xref: /linux/arch/mips/math-emu/cp1emu.c (revision 333d1f6794b341df11f286f5dca123c6dc64a770)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  * http://www.algor.co.uk
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * A complete emulator for MIPS coprocessor 1 instructions.  This is
25  * required for #float(switch) or #float(trap), where it catches all
26  * COP1 instructions via the "CoProcessor Unusable" exception.
27  *
28  * More surprisingly it is also required for #float(ieee), to help out
29  * the hardware fpu at the boundaries of the IEEE-754 representation
30  * (denormalised values, infinities, underflow, etc).  It is made
31  * quite nasty because emulation of some non-COP1 instructions is
32  * required, e.g. in branch delay slots.
33  *
34  * Note if you know that you won't have an fpu, then you'll get much
35  * better performance by compiling with -msoft-float!
36  */
37 #include <linux/sched.h>
38 
39 #include <asm/inst.h>
40 #include <asm/bootinfo.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-features.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
50 
51 #include "ieee754.h"
52 #include "dsemul.h"
53 
54 /* Strap kernel emulator for full MIPS IV emulation */
55 
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
60 
61 /* Function which emulates a floating point instruction. */
62 
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_soft_struct *,
64 	mips_instruction);
65 
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 	struct mips_fpu_soft_struct *, mips_instruction);
69 #endif
70 
71 /* Further private data for which no space exists in mips_fpu_soft_struct */
72 
73 struct mips_fpu_emulator_private fpuemuprivate;
74 
75 /* Control registers */
76 
77 #define FPCREG_RID	0	/* $0  = revision id */
78 #define FPCREG_CSR	31	/* $31 = csr */
79 
80 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
81 static const unsigned char ieee_rm[4] = {
82 	IEEE754_RN, IEEE754_RZ, IEEE754_RU, IEEE754_RD
83 };
84 
85 #if __mips >= 4
86 /* convert condition code register number to csr bit */
87 static const unsigned int fpucondbit[8] = {
88 	FPU_CSR_COND0,
89 	FPU_CSR_COND1,
90 	FPU_CSR_COND2,
91 	FPU_CSR_COND3,
92 	FPU_CSR_COND4,
93 	FPU_CSR_COND5,
94 	FPU_CSR_COND6,
95 	FPU_CSR_COND7
96 };
97 #endif
98 
99 
100 /*
101  * Redundant with logic already in kernel/branch.c,
102  * embedded in compute_return_epc.  At some point,
103  * a single subroutine should be used across both
104  * modules.
105  */
106 static int isBranchInstr(mips_instruction * i)
107 {
108 	switch (MIPSInst_OPCODE(*i)) {
109 	case spec_op:
110 		switch (MIPSInst_FUNC(*i)) {
111 		case jalr_op:
112 		case jr_op:
113 			return 1;
114 		}
115 		break;
116 
117 	case bcond_op:
118 		switch (MIPSInst_RT(*i)) {
119 		case bltz_op:
120 		case bgez_op:
121 		case bltzl_op:
122 		case bgezl_op:
123 		case bltzal_op:
124 		case bgezal_op:
125 		case bltzall_op:
126 		case bgezall_op:
127 			return 1;
128 		}
129 		break;
130 
131 	case j_op:
132 	case jal_op:
133 	case jalx_op:
134 	case beq_op:
135 	case bne_op:
136 	case blez_op:
137 	case bgtz_op:
138 	case beql_op:
139 	case bnel_op:
140 	case blezl_op:
141 	case bgtzl_op:
142 		return 1;
143 
144 	case cop0_op:
145 	case cop1_op:
146 	case cop2_op:
147 	case cop1x_op:
148 		if (MIPSInst_RS(*i) == bc_op)
149 			return 1;
150 		break;
151 	}
152 
153 	return 0;
154 }
155 
156 /*
157  * In the Linux kernel, we support selection of FPR format on the
158  * basis of the Status.FR bit.  This does imply that, if a full 32
159  * FPRs are desired, there needs to be a flip-flop that can be written
160  * to one at that bit position.  In any case, O32 MIPS ABI uses
161  * only the even FPRs (Status.FR = 0).
162  */
163 
164 #define CP0_STATUS_FR_SUPPORT
165 
166 #ifdef CP0_STATUS_FR_SUPPORT
167 #define FR_BIT ST0_FR
168 #else
169 #define FR_BIT 0
170 #endif
171 
172 #define SIFROMREG(si,x)	((si) = \
173 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
174 			(int)ctx->fpr[x] : \
175 			(int)(ctx->fpr[x & ~1] >> 32 ))
176 #define SITOREG(si,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
177 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
178 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
179 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
180 
181 #define DIFROMREG(di,x)	((di) = \
182 			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
183 #define DITOREG(di,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
184 			= (di))
185 
186 #define SPFROMREG(sp,x)	SIFROMREG((sp).bits,x)
187 #define SPTOREG(sp,x)	SITOREG((sp).bits,x)
188 #define DPFROMREG(dp,x)	DIFROMREG((dp).bits,x)
189 #define DPTOREG(dp,x)	DITOREG((dp).bits,x)
190 
191 /*
192  * Emulate the single floating point instruction pointed at by EPC.
