xref: /linux/arch/mips/math-emu/cp1emu.c (revision 25f42b6af09e34c3f92107b36b5aa6edc2fdba2f)
1 /*
2  * cp1emu.c: a MIPS coprocessor 1 (fpu) instruction emulator
3  *
4  * MIPS floating point support
5  * Copyright (C) 1994-2000 Algorithmics Ltd.
6  * http://www.algor.co.uk
7  *
8  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
9  * Copyright (C) 2000  MIPS Technologies, Inc.
10  *
11  *  This program is free software; you can distribute it and/or modify it
12  *  under the terms of the GNU General Public License (Version 2) as
13  *  published by the Free Software Foundation.
14  *
15  *  This program is distributed in the hope it will be useful, but WITHOUT
16  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  *  for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
23  *
24  * A complete emulator for MIPS coprocessor 1 instructions.  This is
25  * required for #float(switch) or #float(trap), where it catches all
26  * COP1 instructions via the "CoProcessor Unusable" exception.
27  *
28  * More surprisingly it is also required for #float(ieee), to help out
29  * the hardware fpu at the boundaries of the IEEE-754 representation
30  * (denormalised values, infinities, underflow, etc).  It is made
31  * quite nasty because emulation of some non-COP1 instructions is
32  * required, e.g. in branch delay slots.
33  *
34  * Note if you know that you won't have an fpu, then you'll get much
35  * better performance by compiling with -msoft-float!
36  */
37 #include <linux/sched.h>
38 
39 #include <asm/inst.h>
40 #include <asm/bootinfo.h>
41 #include <asm/cpu.h>
42 #include <asm/cpu-features.h>
43 #include <asm/processor.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/mipsregs.h>
47 #include <asm/fpu_emulator.h>
48 #include <asm/uaccess.h>
49 #include <asm/branch.h>
50 
51 #include "ieee754.h"
52 #include "dsemul.h"
53 
54 /* Strap kernel emulator for full MIPS IV emulation */
55 
56 #ifdef __mips
57 #undef __mips
58 #endif
59 #define __mips 4
60 
61 /* Function which emulates a floating point instruction. */
62 
63 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *,
64 	mips_instruction);
65 
66 #if __mips >= 4 && __mips != 32
67 static int fpux_emu(struct pt_regs *,
68 	struct mips_fpu_struct *, mips_instruction);
69 #endif
70 
71 /* Further private data for which no space exists in mips_fpu_struct */
72 
73 struct mips_fpu_emulator_stats fpuemustats;
74 
75 /* Control registers */
76 
77 #define FPCREG_RID	0	/* $0  = revision id */
78 #define FPCREG_CSR	31	/* $31 = csr */
79 
80 /* Convert Mips rounding mode (0..3) to IEEE library modes. */
81 static const unsigned char ieee_rm[4] = {
82 	[FPU_CSR_RN] = IEEE754_RN,
83 	[FPU_CSR_RZ] = IEEE754_RZ,
84 	[FPU_CSR_RU] = IEEE754_RU,
85 	[FPU_CSR_RD] = IEEE754_RD,
86 };
87 /* Convert IEEE library modes to Mips rounding mode (0..3). */
88 static const unsigned char mips_rm[4] = {
89 	[IEEE754_RN] = FPU_CSR_RN,
90 	[IEEE754_RZ] = FPU_CSR_RZ,
91 	[IEEE754_RD] = FPU_CSR_RD,
92 	[IEEE754_RU] = FPU_CSR_RU,
93 };
94 
95 #if __mips >= 4
96 /* convert condition code register number to csr bit */
97 static const unsigned int fpucondbit[8] = {
98 	FPU_CSR_COND0,
99 	FPU_CSR_COND1,
100 	FPU_CSR_COND2,
101 	FPU_CSR_COND3,
102 	FPU_CSR_COND4,
103 	FPU_CSR_COND5,
104 	FPU_CSR_COND6,
105 	FPU_CSR_COND7
106 };
107 #endif
108 
109 
110 /*
111  * Redundant with logic already in kernel/branch.c,
112  * embedded in compute_return_epc.  At some point,
113  * a single subroutine should be used across both
114  * modules.
115  */
116 static int isBranchInstr(mips_instruction * i)
117 {
118 	switch (MIPSInst_OPCODE(*i)) {
119 	case spec_op:
120 		switch (MIPSInst_FUNC(*i)) {
121 		case jalr_op:
122 		case jr_op:
123 			return 1;
124 		}
125 		break;
126 
127 	case bcond_op:
128 		switch (MIPSInst_RT(*i)) {
129 		case bltz_op:
130 		case bgez_op:
131 		case bltzl_op:
132 		case bgezl_op:
133 		case bltzal_op:
134 		case bgezal_op:
135 		case bltzall_op:
136 		case bgezall_op:
137 			return 1;
138 		}
139 		break;
140 
141 	case j_op:
142 	case jal_op:
143 	case jalx_op:
144 	case beq_op:
145 	case bne_op:
146 	case blez_op:
147 	case bgtz_op:
148 	case beql_op:
149 	case bnel_op:
150 	case blezl_op:
151 	case bgtzl_op:
152 		return 1;
153 
154 	case cop0_op:
155 	case cop1_op:
156 	case cop2_op:
157 	case cop1x_op:
158 		if (MIPSInst_RS(*i) == bc_op)
159 			return 1;
160 		break;
161 	}
162 
163 	return 0;
164 }
165 
166 /*
167  * In the Linux kernel, we support selection of FPR format on the
168  * basis of the Status.FR bit.  This does imply that, if a full 32
169  * FPRs are desired, there needs to be a flip-flop that can be written
170  * to one at that bit position.  In any case, O32 MIPS ABI uses
171  * only the even FPRs (Status.FR = 0).
