, va)) {
279 			fpuemustats.errors++;
280 			return SIGBUS;
281 		}
282 		break;
283 	}
284 
285 	case lwc1_op:{
286 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
287 			MIPSInst_SIMM(ir));
288 		u32 val;
289 
290 		fpuemustats.loads++;
291 		if (get_user(val, va)) {
292 			fpuemustats.errors++;
293 			return SIGBUS;
294 		}
295 		SITOREG(val, MIPSInst_RT(ir));
296 		break;
297 	}
298 
299 	case swc1_op:{
300 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
301 			MIPSInst_SIMM(ir));
302 		u32 val;
303 
304 		fpuemustats.stores++;
305 		SIFROMREG(val, MIPSInst_RT(ir));
306 		if (put_user(val, va)) {
307 			fpuemustats.errors++;
308 			return SIGBUS;
309 		}
310 		break;
311 	}
312 
313 	case cop1_op:
314 		switch (MIPSInst_RS(ir)) {
315 
316 #if defined(__mips64)
317 		case dmfc_op:
318 			/* copregister fs -> gpr[rt] */
319 			if (MIPSInst_RT(ir) != 0) {
320 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
321 					MIPSInst_RD(ir));
322 			}
323 			break;
324 
325 		case dmtc_op:
326 			/* copregister fs <- rt */
327 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
328 			break;
329 #endif
330 
331 		case mfc_op:
332 			/* copregister rd -> gpr[rt] */
333 			if (MIPSInst_RT(ir) != 0) {
334 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
335 					MIPSInst_RD(ir));
336 			}
337 			break;
338 
339 		case mtc_op:
340 			/* copregister rd <- rt */
341 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
342 			break;
343 
344 		case cfc_op:{
345 			/* cop control register rd -> gpr[rt] */
346 			u32 value;
347 
348 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
349 				value = ctx->fcr31;
350 				value = (value & ~0x3) | mips_rm[value & 0x3];
351 #ifdef CSRTRACE
352 				printk("%p gpr[%d]<-csr=%08x\n",
353 					(void *) (xcp->cp0_epc),
354 					MIPSInst_RT(ir), value);
355 #endif
356 			}
357 			else if (MIPSInst_RD(ir) == FPCREG_RID)
358 				value = 0;
359 			else
360 				value = 0;
361 			if (MIPSInst_RT(ir))
362 				xcp->regs[MIPSInst_RT(ir)] = value;
363 			break;
364 		}
365 
366 		case ctc_op:{
367 			/* copregister rd <- rt */
368 			u32 value;
369 
370 			if (MIPSInst_RT(ir) == 0)
371 				value = 0;
372 			else
373 				value = xcp->regs[MIPSInst_RT(ir)];
374 
375 			/* we only have one writable control reg
376 			 */
377 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
378 #ifdef CSRTRACE
379 				printk("%p gpr[%d]->csr=%08x\n",
380 					(void *) (xcp->cp0_epc),
381 					MIPSInst_RT(ir), value);
382 #endif
383 				value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
384 				ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
385 				/* convert to ieee library modes */
386 				ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
387 			}
388 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
389 				return SIGFPE;
390 			}
391 			break;
392 		}
393 
394 		case bc_op:{
395 			int likely = 0;
396 
397 			if (xcp->cp0_cause & CAUSEF_BD)
398 				return SIGILL;
399 
400 #if __mips >= 4
401 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
402 #else
403 			cond = ctx->fcr31 & FPU_CSR_COND;
404 #endif
405 			switch (MIPSInst_RT(ir) & 3) {
406 			case bcfl_op:
407 				likely = 1;
408 			case bcf_op:
409 				cond = !cond;
410 				break;
411 			case bctl_op:
412 				likely = 1;