193  * Two instructions if the instruction is in a branch delay slot.
194  */
195 
196 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx)
197 {
198 	mips_instruction ir;
199 	void * emulpc, *contpc;
200 	unsigned int cond;
201 
202 	if (get_user(ir, (mips_instruction *) xcp->cp0_epc)) {
203 		fpuemuprivate.stats.errors++;
204 		return SIGBUS;
205 	}
206 
207 	/* XXX NEC Vr54xx bug workaround */
208 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
209 		xcp->cp0_cause &= ~CAUSEF_BD;
210 
211 	if (xcp->cp0_cause & CAUSEF_BD) {
212 		/*
213 		 * The instruction to be emulated is in a branch delay slot
214 		 * which means that we have to  emulate the branch instruction
215 		 * BEFORE we do the cop1 instruction.
216 		 *
217 		 * This branch could be a COP1 branch, but in that case we
218 		 * would have had a trap for that instruction, and would not
219 		 * come through this route.
220 		 *
221 		 * Linux MIPS branch emulator operates on context, updating the
222 		 * cp0_epc.
223 		 */
224 		emulpc = (void *) (xcp->cp0_epc + 4);	/* Snapshot emulation target */
225 
226 		if (__compute_return_epc(xcp)) {
227 #ifdef CP1DBG
228 			printk("failed to emulate branch at %p\n",
229 				(void *) (xcp->cp0_epc));
230 #endif
231 			return SIGILL;
232 		}
233 		if (get_user(ir, (mips_instruction *) emulpc)) {
234 			fpuemuprivate.stats.errors++;
235 			return SIGBUS;
236 		}
237 		/* __compute_return_epc() will have updated cp0_epc */
238 		contpc = (void *)  xcp->cp0_epc;
239 		/* In order not to confuse ptrace() et al, tweak context */
240 		xcp->cp0_epc = (unsigned long) emulpc - 4;
241 	} else {
242 		emulpc = (void *)  xcp->cp0_epc;
243 		contpc = (void *) (xcp->cp0_epc + 4);
244 	}
245 
246       emul:
247 	fpuemuprivate.stats.emulated++;
248 	switch (MIPSInst_OPCODE(ir)) {
249 #ifndef SINGLE_ONLY_FPU
250 	case ldc1_op:{
251 		u64 *va = (void *) (xcp->regs[MIPSInst_RS(ir)] +
252 			MIPSInst_SIMM(ir));
253 		u64 val;
254 
255 		fpuemuprivate.stats.loads++;
256 		if (get_user(val, va)) {
257 			fpuemuprivate.stats.errors++;
258 			return SIGBUS;
259 		}
260 		DITOREG(val, MIPSInst_RT(ir));
261 		break;
262 	}
263 
264 	case sdc1_op:{
265 		u64 *va = (void *) (xcp->regs[MIPSInst_RS(ir)] +
266 			MIPSInst_SIMM(ir));
267 		u64 val;
268 
269 		fpuemuprivate.stats.stores++;
270 		DIFROMREG(val, MIPSInst_RT(ir));
271 		if (put_user(val, va)) {
272 			fpuemuprivate.stats.errors++;
273 			return SIGBUS;
274 		}
275 		break;
276 	}
277 #endif
278 
279 	case lwc1_op:{
280 		u32 *va = (void *) (xcp->regs[MIPSInst_RS(ir)] +
281 			MIPSInst_SIMM(ir));
282 		u32 val;
283 
284 		fpuemuprivate.stats.loads++;
285 		if (get_user(val, va)) {
286 			fpuemuprivate.stats.errors++;
287 			return SIGBUS;
288 		}
289 #ifdef SINGLE_ONLY_FPU
290 		if (MIPSInst_RT(ir) & 1) {
291 			/* illegal register in single-float mode */
292 			return SIGILL;
293 		}
294 #endif
295 		SITOREG(val, MIPSInst_RT(ir));
296 		break;
297 	}
298 
299 	case swc1_op:{
300 		u32 *va = (void *) (xcp->regs[MIPSInst_RS(ir)] +
301 			MIPSInst_SIMM(ir));
302 		u32 val;
303 
304 		fpuemuprivate.stats.stores++;
305 #ifdef SINGLE_ONLY_FPU
306 		if (MIPSInst_RT(ir) & 1) {
307 			/* illegal register in single-float mode */
308 			return SIGILL;
309 		}
310 #endif
311 		SIFROMREG(val, MIPSInst_RT(ir));
312 		if (put_user(val, va)) {
313 			fpuemuprivate.stats.errors++;
314 			return SIGBUS;
315 		}
316 		break;
317 	}
318 
319 	case cop1_op:
320 		switch (MIPSInst_RS(ir)) {
321 
322 #if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
323 		case dmfc_op:
324 			/* copregister fs -> gpr[rt] */
325 			if (MIPSInst_RT(ir) != 0) {
326 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
327 					MIPSInst_RD(ir));
328 			}
329 			break;
330 
331 		case dmtc_op:
332 			/* copregister fs <- rt */
333 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
334 			break;
335 #endif
336 
337 		case mfc_op:
338 			/* copregister rd -> gpr[rt] */
339 #ifdef SINGLE_ONLY_FPU
340 			if (MIPSInst_RD(ir) & 1) {
341 				/* illegal register in single-float mode */
342 				return SIGILL;
343 			}
344 #endif
345 			if (MIPSInst_RT(ir) != 0) {