172  */
173 
174 #define CP0_STATUS_FR_SUPPORT
175 
176 #ifdef CP0_STATUS_FR_SUPPORT
177 #define FR_BIT ST0_FR
178 #else
179 #define FR_BIT 0
180 #endif
181 
182 #define SIFROMREG(si,x)	((si) = \
183 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
184 			(int)ctx->fpr[x] : \
185 			(int)(ctx->fpr[x & ~1] >> 32 ))
186 #define SITOREG(si,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] = \
187 			(xcp->cp0_status & FR_BIT) || !(x & 1) ? \
188 			ctx->fpr[x & ~1] >> 32 << 32 | (u32)(si) : \
189 			ctx->fpr[x & ~1] << 32 >> 32 | (u64)(si) << 32)
190 
191 #define DIFROMREG(di,x)	((di) = \
192 			ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)])
193 #define DITOREG(di,x)	(ctx->fpr[x & ~((xcp->cp0_status & FR_BIT) == 0)] \
194 			= (di))
195 
196 #define SPFROMREG(sp,x)	SIFROMREG((sp).bits,x)
197 #define SPTOREG(sp,x)	SITOREG((sp).bits,x)
198 #define DPFROMREG(dp,x)	DIFROMREG((dp).bits,x)
199 #define DPTOREG(dp,x)	DITOREG((dp).bits,x)
200 
201 /*
202  * Emulate the single floating point instruction pointed at by EPC.
203  * Two instructions if the instruction is in a branch delay slot.
204  */
205 
206 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
207 {
208 	mips_instruction ir;
209 	void * emulpc, *contpc;
210 	unsigned int cond;
211 
212 	if (get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
213 		fpuemustats.errors++;
214 		return SIGBUS;
215 	}
216 
217 	/* XXX NEC Vr54xx bug workaround */
218 	if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
219 		xcp->cp0_cause &= ~CAUSEF_BD;
220 
221 	if (xcp->cp0_cause & CAUSEF_BD) {
222 		/*
223 		 * The instruction to be emulated is in a branch delay slot
224 		 * which means that we have to  emulate the branch instruction
225 		 * BEFORE we do the cop1 instruction.
226 		 *
227 		 * This branch could be a COP1 branch, but in that case we
228 		 * would have had a trap for that instruction, and would not
229 		 * come through this route.
230 		 *
231 		 * Linux MIPS branch emulator operates on context, updating the
232 		 * cp0_epc.
233 		 */
234 		emulpc = (void *) (xcp->cp0_epc + 4);	/* Snapshot emulation target */
235 
236 		if (__compute_return_epc(xcp)) {
237 #ifdef CP1DBG
238 			printk("failed to emulate branch at %p\n",
239 				(void *) (xcp->cp0_epc));
240 #endif
241 			return SIGILL;
242 		}
243 		if (get_user(ir, (mips_instruction __user *) emulpc)) {
244 			fpuemustats.errors++;
245 			return SIGBUS;
246 		}
247 		/* __compute_return_epc() will have updated cp0_epc */
248 		contpc = (void *)  xcp->cp0_epc;
249 		/* In order not to confuse ptrace() et al, tweak context */
250 		xcp->cp0_epc = (unsigned long) emulpc - 4;
251 	} else {
252 		emulpc = (void *)  xcp->cp0_epc;
253 		contpc = (void *) (xcp->cp0_epc + 4);
254 	}
255 
256       emul:
257 	fpuemustats.emulated++;
258 	switch (MIPSInst_OPCODE(ir)) {
259 	case ldc1_op:{
260 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
261 			MIPSInst_SIMM(ir));
262 		u64 val;
263 
264 		fpuemustats.loads++;
265 		if (get_user(val, va)) {
266 			fpuemustats.errors++;
267 			return SIGBUS;
268 		}
269 		DITOREG(val, MIPSInst_RT(ir));
270 		break;
271 	}
272 
273 	case sdc1_op:{
274 		u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
275 			MIPSInst_SIMM(ir));
276 		u64 val;
277 
278 		fpuemustats.stores++;
279 		DIFROMREG(val, MIPSInst_RT(ir));
280 		if (put_user(val, va)) {
281 			fpuemustats.errors++;
282 			return SIGBUS;
283 		}
284 		break;
285 	}
286 
287 	case lwc1_op:{
288 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
289 			MIPSInst_SIMM(ir));
290 		u32 val;
291 
292 		fpuemustats.loads++;
293 		if (get_user(val, va)) {
294 			fpuemustats.errors++;
295 			return SIGBUS;
296 		}
297 		SITOREG(val, MIPSInst_RT(ir));
298 		break;
299 	}
300 
301 	case swc1_op:{
302 		u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
303 			MIPSInst_SIMM(ir));
304 		u32 val;
305 
306 		fpuemustats.stores++;
307 		SIFROMREG(val, MIPSInst_RT(ir));
308 		if (put_user(val, va)) {
309 			fpuemustats.errors++;
310 			return SIGBUS;
311 		}
312 		break;
313 	}
314 
315 	case cop1_op:
316 		switch (MIPSInst_RS(ir)) {
