1 /* 2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator 3 * 4 * MIPS floating point support 5 * Copyright (C) 1994-2000 Algorithmics Ltd. 6 * 7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 8 * Copyright (C) 2000 MIPS Technologies, Inc. 9 * 10 * This program is free software; you can distribute it and/or modify it 11 * under the terms of the GNU General Public License (Version 2) as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 * for more details. 18 * 19 * You should have received a copy of the GNU General Public License along 20 * with this program; if not, write to the Free Software Foundation, Inc., 21 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 22 * 23 * A complete emulator for MIPS coprocessor 1 instructions. This is 24 * required for #float(switch) or #float(trap), where it catches all 25 * COP1 instructions via the "CoProcessor Unusable" exception. 26 * 27 * More surprisingly it is also required for #float(ieee), to help out 28 * the hardware FPU at the boundaries of the IEEE-754 representation 29 * (denormalised values, infinities, underflow, etc). It is made 30 * quite nasty because emulation of some non-COP1 instructions is 31 * required, e.g. in branch delay slots. 32 * 33 * Note if you know that you won't have an FPU, then you'll get much 34 * better performance by compiling with -msoft-float! 35 */ 36 #include <linux/sched.h> 37 #include <linux/debugfs.h> 38 #include <linux/kconfig.h> 39 #include <linux/percpu-defs.h> 40 #include <linux/perf_event.h> 41 42 #include <asm/branch.h> 43 #include <asm/inst.h> 44 #include <asm/ptrace.h> 45 #include <asm/signal.h> 46 #include <asm/uaccess.h> 47 48 #include <asm/cpu-info.h> 49 #include <asm/processor.h> 50 #include <asm/fpu_emulator.h> 51 #include <asm/fpu.h> 52 #include <asm/mips-r2-to-r6-emul.h> 53 54 #include "ieee754.h" 55 56 /* Function which emulates a floating point instruction. */ 57 58 static int fpu_emu(struct pt_regs *, struct mips_fpu_struct *, 59 mips_instruction); 60 61 static int fpux_emu(struct pt_regs *, 62 struct mips_fpu_struct *, mips_instruction, void *__user *); 63 64 /* Control registers */ 65 66 #define FPCREG_RID 0 /* $0 = revision id */ 67 #define FPCREG_FCCR 25 /* $25 = fccr */ 68 #define FPCREG_FEXR 26 /* $26 = fexr */ 69 #define FPCREG_FENR 28 /* $28 = fenr */ 70 #define FPCREG_CSR 31 /* $31 = csr */ 71 72 /* convert condition code register number to csr bit */ 73 const unsigned int fpucondbit[8] = { 74 FPU_CSR_COND, 75 FPU_CSR_COND1, 76 FPU_CSR_COND2, 77 FPU_CSR_COND3, 78 FPU_CSR_COND4, 79 FPU_CSR_COND5, 80 FPU_CSR_COND6, 81 FPU_CSR_COND7 82 }; 83 84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */ 85 static const int sd_format[] = {16, 17, 0, 0, 0, 0, 0, 0}; 86 static const int sdps_format[] = {16, 17, 22, 0, 0, 0, 0, 0}; 87 static const int dwl_format[] = {17, 20, 21, 0, 0, 0, 0, 0}; 88 static const int swl_format[] = {16, 20, 21, 0, 0, 0, 0, 0}; 89 90 /* 91 * This functions translates a 32-bit microMIPS instruction 92 * into a 32-bit MIPS32 instruction. Returns 0 on success 93 * and SIGILL otherwise. 94 */ 95 static int microMIPS32_to_MIPS32(union mips_instruction *insn_ptr) 96 { 97 union mips_instruction insn = *insn_ptr; 98 union mips_instruction mips32_insn = insn; 99 int func, fmt, op; 100 101 switch (insn.mm_i_format.opcode) { 102 case mm_ldc132_op: 103 mips32_insn.mm_i_format.opcode = ldc1_op; 104 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 105 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 106 break; 107 case mm_lwc132_op: 108 mips32_insn.mm_i_format.opcode = lwc1_op; 109 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 110 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 111 break; 112 case mm_sdc132_op: 113 mips32_insn.mm_i_format.opcode = sdc1_op; 114 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 115 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 116 break; 117 case mm_swc132_op: 118 mips32_insn.mm_i_format.opcode = swc1_op; 119 mips32_insn.mm_i_format.rt = insn.mm_i_format.rs; 120 mips32_insn.mm_i_format.rs = insn.mm_i_format.rt; 121 break; 122 case mm_pool32i_op: 123 /* NOTE: offset is << by 1 if in microMIPS mode. */ 124 if ((insn.mm_i_format.rt == mm_bc1f_op) || 125 (insn.mm_i_format.rt == mm_bc1t_op)) { 126 mips32_insn.fb_format.opcode = cop1_op; 127 mips32_insn.fb_format.bc = bc_op; 128 mips32_insn.fb_format.flag = 129 (insn.mm_i_format.rt == mm_bc1t_op) ? 1 : 0; 130 } else 131 return SIGILL; 132 break; 133 case mm_pool32f_op: 134 switch (insn.mm_fp0_format.func) { 135 case mm_32f_01_op: 136 case mm_32f_11_op: 137 case mm_32f_02_op: 138 case mm_32f_12_op: 139 case mm_32f_41_op: 140 case mm_32f_51_op: 141 case mm_32f_42_op: 142 case mm_32f_52_op: 143 op = insn.mm_fp0_format.func; 144 if (op == mm_32f_01_op) 145 func = madd_s_op; 146 else if (op == mm_32f_11_op) 147 func = madd_d_op; 148 else if (op == mm_32f_02_op) 149 func = nmadd_s_op; 150 else if (op == mm_32f_12_op) 151 func = nmadd_d_op; 152 else if (op == mm_32f_41_op) 153 func = msub_s_op; 154 else if (op == mm_32f_51_op) 155 func = msub_d_op; 156 else if (op == mm_32f_42_op) 157 func = nmsub_s_op; 158 else 159 func = nmsub_d_op; 160 mips32_insn.fp6_format.opcode = cop1x_op; 161 mips32_insn.fp6_format.fr = insn.mm_fp6_format.fr; 162 mips32_insn.fp6_format.ft = insn.mm_fp6_format.ft; 163 mips32_insn.fp6_format.fs = insn.mm_fp6_format.fs; 164 mips32_insn.fp6_format.fd = insn.mm_fp6_format.fd; 165 mips32_insn.fp6_format.func = func; 166 break; 167 case mm_32f_10_op: 168 func = -1; /* Invalid */ 169 op = insn.mm_fp5_format.op & 0x7; 170 if (op == mm_ldxc1_op) 171 func = ldxc1_op; 172 else if (op == mm_sdxc1_op) 173 func = sdxc1_op; 174 else if (op == mm_lwxc1_op) 175 func = lwxc1_op; 176 else if (op == mm_swxc1_op) 177 func = swxc1_op; 178 179 if (func != -1) { 180 mips32_insn.r_format.opcode = cop1x_op; 181 mips32_insn.r_format.rs = 182 insn.mm_fp5_format.base; 183 mips32_insn.r_format.rt = 184 insn.mm_fp5_format.index; 185 mips32_insn.r_format.rd = 0; 186 mips32_insn.r_format.re = insn.mm_fp5_format.fd; 187 mips32_insn.r_format.func = func; 188 } else 189 return SIGILL; 190 break; 191 case mm_32f_40_op: 192 op = -1; /* Invalid */ 193 if (insn.mm_fp2_format.op == mm_fmovt_op) 194 op = 1; 195 else if (insn.mm_fp2_format.op == mm_fmovf_op) 196 op = 0; 197 if (op != -1) { 198 mips32_insn.fp0_format.opcode = cop1_op; 199 mips32_insn.fp0_format.fmt = 200 sdps_format[insn.mm_fp2_format.fmt]; 201 mips32_insn.fp0_format.ft = 202 (insn.mm_fp2_format.cc<<2) + op; 203 mips32_insn.fp0_format.fs = 204 insn.mm_fp2_format.fs; 205 mips32_insn.fp0_format.fd = 206 insn.mm_fp2_format.fd; 207 mips32_insn.fp0_format.func = fmovc_op; 208 } else 209 return SIGILL; 210 break; 211 case mm_32f_60_op: 212 func = -1; /* Invalid */ 213 if (insn.mm_fp0_format.op == mm_fadd_op) 214 func = fadd_op; 215 else if (insn.mm_fp0_format.op == mm_fsub_op) 216 func = fsub_op; 217 else if (insn.mm_fp0_format.op == mm_fmul_op) 218 func = fmul_op; 219 else if (insn.mm_fp0_format.op == mm_fdiv_op) 