346 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
347 					MIPSInst_RD(ir));
348 			}
349 			break;
350 
351 		case mtc_op:
352 			/* copregister rd <- rt */
353 #ifdef SINGLE_ONLY_FPU
354 			if (MIPSInst_RD(ir) & 1) {
355 				/* illegal register in single-float mode */
356 				return SIGILL;
357 			}
358 #endif
359 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
360 			break;
361 
362 		case cfc_op:{
363 			/* cop control register rd -> gpr[rt] */
364 			u32 value;
365 
366 			if (ir == CP1UNDEF) {
367 				return do_dsemulret(xcp);
368 			}
369 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
370 				value = ctx->fcr31;
371 #ifdef CSRTRACE
372 				printk("%p gpr[%d]<-csr=%08x\n",
373 					(void *) (xcp->cp0_epc),
374 					MIPSInst_RT(ir), value);
375 #endif
376 			}
377 			else if (MIPSInst_RD(ir) == FPCREG_RID)
378 				value = 0;
379 			else
380 				value = 0;
381 			if (MIPSInst_RT(ir))
382 				xcp->regs[MIPSInst_RT(ir)] = value;
383 			break;
384 		}
385 
386 		case ctc_op:{
387 			/* copregister rd <- rt */
388 			u32 value;
389 
390 			if (MIPSInst_RT(ir) == 0)
391 				value = 0;
392 			else
393 				value = xcp->regs[MIPSInst_RT(ir)];
394 
395 			/* we only have one writable control reg
396 			 */
397 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
398 #ifdef CSRTRACE
399 				printk("%p gpr[%d]->csr=%08x\n",
400 					(void *) (xcp->cp0_epc),
401 					MIPSInst_RT(ir), value);
402 #endif
403 				ctx->fcr31 = value;
404 				/* copy new rounding mode and
405 				   flush bit to ieee library state! */
406 				ieee754_csr.nod = (ctx->fcr31 & 0x1000000) != 0;
407 				ieee754_csr.rm = ieee_rm[value & 0x3];
408 			}
409 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
410 				return SIGFPE;
411 			}
412 			break;
413 		}
414 
415 		case bc_op:{
416 			int likely = 0;
417 
418 			if (xcp->cp0_cause & CAUSEF_BD)
419 				return SIGILL;
420 
421 #if __mips >= 4
422 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
423 #else
424 			cond = ctx->fcr31 & FPU_CSR_COND;
425 #endif
426 			switch (MIPSInst_RT(ir) & 3) {
427 			case bcfl_op:
428 				likely = 1;
429 			case bcf_op:
430 				cond = !cond;
431 				break;
432 			case bctl_op:
433 				likely = 1;
434 			case bct_op:
435 				break;
436 			default:
437 				/* thats an illegal instruction */
438 				return SIGILL;
439 			}
440 
441 			xcp->cp0_cause |= CAUSEF_BD;
442 			if (cond) {
443 				/* branch taken: emulate dslot
444 				 * instruction
445 				 */
446 				xcp->cp0_epc += 4;
447 				contpc = (void *)
448 					(xcp->cp0_epc +
449 					(MIPSInst_SIMM(ir) << 2));
450 
451 				if (get_user(ir, (mips_instruction *)
452 						(void *)  xcp->cp0_epc)) {
453 					fpuemuprivate.stats.errors++;
454 					return SIGBUS;
455 				}
456 
457 				switch (MIPSInst_OPCODE(ir)) {
458 				case lwc1_op:
459 				case swc1_op:
460 #if (__mips >= 2 || __mips64) && !defined(SINGLE_ONLY_FPU)
461 				case ldc1_op:
462 				case sdc1_op:
463 #endif
464 				case cop1_op:
465 #if __mips >= 4 && __mips != 32
466 				case cop1x_op:
467 #endif
468 					/* its one of ours */
469 					goto emul;
470 #if __mips >= 4
471 				case spec_op:
472 					if (MIPSInst_FUNC(ir) == movc_op)
473 						goto emul;
474 					break;
475 #endif
476 				}
477 
478 				/*
479 				 * Single step the non-cp1
480 				 * instruction in the dslot
481 				 */
482 				return mips_dsemul(xcp, ir, (unsigned long) contpc);
483 			}
484 			else {
485 				/* branch not taken */
486 				if (likely) {
487 					/*
488 					 * branch likely nullifies
489 					 * dslot if not taken
490 					 */
491 					xcp->cp0_epc += 4;
492 					contpc += 4;
493 					/*
494 					 * else continue & execute
495 					 * dslot as normal insn
496 					 */
497 				}
498 			}
499 			break;
500 		}
501 
502 		default:
503 			if (!(MIPSInst_RS(ir) & 0x10))
504 				return SIGILL;
505 			{
506 				int sig;
507 
508 				/* a real fpu computation instruction */
509 				if ((sig = fpu_emu(xcp, ctx, ir)))
510 					return sig;
511 			}
512 		}
513 		break;
514 
515 #if __mips >= 4 && __mips != 32
516 	case cop1x_op:{
517 		int sig;
518 
519 		if ((sig = fpux_emu(xcp, ctx, ir)))
520 			return sig;
521 		break;
522 	}