413 			case bct_op:
414 				break;
415 			default:
416 				/* thats an illegal instruction */
417 				return SIGILL;
418 			}
419 
420 			xcp->cp0_cause |= CAUSEF_BD;
421 			if (cond) {
422 				/* branch taken: emulate dslot
423 				 * instruction
424 				 */
425 				xcp->cp0_epc += 4;
426 				contpc = (xcp->cp0_epc +
427 					(MIPSInst_SIMM(ir) << 2));
428 
429 				if (get_user(ir,
430 				    (mips_instruction __user *) xcp->cp0_epc)) {
431 					fpuemustats.errors++;
432 					return SIGBUS;
433 				}
434 
435 				switch (MIPSInst_OPCODE(ir)) {
436 				case lwc1_op:
437 				case swc1_op:
438 #if (__mips >= 2 || defined(__mips64))
439 				case ldc1_op:
440 				case sdc1_op:
441 #endif
442 				case cop1_op:
443 #if __mips >= 4 && __mips != 32
444 				case cop1x_op:
445 #endif
446 					/* its one of ours */
447 					goto emul;
448 #if __mips >= 4
449 				case spec_op:
450 					if (MIPSInst_FUNC(ir) == movc_op)
451 						goto emul;
452 					break;
453 #endif
454 				}
455 
456 				/*
457 				 * Single step the non-cp1
458 				 * instruction in the dslot
459 				 */
460 				return mips_dsemul(xcp, ir, contpc);
461 			}
462 			else {
463 				/* branch not taken */
464 				if (likely) {
465 					/*
466 					 * branch likely nullifies
467 					 * dslot if not taken
468 					 */
469 					xcp->cp0_epc += 4;
470 					contpc += 4;
471 					/*
472 					 * else continue & execute
473 					 * dslot as normal insn
474 					 */
475 				}
476 			}
477 			break;
478 		}
479 
480 		default:
481 			if (!(MIPSInst_RS(ir) & 0x10))
482 				return SIGILL;
483 			{
484 				int sig;
485 
486 				/* a real fpu computation instruction */
487 				if ((sig = fpu_emu(xcp, ctx, ir)))
488 					return sig;
489 			}
490 		}
491 		break;
492 
493 #if __mips >= 4 && __mips != 32
494 	case cop1x_op:{
495 		int sig;
496 
497 		if ((sig = fpux_emu(xcp, ctx, ir)))
498 			return sig;
499 		break;
500 	}
501 #endif
502 
503 #if __mips >= 4
504 	case spec_op:
505 		if (MIPSInst_FUNC(ir) != movc_op)
506 			return SIGILL;
507 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
508 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
509 			xcp->regs[MIPSInst_RD(ir)] =
510 				xcp->regs[MIPSInst_RS(ir)];
511 		break;
512 #endif
513 
514 	default:
515 		return SIGILL;
516 	}
517 
518 	/* we did it !! */
519 	xcp->cp0_epc = contpc;
520 	xcp->cp0_cause &= ~CAUSEF_BD;
521 
522 	return 0;
523 }
524 
525 /*
526  * Conversion table from MIPS compare ops 48-63
527  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
528  */
529 static const unsigned char cmptab[8] = {
530 	0,			/* cmp_0 (sig) cmp_sf */
531 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
532 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
533 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
534 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
535 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
536 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
537 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
538 };
539 
540 
541 #if __mips >= 4 && __mips != 32
542 
543 /*
544  * Additional MIPS4 instructions
545  */
546 
547 #define DEF3OP(name, p, f1, f2, f3) \
548 static ieee754##p fpemu_##p##_##name(ieee754##p r, ieee754##p s, \
549     ieee754##p t) \
550 { \