317 
318 #if defined(__mips64)
319 		case dmfc_op:
320 			/* copregister fs -> gpr[rt] */
321 			if (MIPSInst_RT(ir) != 0) {
322 				DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
323 					MIPSInst_RD(ir));
324 			}
325 			break;
326 
327 		case dmtc_op:
328 			/* copregister fs <- rt */
329 			DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
330 			break;
331 #endif
332 
333 		case mfc_op:
334 			/* copregister rd -> gpr[rt] */
335 			if (MIPSInst_RT(ir) != 0) {
336 				SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
337 					MIPSInst_RD(ir));
338 			}
339 			break;
340 
341 		case mtc_op:
342 			/* copregister rd <- rt */
343 			SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
344 			break;
345 
346 		case cfc_op:{
347 			/* cop control register rd -> gpr[rt] */
348 			u32 value;
349 
350 			if (ir == CP1UNDEF) {
351 				return do_dsemulret(xcp);
352 			}
353 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
354 				value = ctx->fcr31;
355 				value = (value & ~0x3) | mips_rm[value & 0x3];
356 #ifdef CSRTRACE
357 				printk("%p gpr[%d]<-csr=%08x\n",
358 					(void *) (xcp->cp0_epc),
359 					MIPSInst_RT(ir), value);
360 #endif
361 			}
362 			else if (MIPSInst_RD(ir) == FPCREG_RID)
363 				value = 0;
364 			else
365 				value = 0;
366 			if (MIPSInst_RT(ir))
367 				xcp->regs[MIPSInst_RT(ir)] = value;
368 			break;
369 		}
370 
371 		case ctc_op:{
372 			/* copregister rd <- rt */
373 			u32 value;
374 
375 			if (MIPSInst_RT(ir) == 0)
376 				value = 0;
377 			else
378 				value = xcp->regs[MIPSInst_RT(ir)];
379 
380 			/* we only have one writable control reg
381 			 */
382 			if (MIPSInst_RD(ir) == FPCREG_CSR) {
383 #ifdef CSRTRACE
384 				printk("%p gpr[%d]->csr=%08x\n",
385 					(void *) (xcp->cp0_epc),
386 					MIPSInst_RT(ir), value);
387 #endif
388 				value &= (FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
389 				ctx->fcr31 &= ~(FPU_CSR_FLUSH | FPU_CSR_ALL_E | FPU_CSR_ALL_S | 0x03);
390 				/* convert to ieee library modes */
391 				ctx->fcr31 |= (value & ~0x3) | ieee_rm[value & 0x3];
392 			}
393 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
394 				return SIGFPE;
395 			}
396 			break;
397 		}
398 
399 		case bc_op:{
400 			int likely = 0;
401 
402 			if (xcp->cp0_cause & CAUSEF_BD)
403 				return SIGILL;
404 
405 #if __mips >= 4
406 			cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
407 #else
408 			cond = ctx->fcr31 & FPU_CSR_COND;
409 #endif
410 			switch (MIPSInst_RT(ir) & 3) {
411 			case bcfl_op:
412 				likely = 1;
413 			case bcf_op:
414 				cond = !cond;
415 				break;
416 			case bctl_op:
417 				likely = 1;
418 			case bct_op:
419 				break;
420 			default:
421 				/* thats an illegal instruction */
422 				return SIGILL;
423 			}
424 
425 			xcp->cp0_cause |= CAUSEF_BD;
426 			if (cond) {
427 				/* branch taken: emulate dslot
428 				 * instruction
429 				 */
430 				xcp->cp0_epc += 4;
431 				contpc = (void *)
432 					(xcp->cp0_epc +
433 					(MIPSInst_SIMM(ir) << 2));
434 
435 				if (get_user(ir,
436 				    (mips_instruction __user *) xcp->cp0_epc)) {
437 					fpuemustats.errors++;
438 					return SIGBUS;
439 				}
440 
441 				switch (MIPSInst_OPCODE(ir)) {
442 				case lwc1_op:
443 				case swc1_op:
444 #if (__mips >= 2 || defined(__mips64))
445 				case ldc1_op:
446 				case sdc1_op:
447 #endif
448 				case cop1_op:
449 #if __mips >= 4 && __mips != 32
450 				case cop1x_op:
451 #endif
452 					/* its one of ours */
453 					goto emul;
454 #if __mips >= 4
455 				case spec_op:
456 					if (MIPSInst_FUNC(ir) == movc_op)
457 						goto emul;
458 					break;
459 #endif
460 				}
461 
462 				/*
463 				 * Single step the non-cp1
464 				 * instruction in the dslot
465 				 */
466 				return mips_dsemul(xcp, ir, (unsigned long) contpc);
467 			}
468 			else {
469 				/* branch not taken */
470 				if (likely) {
471 					/*
472 					 * branch likely nullifies
473 					 * dslot if not taken
474 					 */
475 					xcp->cp0_epc += 4;
476 					contpc += 4;
477 					/*
478 					 * else continue & execute
479 					 * dslot as normal insn
480 					 */