523 #endif
524 
525 #if __mips >= 4
526 	case spec_op:
527 		if (MIPSInst_FUNC(ir) != movc_op)
528 			return SIGILL;
529 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
530 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
531 			xcp->regs[MIPSInst_RD(ir)] =
532 				xcp->regs[MIPSInst_RS(ir)];
533 		break;
534 #endif
535 
536 	default:
537 		return SIGILL;
538 	}
539 
540 	/* we did it !! */
541 	xcp->cp0_epc = (unsigned long) contpc;
542 	xcp->cp0_cause &= ~CAUSEF_BD;
543 
544 	return 0;
545 }
546 
547 /*
548  * Conversion table from MIPS compare ops 48-63
549  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
550  */
551 static const unsigned char cmptab[8] = {
552 	0,			/* cmp_0 (sig) cmp_sf */
553 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
554 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
555 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
556 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
557 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
558 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
559 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
560 };
561 
562 
563 #if __mips >= 4 && __mips != 32
564 
565 /*
566  * Additional MIPS4 instructions
567  */
568 
569 #define DEF3OP(name, p, f1, f2, f3) \
570 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
571     ieee754##p t) \
572 { \
573 	struct ieee754_csr ieee754_csr_save; \
574 	s = f1 (s, t); \
575 	ieee754_csr_save = ieee754_csr; \
576 	s = f2 (s, r); \
577 	ieee754_csr_save.cx |= ieee754_csr.cx; \
578 	ieee754_csr_save.sx |= ieee754_csr.sx; \
579 	s = f3 (s); \
580 	ieee754_csr.cx |= ieee754_csr_save.cx; \
581 	ieee754_csr.sx |= ieee754_csr_save.sx; \
582 	return s; \
583 }
584 
585 static ieee754dp fpemu_dp_recip(ieee754dp d)
586 {
587 	return ieee754dp_div(ieee754dp_one(0), d);
588 }
589 
590 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
591 {
592 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
593 }
594 
595 static ieee754sp fpemu_sp_recip(ieee754sp s)
596 {
597 	return ieee754sp_div(ieee754sp_one(0), s);
598 }
599 
600 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
601 {
602 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
603 }
604 
605 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
606 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
607 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
608 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
609 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
610 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
611 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
612 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
613 
614 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
615 	mips_instruction ir)
616 {
617 	unsigned rcsr = 0;	/* resulting csr */
618 
619 	fpuemuprivate.stats.cp1xops++;
620 
621 	switch (MIPSInst_FMA_FFMT(ir)) {
622 	case s_fmt:{		/* 0 */
623 
624 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
625 		ieee754sp fd, fr, fs, ft;
626 		u32 *va;
627 		u32 val;
628 
629 		switch (MIPSInst_FUNC(ir)) {
630 		case lwxc1_op:
631 			va = (void *) (xcp->regs[MIPSInst_FR(ir)] +
632 				xcp->regs[MIPSInst_FT(ir)]);
633 
634 			fpuemuprivate.stats.loads++;
635 			if (get_user(val, va)) {
636 				fpuemuprivate.stats.errors++;
637 				return SIGBUS;
638 			}
639 #ifdef SINGLE_ONLY_FPU
640 			if (MIPSInst_FD(ir) & 1) {
641 				/* illegal register in single-float
642 				 * mode
643 				 */
644 				return SIGILL;
645 			}
646 #endif
647 			SITOREG(val, MIPSInst_FD(ir));
648 			break;
649 
650 		case swxc1_op:
651 			va = (void *) (xcp->regs[MIPSInst_FR(ir)] +
652 				xcp->regs[MIPSInst_FT(ir)]);
653 
654 			fpuemuprivate.stats.stores++;
655 #ifdef SINGLE_ONLY_FPU
656 			if (MIPSInst_FS(ir) & 1) {
657 				/* illegal register in single-float
658 				 * mode
659 				 */
660 				return SIGILL;
661 			}
662 #endif
663 
664 			SIFROMREG(val, MIPSInst_FS(ir));
665 			if (put_user(val, va)) {
666 				fpuemuprivate.stats.errors++;
667 				return SIGBUS;
668 			}
669 			break;
670 
671 		case madd_s_op:
672 			handler = fpemu_sp_madd;
673 			goto scoptop;