551 	struct _ieee754_csr ieee754_csr_save; \
552 	s = f1(s, t); \
553 	ieee754_csr_save = ieee754_csr; \
554 	s = f2(s, r); \
555 	ieee754_csr_save.cx |= ieee754_csr.cx; \
556 	ieee754_csr_save.sx |= ieee754_csr.sx; \
557 	s = f3(s); \
558 	ieee754_csr.cx |= ieee754_csr_save.cx; \
559 	ieee754_csr.sx |= ieee754_csr_save.sx; \
560 	return s; \
561 }
562 
563 static ieee754dp fpemu_dp_recip(ieee754dp d)
564 {
565 	return ieee754dp_div(ieee754dp_one(0), d);
566 }
567 
568 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
569 {
570 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
571 }
572 
573 static ieee754sp fpemu_sp_recip(ieee754sp s)
574 {
575 	return ieee754sp_div(ieee754sp_one(0), s);
576 }
577 
578 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
579 {
580 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
581 }
582 
583 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, );
584 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, );
585 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
586 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
587 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, );
588 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, );
589 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
590 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
591 
592 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
593 	mips_instruction ir)
594 {
595 	unsigned rcsr = 0;	/* resulting csr */
596 
597 	fpuemustats.cp1xops++;
598 
599 	switch (MIPSInst_FMA_FFMT(ir)) {
600 	case s_fmt:{		/* 0 */
601 
602 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
603 		ieee754sp fd, fr, fs, ft;
604 		u32 __user *va;
605 		u32 val;
606 
607 		switch (MIPSInst_FUNC(ir)) {
608 		case lwxc1_op:
609 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
610 				xcp->regs[MIPSInst_FT(ir)]);
611 
612 			fpuemustats.loads++;
613 			if (get_user(val, va)) {
614 				fpuemustats.errors++;
615 				return SIGBUS;
616 			}
617 			SITOREG(val, MIPSInst_FD(ir));
618 			break;
619 
620 		case swxc1_op:
621 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
622 				xcp->regs[MIPSInst_FT(ir)]);
623 
624 			fpuemustats.stores++;
625 
626 			SIFROMREG(val, MIPSInst_FS(ir));
627 			if (put_user(val, va)) {
628 				fpuemustats.errors++;
629 				return SIGBUS;
630 			}
631 			break;
632 
633 		case madd_s_op:
634 			handler = fpemu_sp_madd;
635 			goto scoptop;
636 		case msub_s_op:
637 			handler = fpemu_sp_msub;
638 			goto scoptop;
639 		case nmadd_s_op:
640 			handler = fpemu_sp_nmadd;
641 			goto scoptop;
642 		case nmsub_s_op:
643 			handler = fpemu_sp_nmsub;
644 			goto scoptop;
645 
646 		      scoptop:
647 			SPFROMREG(fr, MIPSInst_FR(ir));
648 			SPFROMREG(fs, MIPSInst_FS(ir));
649 			SPFROMREG(ft, MIPSInst_FT(ir));
650 			fd = (*handler) (fr, fs, ft);
651 			SPTOREG(fd, MIPSInst_FD(ir));
652 
653 		      copcsr:
654 			if (ieee754_cxtest(IEEE754_INEXACT))
655 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
656 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
657 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
658 			if (ieee754_cxtest(IEEE754_OVERFLOW))
659 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
660 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
661 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