220 func = fdiv_op; 221 if (func != -1) { 222 mips32_insn.fp0_format.opcode = cop1_op; 223 mips32_insn.fp0_format.fmt = 224 sdps_format[insn.mm_fp0_format.fmt]; 225 mips32_insn.fp0_format.ft = 226 insn.mm_fp0_format.ft; 227 mips32_insn.fp0_format.fs = 228 insn.mm_fp0_format.fs; 229 mips32_insn.fp0_format.fd = 230 insn.mm_fp0_format.fd; 231 mips32_insn.fp0_format.func = func; 232 } else 233 return SIGILL; 234 break; 235 case mm_32f_70_op: 236 func = -1; /* Invalid */ 237 if (insn.mm_fp0_format.op == mm_fmovn_op) 238 func = fmovn_op; 239 else if (insn.mm_fp0_format.op == mm_fmovz_op) 240 func = fmovz_op; 241 if (func != -1) { 242 mips32_insn.fp0_format.opcode = cop1_op; 243 mips32_insn.fp0_format.fmt = 244 sdps_format[insn.mm_fp0_format.fmt]; 245 mips32_insn.fp0_format.ft = 246 insn.mm_fp0_format.ft; 247 mips32_insn.fp0_format.fs = 248 insn.mm_fp0_format.fs; 249 mips32_insn.fp0_format.fd = 250 insn.mm_fp0_format.fd; 251 mips32_insn.fp0_format.func = func; 252 } else 253 return SIGILL; 254 break; 255 case mm_32f_73_op: /* POOL32FXF */ 256 switch (insn.mm_fp1_format.op) { 257 case mm_movf0_op: 258 case mm_movf1_op: 259 case mm_movt0_op: 260 case mm_movt1_op: 261 if ((insn.mm_fp1_format.op & 0x7f) == 262 mm_movf0_op) 263 op = 0; 264 else 265 op = 1; 266 mips32_insn.r_format.opcode = spec_op; 267 mips32_insn.r_format.rs = insn.mm_fp4_format.fs; 268 mips32_insn.r_format.rt = 269 (insn.mm_fp4_format.cc << 2) + op; 270 mips32_insn.r_format.rd = insn.mm_fp4_format.rt; 271 mips32_insn.r_format.re = 0; 272 mips32_insn.r_format.func = movc_op; 273 break; 274 case mm_fcvtd0_op: 275 case mm_fcvtd1_op: 276 case mm_fcvts0_op: 277 case mm_fcvts1_op: 278 if ((insn.mm_fp1_format.op & 0x7f) == 279 mm_fcvtd0_op) { 280 func = fcvtd_op; 281 fmt = swl_format[insn.mm_fp3_format.fmt]; 282 } else { 283 func = fcvts_op; 284 fmt = dwl_format[insn.mm_fp3_format.fmt]; 285 } 286 mips32_insn.fp0_format.opcode = cop1_op; 287 mips32_insn.fp0_format.fmt = fmt; 288 mips32_insn.fp0_format.ft = 0; 289 mips32_insn.fp0_format.fs = 290 insn.mm_fp3_format.fs; 291 mips32_insn.fp0_format.fd = 292 insn.mm_fp3_format.rt; 293 mips32_insn.fp0_format.func = func; 294 break; 295 case mm_fmov0_op: 296 case mm_fmov1_op: 297 case mm_fabs0_op: 298 case mm_fabs1_op: 299 case mm_fneg0_op: 300 case mm_fneg1_op: 301 if ((insn.mm_fp1_format.op & 0x7f) == 302 mm_fmov0_op) 303 func = fmov_op; 304 else if ((insn.mm_fp1_format.op & 0x7f) == 305 mm_fabs0_op) 306 func = fabs_op; 307 else 308 func = fneg_op; 309 mips32_insn.fp0_format.opcode = cop1_op; 310 mips32_insn.fp0_format.fmt = 311 sdps_format[insn.mm_fp3_format.fmt]; 312 mips32_insn.fp0_format.ft = 0; 313 mips32_insn.fp0_format.fs = 314 insn.mm_fp3_format.fs; 315 mips32_insn.fp0_format.fd = 316 insn.mm_fp3_format.rt; 317 mips32_insn.fp0_format.func = func; 318 break; 319 case mm_ffloorl_op: 320 case mm_ffloorw_op: 321 case mm_fceill_op: 322 case mm_fceilw_op: 323 case mm_ftruncl_op: 324 case mm_ftruncw_op: 325 case mm_froundl_op: 326 case mm_froundw_op: 327 case mm_fcvtl_op: 328 case mm_fcvtw_op: 329 if (insn.mm_fp1_format.op == mm_ffloorl_op) 330 func = ffloorl_op; 331 else if (insn.mm_fp1_format.op == mm_ffloorw_op) 332 func = ffloor_op; 333 else if (insn.mm_fp1_format.op == mm_fceill_op) 334 func = fceill_op; 335 else if (insn.mm_fp1_format.op == mm_fceilw_op) 336 func = fceil_op; 337 else if (insn.mm_fp1_format.op == mm_ftruncl_op) 338 func = ftruncl_op; 339 else if (insn.mm_fp1_format.op == mm_ftruncw_op) 340 func = ftrunc_op; 341 else if (insn.mm_fp1_format.op == mm_froundl_op) 342 func = froundl_op; 343 else if (insn.mm_fp1_format.op == mm_froundw_op) 344 func = fround_op; 345 else if (insn.mm_fp1_format.op == mm_fcvtl_op) 346 func = fcvtl_op; 347 else 348 func = fcvtw_op; 349 mips32_insn.fp0_format.opcode = cop1_op; 350 mips32_insn.fp0_format.fmt = 351 sd_format[insn.mm_fp1_format.fmt]; 352 mips32_insn.fp0_format.ft = 0; 353 mips32_insn.fp0_format.fs = 354 insn.mm_fp1_format.fs; 355 mips32_insn.fp0_format.fd = 356 insn.mm_fp1_format.rt; 357 mips32_insn.fp0_format.func = func; 358 break; 359 case mm_frsqrt_op: 360 case mm_fsqrt_op: 361 case mm_frecip_op: 362 if (insn.mm_fp1_format.op == mm_frsqrt_op) 363 func = frsqrt_op; 364 else if (insn.mm_fp1_format.op == mm_fsqrt_op) 365 func = fsqrt_op; 366 else 367 func = frecip_op; 368 mips32_insn.fp0_format.opcode = cop1_op; 369 mips32_insn.fp0_format.fmt = 370 sdps_format[insn.mm_fp1_format.fmt]; 371 mips32_insn.fp0_format.ft = 0; 372 mips32_insn.fp0_format.fs = 373 insn.mm_fp1_format.fs; 374 mips32_insn.fp0_format.fd = 375 insn.mm_fp1_format.rt; 376 mips32_insn.fp0_format.func = func; 377 break; 378 case mm_mfc1_op: 379 case mm_mtc1_op: 380 case mm_cfc1_op: 381 case mm_ctc1_op: 382 case mm_mfhc1_op: 383 case mm_mthc1_op: 384 if (insn.mm_fp1_format.op == mm_mfc1_op) 385 op = mfc_op; 386 else if (insn.mm_fp1_format.op == mm_mtc1_op) 387 op = mtc_op; 388 else if (insn.mm_fp1_format.op == mm_cfc1_op) 389 op = cfc_op; 390 else if (insn.mm_fp1_format.op == mm_ctc1_op) 391 op = ctc_op; 392 else if (insn.mm_fp1_format.op == mm_mfhc1_op) 393 op = mfhc_op; 394 else 395 op = mthc_op; 396 mips32_insn.fp1_format.opcode = cop1_op; 397 mips32_insn.fp1_format.op = op; 398 mips32_insn.fp1_format.rt = 399 insn.mm_fp1_format.rt; 400 mips32_insn.fp1_format.fs = 401 insn.mm_fp1_format.fs; 402 mips32_insn.fp1_format.fd = 0; 403 mips32_insn.fp1_format.func = 0; 404 break; 405 default: 406 return SIGILL; 407 } 408 break; 409 case mm_32f_74_op: /* c.cond.fmt */ 410 mips32_insn.fp0_format.opcode = cop1_op; 411 mips32_insn.fp0_format.fmt = 412 sdps_format[insn.mm_fp4_format.fmt]; 413 mips32_insn.fp0_format.ft = insn.mm_fp4_format.rt; 414 mips32_insn.fp0_format.fs = insn.mm_fp4_format.fs; 415 mips32_insn.fp0_format.fd = insn.mm_fp4_format.cc << 2; 416 mips32_insn.fp0_format.func = 417 insn.mm_fp4_format.cond | MM_MIPS32_COND_FC; 418 break; 419 default: 420 return SIGILL; 421 } 422 break; 423 default: 424 return SIGILL; 425 } 426 427 *insn_ptr = mips32_insn; 428 return 0; 429 } 430 431 /* 432 * Redundant with logic already in kernel/branch.c, 433 * embedded in compute_return_epc. At some point, 434 * a single subroutine should be used across both 435 * modules. 