481 				}
482 			}
483 			break;
484 		}
485 
486 		default:
487 			if (!(MIPSInst_RS(ir) & 0x10))
488 				return SIGILL;
489 			{
490 				int sig;
491 
492 				/* a real fpu computation instruction */
493 				if ((sig = fpu_emu(xcp, ctx, ir)))
494 					return sig;
495 			}
496 		}
497 		break;
498 
499 #if __mips >= 4 && __mips != 32
500 	case cop1x_op:{
501 		int sig;
502 
503 		if ((sig = fpux_emu(xcp, ctx, ir)))
504 			return sig;
505 		break;
506 	}
507 #endif
508 
509 #if __mips >= 4
510 	case spec_op:
511 		if (MIPSInst_FUNC(ir) != movc_op)
512 			return SIGILL;
513 		cond = fpucondbit[MIPSInst_RT(ir) >> 2];
514 		if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
515 			xcp->regs[MIPSInst_RD(ir)] =
516 				xcp->regs[MIPSInst_RS(ir)];
517 		break;
518 #endif
519 
520 	default:
521 		return SIGILL;
522 	}
523 
524 	/* we did it !! */
525 	xcp->cp0_epc = (unsigned long) contpc;
526 	xcp->cp0_cause &= ~CAUSEF_BD;
527 
528 	return 0;
529 }
530 
531 /*
532  * Conversion table from MIPS compare ops 48-63
533  * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
534  */
535 static const unsigned char cmptab[8] = {
536 	0,			/* cmp_0 (sig) cmp_sf */
537 	IEEE754_CUN,		/* cmp_un (sig) cmp_ngle */
538 	IEEE754_CEQ,		/* cmp_eq (sig) cmp_seq */
539 	IEEE754_CEQ | IEEE754_CUN,	/* cmp_ueq (sig) cmp_ngl  */
540 	IEEE754_CLT,		/* cmp_olt (sig) cmp_lt */
541 	IEEE754_CLT | IEEE754_CUN,	/* cmp_ult (sig) cmp_nge */
542 	IEEE754_CLT | IEEE754_CEQ,	/* cmp_ole (sig) cmp_le */
543 	IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN,	/* cmp_ule (sig) cmp_ngt */
544 };
545 
546 
547 #if __mips >= 4 && __mips != 32
548 
549 /*
550  * Additional MIPS4 instructions
551  */
552 
553 #define DEF3OP(name, p, f1, f2, f3) \
554 static ieee754##p fpemu_##p##_##name (ieee754##p r, ieee754##p s, \
555     ieee754##p t) \
556 { \
557 	struct _ieee754_csr ieee754_csr_save; \
558 	s = f1 (s, t); \
559 	ieee754_csr_save = ieee754_csr; \
560 	s = f2 (s, r); \
561 	ieee754_csr_save.cx |= ieee754_csr.cx; \
562 	ieee754_csr_save.sx |= ieee754_csr.sx; \
563 	s = f3 (s); \
564 	ieee754_csr.cx |= ieee754_csr_save.cx; \
565 	ieee754_csr.sx |= ieee754_csr_save.sx; \
566 	return s; \
567 }
568 
569 static ieee754dp fpemu_dp_recip(ieee754dp d)
570 {
571 	return ieee754dp_div(ieee754dp_one(0), d);
572 }
573 
574 static ieee754dp fpemu_dp_rsqrt(ieee754dp d)
575 {
576 	return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d));
577 }
578 
579 static ieee754sp fpemu_sp_recip(ieee754sp s)
580 {
581 	return ieee754sp_div(ieee754sp_one(0), s);
582 }
583 
584 static ieee754sp fpemu_sp_rsqrt(ieee754sp s)
585 {
586 	return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s));
587 }
588 
589 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add,);
590 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub,);
591 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg);
592 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg);
593 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add,);
594 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub,);
595 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg);
596 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg);
597 
598 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
599 	mips_instruction ir)
600 {
601 	unsigned rcsr = 0;	/* resulting csr */
602 
603 	fpuemustats.cp1xops++;
604 
605 	switch (MIPSInst_FMA_FFMT(ir)) {
606 	case s_fmt:{		/* 0 */
607 
608 		ieee754sp(*handler) (ieee754sp, ieee754sp, ieee754sp);
609 		ieee754sp fd, fr, fs, ft;
610 		u32 __user *va;
611 		u32 val;
612 
613 		switch (MIPSInst_FUNC(ir)) {
614 		case lwxc1_op:
615 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
616 				xcp->regs[MIPSInst_FT(ir)]);
617 
618 			fpuemustats.loads++;
619 			if (get_user(val, va)) {
620 				fpuemustats.errors++;
621 				return SIGBUS;
622 			}
623 			SITOREG(val, MIPSInst_FD(ir));
624 			break;
625 
626 		case swxc1_op:
627 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
628 				xcp->regs[MIPSInst_FT(ir)]);
629 
630 			fpuemustats.stores++;
631 
632 			SIFROMREG(val, MIPSInst_FS(ir));