674 		case msub_s_op:
675 			handler = fpemu_sp_msub;
676 			goto scoptop;
677 		case nmadd_s_op:
678 			handler = fpemu_sp_nmadd;
679 			goto scoptop;
680 		case nmsub_s_op:
681 			handler = fpemu_sp_nmsub;
682 			goto scoptop;
683 
684 		      scoptop:
685 			SPFROMREG(fr, MIPSInst_FR(ir));
686 			SPFROMREG(fs, MIPSInst_FS(ir));
687 			SPFROMREG(ft, MIPSInst_FT(ir));
688 			fd = (*handler) (fr, fs, ft);
689 			SPTOREG(fd, MIPSInst_FD(ir));
690 
691 		      copcsr:
692 			if (ieee754_cxtest(IEEE754_INEXACT))
693 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
694 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
695 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
696 			if (ieee754_cxtest(IEEE754_OVERFLOW))
697 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
698 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
699 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
700 
701 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
702 			if (ieee754_csr.nod)
703 				ctx->fcr31 |= 0x1000000;
704 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
705 				/*printk ("SIGFPE: fpu csr = %08x\n",
706 				   ctx->fcr31); */
707 				return SIGFPE;
708 			}
709 
710 			break;
711 
712 		default:
713 			return SIGILL;
714 		}
715 		break;
716 	}
717 
718 #ifndef SINGLE_ONLY_FPU
719 	case d_fmt:{		/* 1 */
720 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
721 		ieee754dp fd, fr, fs, ft;
722 		u64 *va;
723 		u64 val;
724 
725 		switch (MIPSInst_FUNC(ir)) {
726 		case ldxc1_op:
727 			va = (void *) (xcp->regs[MIPSInst_FR(ir)] +
728 				xcp->regs[MIPSInst_FT(ir)]);
729 
730 			fpuemuprivate.stats.loads++;
731 			if (get_user(val, va)) {
732 				fpuemuprivate.stats.errors++;
733 				return SIGBUS;
734 			}
735 			DITOREG(val, MIPSInst_FD(ir));
736 			break;
737 
738 		case sdxc1_op:
739 			va = (void *) (xcp->regs[MIPSInst_FR(ir)] +
740 				xcp->regs[MIPSInst_FT(ir)]);
741 
742 			fpuemuprivate.stats.stores++;
743 			DIFROMREG(val, MIPSInst_FS(ir));
744 			if (put_user(val, va)) {
745 				fpuemuprivate.stats.errors++;
746 				return SIGBUS;
747 			}
748 			break;
749 
750 		case madd_d_op:
751 			handler = fpemu_dp_madd;
752 			goto dcoptop;
753 		case msub_d_op:
754 			handler = fpemu_dp_msub;
755 			goto dcoptop;
756 		case nmadd_d_op:
757 			handler = fpemu_dp_nmadd;
758 			goto dcoptop;
759 		case nmsub_d_op:
760 			handler = fpemu_dp_nmsub;
761 			goto dcoptop;
762 
763 		      dcoptop:
764 			DPFROMREG(fr, MIPSInst_FR(ir));
765 			DPFROMREG(fs, MIPSInst_FS(ir));
766 			DPFROMREG(ft, MIPSInst_FT(ir));
767 			fd = (*handler) (fr, fs, ft);
768 			DPTOREG(fd, MIPSInst_FD(ir));
769 			goto copcsr;
770 
771 		default:
772 			return SIGILL;
773 		}
774 		break;
775 	}
776 #endif
777 
778 	case 0x7:		/* 7 */
779 		if (MIPSInst_FUNC(ir) != pfetch_op) {
780 			return SIGILL;
781 		}
782 		/* ignore prefx operation */
783 		break;
784 
785 	default:
786 		return SIGILL;
787 	}
788 
789 	return 0;
790 }
791 #endif
792 
793 
794 
795 /*
796  * Emulate a single COP1 arithmetic instruction.
797  */
798 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx,
799 	mips_instruction ir)
800 {
801 	int rfmt;		/* resulting format */
802 	unsigned rcsr = 0;	/* resulting csr */
803 	unsigned cond;
804 	union {
805 		ieee754dp d;
806 		ieee754sp s;
807 		int w;
808 #ifdef __mips64
809 		s64 l;
810 #endif
811 	} rv;			/* resulting value */
812 
813 	fpuemuprivate.stats.cp1ops++;
814 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
815 	case s_fmt:{		/* 0 */
816 		union {
817 			ieee754sp(*b) (ieee754sp, ieee754sp);
818 			ieee754sp(*u) (ieee754sp);
819 		} handler;
820 
821 		switch (MIPSInst_FUNC(ir)) {
822 			/* binary ops */
823 		case fadd_op:
824 			handler.b = ieee754sp_add;
825 			goto scopbop;
826 		case fsub_op:
827 			handler.b = ieee754sp_sub;
828 			goto scopbop;
829 		case fmul_op:
830 			handler.b = ieee754sp_mul;
831 			goto scopbop;
832 		case fdiv_op:
833 			handler.b = ieee754sp_div;
834 			goto scopbop;
835 
836 			/* unary  ops */
837 #if __mips >= 2 || __mips64
838 		case fsqrt_op:
839 			handler.u = ieee754sp_sqrt;
840 			goto scopuop;
841 #endif