436 */ 437 static int isBranchInstr(struct pt_regs *regs, struct mm_decoded_insn dec_insn, 438 unsigned long *contpc) 439 { 440 union mips_instruction insn = (union mips_instruction)dec_insn.insn; 441 unsigned int fcr31; 442 unsigned int bit = 0; 443 444 switch (insn.i_format.opcode) { 445 case spec_op: 446 switch (insn.r_format.func) { 447 case jalr_op: 448 if (insn.r_format.rd != 0) { 449 regs->regs[insn.r_format.rd] = 450 regs->cp0_epc + dec_insn.pc_inc + 451 dec_insn.next_pc_inc; 452 } 453 /* Fall through */ 454 case jr_op: 455 /* For R6, JR already emulated in jalr_op */ 456 if (NO_R6EMU && insn.r_format.func == jr_op) 457 break; 458 *contpc = regs->regs[insn.r_format.rs]; 459 return 1; 460 } 461 break; 462 case bcond_op: 463 switch (insn.i_format.rt) { 464 case bltzal_op: 465 case bltzall_op: 466 if (NO_R6EMU && (insn.i_format.rs || 467 insn.i_format.rt == bltzall_op)) 468 break; 469 470 regs->regs[31] = regs->cp0_epc + 471 dec_insn.pc_inc + 472 dec_insn.next_pc_inc; 473 /* Fall through */ 474 case bltzl_op: 475 if (NO_R6EMU) 476 break; 477 case bltz_op: 478 if ((long)regs->regs[insn.i_format.rs] < 0) 479 *contpc = regs->cp0_epc + 480 dec_insn.pc_inc + 481 (insn.i_format.simmediate << 2); 482 else 483 *contpc = regs->cp0_epc + 484 dec_insn.pc_inc + 485 dec_insn.next_pc_inc; 486 return 1; 487 case bgezal_op: 488 case bgezall_op: 489 if (NO_R6EMU && (insn.i_format.rs || 490 insn.i_format.rt == bgezall_op)) 491 break; 492 493 regs->regs[31] = regs->cp0_epc + 494 dec_insn.pc_inc + 495 dec_insn.next_pc_inc; 496 /* Fall through */ 497 case bgezl_op: 498 if (NO_R6EMU) 499 break; 500 case bgez_op: 501 if ((long)regs->regs[insn.i_format.rs] >= 0) 502 *contpc = regs->cp0_epc + 503 dec_insn.pc_inc + 504 (insn.i_format.simmediate << 2); 505 else 506 *contpc = regs->cp0_epc + 507 dec_insn.pc_inc + 508 dec_insn.next_pc_inc; 509 return 1; 510 } 511 break; 512 case jalx_op: 513 set_isa16_mode(bit); 514 case jal_op: 515 regs->regs[31] = regs->cp0_epc + 516 dec_insn.pc_inc + 517 dec_insn.next_pc_inc; 518 /* Fall through */ 519 case j_op: 520 *contpc = regs->cp0_epc + dec_insn.pc_inc; 521 *contpc >>= 28; 522 *contpc <<= 28; 523 *contpc |= (insn.j_format.target << 2); 524 /* Set microMIPS mode bit: XOR for jalx. */ 525 *contpc ^= bit; 526 return 1; 527 case beql_op: 528 if (NO_R6EMU) 529 break; 530 case beq_op: 531 if (regs->regs[insn.i_format.rs] == 532 regs->regs[insn.i_format.rt]) 533 *contpc = regs->cp0_epc + 534 dec_insn.pc_inc + 535 (insn.i_format.simmediate << 2); 536 else 537 *contpc = regs->cp0_epc + 538 dec_insn.pc_inc + 539 dec_insn.next_pc_inc; 540 return 1; 541 case bnel_op: 542 if (NO_R6EMU) 543 break; 544 case bne_op: 545 if (regs->regs[insn.i_format.rs] != 546 regs->regs[insn.i_format.rt]) 547 *contpc = regs->cp0_epc + 548 dec_insn.pc_inc + 549 (insn.i_format.simmediate << 2); 550 else 551 *contpc = regs->cp0_epc + 552 dec_insn.pc_inc + 553 dec_insn.next_pc_inc; 554 return 1; 555 case blezl_op: 556 if (!insn.i_format.rt && NO_R6EMU) 557 break; 558 case blez_op: 559 560 /* 561 * Compact branches for R6 for the 562 * blez and blezl opcodes. 563 * BLEZ | rs = 0 | rt != 0 == BLEZALC 564 * BLEZ | rs = rt != 0 == BGEZALC 565 * BLEZ | rs != 0 | rt != 0 == BGEUC 566 * BLEZL | rs = 0 | rt != 0 == BLEZC 567 * BLEZL | rs = rt != 0 == BGEZC 568 * BLEZL | rs != 0 | rt != 0 == BGEC 569 * 570 * For real BLEZ{,L}, rt is always 0. 571 */ 572 if (cpu_has_mips_r6 && insn.i_format.rt) { 573 if ((insn.i_format.opcode == blez_op) && 574 ((!insn.i_format.rs && insn.i_format.rt) || 575 (insn.i_format.rs == insn.i_format.rt))) 576 regs->regs[31] = regs->cp0_epc + 577 dec_insn.pc_inc; 578 *contpc = regs->cp0_epc + dec_insn.pc_inc + 579 dec_insn.next_pc_inc; 580 581 return 1; 582 } 583 if ((long)regs->regs[insn.i_format.rs] <= 0) 584 *contpc = regs->cp0_epc + 585 dec_insn.pc_inc + 586 (insn.i_format.simmediate << 2); 587 else 588 *contpc = regs->cp0_epc + 589 dec_insn.pc_inc + 590 dec_insn.next_pc_inc; 591 return 1; 592 case bgtzl_op: 593 if (!insn.i_format.rt && NO_R6EMU) 594 break; 595 case bgtz_op: 596 /* 597 * Compact branches for R6 for the 598 * bgtz and bgtzl opcodes. 599 * BGTZ | rs = 0 | rt != 0 == BGTZALC 600 * BGTZ | rs = rt != 0 == BLTZALC 601 * BGTZ | rs != 0 | rt != 0 == BLTUC 602 * BGTZL | rs = 0 | rt != 0 == BGTZC 603 * BGTZL | rs = rt != 0 == BLTZC 604 * BGTZL | rs != 0 | rt != 0 == BLTC 605 * 606 * *ZALC varint for BGTZ &&& rt != 0 607 * For real GTZ{,L}, rt is always 0. 608 */ 609 if (cpu_has_mips_r6 && insn.i_format.rt) { 610 if ((insn.i_format.opcode == blez_op) && 611 ((!insn.i_format.rs && insn.i_format.rt) || 612 (insn.i_format.rs == insn.i_format.rt))) 613 regs->regs[31] = regs->cp0_epc + 614 dec_insn.pc_inc; 615 *contpc = regs->cp0_epc + dec_insn.pc_inc + 616 dec_insn.next_pc_inc; 617 618 return 1; 619 } 620 621 if ((long)regs->regs[insn.i_format.rs] > 0) 622 *contpc = regs->cp0_epc + 623 dec_insn.pc_inc + 624 (insn.i_format.simmediate << 2); 625 else 626 *contpc = regs->cp0_epc + 627 dec_insn.pc_inc + 628 dec_insn.next_pc_inc; 629 return 1; 630 case pop10_op: 631 case pop30_op: 632 if (!cpu_has_mips_r6) 633 break; 634 if (insn.i_format.rt && !insn.i_format.rs) 635 regs->regs[31] = regs->cp0_epc + 4; 636 *contpc = regs->cp0_epc + dec_insn.pc_inc + 637 dec_insn.next_pc_inc; 638 639 return 1; 640 #ifdef CONFIG_CPU_CAVIUM_OCTEON 641 case lwc2_op: /* This is bbit0 on Octeon */ 642 if ((regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) == 0) 643 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 644 else 645 *contpc = regs->cp0_epc + 8; 646 return 1; 647 case ldc2_op: /* This is bbit032 on Octeon */ 648 if ((regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) == 0) 649 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 650 else 651 *contpc = regs->cp0_epc + 8; 652 return 1; 653 case swc2_op: /* This is bbit1 on Octeon */ 654 if (regs->regs[insn.i_format.rs] & (1ull<<insn.i_format.rt)) 655 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 656 else 657 *contpc = regs->cp0_epc + 8; 658 return 1; 659 case sdc2_op: /* This is bbit132 on Octeon */ 660 if (regs->regs[insn.i_format.rs] & (1ull<<(insn.i_format.rt + 32))) 661 *contpc = regs->cp0_epc + 4 + (insn.i_format.simmediate << 2); 662 else 663 *contpc = regs->cp0_epc + 8; 664 return 1; 665 #else 666 case bc6_op: 667 /* 668 * Only valid for MIPS R6 but we can still end up 669 * here from a broken userland so just tell emulator 670 * this is not a branch and let it break later on. 671 */ 672 if (!cpu_has_mips_r6) 673 break; 674 *contpc = regs->cp0_epc + dec_insn.pc_inc + 675 dec_insn.next_pc_inc; 676 677 return 1; 678 case balc6_op: 679 if (!cpu_has_mips_r6) 680 break; 681 regs->regs[31] = regs->cp0_epc + 4; 682 *contpc = regs->cp0_epc + dec_insn.pc_inc + 683 dec_insn.next_pc_inc; 684 685 return 1; 686 case pop66_op: 687 if (!cpu_has_mips_r6) 688 break; 689 *contpc = regs->cp0_epc + dec_insn.pc_inc + 690 dec_insn.next_pc_inc; 691 692 return 1; 693 case pop76_op: 694 if (!cpu_has_mips_r6) 695 break; 696 if (!insn.i_format.rs) 697 regs->regs[31] = regs->cp0_epc + 4; 698 *contpc = regs->cp0_epc + dec_insn.pc_inc + 699 dec_insn.next_pc_inc; 700 701 return 1; 702 #endif 703 case cop0_op: 704 case cop1_op: 705 /* Need to check for R6 bc1nez and bc1eqz branches */ 706 if (cpu_has_mips_r6 && 707 ((insn.i_format.rs == bc1eqz_op) || 708 (insn.i_format.rs == bc1nez_op))) { 709 bit = 0; 710 switch (insn.i_format.rs) { 711 case bc1eqz_op: 712 if (get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1) 713 bit = 1; 714 break; 715 case bc1nez_op: 716 if (!