662 
663 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
664 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
665 				/*printk ("SIGFPE: fpu csr = %08x\n",
666 				   ctx->fcr31); */
667 				return SIGFPE;
668 			}
669 
670 			break;
671 
672 		default:
673 			return SIGILL;
674 		}
675 		break;
676 	}
677 
678 	case d_fmt:{		/* 1 */
679 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
680 		ieee754dp fd, fr, fs, ft;
681 		u64 __user *va;
682 		u64 val;
683 
684 		switch (MIPSInst_FUNC(ir)) {
685 		case ldxc1_op:
686 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
687 				xcp->regs[MIPSInst_FT(ir)]);
688 
689 			fpuemustats.loads++;
690 			if (get_user(val, va)) {
691 				fpuemustats.errors++;
692 				return SIGBUS;
693 			}
694 			DITOREG(val, MIPSInst_FD(ir));
695 			break;
696 
697 		case sdxc1_op:
698 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
699 				xcp->regs[MIPSInst_FT(ir)]);
700 
701 			fpuemustats.stores++;
702 			DIFROMREG(val, MIPSInst_FS(ir));
703 			if (put_user(val, va)) {
704 				fpuemustats.errors++;
705 				return SIGBUS;
706 			}
707 			break;
708 
709 		case madd_d_op:
710 			handler = fpemu_dp_madd;
711 			goto dcoptop;
712 		case msub_d_op:
713 			handler = fpemu_dp_msub;
714 			goto dcoptop;
715 		case nmadd_d_op:
716 			handler = fpemu_dp_nmadd;
717 			goto dcoptop;
718 		case nmsub_d_op:
719 			handler = fpemu_dp_nmsub;
720 			goto dcoptop;
721 
722 		      dcoptop:
723 			DPFROMREG(fr, MIPSInst_FR(ir));
724 			DPFROMREG(fs, MIPSInst_FS(ir));
725 			DPFROMREG(ft, MIPSInst_FT(ir));
726 			fd = (*handler) (fr, fs, ft);
727 			DPTOREG(fd, MIPSInst_FD(ir));
728 			goto copcsr;
729 
730 		default:
731 			return SIGILL;
732 		}
733 		break;
734 	}
735 
736 	case 0x7:		/* 7 */
737 		if (MIPSInst_FUNC(ir) != pfetch_op) {
738 			return SIGILL;
739 		}
740 		/* ignore prefx operation */
741 		break;
742 
743 	default:
744 		return SIGILL;
745 	}
746 
747 	return 0;
748 }
749 #endif
750 
751 
752 
753 /*
754  * Emulate a single COP1 arithmetic instruction.
755  */
756 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
757 	mips_instruction ir)
758 {
759 	int rfmt;		/* resulting format */
760 	unsigned rcsr = 0;	/* resulting csr */
761 	unsigned cond;
762 	union {
763 		ieee754dp d;
764 		ieee754sp s;
765 		int w;
766 #ifdef __mips64
767 		s64 l;
768 #endif
769 	} rv;			/* resulting value */
770 
771 	fpuemustats.cp1ops++;
772 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
773 	case s_fmt:{		/* 0 */
774 		union {
775 			ieee754sp(*b) (ieee754sp, ieee754sp);
776 			ieee754sp(*u) (ieee754sp);
777 		} handler;
778 
779 		switch (MIPSInst_FUNC(ir)) {
780 			/* binary ops */
781 		case fadd_op:
782 			handler.b = ieee754sp_add;
783 			goto scopbop;
784 		case fsub_op:
785 			handler.b = ieee754sp_sub;
786 			goto scopbop;
787 		case fmul_op:
788 			handler.b = ieee754sp_mul;
789 			goto scopbop;
790 		case fdiv_op:
791 			handler.b = ieee754sp_div;
792 			goto scopbop;
793 
794 			/* unary  ops */
795 #if __mips >= 2 || defined(__mips64)
796 		case fsqrt_op:
797 			handler.u = ieee754sp_sqrt;
798 			goto scopuop;
799 #endif
800 #if __mips >= 4 && __mips != 32
801 		case frsqrt_op:
802 			handler.u = fpemu_sp_rsqrt;
803 			goto scopuop;
804 		case frecip_op:
805 			handler.u = fpemu_sp_recip;
806 			goto scopuop;
807 #endif
808 #if __mips >= 4
809 		case fmovc_op:
810 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
811 			if (((ctx->fcr31 & cond) != 0) !=
812 				((MIPSInst_FT(ir) & 1) != 0))
813 				return 0;
814 			SPFROMREG(rv.s, MIPSInst_FS(ir));
815 			break;
816 		case fmovz_op:
817 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
818 				return 0;
819 			SPFROMREG(rv.s, MIPSInst_FS(ir));
820 			break;
821 		case fmovn_op:
822 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
823 				return 0;
824 			SPFROMREG(rv.s, MIPSInst_FS(ir));
825 			break;
826 #endif
827 		case fabs_op:
828 			handler.u = ieee754sp_abs;
829 			goto scopuop;
830 		case fneg_op:
831 			handler.u = ieee754sp_neg;
832 			goto scopuop;
833 		case fmov_op:
834 			/* an easy one */
835 			SPFROMREG(rv.s, MIPSInst_FS(ir));
836 			goto copcsr;
837 
838 			/* binary op on handler */
839 		      scopbop:
840 			{
841 				ieee754sp fs, ft;
842 
843 				SPFROMREG(fs, MIPSInst_FS(ir));
844 				SPFROMREG(ft, MIPSInst_FT(ir));
845 
846 				rv.s = (*handler.b) (fs, ft);
847 				goto copcsr;
848 			}
849 		      scopuop:
850 			{
851 				ieee754sp fs;
852 
853 				SPFROMREG(fs, MIPSInst_FS(ir));
854 				rv.s = (*handler.u) (fs);
855 				goto copcsr;
856 			}
857 		      copcsr:
858 			if (ieee754_cxtest(IEEE754_INEXACT))
859 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
860 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
861 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
862 			if (ieee754_cxtest(IEEE754_OVERFLOW))
863 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
864 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
865 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
866 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
867 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
868 			break;
869 
870 			/* unary conv ops */
871 		case fcvts_op:
872 			return SIGILL;	/* not defined */
873 		case fcvtd_op:{
874 			ieee754sp fs;
875 
876 			SPFROMREG(fs, MIPSInst_FS(ir));
877 			rv.d = ieee754dp_fsp(fs);
878 			rfmt = d_fmt;
879 			goto copcsr;
880 		}
881 		case fcvtw_op:{
882 			ieee754sp fs;
883 
884 			SPFROMREG(fs, MIPSInst_FS(ir));
885 			rv.w = ieee754sp_tint(fs);
886 			rfmt = w_fmt;
887 			goto copcsr;
888 		}
889 
890 #if __mips >= 2 || defined(__mips64)
891 		case fround_op:
892 		case ftrunc_op:
893 		case fceil_op:
894 		case ffloor_op:{
895 			unsigned int oldrm = ieee754_csr.rm;
896 			ieee754sp fs;
897 
898 			SPFROMREG(fs, MIPSInst_FS(ir));
899 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
900 			rv.w = ieee754sp_tint(fs);
901 			ieee754_csr.rm = oldrm;
902 			rfmt = w_fmt;
903 			goto copcsr;
904 		}
905 #endif /* __mips >= 2 */
906 
907 #if defined(__mips64)
908 		case fcvtl_op:{
909 			ieee754sp fs;
910 
911 			SPFROMREG(fs, MIPSInst_FS(ir));
912 			rv.l = ieee754sp_tlong(fs);
913 			rfmt = l_fmt;
914 			goto copcsr;
915 		}
916 
917 		case froundl_op:
918 		case ftruncl_op:
919 		case fceill_op:
920 		case ffloorl_op:{
921 			unsigned int oldrm = ieee754_csr.rm;
922 			ieee754sp fs;
923 
924 			SPFROMREG(fs, MIPSInst_FS(ir));
925 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
926 			rv.l = ieee754sp_tlong(fs);
927 			ieee754_csr.rm = oldrm;