842 #if __mips >= 4 && __mips != 32
843 		case frsqrt_op:
844 			handler.u = fpemu_sp_rsqrt;
845 			goto scopuop;
846 		case frecip_op:
847 			handler.u = fpemu_sp_recip;
848 			goto scopuop;
849 #endif
850 #if __mips >= 4
851 		case fmovc_op:
852 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
853 			if (((ctx->fcr31 & cond) != 0) !=
854 				((MIPSInst_FT(ir) & 1) != 0))
855 				return 0;
856 			SPFROMREG(rv.s, MIPSInst_FS(ir));
857 			break;
858 		case fmovz_op:
859 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
860 				return 0;
861 			SPFROMREG(rv.s, MIPSInst_FS(ir));
862 			break;
863 		case fmovn_op:
864 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
865 				return 0;
866 			SPFROMREG(rv.s, MIPSInst_FS(ir));
867 			break;
868 #endif
869 		case fabs_op:
870 			handler.u = ieee754sp_abs;
871 			goto scopuop;
872 		case fneg_op:
873 			handler.u = ieee754sp_neg;
874 			goto scopuop;
875 		case fmov_op:
876 			/* an easy one */
877 			SPFROMREG(rv.s, MIPSInst_FS(ir));
878 			goto copcsr;
879 
880 			/* binary op on handler */
881 		      scopbop:
882 			{
883 				ieee754sp fs, ft;
884 
885 				SPFROMREG(fs, MIPSInst_FS(ir));
886 				SPFROMREG(ft, MIPSInst_FT(ir));
887 
888 				rv.s = (*handler.b) (fs, ft);
889 				goto copcsr;
890 			}
891 		      scopuop:
892 			{
893 				ieee754sp fs;
894 
895 				SPFROMREG(fs, MIPSInst_FS(ir));
896 				rv.s = (*handler.u) (fs);
897 				goto copcsr;
898 			}
899 		      copcsr:
900 			if (ieee754_cxtest(IEEE754_INEXACT))
901 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
902 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
903 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
904 			if (ieee754_cxtest(IEEE754_OVERFLOW))
905 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
906 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
907 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
908 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
909 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
910 			break;
911 
912 			/* unary conv ops */
913 		case fcvts_op:
914 			return SIGILL;	/* not defined */
915 		case fcvtd_op:{
916 #ifdef SINGLE_ONLY_FPU
917 			return SIGILL;	/* not defined */
918 #else
919 			ieee754sp fs;
920 
921 			SPFROMREG(fs, MIPSInst_FS(ir));
922 			rv.d = ieee754dp_fsp(fs);
923 			rfmt = d_fmt;
924 			goto copcsr;
925 		}
926 #endif
927 		case fcvtw_op:{
928 			ieee754sp fs;
929 
930 			SPFROMREG(fs, MIPSInst_FS(ir));
931 			rv.w = ieee754sp_tint(fs);
932 			rfmt = w_fmt;
933 			goto copcsr;
934 		}
935 
936 #if __mips >= 2 || __mips64
937 		case fround_op:
938 		case ftrunc_op:
939 		case fceil_op:
940 		case ffloor_op:{
941 			unsigned int oldrm = ieee754_csr.rm;
942 			ieee754sp fs;
943 
944 			SPFROMREG(fs, MIPSInst_FS(ir));
945 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
946 			rv.w = ieee754sp_tint(fs);
947 			ieee754_csr.rm = oldrm;
948 			rfmt = w_fmt;
949 			goto copcsr;
950 		}
951 #endif /* __mips >= 2 */
952 
953 #if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
954 		case fcvtl_op:{
955 			ieee754sp fs;
956 
957 			SPFROMREG(fs, MIPSInst_FS(ir));
958 			rv.l = ieee754sp_tlong(fs);
959 			rfmt = l_fmt;
960 			goto copcsr;
961 		}
962 
963 		case froundl_op:
964 		case ftruncl_op:
965 		case fceill_op:
966 		case ffloorl_op:{
967 			unsigned int oldrm = ieee754_csr.rm;
968 			ieee754sp fs;
969 
970 			SPFROMREG(fs, MIPSInst_FS(ir));
971 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
972 			rv.l = ieee754sp_tlong(fs);
973 			ieee754_csr.rm = oldrm;
974 			rfmt = l_fmt;
975 			goto copcsr;
976 		}
977 #endif /* __mips64 && !fpu(single) */
978 
979 		default:
980 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
981 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
982 				ieee754sp fs, ft;
983 
984 				SPFROMREG(fs, MIPSInst_FS(ir));
985 				SPFROMREG(ft, MIPSInst_FT(ir));
986 				rv.w = ieee754sp_cmp(fs, ft,
987 					cmptab[cmpop & 0x7], cmpop & 0x8);
988 				rfmt = -1;
989 				if ((cmpop & 0x8) && ieee754_cxtest
990 					(IEEE754_INVALID_OPERATION))
991 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
992 				else
993 					goto copcsr;
994 
995 			}