(get_fpr32(¤t->thread.fpu.fpr[insn.i_format.rt], 0) & 0x1)) 717 bit = 1; 718 break; 719 } 720 if (bit) 721 *contpc = regs->cp0_epc + 722 dec_insn.pc_inc + 723 (insn.i_format.simmediate << 2); 724 else 725 *contpc = regs->cp0_epc + 726 dec_insn.pc_inc + 727 dec_insn.next_pc_inc; 728 729 return 1; 730 } 731 /* R2/R6 compatible cop1 instruction. Fall through */ 732 case cop2_op: 733 case cop1x_op: 734 if (insn.i_format.rs == bc_op) { 735 preempt_disable(); 736 if (is_fpu_owner()) 737 fcr31 = read_32bit_cp1_register(CP1_STATUS); 738 else 739 fcr31 = current->thread.fpu.fcr31; 740 preempt_enable(); 741 742 bit = (insn.i_format.rt >> 2); 743 bit += (bit != 0); 744 bit += 23; 745 switch (insn.i_format.rt & 3) { 746 case 0: /* bc1f */ 747 case 2: /* bc1fl */ 748 if (~fcr31 & (1 << bit)) 749 *contpc = regs->cp0_epc + 750 dec_insn.pc_inc + 751 (insn.i_format.simmediate << 2); 752 else 753 *contpc = regs->cp0_epc + 754 dec_insn.pc_inc + 755 dec_insn.next_pc_inc; 756 return 1; 757 case 1: /* bc1t */ 758 case 3: /* bc1tl */ 759 if (fcr31 & (1 << bit)) 760 *contpc = regs->cp0_epc + 761 dec_insn.pc_inc + 762 (insn.i_format.simmediate << 2); 763 else 764 *contpc = regs->cp0_epc + 765 dec_insn.pc_inc + 766 dec_insn.next_pc_inc; 767 return 1; 768 } 769 } 770 break; 771 } 772 return 0; 773 } 774 775 /* 776 * In the Linux kernel, we support selection of FPR format on the 777 * basis of the Status.FR bit. If an FPU is not present, the FR bit 778 * is hardwired to zero, which would imply a 32-bit FPU even for 779 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS. 780 * FPU emu is slow and bulky and optimizing this function offers fairly 781 * sizeable benefits so we try to be clever and make this function return 782 * a constant whenever possible, that is on 64-bit kernels without O32 783 * compatibility enabled and on 32-bit without 64-bit FPU support. 784 */ 785 static inline int cop1_64bit(struct pt_regs *xcp) 786 { 787 if (config_enabled(CONFIG_64BIT) && !config_enabled(CONFIG_MIPS32_O32)) 788 return 1; 789 else if (config_enabled(CONFIG_32BIT) && 790 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT)) 791 return 0; 792 793 return !test_thread_flag(TIF_32BIT_FPREGS); 794 } 795 796 static inline bool hybrid_fprs(void) 797 { 798 return test_thread_flag(TIF_HYBRID_FPREGS); 799 } 800 801 #define SIFROMREG(si, x) \ 802 do { \ 803 if (cop1_64bit(xcp) && !hybrid_fprs()) \ 804 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \ 805 else \ 806 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \ 807 } while (0) 808 809 #define SITOREG(si, x) \ 810 do { \ 811 if (cop1_64bit(xcp) && !hybrid_fprs()) { \ 812 unsigned i; \ 813 set_fpr32(&ctx->fpr[x], 0, si); \ 814 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 815 set_fpr32(&ctx->fpr[x], i, 0); \ 816 } else { \ 817 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \ 818 } \ 819 } while (0) 820 821 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1)) 822 823 #define SITOHREG(si, x) \ 824 do { \ 825 unsigned i; \ 826 set_fpr32(&ctx->fpr[x], 1, si); \ 827 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \ 828 set_fpr32(&ctx->fpr[x], i, 0); \ 829 } while (0) 830 831 #define DIFROMREG(di, x) \ 832 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0)) 833 834 #define DITOREG(di, x) \ 835 do { \ 836 unsigned fpr, i; \ 837 fpr = (x) & ~(cop1_64bit(xcp) == 0); \ 838 set_fpr64(&ctx->fpr[fpr], 0, di); \ 839 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \ 840 set_fpr64(&ctx->fpr[fpr], i, 0); \ 841 } while (0) 842 843 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x) 844 #define SPTOREG(sp, x) SITOREG((sp).bits, x) 845 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x) 846 #define DPTOREG(dp, x) DITOREG((dp).bits, x) 847 848 /* 849 * Emulate a CFC1 instruction. 850 */ 851 static inline void cop1_cfc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 852 mips_instruction ir) 853 { 854 u32 fcr31 = ctx->fcr31; 855 u32 value = 0; 856 857 switch (MIPSInst_RD(ir)) { 858 case FPCREG_CSR: 859 value = fcr31; 860 pr_debug("%p gpr[%d]<-csr=%08x\n", 861 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 862 break; 863 864 case FPCREG_FENR: 865 if (!cpu_has_mips_r) 866 break; 867 value = (fcr31 >> (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 868 MIPS_FENR_FS; 869 value |= fcr31 & (FPU_CSR_ALL_E | FPU_CSR_RM); 870 pr_debug("%p gpr[%d]<-enr=%08x\n", 871 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 872 break; 873 874 case FPCREG_FEXR: 875 if (!cpu_has_mips_r) 876 break; 877 value = fcr31 & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 878 pr_debug("%p gpr[%d]<-exr=%08x\n", 879 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 880 break; 881 882 case FPCREG_FCCR: 883 if (!cpu_has_mips_r) 884 break; 885 value = (fcr31 >> (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 886 MIPS_FCCR_COND0; 887 value |= (fcr31 >> (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 888 (MIPS_FCCR_CONDX & ~MIPS_FCCR_COND0); 889 pr_debug("%p gpr[%d]<-ccr=%08x\n", 890 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 891 break; 892 893 case FPCREG_RID: 894 value = boot_cpu_data.fpu_id; 895 break; 896 897 default: 898 break; 899 } 900 901 if (MIPSInst_RT(ir)) 902 xcp->regs[MIPSInst_RT(ir)] = value; 903 } 904 905 /* 906 * Emulate a CTC1 instruction. 907 */ 908 static inline void cop1_ctc(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 909 mips_instruction ir) 910 { 911 u32 fcr31 = ctx->fcr31; 912 u32 value; 913 u32 mask; 914 915 if (MIPSInst_RT(ir) == 0) 916 value = 0; 917 else 918 value = xcp->regs[MIPSInst_RT(ir)]; 919 920 switch (MIPSInst_RD(ir)) { 921 case FPCREG_CSR: 922 pr_debug("%p gpr[%d]->csr=%08x\n", 923 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 924 925 /* Preserve read-only bits. */ 926 mask = boot_cpu_data.fpu_msk31; 927 fcr31 = (value & ~mask) | (fcr31 & mask); 928 break; 929 930 case FPCREG_FENR: 931 if (!cpu_has_mips_r) 932 break; 933 pr_debug("%p gpr[%d]->enr=%08x\n", 934 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 935 fcr31 &= ~(FPU_CSR_FS | FPU_CSR_ALL_E | FPU_CSR_RM); 936 fcr31 |= (value << (FPU_CSR_FS_S - MIPS_FENR_FS_S)) & 937 FPU_CSR_FS; 938 fcr31 |= value & (FPU_CSR_ALL_E | FPU_CSR_RM); 939 break; 940 941 case FPCREG_FEXR: 942 if (!cpu_has_mips_r) 943 break; 944 pr_debug("%p gpr[%d]->exr=%08x\n", 945 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 946 fcr31 &= ~(FPU_CSR_ALL_X | FPU_CSR_ALL_S); 947 fcr31 |= value & (FPU_CSR_ALL_X | FPU_CSR_ALL_S); 948 break; 949 950 case FPCREG_FCCR: 951 if (!cpu_has_mips_r) 952 break; 953 pr_debug("%p gpr[%d]->ccr=%08x\n", 954 (void *)xcp->cp0_epc, MIPSInst_RT(ir), value); 955 fcr31 &= ~(FPU_CSR_CONDX | FPU_CSR_COND); 956 fcr31 |= (value << (FPU_CSR_COND_S - MIPS_FCCR_COND0_S)) & 957 FPU_CSR_COND; 958 fcr31 |= (value << (FPU_CSR_COND1_S - MIPS_FCCR_COND1_S)) & 959 FPU_CSR_CONDX; 960 break; 961 962 default: 963 break; 964 } 965 966 ctx->fcr31 = fcr31; 967 } 968 969 /* 970 * Emulate the single floating point instruction pointed at by EPC. 971 * Two instructions if the instruction is in a branch delay slot. 972 */ 973 974 static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 975 struct mm_decoded_insn dec_insn, void *__user *fault_addr) 976 { 977 unsigned long contpc = xcp->cp0_epc + dec_insn.pc_inc; 978 unsigned int cond, cbit, bit0; 979 mips_instruction ir; 980 int likely, pc_inc; 981 union fpureg *fpr; 982 u32 __user *wva; 983 u64 __user *dva; 984 u32 wval; 985 u64 dval; 986 int sig; 987 988 /* 989 * These are giving gcc a gentle hint about what to expect in 990 * dec_inst in order to do better optimization. 