633 			if (put_user(val, va)) {
634 				fpuemustats.errors++;
635 				return SIGBUS;
636 			}
637 			break;
638 
639 		case madd_s_op:
640 			handler = fpemu_sp_madd;
641 			goto scoptop;
642 		case msub_s_op:
643 			handler = fpemu_sp_msub;
644 			goto scoptop;
645 		case nmadd_s_op:
646 			handler = fpemu_sp_nmadd;
647 			goto scoptop;
648 		case nmsub_s_op:
649 			handler = fpemu_sp_nmsub;
650 			goto scoptop;
651 
652 		      scoptop:
653 			SPFROMREG(fr, MIPSInst_FR(ir));
654 			SPFROMREG(fs, MIPSInst_FS(ir));
655 			SPFROMREG(ft, MIPSInst_FT(ir));
656 			fd = (*handler) (fr, fs, ft);
657 			SPTOREG(fd, MIPSInst_FD(ir));
658 
659 		      copcsr:
660 			if (ieee754_cxtest(IEEE754_INEXACT))
661 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
662 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
663 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
664 			if (ieee754_cxtest(IEEE754_OVERFLOW))
665 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
666 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
667 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
668 
669 			ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
670 			if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
671 				/*printk ("SIGFPE: fpu csr = %08x\n",
672 				   ctx->fcr31); */
673 				return SIGFPE;
674 			}
675 
676 			break;
677 
678 		default:
679 			return SIGILL;
680 		}
681 		break;
682 	}
683 
684 	case d_fmt:{		/* 1 */
685 		ieee754dp(*handler) (ieee754dp, ieee754dp, ieee754dp);
686 		ieee754dp fd, fr, fs, ft;
687 		u64 __user *va;
688 		u64 val;
689 
690 		switch (MIPSInst_FUNC(ir)) {
691 		case ldxc1_op:
692 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
693 				xcp->regs[MIPSInst_FT(ir)]);
694 
695 			fpuemustats.loads++;
696 			if (get_user(val, va)) {
697 				fpuemustats.errors++;
698 				return SIGBUS;
699 			}
700 			DITOREG(val, MIPSInst_FD(ir));
701 			break;
702 
703 		case sdxc1_op:
704 			va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] +
705 				xcp->regs[MIPSInst_FT(ir)]);
706 
707 			fpuemustats.stores++;
708 			DIFROMREG(val, MIPSInst_FS(ir));
709 			if (put_user(val, va)) {
710 				fpuemustats.errors++;
711 				return SIGBUS;
712 			}
713 			break;
714 
715 		case madd_d_op:
716 			handler = fpemu_dp_madd;
717 			goto dcoptop;
718 		case msub_d_op:
719 			handler = fpemu_dp_msub;
720 			goto dcoptop;
721 		case nmadd_d_op:
722 			handler = fpemu_dp_nmadd;
723 			goto dcoptop;
724 		case nmsub_d_op:
725 			handler = fpemu_dp_nmsub;
726 			goto dcoptop;
727 
728 		      dcoptop:
729 			DPFROMREG(fr, MIPSInst_FR(ir));
730 			DPFROMREG(fs, MIPSInst_FS(ir));
731 			DPFROMREG(ft, MIPSInst_FT(ir));
732 			fd = (*handler) (fr, fs, ft);
733 			DPTOREG(fd, MIPSInst_FD(ir));
734 			goto copcsr;
735 
736 		default:
737 			return SIGILL;
738 		}
739 		break;
740 	}
741 
742 	case 0x7:		/* 7 */
743 		if (MIPSInst_FUNC(ir) != pfetch_op) {
744 			return SIGILL;
745 		}
746 		/* ignore prefx operation */
747 		break;
748 
749 	default:
750 		return SIGILL;
751 	}
752 
753 	return 0;
754 }
755 #endif
756 
757 
758 
759 /*
760  * Emulate a single COP1 arithmetic instruction.
761  */
762 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
763 	mips_instruction ir)
764 {
765 	int rfmt;		/* resulting format */
766 	unsigned rcsr = 0;	/* resulting csr */
767 	unsigned cond;
768 	union {
769 		ieee754dp d;
770 		ieee754sp s;
771 		int w;
772 #ifdef __mips64
773 		s64 l;
774 #endif
775 	} rv;			/* resulting value */
776 
777 	fpuemustats.cp1ops++;
778 	switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) {
779 	case s_fmt:{		/* 0 */
780 		union {
781 			ieee754sp(*b) (ieee754sp, ieee754sp);
782 			ieee754sp(*u) (ieee754sp);
783 		} handler;
784 
785 		switch (MIPSInst_FUNC(ir)) {
786 			/* binary ops */
787 		case fadd_op:
788 			handler.b = ieee754sp_add;
789 			goto scopbop;
790 		case fsub_op:
791 			handler.b = ieee754sp_sub;
792 			goto scopbop;
793 		case fmul_op:
794 			handler.b = ieee754sp_mul;
795 			goto scopbop;
796 		case fdiv_op:
797 			handler.b = ieee754sp_div;
798 			goto scopbop;
799 