996 			else {
997 				return SIGILL;
998 			}
999 			break;
1000 		}
1001 		break;
1002 	}
1003 
1004 #ifndef SINGLE_ONLY_FPU
1005 	case d_fmt:{
1006 		union {
1007 			ieee754dp(*b) (ieee754dp, ieee754dp);
1008 			ieee754dp(*u) (ieee754dp);
1009 		} handler;
1010 
1011 		switch (MIPSInst_FUNC(ir)) {
1012 			/* binary ops */
1013 		case fadd_op:
1014 			handler.b = ieee754dp_add;
1015 			goto dcopbop;
1016 		case fsub_op:
1017 			handler.b = ieee754dp_sub;
1018 			goto dcopbop;
1019 		case fmul_op:
1020 			handler.b = ieee754dp_mul;
1021 			goto dcopbop;
1022 		case fdiv_op:
1023 			handler.b = ieee754dp_div;
1024 			goto dcopbop;
1025 
1026 			/* unary  ops */
1027 #if __mips >= 2 || __mips64
1028 		case fsqrt_op:
1029 			handler.u = ieee754dp_sqrt;
1030 			goto dcopuop;
1031 #endif
1032 #if __mips >= 4 && __mips != 32
1033 		case frsqrt_op:
1034 			handler.u = fpemu_dp_rsqrt;
1035 			goto dcopuop;
1036 		case frecip_op:
1037 			handler.u = fpemu_dp_recip;
1038 			goto dcopuop;
1039 #endif
1040 #if __mips >= 4
1041 		case fmovc_op:
1042 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1043 			if (((ctx->fcr31 & cond) != 0) !=
1044 				((MIPSInst_FT(ir) & 1) != 0))
1045 				return 0;
1046 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1047 			break;
1048 		case fmovz_op:
1049 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1050 				return 0;
1051 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1052 			break;
1053 		case fmovn_op:
1054 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1055 				return 0;
1056 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1057 			break;
1058 #endif
1059 		case fabs_op:
1060 			handler.u = ieee754dp_abs;
1061 			goto dcopuop;
1062 
1063 		case fneg_op:
1064 			handler.u = ieee754dp_neg;
1065 			goto dcopuop;
1066 
1067 		case fmov_op:
1068 			/* an easy one */
1069 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1070 			goto copcsr;
1071 
1072 			/* binary op on handler */
1073 		      dcopbop:{
1074 				ieee754dp fs, ft;
1075 
1076 				DPFROMREG(fs, MIPSInst_FS(ir));
1077 				DPFROMREG(ft, MIPSInst_FT(ir));
1078 
1079 				rv.d = (*handler.b) (fs, ft);
1080 				goto copcsr;
1081 			}
1082 		      dcopuop:{
1083 				ieee754dp fs;
1084 
1085 				DPFROMREG(fs, MIPSInst_FS(ir));
1086 				rv.d = (*handler.u) (fs);
1087 				goto copcsr;
1088 			}
1089 
1090 			/* unary conv ops */
1091 		case fcvts_op:{
1092 			ieee754dp fs;
1093 
1094 			DPFROMREG(fs, MIPSInst_FS(ir));
1095 			rv.s = ieee754sp_fdp(fs);
1096 			rfmt = s_fmt;
1097 			goto copcsr;
1098 		}
1099 		case fcvtd_op:
1100 			return SIGILL;	/* not defined */
1101 
1102 		case fcvtw_op:{
1103 			ieee754dp fs;
1104 
1105 			DPFROMREG(fs, MIPSInst_FS(ir));
1106 			rv.w = ieee754dp_tint(fs);	/* wrong */
1107 			rfmt = w_fmt;
1108 			goto copcsr;
1109 		}
1110 
1111 #if __mips >= 2 || __mips64
1112 		case fround_op:
1113 		case ftrunc_op:
1114 		case fceil_op:
1115 		case ffloor_op:{
1116 			unsigned int oldrm = ieee754_csr.rm;
1117 			ieee754dp fs;
1118 
1119 			DPFROMREG(fs, MIPSInst_FS(ir));
1120 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1121 			rv.w = ieee754dp_tint(fs);
1122 			ieee754_csr.rm = oldrm;
1123 			rfmt = w_fmt;
1124 			goto copcsr;
1125 		}
1126 #endif
1127 
1128 #if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
1129 		case fcvtl_op:{
1130 			ieee754dp fs;
1131 
1132 			DPFROMREG(fs, MIPSInst_FS(ir));
1133 			rv.l = ieee754dp_tlong(fs);
1134 			rfmt = l_fmt;
1135 			goto copcsr;
1136 		}
1137 
1138 		case froundl_op:
1139 		case ftruncl_op:
1140 		case fceill_op:
1141 		case ffloorl_op:{
1142 			unsigned int oldrm = ieee754_csr.rm;
1143 			ieee754dp fs;
1144 
1145 			DPFROMREG(fs, MIPSInst_FS(ir));
1146 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1147 			rv.l = ieee754dp_tlong(fs);
1148 			ieee754_csr.rm = oldrm;
1149 			rfmt = l_fmt;
1150 			goto copcsr;
1151 		}
1152 #endif /* __mips >= 3 && !fpu(single) */
1153 
1154 		default:
1155 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1156 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1157 				ieee754dp fs, ft;
1158 
1159 				DPFROMREG(fs, MIPSInst_FS(ir));