991 */ 992 if (!cpu_has_mmips && dec_insn.micro_mips_mode) 993 unreachable(); 994 995 /* XXX NEC Vr54xx bug workaround */ 996 if (delay_slot(xcp)) { 997 if (dec_insn.micro_mips_mode) { 998 if (!mm_isBranchInstr(xcp, dec_insn, &contpc)) 999 clear_delay_slot(xcp); 1000 } else { 1001 if (!isBranchInstr(xcp, dec_insn, &contpc)) 1002 clear_delay_slot(xcp); 1003 } 1004 } 1005 1006 if (delay_slot(xcp)) { 1007 /* 1008 * The instruction to be emulated is in a branch delay slot 1009 * which means that we have to emulate the branch instruction 1010 * BEFORE we do the cop1 instruction. 1011 * 1012 * This branch could be a COP1 branch, but in that case we 1013 * would have had a trap for that instruction, and would not 1014 * come through this route. 1015 * 1016 * Linux MIPS branch emulator operates on context, updating the 1017 * cp0_epc. 1018 */ 1019 ir = dec_insn.next_insn; /* process delay slot instr */ 1020 pc_inc = dec_insn.next_pc_inc; 1021 } else { 1022 ir = dec_insn.insn; /* process current instr */ 1023 pc_inc = dec_insn.pc_inc; 1024 } 1025 1026 /* 1027 * Since microMIPS FPU instructios are a subset of MIPS32 FPU 1028 * instructions, we want to convert microMIPS FPU instructions 1029 * into MIPS32 instructions so that we could reuse all of the 1030 * FPU emulation code. 1031 * 1032 * NOTE: We cannot do this for branch instructions since they 1033 * are not a subset. Example: Cannot emulate a 16-bit 1034 * aligned target address with a MIPS32 instruction. 1035 */ 1036 if (dec_insn.micro_mips_mode) { 1037 /* 1038 * If next instruction is a 16-bit instruction, then it 1039 * it cannot be a FPU instruction. This could happen 1040 * since we can be called for non-FPU instructions. 1041 */ 1042 if ((pc_inc == 2) || 1043 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) 1044 == SIGILL)) 1045 return SIGILL; 1046 } 1047 1048 emul: 1049 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, xcp, 0); 1050 MIPS_FPU_EMU_INC_STATS(emulated); 1051 switch (MIPSInst_OPCODE(ir)) { 1052 case ldc1_op: 1053 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1054 MIPSInst_SIMM(ir)); 1055 MIPS_FPU_EMU_INC_STATS(loads); 1056 1057 if (!access_ok(VERIFY_READ, dva, sizeof(u64))) { 1058 MIPS_FPU_EMU_INC_STATS(errors); 1059 *fault_addr = dva; 1060 return SIGBUS; 1061 } 1062 if (__get_user(dval, dva)) { 1063 MIPS_FPU_EMU_INC_STATS(errors); 1064 *fault_addr = dva; 1065 return SIGSEGV; 1066 } 1067 DITOREG(dval, MIPSInst_RT(ir)); 1068 break; 1069 1070 case sdc1_op: 1071 dva = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1072 MIPSInst_SIMM(ir)); 1073 MIPS_FPU_EMU_INC_STATS(stores); 1074 DIFROMREG(dval, MIPSInst_RT(ir)); 1075 if (!access_ok(VERIFY_WRITE, dva, sizeof(u64))) { 1076 MIPS_FPU_EMU_INC_STATS(errors); 1077 *fault_addr = dva; 1078 return SIGBUS; 1079 } 1080 if (__put_user(dval, dva)) { 1081 MIPS_FPU_EMU_INC_STATS(errors); 1082 *fault_addr = dva; 1083 return SIGSEGV; 1084 } 1085 break; 1086 1087 case lwc1_op: 1088 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1089 MIPSInst_SIMM(ir)); 1090 MIPS_FPU_EMU_INC_STATS(loads); 1091 if (!access_ok(VERIFY_READ, wva, sizeof(u32))) { 1092 MIPS_FPU_EMU_INC_STATS(errors); 1093 *fault_addr = wva; 1094 return SIGBUS; 1095 } 1096 if (__get_user(wval, wva)) { 1097 MIPS_FPU_EMU_INC_STATS(errors); 1098 *fault_addr = wva; 1099 return SIGSEGV; 1100 } 1101 SITOREG(wval, MIPSInst_RT(ir)); 1102 break; 1103 1104 case swc1_op: 1105 wva = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] + 1106 MIPSInst_SIMM(ir)); 1107 MIPS_FPU_EMU_INC_STATS(stores); 1108 SIFROMREG(wval, MIPSInst_RT(ir)); 1109 if (!access_ok(VERIFY_WRITE, wva, sizeof(u32))) { 1110 MIPS_FPU_EMU_INC_STATS(errors); 1111 *fault_addr = wva; 1112 return SIGBUS; 1113 } 1114 if (__put_user(wval, wva)) { 1115 MIPS_FPU_EMU_INC_STATS(errors); 1116 *fault_addr = wva; 1117 return SIGSEGV; 1118 } 1119 break; 1120 1121 case cop1_op: 1122 switch (MIPSInst_RS(ir)) { 1123 case dmfc_op: 1124 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1125 return SIGILL; 1126 1127 /* copregister fs -> gpr[rt] */ 1128 if (MIPSInst_RT(ir) != 0) { 1129 DIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1130 MIPSInst_RD(ir)); 1131 } 1132 break; 1133 1134 case dmtc_op: 1135 if (!cpu_has_mips_3_4_5 && !cpu_has_mips64) 1136 return SIGILL; 1137 1138 /* copregister fs <- rt */ 1139 DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1140 break; 1141 1142 case mfhc_op: 1143 if (!cpu_has_mips_r2_r6) 1144 goto sigill; 1145 1146 /* copregister rd -> gpr[rt] */ 1147 if (MIPSInst_RT(ir) != 0) { 1148 SIFROMHREG(xcp->regs[MIPSInst_RT(ir)], 1149 MIPSInst_RD(ir)); 1150 } 1151 break; 1152 1153 case mthc_op: 1154 if (!cpu_has_mips_r2_r6) 1155 goto sigill; 1156 1157 /* copregister rd <- gpr[rt] */ 1158 SITOHREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1159 break; 1160 1161 case mfc_op: 1162 /* copregister rd -> gpr[rt] */ 1163 if (MIPSInst_RT(ir) != 0) { 1164 SIFROMREG(xcp->regs[MIPSInst_RT(ir)], 1165 MIPSInst_RD(ir)); 1166 } 1167 break; 1168 1169 case mtc_op: 1170 /* copregister rd <- rt */ 1171 SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir)); 1172 break; 1173 1174 case cfc_op: 1175 /* cop control register rd -> gpr[rt] */ 1176 cop1_cfc(xcp, ctx, ir); 1177 break; 1178 1179 case ctc_op: 1180 /* copregister rd <- rt */ 1181 cop1_ctc(xcp, ctx, ir); 1182 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1183 return SIGFPE; 1184 } 1185 break; 1186 1187 case bc1eqz_op: 1188 case bc1nez_op: 1189 if (!cpu_has_mips_r6 || delay_slot(xcp)) 1190 return SIGILL; 1191 1192 cond = likely = 0; 1193 fpr = ¤t->thread.fpu.fpr[MIPSInst_RT(ir)]; 1194 bit0 = get_fpr32(fpr, 0) & 0x1; 1195 switch (MIPSInst_RS(ir)) { 1196 case bc1eqz_op: 1197 cond = bit0 == 0; 1198 break; 1199 case bc1nez_op: 1200 cond = bit0 != 0; 1201 break; 1202 } 1203 goto branch_common; 1204 1205 case bc_op: 1206 if (delay_slot(xcp)) 1207 return SIGILL; 1208 1209 if (cpu_has_mips_4_5_r) 1210 cbit = fpucondbit[MIPSInst_RT(ir) >> 2]; 1211 else 1212 cbit = FPU_CSR_COND; 1213 cond = ctx->fcr31 & cbit; 1214 1215 likely = 0; 1216 switch (MIPSInst_RT(ir) & 3) { 1217 case bcfl_op: 1218 if (cpu_has_mips_2_3_4_5_r) 1219 likely = 1; 1220 /* Fall through */ 1221 case bcf_op: 1222 cond = !cond; 1223 break; 1224 case bctl_op: 1225 if (cpu_has_mips_2_3_4_5_r) 1226 likely = 1; 1227 /* Fall through */ 1228 case bct_op: 1229 break; 1230 } 1231 branch_common: 1232 set_delay_slot(xcp); 1233 if (cond) { 1234 /* 1235 * Branch taken: emulate dslot instruction 1236 */ 1237 unsigned long bcpc; 1238 1239 /* 1240 * Remember EPC at the branch to point back 1241 * at so that any delay-slot instruction 1242 * signal is not silently ignored. 