800 			/* unary  ops */
801 #if __mips >= 2 || defined(__mips64)
802 		case fsqrt_op:
803 			handler.u = ieee754sp_sqrt;
804 			goto scopuop;
805 #endif
806 #if __mips >= 4 && __mips != 32
807 		case frsqrt_op:
808 			handler.u = fpemu_sp_rsqrt;
809 			goto scopuop;
810 		case frecip_op:
811 			handler.u = fpemu_sp_recip;
812 			goto scopuop;
813 #endif
814 #if __mips >= 4
815 		case fmovc_op:
816 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
817 			if (((ctx->fcr31 & cond) != 0) !=
818 				((MIPSInst_FT(ir) & 1) != 0))
819 				return 0;
820 			SPFROMREG(rv.s, MIPSInst_FS(ir));
821 			break;
822 		case fmovz_op:
823 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
824 				return 0;
825 			SPFROMREG(rv.s, MIPSInst_FS(ir));
826 			break;
827 		case fmovn_op:
828 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
829 				return 0;
830 			SPFROMREG(rv.s, MIPSInst_FS(ir));
831 			break;
832 #endif
833 		case fabs_op:
834 			handler.u = ieee754sp_abs;
835 			goto scopuop;
836 		case fneg_op:
837 			handler.u = ieee754sp_neg;
838 			goto scopuop;
839 		case fmov_op:
840 			/* an easy one */
841 			SPFROMREG(rv.s, MIPSInst_FS(ir));
842 			goto copcsr;
843 
844 			/* binary op on handler */
845 		      scopbop:
846 			{
847 				ieee754sp fs, ft;
848 
849 				SPFROMREG(fs, MIPSInst_FS(ir));
850 				SPFROMREG(ft, MIPSInst_FT(ir));
851 
852 				rv.s = (*handler.b) (fs, ft);
853 				goto copcsr;
854 			}
855 		      scopuop:
856 			{
857 				ieee754sp fs;
858 
859 				SPFROMREG(fs, MIPSInst_FS(ir));
860 				rv.s = (*handler.u) (fs);
861 				goto copcsr;
862 			}
863 		      copcsr:
864 			if (ieee754_cxtest(IEEE754_INEXACT))
865 				rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S;
866 			if (ieee754_cxtest(IEEE754_UNDERFLOW))
867 				rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S;
868 			if (ieee754_cxtest(IEEE754_OVERFLOW))
869 				rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S;
870 			if (ieee754_cxtest(IEEE754_ZERO_DIVIDE))
871 				rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S;
872 			if (ieee754_cxtest(IEEE754_INVALID_OPERATION))
873 				rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S;
874 			break;
875 
876 			/* unary conv ops */
877 		case fcvts_op:
878 			return SIGILL;	/* not defined */
879 		case fcvtd_op:{
880 			ieee754sp fs;
881 
882 			SPFROMREG(fs, MIPSInst_FS(ir));
883 			rv.d = ieee754dp_fsp(fs);
884 			rfmt = d_fmt;
885 			goto copcsr;
886 		}
887 		case fcvtw_op:{
888 			ieee754sp fs;
889 
890 			SPFROMREG(fs, MIPSInst_FS(ir));
891 			rv.w = ieee754sp_tint(fs);
892 			rfmt = w_fmt;
893 			goto copcsr;
894 		}
895 
896 #if __mips >= 2 || defined(__mips64)
897 		case fround_op:
898 		case ftrunc_op:
899 		case fceil_op:
900 		case ffloor_op:{
901 			unsigned int oldrm = ieee754_csr.rm;
902 			ieee754sp fs;
903 
904 			SPFROMREG(fs, MIPSInst_FS(ir));
905 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
906 			rv.w = ieee754sp_tint(fs);
907 			ieee754_csr.rm = oldrm;
908 			rfmt = w_fmt;
909 			goto copcsr;
910 		}
911 #endif /* __mips >= 2 */
912 
913 #if defined(__mips64)
914 		case fcvtl_op:{
915 			ieee754sp fs;
916 
917 			SPFROMREG(fs, MIPSInst_FS(ir));
918 			rv.l = ieee754sp_tlong(fs);
919 			rfmt = l_fmt;
920 			goto copcsr;
921 		}
922 
923 		case froundl_op:
924 		case ftruncl_op:
925 		case fceill_op:
926 		case ffloorl_op:{
927 			unsigned int oldrm = ieee754_csr.rm;
928 			ieee754sp fs;
929 
930 			SPFROMREG(fs, MIPSInst_FS(ir));
931 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
932 			rv.l = ieee754sp_tlong(fs);
933 			ieee754_csr.rm = oldrm;
934 			rfmt = l_fmt;
935 			goto copcsr;
936 		}
937 #endif /* defined(__mips64) */
938 
939 		default:
940 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
941 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
942 				ieee754sp fs, ft;
943 
944 				SPFROMREG(fs, MIPSInst_FS(ir));
945 				SPFROMREG(ft, MIPSInst_FT(ir));
946 				rv.w = ieee754sp_cmp(fs, ft,
947 					cmptab[cmpop & 0x7], cmpop & 0x8);
948 				rfmt = -1;
949 				if ((cmpop & 0x8) && ieee754_cxtest
950 					(IEEE754_INVALID_OPERATION))