928 			rfmt = l_fmt;
929 			goto copcsr;
930 		}
931 #endif /* defined(__mips64) */
932 
933 		default:
934 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
935 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
936 				ieee754sp fs, ft;
937 
938 				SPFROMREG(fs, MIPSInst_FS(ir));
939 				SPFROMREG(ft, MIPSInst_FT(ir));
940 				rv.w = ieee754sp_cmp(fs, ft,
941 					cmptab[cmpop & 0x7], cmpop & 0x8);
942 				rfmt = -1;
943 				if ((cmpop & 0x8) && ieee754_cxtest
944 					(IEEE754_INVALID_OPERATION))
945 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
946 				else
947 					goto copcsr;
948 
949 			}
950 			else {
951 				return SIGILL;
952 			}
953 			break;
954 		}
955 		break;
956 	}
957 
958 	case d_fmt:{
959 		union {
960 			ieee754dp(*b) (ieee754dp, ieee754dp);
961 			ieee754dp(*u) (ieee754dp);
962 		} handler;
963 
964 		switch (MIPSInst_FUNC(ir)) {
965 			/* binary ops */
966 		case fadd_op:
967 			handler.b = ieee754dp_add;
968 			goto dcopbop;
969 		case fsub_op:
970 			handler.b = ieee754dp_sub;
971 			goto dcopbop;
972 		case fmul_op:
973 			handler.b = ieee754dp_mul;
974 			goto dcopbop;
975 		case fdiv_op:
976 			handler.b = ieee754dp_div;
977 			goto dcopbop;
978 
979 			/* unary  ops */
980 #if __mips >= 2 || defined(__mips64)
981 		case fsqrt_op:
982 			handler.u = ieee754dp_sqrt;
983 			goto dcopuop;
984 #endif
985 #if __mips >= 4 && __mips != 32
986 		case frsqrt_op:
987 			handler.u = fpemu_dp_rsqrt;
988 			goto dcopuop;
989 		case frecip_op:
990 			handler.u = fpemu_dp_recip;
991 			goto dcopuop;
992 #endif
993 #if __mips >= 4
994 		case fmovc_op:
995 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
996 			if (((ctx->fcr31 & cond) != 0) !=
997 				((MIPSInst_FT(ir) & 1) != 0))
998 				return 0;
999 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1000 			break;
1001 		case fmovz_op:
1002 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1003 				return 0;
1004 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1005 			break;
1006 		case fmovn_op:
1007 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1008 				return 0;
1009 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1010 			break;
1011 #endif
1012 		case fabs_op:
1013 			handler.u = ieee754dp_abs;
1014 			goto dcopuop;
1015 
1016 		case fneg_op:
1017 			handler.u = ieee754dp_neg;
1018 			goto dcopuop;
1019 
1020 		case fmov_op:
1021 			/* an easy one */
1022 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1023 			goto copcsr;
1024 
1025 			/* binary op on handler */
1026 		      dcopbop:{
1027 				ieee754dp fs, ft;
1028 
1029 				DPFROMREG(fs, MIPSInst_FS(ir));
1030 				DPFROMREG(ft, MIPSInst_FT(ir));
1031 
1032 				rv.d = (*handler.b) (fs, ft);
1033 				goto copcsr;
1034 			}
1035 		      dcopuop:{
1036 				ieee754dp fs;
1037 
1038 				DPFROMREG(fs, MIPSInst_FS(ir));
1039 				rv.d = (*handler.u) (fs);
1040 				goto copcsr;
1041 			}
1042 
1043 			/* unary conv ops */
1044 		case fcvts_op:{
1045 			ieee754dp fs;
1046 
1047 			DPFROMREG(fs, MIPSInst_FS(ir));
1048 			rv.s = ieee754sp_fdp(fs);
1049 			rfmt = s_fmt;
1050 			goto copcsr;
1051 		}
1052 		case fcvtd_op:
1053 			return SIGILL;	/* not defined */
1054 
1055 		case fcvtw_op:{
1056 			ieee754dp fs;
1057 
1058 			DPFROMREG(fs, MIPSInst_FS(ir));