1243 */ 1244 bcpc = xcp->cp0_epc; 1245 xcp->cp0_epc += dec_insn.pc_inc; 1246 1247 contpc = MIPSInst_SIMM(ir); 1248 ir = dec_insn.next_insn; 1249 if (dec_insn.micro_mips_mode) { 1250 contpc = (xcp->cp0_epc + (contpc << 1)); 1251 1252 /* If 16-bit instruction, not FPU. */ 1253 if ((dec_insn.next_pc_inc == 2) || 1254 (microMIPS32_to_MIPS32((union mips_instruction *)&ir) == SIGILL)) { 1255 1256 /* 1257 * Since this instruction will 1258 * be put on the stack with 1259 * 32-bit words, get around 1260 * this problem by putting a 1261 * NOP16 as the second one. 1262 */ 1263 if (dec_insn.next_pc_inc == 2) 1264 ir = (ir & (~0xffff)) | MM_NOP16; 1265 1266 /* 1267 * Single step the non-CP1 1268 * instruction in the dslot. 1269 */ 1270 sig = mips_dsemul(xcp, ir, 1271 contpc); 1272 if (sig < 0) 1273 break; 1274 if (sig) 1275 xcp->cp0_epc = bcpc; 1276 /* 1277 * SIGILL forces out of 1278 * the emulation loop. 1279 */ 1280 return sig ? sig : SIGILL; 1281 } 1282 } else 1283 contpc = (xcp->cp0_epc + (contpc << 2)); 1284 1285 switch (MIPSInst_OPCODE(ir)) { 1286 case lwc1_op: 1287 case swc1_op: 1288 goto emul; 1289 1290 case ldc1_op: 1291 case sdc1_op: 1292 if (cpu_has_mips_2_3_4_5_r) 1293 goto emul; 1294 1295 goto bc_sigill; 1296 1297 case cop1_op: 1298 goto emul; 1299 1300 case cop1x_op: 1301 if (cpu_has_mips_4_5_64_r2_r6) 1302 /* its one of ours */ 1303 goto emul; 1304 1305 goto bc_sigill; 1306 1307 case spec_op: 1308 switch (MIPSInst_FUNC(ir)) { 1309 case movc_op: 1310 if (cpu_has_mips_4_5_r) 1311 goto emul; 1312 1313 goto bc_sigill; 1314 } 1315 break; 1316 1317 bc_sigill: 1318 xcp->cp0_epc = bcpc; 1319 return SIGILL; 1320 } 1321 1322 /* 1323 * Single step the non-cp1 1324 * instruction in the dslot 1325 */ 1326 sig = mips_dsemul(xcp, ir, contpc); 1327 if (sig < 0) 1328 break; 1329 if (sig) 1330 xcp->cp0_epc = bcpc; 1331 /* SIGILL forces out of the emulation loop. */ 1332 return sig ? sig : SIGILL; 1333 } else if (likely) { /* branch not taken */ 1334 /* 1335 * branch likely nullifies 1336 * dslot if not taken 1337 */ 1338 xcp->cp0_epc += dec_insn.pc_inc; 1339 contpc += dec_insn.pc_inc; 1340 /* 1341 * else continue & execute 1342 * dslot as normal insn 1343 */ 1344 } 1345 break; 1346 1347 default: 1348 if (!(MIPSInst_RS(ir) & 0x10)) 1349 return SIGILL; 1350 1351 /* a real fpu computation instruction */ 1352 if ((sig = fpu_emu(xcp, ctx, ir))) 1353 return sig; 1354 } 1355 break; 1356 1357 case cop1x_op: 1358 if (!cpu_has_mips_4_5_64_r2_r6) 1359 return SIGILL; 1360 1361 sig = fpux_emu(xcp, ctx, ir, fault_addr); 1362 if (sig) 1363 return sig; 1364 break; 1365 1366 case spec_op: 1367 if (!cpu_has_mips_4_5_r) 1368 return SIGILL; 1369 1370 if (MIPSInst_FUNC(ir) != movc_op) 1371 return SIGILL; 1372 cond = fpucondbit[MIPSInst_RT(ir) >> 2]; 1373 if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0)) 1374 xcp->regs[MIPSInst_RD(ir)] = 1375 xcp->regs[MIPSInst_RS(ir)]; 1376 break; 1377 default: 1378 sigill: 1379 return SIGILL; 1380 } 1381 1382 /* we did it !! */ 1383 xcp->cp0_epc = contpc; 1384 clear_delay_slot(xcp); 1385 1386 return 0; 1387 } 1388 1389 /* 1390 * Conversion table from MIPS compare ops 48-63 1391 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig); 1392 */ 1393 static const unsigned char cmptab[8] = { 1394 0, /* cmp_0 (sig) cmp_sf */ 1395 IEEE754_CUN, /* cmp_un (sig) cmp_ngle */ 1396 IEEE754_CEQ, /* cmp_eq (sig) cmp_seq */ 1397 IEEE754_CEQ | IEEE754_CUN, /* cmp_ueq (sig) cmp_ngl */ 1398 IEEE754_CLT, /* cmp_olt (sig) cmp_lt */ 1399 IEEE754_CLT | IEEE754_CUN, /* cmp_ult (sig) cmp_nge */ 1400 IEEE754_CLT | IEEE754_CEQ, /* cmp_ole (sig) cmp_le */ 1401 IEEE754_CLT | IEEE754_CEQ | IEEE754_CUN, /* cmp_ule (sig) cmp_ngt */ 1402 }; 1403 1404 static const unsigned char negative_cmptab[8] = { 1405 0, /* Reserved */ 1406 IEEE754_CLT | IEEE754_CGT | IEEE754_CEQ, 1407 IEEE754_CLT | IEEE754_CGT | IEEE754_CUN, 1408 IEEE754_CLT | IEEE754_CGT, 1409 /* Reserved */ 1410 }; 1411 1412 1413 /* 1414 * Additional MIPS4 instructions 1415 */ 1416 1417 #define DEF3OP(name, p, f1, f2, f3) \ 1418 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \ 1419 union ieee754##p s, union ieee754##p t) \ 1420 { \ 1421 struct _ieee754_csr ieee754_csr_save; \ 1422 s = f1(s, t); \ 1423 ieee754_csr_save = ieee754_csr; \ 1424 s = f2(s, r); \ 1425 ieee754_csr_save.cx |= ieee754_csr.cx; \ 1426 ieee754_csr_save.sx |= ieee754_csr.sx; \ 1427 s = f3(s); \ 1428 ieee754_csr.cx |= ieee754_csr_save.cx; \ 1429 ieee754_csr.sx |= ieee754_csr_save.sx; \ 1430 return s; \ 1431 } 1432 1433 static union ieee754dp fpemu_dp_recip(union ieee754dp d) 1434 { 1435 return ieee754dp_div(ieee754dp_one(0), d); 1436 } 1437 1438 static union ieee754dp fpemu_dp_rsqrt(union ieee754dp d) 1439 { 1440 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d)); 1441 } 1442 1443 static union ieee754sp fpemu_sp_recip(union ieee754sp s) 1444 { 1445 return ieee754sp_div(ieee754sp_one(0), s); 1446 } 1447 1448 static union ieee754sp fpemu_sp_rsqrt(union ieee754sp s) 1449 { 1450 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s)); 1451 } 1452 1453 DEF3OP(madd, sp, ieee754sp_mul, ieee754sp_add, ); 1454 DEF3OP(msub, sp, ieee754sp_mul, ieee754sp_sub, ); 1455 DEF3OP(nmadd, sp, ieee754sp_mul, ieee754sp_add, ieee754sp_neg); 1456 DEF3OP(nmsub, sp, ieee754sp_mul, ieee754sp_sub, ieee754sp_neg); 1457 DEF3OP(madd, dp, ieee754dp_mul, ieee754dp_add, ); 1458 DEF3OP(msub, dp, ieee754dp_mul, ieee754dp_sub, ); 1459 DEF3OP(nmadd, dp, ieee754dp_mul, ieee754dp_add, ieee754dp_neg); 1460 DEF3OP(nmsub, dp, ieee754dp_mul, ieee754dp_sub, ieee754dp_neg); 1461 1462 static int fpux_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1463 mips_instruction ir, void *__user *fault_addr) 1464 { 1465 unsigned rcsr = 0; /* resulting csr */ 1466 1467 MIPS_FPU_EMU_INC_STATS(cp1xops); 1468 1469 switch (MIPSInst_FMA_FFMT(ir)) { 1470 case s_fmt:{ /* 0 */ 1471 1472 union ieee754sp(*handler) (union ieee754sp, union ieee754sp, union ieee754sp); 1473 union ieee754sp fd, fr, fs, ft; 1474 u32 __user *va; 1475 u32 val; 1476 1477 switch (MIPSInst_FUNC(ir)) { 1478 case lwxc1_op: 1479 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1480 xcp->regs[MIPSInst_FT(ir)]); 1481 1482 MIPS_FPU_EMU_INC_STATS(loads); 1483 if (!access_ok(VERIFY_READ, va, sizeof(u32))) { 1484 MIPS_FPU_EMU_INC_STATS(errors); 1485 *fault_addr = va; 1486 return SIGBUS; 1487 } 1488 if (__get_user(val, va)) { 1489 MIPS_FPU_EMU_INC_STATS(errors); 1490 *fault_addr = va; 1491 return SIGSEGV; 1492 } 1493 SITOREG(val, MIPSInst_FD(ir)); 1494 break; 1495 1496 case swxc1_op: 1497 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1498 xcp->regs[MIPSInst_FT(ir)]); 1499 1500 MIPS_FPU_EMU_INC_STATS(stores); 1501 1502 SIFROMREG(val, MIPSInst_FS(ir)); 1503 if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) { 1504 MIPS_FPU_EMU_INC_STATS(errors); 1505 *fault_addr = va; 1506 return SIGBUS; 1507 } 1508 if (put_user(val, va)) { 1509 MIPS_FPU_EMU_INC_STATS(errors); 1510 *fault_addr = va; 1511 return SIGSEGV; 1512 } 1513 break; 1514 1515 case madd_s_op: 1516 handler = fpemu_sp_madd; 1517 goto scoptop; 1518 case