951 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
952 				else
953 					goto copcsr;
954 
955 			}
956 			else {
957 				return SIGILL;
958 			}
959 			break;
960 		}
961 		break;
962 	}
963 
964 	case d_fmt:{
965 		union {
966 			ieee754dp(*b) (ieee754dp, ieee754dp);
967 			ieee754dp(*u) (ieee754dp);
968 		} handler;
969 
970 		switch (MIPSInst_FUNC(ir)) {
971 			/* binary ops */
972 		case fadd_op:
973 			handler.b = ieee754dp_add;
974 			goto dcopbop;
975 		case fsub_op:
976 			handler.b = ieee754dp_sub;
977 			goto dcopbop;
978 		case fmul_op:
979 			handler.b = ieee754dp_mul;
980 			goto dcopbop;
981 		case fdiv_op:
982 			handler.b = ieee754dp_div;
983 			goto dcopbop;
984 
985 			/* unary  ops */
986 #if __mips >= 2 || defined(__mips64)
987 		case fsqrt_op:
988 			handler.u = ieee754dp_sqrt;
989 			goto dcopuop;
990 #endif
991 #if __mips >= 4 && __mips != 32
992 		case frsqrt_op:
993 			handler.u = fpemu_dp_rsqrt;
994 			goto dcopuop;
995 		case frecip_op:
996 			handler.u = fpemu_dp_recip;
997 			goto dcopuop;
998 #endif
999 #if __mips >= 4
1000 		case fmovc_op:
1001 			cond = fpucondbit[MIPSInst_FT(ir) >> 2];
1002 			if (((ctx->fcr31 & cond) != 0) !=
1003 				((MIPSInst_FT(ir) & 1) != 0))
1004 				return 0;
1005 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1006 			break;
1007 		case fmovz_op:
1008 			if (xcp->regs[MIPSInst_FT(ir)] != 0)
1009 				return 0;
1010 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1011 			break;
1012 		case fmovn_op:
1013 			if (xcp->regs[MIPSInst_FT(ir)] == 0)
1014 				return 0;
1015 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1016 			break;
1017 #endif
1018 		case fabs_op:
1019 			handler.u = ieee754dp_abs;
1020 			goto dcopuop;
1021 
1022 		case fneg_op:
1023 			handler.u = ieee754dp_neg;
1024 			goto dcopuop;
1025 
1026 		case fmov_op:
1027 			/* an easy one */
1028 			DPFROMREG(rv.d, MIPSInst_FS(ir));
1029 			goto copcsr;
1030 
1031 			/* binary op on handler */
1032 		      dcopbop:{
1033 				ieee754dp fs, ft;
1034 
1035 				DPFROMREG(fs, MIPSInst_FS(ir));
1036 				DPFROMREG(ft, MIPSInst_FT(ir));
1037 
1038 				rv.d = (*handler.b) (fs, ft);
1039 				goto copcsr;
1040 			}
1041 		      dcopuop:{
1042 				ieee754dp fs;
1043 
1044 				DPFROMREG(fs, MIPSInst_FS(ir));
1045 				rv.d = (*handler.u) (fs);
1046 				goto copcsr;
1047 			}
1048 
1049 			/* unary conv ops */
1050 		case fcvts_op:{
1051 			ieee754dp fs;
1052 
1053 			DPFROMREG(fs, MIPSInst_FS(ir));
1054 			rv.s = ieee754sp_fdp(fs);
1055 			rfmt = s_fmt;
1056 			goto copcsr;
1057 		}
1058 		case fcvtd_op:
1059 			return SIGILL;	/* not defined */
1060 
1061 		case fcvtw_op:{
1062 			ieee754dp fs;
1063 
1064 			DPFROMREG(fs, MIPSInst_FS(ir));
1065 			rv.w = ieee754dp_tint(fs);	/* wrong */
1066 			rfmt = w_fmt;
1067 			goto copcsr;
1068 		}
1069 
1070 #if __mips >= 2 || defined(__mips64)
1071 		case fround_op:
1072 		case ftrunc_op:
1073 		case fceil_op:
1074 		case ffloor_op:{
1075 			unsigned int oldrm = ieee754_csr.rm;
1076 			ieee754dp fs;
1077 
1078 			DPFROMREG(fs, MIPSInst_FS(ir));
1079 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1080 			rv.w = ieee754dp_tint(fs);
1081 			ieee754_csr.rm = oldrm;
1082 			rfmt = w_fmt;
1083 			goto copcsr;
1084 		}
1085 #endif
1086 
1087 #if defined(__mips64)
1088 		case fcvtl_op:{
1089 			ieee754dp fs;
1090 
1091 			DPFROMREG(fs, MIPSInst_FS(ir));
1092 			rv.l = ieee754dp_tlong(fs);
1093 			rfmt = l_fmt;
1094 			goto copcsr;
1095 		}
1096 
1097 		case froundl_op:
1098 		case ftruncl_op:
1099 		case fceill_op:
1100 		case ffloorl_op:{
1101 			unsigned int oldrm = ieee754_csr.rm;
1102 			ieee754dp fs;
1103 
1104 			DPFROMREG(fs, MIPSInst_FS(ir));
1105 			ieee754_csr.rm = ieee_rm[MIPSInst_FUNC(ir) & 0x3];
1106 			rv.l = ieee754dp_tlong(fs);
1107 			ieee754_csr.rm = oldrm;
1108 			rfmt = l_fmt;
1109 			goto copcsr;
1110 		}
1111 #endif /* __mips >= 3 */
1112 
1113 		default:
1114 			if (MIPSInst_FUNC(ir) >= fcmp_op) {
1115 				unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op;
1116 				ieee754dp fs, ft;
1117 
1118 				DPFROMREG(fs, MIPSInst_FS(ir));
1119 				DPFROMREG(ft, MIPSInst_FT(ir));