1059 			rv.w = ieee754dp_tint(fs);	/* wrong */
1060 			rfmt = w_fmt;
1061 			goto copcsr;
1062 		}
1063 
1064 #if __mips >= 2 || defined(__mips64)
1065 		case fround_op:
1066 		case ftrunc_op:
1067 		case fceil_op:
1068 		case ffloor_op:{
1069 			unsigned int oldrm = ieee754_csr.rm;
1070 			ieee754dp fs;
1071 
1072 			DPFROMREG(fs, MIPSInst_FS(ir));
1073 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1074 			rv.w = ieee754dp_tint(fs);
1075 			ieee754_csr.rm = oldrm;
1076 			rfmt = w_fmt;
1077 			goto copcsr;
1078 		}
1079 #endif
1080 
1081 #if defined(__mips64)
1082 		case fcvtl_op:{
1083 			ieee754dp fs;
1084 
1085 			DPFROMREG(fs, MIPSInst_FS(ir));
1086 			rv.l = ieee754dp_tlong(fs);
1087 			rfmt = l_fmt;
1088 			goto copcsr;
1089 		}
1090 
1091 		case froundl_op:
1092 		case ftruncl_op:
1093 		case fceill_op:
1094 		case ffloorl_op:{
1095 			unsigned int oldrm = ieee754_csr.rm;
1096 			ieee754dp fs;
1097 
1098 			DPFROMREG(fs, MIPSInst_FS(ir));
1099 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1100 			rv.l = ieee754dp_tlong(fs);
1101 			ieee754_csr.rm = oldrm;
1102 			rfmt = l_fmt;
1103 			goto copcsr;
1104 		}
1105 #endif /* __mips >= 3 */
1106 
1107 		default:
1108 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1109 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1110 				ieee754dp fs, ft;
1111 
1112 				DPFROMREG(fs, MIPSInst_FS(ir));
1113 				DPFROMREG(ft, MIPSInst_FT(ir));
1114 				rv.w = ieee754dp_cmp(fs, ft,
1115 					cmptab[cmpop & 0x7], cmpop & 0x8);
1116 				rfmt = -1;
1117 				if ((cmpop & 0x8)
1118 					&&
1119 					ieee754_cxtest
1120 					(IEEE754_INVALID_OPERATION))
1121 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1122 				else
1123 					goto copcsr;
1124 
1125 			}
1126 			else {
1127 				return SIGILL;
1128 			}
1129 			break;
1130 		}
1131 		break;
1132 	}
1133 
1134 	case w_fmt:{
1135 		ieee754sp fs;
1136 
1137 		switch (MIPSInst_FUNC(ir)) {
1138 		case fcvts_op:
1139 			/* convert word to single precision real */
1140 			SPFROMREG(fs, MIPSInst_FS(ir));
1141 			rv.s = ieee754sp_fint(fs.bits);
1142 			rfmt = s_fmt;
1143 			goto copcsr;
1144 		case fcvtd_op:
1145 			/* convert word to double precision real */
1146 			SPFROMREG(fs, MIPSInst_FS(ir));
1147 			rv.d = ieee754dp_fint(fs.bits);
1148 			rfmt = d_fmt;
1149 			goto copcsr;
1150 		default:
1151 			return SIGILL;
1152 		}
1153 		break;
1154 	}
1155 
1156 #if defined(__mips64)
1157 	case l_fmt:{
1158 		switch (MIPSInst_FUNC(ir)) {
1159 		case fcvts_op:
1160 			/* convert long to single precision real */
1161 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1162 			rfmt = s_fmt;
1163 			goto copcsr;
1164 		case fcvtd_op:
1165 			/* convert long to double precision real */
1166 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1167 			rfmt = d_fmt;
1168 			goto copcsr;
1169 		default:
1170 			return SIGILL;
1171 		}
1172 		break;
1173 	}
1174 #endif
1175 
1176 	default:
1177 		return SIGILL;
1178 	}
1179 
1180 	/*
1181 	 * Update the fpu CSR register for this operation.
1182 	 * If an exception is required, generate a tidy SIGFPE exception,
1183 	 * without updating the result register.
1184 	 * Note: cause exception bits do not accumulate, they are rewritten
1185 	 * for each op; only the flag/sticky bits accumulate.