msub_s_op: 1519 handler = fpemu_sp_msub; 1520 goto scoptop; 1521 case nmadd_s_op: 1522 handler = fpemu_sp_nmadd; 1523 goto scoptop; 1524 case nmsub_s_op: 1525 handler = fpemu_sp_nmsub; 1526 goto scoptop; 1527 1528 scoptop: 1529 SPFROMREG(fr, MIPSInst_FR(ir)); 1530 SPFROMREG(fs, MIPSInst_FS(ir)); 1531 SPFROMREG(ft, MIPSInst_FT(ir)); 1532 fd = (*handler) (fr, fs, ft); 1533 SPTOREG(fd, MIPSInst_FD(ir)); 1534 1535 copcsr: 1536 if (ieee754_cxtest(IEEE754_INEXACT)) { 1537 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1538 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1539 } 1540 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1541 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1542 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1543 } 1544 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1545 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1546 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1547 } 1548 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1549 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1550 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1551 } 1552 1553 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 1554 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 1555 /*printk ("SIGFPE: FPU csr = %08x\n", 1556 ctx->fcr31); */ 1557 return SIGFPE; 1558 } 1559 1560 break; 1561 1562 default: 1563 return SIGILL; 1564 } 1565 break; 1566 } 1567 1568 case d_fmt:{ /* 1 */ 1569 union ieee754dp(*handler) (union ieee754dp, union ieee754dp, union ieee754dp); 1570 union ieee754dp fd, fr, fs, ft; 1571 u64 __user *va; 1572 u64 val; 1573 1574 switch (MIPSInst_FUNC(ir)) { 1575 case ldxc1_op: 1576 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1577 xcp->regs[MIPSInst_FT(ir)]); 1578 1579 MIPS_FPU_EMU_INC_STATS(loads); 1580 if (!access_ok(VERIFY_READ, va, sizeof(u64))) { 1581 MIPS_FPU_EMU_INC_STATS(errors); 1582 *fault_addr = va; 1583 return SIGBUS; 1584 } 1585 if (__get_user(val, va)) { 1586 MIPS_FPU_EMU_INC_STATS(errors); 1587 *fault_addr = va; 1588 return SIGSEGV; 1589 } 1590 DITOREG(val, MIPSInst_FD(ir)); 1591 break; 1592 1593 case sdxc1_op: 1594 va = (void __user *) (xcp->regs[MIPSInst_FR(ir)] + 1595 xcp->regs[MIPSInst_FT(ir)]); 1596 1597 MIPS_FPU_EMU_INC_STATS(stores); 1598 DIFROMREG(val, MIPSInst_FS(ir)); 1599 if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) { 1600 MIPS_FPU_EMU_INC_STATS(errors); 1601 *fault_addr = va; 1602 return SIGBUS; 1603 } 1604 if (__put_user(val, va)) { 1605 MIPS_FPU_EMU_INC_STATS(errors); 1606 *fault_addr = va; 1607 return SIGSEGV; 1608 } 1609 break; 1610 1611 case madd_d_op: 1612 handler = fpemu_dp_madd; 1613 goto dcoptop; 1614 case msub_d_op: 1615 handler = fpemu_dp_msub; 1616 goto dcoptop; 1617 case nmadd_d_op: 1618 handler = fpemu_dp_nmadd; 1619 goto dcoptop; 1620 case nmsub_d_op: 1621 handler = fpemu_dp_nmsub; 1622 goto dcoptop; 1623 1624 dcoptop: 1625 DPFROMREG(fr, MIPSInst_FR(ir)); 1626 DPFROMREG(fs, MIPSInst_FS(ir)); 1627 DPFROMREG(ft, MIPSInst_FT(ir)); 1628 fd = (*handler) (fr, fs, ft); 1629 DPTOREG(fd, MIPSInst_FD(ir)); 1630 goto copcsr; 1631 1632 default: 1633 return SIGILL; 1634 } 1635 break; 1636 } 1637 1638 case 0x3: 1639 if (MIPSInst_FUNC(ir) != pfetch_op) 1640 return SIGILL; 1641 1642 /* ignore prefx operation */ 1643 break; 1644 1645 default: 1646 return SIGILL; 1647 } 1648 1649 return 0; 1650 } 1651 1652 1653 1654 /* 1655 * Emulate a single COP1 arithmetic instruction. 1656 */ 1657 static int fpu_emu(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 1658 mips_instruction ir) 1659 { 1660 int rfmt; /* resulting format */ 1661 unsigned rcsr = 0; /* resulting csr */ 1662 unsigned int oldrm; 1663 unsigned int cbit; 1664 unsigned cond; 1665 union { 1666 union ieee754dp d; 1667 union ieee754sp s; 1668 int w; 1669 s64 l; 1670 } rv; /* resulting value */ 1671 u64 bits; 1672 1673 MIPS_FPU_EMU_INC_STATS(cp1ops); 1674 switch (rfmt = (MIPSInst_FFMT(ir) & 0xf)) { 1675 case s_fmt: { /* 0 */ 1676 union { 1677 union ieee754sp(*b) (union ieee754sp, union ieee754sp); 1678 union ieee754sp(*u) (union ieee754sp); 1679 } handler; 1680 union ieee754sp fd, fs, ft; 1681 1682 switch (MIPSInst_FUNC(ir)) { 1683 /* binary ops */ 1684 case fadd_op: 1685 handler.b = ieee754sp_add; 1686 goto scopbop; 1687 case fsub_op: 1688 handler.b = ieee754sp_sub; 1689 goto scopbop; 1690 case fmul_op: 1691 handler.b = ieee754sp_mul; 1692 goto scopbop; 1693 case fdiv_op: 1694 handler.b = ieee754sp_div; 1695 goto scopbop; 1696 1697 /* unary ops */ 1698 case fsqrt_op: 1699 if (!cpu_has_mips_2_3_4_5_r) 1700 return SIGILL; 1701 1702 handler.u = ieee754sp_sqrt; 1703 goto scopuop; 1704 1705 /* 1706 * Note that on some MIPS IV implementations such as the 1707 * R5000 and R8000 the FSQRT and FRECIP instructions do not 1708 * achieve full IEEE-754 accuracy - however this emulator does. 1709 */ 1710 case frsqrt_op: 1711 if (!cpu_has_mips_4_5_64_r2_r6) 1712 return SIGILL; 1713 1714 handler.u = fpemu_sp_rsqrt; 1715 goto scopuop; 1716 1717 case frecip_op: 1718 if (!cpu_has_mips_4_5_64_r2_r6) 1719 return SIGILL; 1720 1721 handler.u = fpemu_sp_recip; 1722 goto scopuop; 1723 1724 case fmovc_op: 1725 if (!cpu_has_mips_4_5_r) 1726 return SIGILL; 1727 1728 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 1729 if (((ctx->fcr31 & cond) != 0) != 1730 ((MIPSInst_FT(ir) & 1) != 0)) 1731 return 0; 1732 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1733 break; 1734 1735 case fmovz_op: 1736 if (!cpu_has_mips_4_5_r) 1737 return SIGILL; 1738 1739 if (xcp->regs[MIPSInst_FT(ir)] != 0) 1740 return 0; 1741 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1742 break; 1743 1744 case fmovn_op: 1745 if (!cpu_has_mips_4_5_r) 1746 return SIGILL; 1747 1748 if (xcp->regs[MIPSInst_FT(ir)] == 0) 1749 return 0; 1750 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1751 break; 1752 1753 case fseleqz_op: 1754 if (!cpu_has_mips_r6) 1755 return SIGILL; 1756 1757 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1758 if (rv.w & 0x1) 1759 rv.w = 0; 1760 else 1761 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1762 break; 1763 1764 case fselnez_op: 1765 if (!cpu_has_mips_r6) 1766 return SIGILL; 1767 1768 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1769 if (rv.w & 0x1) 1770 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1771 else 1772 rv.w = 0; 1773 break; 1774 1775 case fmaddf_op: { 1776 union ieee754sp ft, fs, fd; 1777 1778 if (!cpu_has_mips_r6) 1779 return SIGILL; 1780 1781 SPFROMREG(ft, MIPSInst_FT(ir)); 1782 SPFROMREG(fs, MIPSInst_FS(ir)); 1783 SPFROMREG(fd, MIPSInst_FD(ir)); 1784 rv.s = ieee754sp_maddf(fd, fs, ft); 1785 break; 1786 } 1787 1788 case fmsubf_op: { 1789 union ieee754sp ft, fs, fd; 1790 1791 if (!cpu_has_mips_r6) 1792 return SIGILL; 1793 1794 SPFROMREG(ft, MIPSInst_FT(ir)); 1795 SPFROMREG(fs, MIPSInst_FS(ir)); 1796 SPFROMREG(fd, MIPSInst_FD(ir)); 1797 rv.s = ieee754sp_msubf(fd, fs, ft); 1798 break; 1799 } 1800 1801 case frint_op: { 1802 union ieee754sp fs; 1803 1804 if (!cpu_has_mips_r6) 1805 return