1120 				rv.w = ieee754dp_cmp(fs, ft,
1121 					cmptab[cmpop & 0x7], cmpop & 0x8);
1122 				rfmt = -1;
1123 				if ((cmpop & 0x8)
1124 					&&
1125 					ieee754_cxtest
1126 					(IEEE754_INVALID_OPERATION))
1127 					rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S;
1128 				else
1129 					goto copcsr;
1130 
1131 			}
1132 			else {
1133 				return SIGILL;
1134 			}
1135 			break;
1136 		}
1137 		break;
1138 	}
1139 
1140 	case w_fmt:{
1141 		ieee754sp fs;
1142 
1143 		switch (MIPSInst_FUNC(ir)) {
1144 		case fcvts_op:
1145 			/* convert word to single precision real */
1146 			SPFROMREG(fs, MIPSInst_FS(ir));
1147 			rv.s = ieee754sp_fint(fs.bits);
1148 			rfmt = s_fmt;
1149 			goto copcsr;
1150 		case fcvtd_op:
1151 			/* convert word to double precision real */
1152 			SPFROMREG(fs, MIPSInst_FS(ir));
1153 			rv.d = ieee754dp_fint(fs.bits);
1154 			rfmt = d_fmt;
1155 			goto copcsr;
1156 		default:
1157 			return SIGILL;
1158 		}
1159 		break;
1160 	}
1161 
1162 #if defined(__mips64)
1163 	case l_fmt:{
1164 		switch (MIPSInst_FUNC(ir)) {
1165 		case fcvts_op:
1166 			/* convert long to single precision real */
1167 			rv.s = ieee754sp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1168 			rfmt = s_fmt;
1169 			goto copcsr;
1170 		case fcvtd_op:
1171 			/* convert long to double precision real */
1172 			rv.d = ieee754dp_flong(ctx->fpr[MIPSInst_FS(ir)]);
1173 			rfmt = d_fmt;
1174 			goto copcsr;
1175 		default:
1176 			return SIGILL;
1177 		}
1178 		break;
1179 	}
1180 #endif
1181 
1182 	default:
1183 		return SIGILL;
1184 	}
1185 
1186 	/*
1187 	 * Update the fpu CSR register for this operation.
1188 	 * If an exception is required, generate a tidy SIGFPE exception,
1189 	 * without updating the result register.
1190 	 * Note: cause exception bits do not accumulate, they are rewritten
1191 	 * for each op; only the flag/sticky bits accumulate.
1192 	 */
1193 	ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr;
1194 	if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
1195 		/*printk ("SIGFPE: fpu csr = %08x\n",ctx->fcr31); */
1196 		return SIGFPE;
1197 	}
1198 
1199 	/*
1200 	 * Now we can safely write the result back to the register file.
1201 	 */
1202 	switch (rfmt) {
1203 	case -1:{
1204 #if __mips >= 4
1205 		cond = fpucondbit[MIPSInst_FD(ir) >> 2];
1206 #else
1207 		cond = FPU_CSR_COND;
1208 #endif
1209 		if (rv.w)
1210 			ctx->fcr31 |= cond;
1211 		else
1212 			ctx->fcr31 &= ~cond;
1213 		break;
1214 	}
1215 	case d_fmt:
1216 		DPTOREG(rv.d, MIPSInst_FD(ir));
1217 		break;
1218 	case s_fmt:
1219 		SPTOREG(rv.s, MIPSInst_FD(ir));
1220 		break;
1221 	case w_fmt:
1222 		SITOREG(rv.w, MIPSInst_FD(ir));
1223 		break;
1224 #if defined(__mips64)
1225 	case l_fmt:
1226 		DITOREG(rv.l, MIPSInst_FD(ir));
1227 		break;
1228 #endif
1229 	default:
1230 		return SIGILL;
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx)
1237 {
1238 	unsigned long oldepc, prevepc;
1239 	mips_instruction insn;
1240 	int sig = 0;
1241 
1242 	oldepc = xcp->cp0_epc;
1243 	do {
1244 		prevepc = xcp->cp0_epc;
1245 
1246 		if (get_user(insn, (mips_instruction __user *) xcp->cp0_epc)) {
1247 			fpuemustats.errors++;
1248 			return SIGBUS;
1249 		}
1250 		if (insn == 0)
1251 			xcp->cp0_epc += 4;	/* skip nops */
1252 		else {
1253 			/*
1254 			 * The 'ieee754_csr' is an alias of
1255 			 * ctx->fcr31.  No need to copy ctx->fcr31 to
1256 			 * ieee754_csr.  But ieee754_csr.rm is ieee
1257 			 * library modes. (not mips rounding mode)
1258 			 */
1259 			/* convert to ieee library modes */
1260 			ieee754_csr.rm = ieee_rm[ieee754_csr.rm];
1261 			sig = cop1Emulate(xcp, ctx);
1262 			/* revert to mips rounding mode */
1263 			ieee754_csr.rm = mips_rm[ieee754_csr.rm];
1264 		}
1265 
1266 		if (cpu_has_fpu)
1267 			break;
1268 		if (sig)
1269 			break;
1270 
1271 		cond_resched();
1272 	} while (xcp->cp0_epc > prevepc);
1273 
1274 	/* SIGILL indicates a non-fpu instruction */
1275 	if (sig == SIGILL && xcp->cp0_epc != oldepc)
1276 		/* but if epc has advanced, then ignore it */
1277 		sig = 0;
1278 
1279 	return sig;
1280 }
1281