1186 	 */
1187 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1188 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1189 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1190 		return SIGFPE;
1191 	}
1192 
1193 	/*
1194 	 * Now we can safely write the result back to the register file.
1195 	 */
1196 	switch (rfmt) {
1197 	case -1:{
1198 #if __mips >= 4
1199 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1200 #else
1201 		cond = FPU_CSR_COND;
1202 #endif
1203 		if (rv.w)
1204 			ctx->fcr31 |= cond;
1205 		else
1206 			ctx->fcr31 &= ~cond;
1207 		break;
1208 	}
1209 	case d_fmt:
1210 		DPTOREG(rv.d, MIPSInst_FD(ir));
1211 		break;
1212 	case s_fmt:
1213 		SPTOREG(rv.s, MIPSInst_FD(ir));
1214 		break;
1215 	case w_fmt:
1216 		SITOREG(rv.w, MIPSInst_FD(ir));
1217 		break;
1218 #if defined(__mips64)
1219 	case l_fmt:
1220 		DITOREG(rv.l, MIPSInst_FD(ir));
1221 		break;
1222 #endif
1223 	default:
1224 		return SIGILL;
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
1231 	int has_fpu)
1232 {
1233 	unsigned long oldepc, prevepc;
1234 	mips_instruction insn;
1235 	int sig = 0;
1236 
1237 	oldepc = xcp->cp0_epc;
1238 	do {
1239 		prevepc = xcp->cp0_epc;
1240 
1241 		if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1242 			fpuemustats.errors++;
1243 			return SIGBUS;
1244 		}
1245 		if (insn == 0)
1246 			xcp->cp0_epc += 4;	/* skip nops */
1247 		else {
1248 			/*
1249 			 * The 'ieee754_csr' is an alias of
1250 			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1251 			 * ieee754_csr.  But ieee754_csr.rm is ieee
1252 			 * library modes. (not mips rounding mode)
1253 			 */
1254 			/* convert to ieee library modes */
1255 			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1256 			sig = cop1Emulate(xcp, ctx);
1257 			/* revert to mips rounding mode */
1258 			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1259 		}
1260 
1261 		if (has_fpu)
1262 			break;
1263 		if (sig)
1264 			break;
1265 
1266 		cond_resched();
1267 	} while (xcp->cp0_epc > prevepc);
1268 
1269 	/* SIGILL indicates a non-fpu instruction */
1270 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1271 		/* but if epc has advanced, then ignore it */
1272 		sig = 0;
1273 
1274 	return sig;
1275 }
1276 
1277 #ifdef CONFIG_DEBUG_FS
1278 extern struct dentry *mips_debugfs_dir;
1279 static int __init debugfs_fpuemu(void)
1280 {
1281 	struct dentry *d, *dir;
1282 	int i;
1283 	static struct {
1284 		const char *name;
1285 		unsigned int *v;
1286 	} vars[] __initdata = {
1287 		{ "emulated", &fpuemustats.emulated },
1288 		{ "loads",    &fpuemustats.loads },
1289 		{ "stores",   &fpuemustats.stores },
1290 		{ "cp1ops",   &fpuemustats.cp1ops },
1291 		{ "cp1xops",  &fpuemustats.cp1xops },
1292 		{ "errors",   &fpuemustats.errors },
1293 	};
1294 
1295 	if (!mips_debugfs_dir)
1296 		return -ENODEV;
1297 	dir = debugfs_create_dir("fpuemustats", mips_debugfs_dir);
1298 	if (!dir)
1299 		return -ENOMEM;
1300 	for (i = 0; i < ARRAY_SIZE(vars); i++) {
1301 		d = debugfs_create_u32(vars[i].name, S_IRUGO, dir, vars[i].v);
1302 		if (!d)
1303 			return -ENOMEM;
1304 	}
1305 	return 0;
1306 }
1307 __initcall(debugfs_fpuemu);
1308 #endif
1309