1160 				DPFROMREG(ft, MIPSInst_FT(ir));
1161 				rv.w = ieee754dp_cmp(fs, ft,
1162 					cmptab[cmpop & 0x7], cmpop & 0x8);
1163 				rfmt = -1;
1164 				if ((cmpop & 0x8)
1165 					&&
1166 					ieee754_cxtest
1167 					(IEEE754_INVALID_OPERATION))
1168 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1169 				else
1170 					goto copcsr;
1171 
1172 			}
1173 			else {
1174 				return SIGILL;
1175 			}
1176 			break;
1177 		}
1178 		break;
1179 	}
1180 #endif /* ifndef SINGLE_ONLY_FPU */
1181 
1182 	case w_fmt:{
1183 		ieee754sp fs;
1184 
1185 		switch (MIPSInst_FUNC(ir)) {
1186 		case fcvts_op:
1187 			/* convert word to single precision real */
1188 			SPFROMREG(fs, MIPSInst_FS(ir));
1189 			rv.s = ieee754sp_fint(fs.bits);
1190 			rfmt = s_fmt;
1191 			goto copcsr;
1192 #ifndef SINGLE_ONLY_FPU
1193 		case fcvtd_op:
1194 			/* convert word to double precision real */
1195 			SPFROMREG(fs, MIPSInst_FS(ir));
1196 			rv.d = ieee754dp_fint(fs.bits);
1197 			rfmt = d_fmt;
1198 			goto copcsr;
1199 #endif
1200 		default:
1201 			return SIGILL;
1202 		}
1203 		break;
1204 	}
1205 
1206 #if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
1207 	case l_fmt:{
1208 		switch (MIPSInst_FUNC(ir)) {
1209 		case fcvts_op:
1210 			/* convert long to single precision real */
1211 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1212 			rfmt = s_fmt;
1213 			goto copcsr;
1214 		case fcvtd_op:
1215 			/* convert long to double precision real */
1216 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1217 			rfmt = d_fmt;
1218 			goto copcsr;
1219 		default:
1220 			return SIGILL;
1221 		}
1222 		break;
1223 	}
1224 #endif
1225 
1226 	default:
1227 		return SIGILL;
1228 	}
1229 
1230 	/*
1231 	 * Update the fpu CSR register for this operation.
1232 	 * If an exception is required, generate a tidy SIGFPE exception,
1233 	 * without updating the result register.
1234 	 * Note: cause exception bits do not accumulate, they are rewritten
1235 	 * for each op; only the flag/sticky bits accumulate.
1236 	 */
1237 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1238 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1239 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1240 		return SIGFPE;
1241 	}
1242 
1243 	/*
1244 	 * Now we can safely write the result back to the register file.
1245 	 */
1246 	switch (rfmt) {
1247 	case -1:{
1248 #if __mips >= 4
1249 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1250 #else
1251 		cond = FPU_CSR_COND;
1252 #endif
1253 		if (rv.w)
1254 			ctx->fcr31 |= cond;
1255 		else
1256 			ctx->fcr31 &= ~cond;
1257 		break;
1258 	}
1259 #ifndef SINGLE_ONLY_FPU
1260 	case d_fmt:
1261 		DPTOREG(rv.d, MIPSInst_FD(ir));
1262 		break;
1263 #endif
1264 	case s_fmt:
1265 		SPTOREG(rv.s, MIPSInst_FD(ir));
1266 		break;
1267 	case w_fmt:
1268 		SITOREG(rv.w, MIPSInst_FD(ir));
1269 		break;
1270 #if defined(__mips64) && !defined(SINGLE_ONLY_FPU)
1271 	case l_fmt:
1272 		DITOREG(rv.l, MIPSInst_FD(ir));
1273 		break;
1274 #endif
1275 	default:
1276 		return SIGILL;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
1283 	struct mips_fpu_soft_struct *ctx)
1284 {
1285 	unsigned long oldepc, prevepc;
1286 	mips_instruction insn;
1287 	int sig = 0;
1288 
1289 	oldepc = xcp->cp0_epc;
1290 	do {
1291 		prevepc = xcp->cp0_epc;
1292 
1293 		if (get_user(insn, (mips_instruction *) xcp->cp0_epc)) {
1294 			fpuemuprivate.stats.errors++;
1295 			return SIGBUS;
1296 		}
1297 		if (insn == 0)
1298 			xcp->cp0_epc += 4;	/* skip nops */
1299 		else {
1300 			/* Update ieee754_csr. Only relevant if we have a
1301 			   h/w FPU */
1302 			ieee754_csr.nod = (ctx->fcr31 & 0x1000000) != 0;
1303 			ieee754_csr.rm = ieee_rm[ctx->fcr31 & 0x3];
1304 			ieee754_csr.cx = (ctx->fcr31 >> 12) & 0x1f;
1305 			sig = cop1Emulate(xcp, ctx);
1306 		}
1307 
1308 		if (cpu_has_fpu)
1309 			break;
1310 		if (sig)
1311 			break;
1312 
1313 		cond_resched();
1314 	} while (xcp->cp0_epc > prevepc);
1315 
1316 	/* SIGILL indicates a non-fpu instruction */
1317 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1318 		/* but if epc has advanced, then ignore it */
1319 		sig = 0;
1320 
1321 	return sig;
1322 }
1323