SIGILL; 1806 1807 SPFROMREG(fs, MIPSInst_FS(ir)); 1808 rv.l = ieee754sp_tlong(fs); 1809 rv.s = ieee754sp_flong(rv.l); 1810 goto copcsr; 1811 } 1812 1813 case fclass_op: { 1814 union ieee754sp fs; 1815 1816 if (!cpu_has_mips_r6) 1817 return SIGILL; 1818 1819 SPFROMREG(fs, MIPSInst_FS(ir)); 1820 rv.w = ieee754sp_2008class(fs); 1821 rfmt = w_fmt; 1822 break; 1823 } 1824 1825 case fmin_op: { 1826 union ieee754sp fs, ft; 1827 1828 if (!cpu_has_mips_r6) 1829 return SIGILL; 1830 1831 SPFROMREG(ft, MIPSInst_FT(ir)); 1832 SPFROMREG(fs, MIPSInst_FS(ir)); 1833 rv.s = ieee754sp_fmin(fs, ft); 1834 break; 1835 } 1836 1837 case fmina_op: { 1838 union ieee754sp fs, ft; 1839 1840 if (!cpu_has_mips_r6) 1841 return SIGILL; 1842 1843 SPFROMREG(ft, MIPSInst_FT(ir)); 1844 SPFROMREG(fs, MIPSInst_FS(ir)); 1845 rv.s = ieee754sp_fmina(fs, ft); 1846 break; 1847 } 1848 1849 case fmax_op: { 1850 union ieee754sp fs, ft; 1851 1852 if (!cpu_has_mips_r6) 1853 return SIGILL; 1854 1855 SPFROMREG(ft, MIPSInst_FT(ir)); 1856 SPFROMREG(fs, MIPSInst_FS(ir)); 1857 rv.s = ieee754sp_fmax(fs, ft); 1858 break; 1859 } 1860 1861 case fmaxa_op: { 1862 union ieee754sp fs, ft; 1863 1864 if (!cpu_has_mips_r6) 1865 return SIGILL; 1866 1867 SPFROMREG(ft, MIPSInst_FT(ir)); 1868 SPFROMREG(fs, MIPSInst_FS(ir)); 1869 rv.s = ieee754sp_fmaxa(fs, ft); 1870 break; 1871 } 1872 1873 case fabs_op: 1874 handler.u = ieee754sp_abs; 1875 goto scopuop; 1876 1877 case fneg_op: 1878 handler.u = ieee754sp_neg; 1879 goto scopuop; 1880 1881 case fmov_op: 1882 /* an easy one */ 1883 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1884 goto copcsr; 1885 1886 /* binary op on handler */ 1887 scopbop: 1888 SPFROMREG(fs, MIPSInst_FS(ir)); 1889 SPFROMREG(ft, MIPSInst_FT(ir)); 1890 1891 rv.s = (*handler.b) (fs, ft); 1892 goto copcsr; 1893 scopuop: 1894 SPFROMREG(fs, MIPSInst_FS(ir)); 1895 rv.s = (*handler.u) (fs); 1896 goto copcsr; 1897 copcsr: 1898 if (ieee754_cxtest(IEEE754_INEXACT)) { 1899 MIPS_FPU_EMU_INC_STATS(ieee754_inexact); 1900 rcsr |= FPU_CSR_INE_X | FPU_CSR_INE_S; 1901 } 1902 if (ieee754_cxtest(IEEE754_UNDERFLOW)) { 1903 MIPS_FPU_EMU_INC_STATS(ieee754_underflow); 1904 rcsr |= FPU_CSR_UDF_X | FPU_CSR_UDF_S; 1905 } 1906 if (ieee754_cxtest(IEEE754_OVERFLOW)) { 1907 MIPS_FPU_EMU_INC_STATS(ieee754_overflow); 1908 rcsr |= FPU_CSR_OVF_X | FPU_CSR_OVF_S; 1909 } 1910 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE)) { 1911 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv); 1912 rcsr |= FPU_CSR_DIV_X | FPU_CSR_DIV_S; 1913 } 1914 if (ieee754_cxtest(IEEE754_INVALID_OPERATION)) { 1915 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop); 1916 rcsr |= FPU_CSR_INV_X | FPU_CSR_INV_S; 1917 } 1918 break; 1919 1920 /* unary conv ops */ 1921 case fcvts_op: 1922 return SIGILL; /* not defined */ 1923 1924 case fcvtd_op: 1925 SPFROMREG(fs, MIPSInst_FS(ir)); 1926 rv.d = ieee754dp_fsp(fs); 1927 rfmt = d_fmt; 1928 goto copcsr; 1929 1930 case fcvtw_op: 1931 SPFROMREG(fs, MIPSInst_FS(ir)); 1932 rv.w = ieee754sp_tint(fs); 1933 rfmt = w_fmt; 1934 goto copcsr; 1935 1936 case fround_op: 1937 case ftrunc_op: 1938 case fceil_op: 1939 case ffloor_op: 1940 if (!cpu_has_mips_2_3_4_5_r) 1941 return SIGILL; 1942 1943 oldrm = ieee754_csr.rm; 1944 SPFROMREG(fs, MIPSInst_FS(ir)); 1945 ieee754_csr.rm = MIPSInst_FUNC(ir); 1946 rv.w = ieee754sp_tint(fs); 1947 ieee754_csr.rm = oldrm; 1948 rfmt = w_fmt; 1949 goto copcsr; 1950 1951 case fsel_op: 1952 if (!cpu_has_mips_r6) 1953 return SIGILL; 1954 1955 SPFROMREG(fd, MIPSInst_FD(ir)); 1956 if (fd.bits & 0x1) 1957 SPFROMREG(rv.s, MIPSInst_FT(ir)); 1958 else 1959 SPFROMREG(rv.s, MIPSInst_FS(ir)); 1960 break; 1961 1962 case fcvtl_op: 1963 if (!cpu_has_mips_3_4_5_64_r2_r6) 1964 return SIGILL; 1965 1966 SPFROMREG(fs, MIPSInst_FS(ir)); 1967 rv.l = ieee754sp_tlong(fs); 1968 rfmt = l_fmt; 1969 goto copcsr; 1970 1971 case froundl_op: 1972 case ftruncl_op: 1973 case fceill_op: 1974 case ffloorl_op: 1975 if (!cpu_has_mips_3_4_5_64_r2_r6) 1976 return SIGILL; 1977 1978 oldrm = ieee754_csr.rm; 1979 SPFROMREG(fs, MIPSInst_FS(ir)); 1980 ieee754_csr.rm = MIPSInst_FUNC(ir); 1981 rv.l = ieee754sp_tlong(fs); 1982 ieee754_csr.rm = oldrm; 1983 rfmt = l_fmt; 1984 goto copcsr; 1985 1986 default: 1987 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 1988 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; 1989 union ieee754sp fs, ft; 1990 1991 SPFROMREG(fs, MIPSInst_FS(ir)); 1992 SPFROMREG(ft, MIPSInst_FT(ir)); 1993 rv.w = ieee754sp_cmp(fs, ft, 1994 cmptab[cmpop & 0x7], cmpop & 0x8); 1995 rfmt = -1; 1996 if ((cmpop & 0x8) && ieee754_cxtest 1997 (IEEE754_INVALID_OPERATION)) 1998 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 1999 else 2000 goto copcsr; 2001 2002 } else 2003 return SIGILL; 2004 break; 2005 } 2006 break; 2007 } 2008 2009 case d_fmt: { 2010 union ieee754dp fd, fs, ft; 2011 union { 2012 union ieee754dp(*b) (union ieee754dp, union ieee754dp); 2013 union ieee754dp(*u) (union ieee754dp); 2014 } handler; 2015 2016 switch (MIPSInst_FUNC(ir)) { 2017 /* binary ops */ 2018 case fadd_op: 2019 handler.b = ieee754dp_add; 2020 goto dcopbop; 2021 case fsub_op: 2022 handler.b = ieee754dp_sub; 2023 goto dcopbop; 2024 case fmul_op: 2025 handler.b = ieee754dp_mul; 2026 goto dcopbop; 2027 case fdiv_op: 2028 handler.b = ieee754dp_div; 2029 goto dcopbop; 2030 2031 /* unary ops */ 2032 case fsqrt_op: 2033 if (!cpu_has_mips_2_3_4_5_r) 2034 return SIGILL; 2035 2036 handler.u = ieee754dp_sqrt; 2037 goto dcopuop; 2038 /* 2039 * Note that on some MIPS IV implementations such as the 2040 * R5000 and R8000 the FSQRT and FRECIP instructions do not 2041 * achieve full IEEE-754 accuracy - however this emulator does. 2042 */ 2043 case frsqrt_op: 2044 if (!cpu_has_mips_4_5_64_r2_r6) 2045 return SIGILL; 2046 2047 handler.u = fpemu_dp_rsqrt; 2048 goto dcopuop; 2049 case frecip_op: 2050 if (!cpu_has_mips_4_5_64_r2_r6) 2051 return SIGILL; 2052 2053 handler.u = fpemu_dp_recip; 2054 goto dcopuop; 2055 case fmovc_op: 2056 if (!cpu_has_mips_4_5_r) 2057 return SIGILL; 2058 2059 cond = fpucondbit[MIPSInst_FT(ir) >> 2]; 2060 if (((ctx->fcr31 & cond) != 0) != 2061 ((MIPSInst_FT(ir) & 1) != 0)) 2062 return 0; 2063 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2064 break; 2065 case fmovz_op: 2066 if (!cpu_has_mips_4_5_r) 2067 return SIGILL; 2068 2069 if (xcp->regs[MIPSInst_FT(ir)] != 0) 2070 return 0; 2071 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2072 break; 2073 case fmovn_op: 2074 if (!cpu_has_mips_4_5_r) 2075 return SIGILL; 2076 2077 if (xcp->regs[MIPSInst_FT(ir)] == 0) 2078 return 0; 2079 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2080 break; 2081 2082 case fseleqz_op: 2083 if (!cpu_has_mips_r6) 2084 return SIGILL; 2085 2086 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2087 if (rv.l & 0x1) 2088 rv.l = 0; 2089 else 2090 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2091 break; 2092 2093 case fselnez_op: 2094 if (!cpu_has_mips_r6) 2095 return SIGILL; 2096 2097 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2098 if (rv.l & 0x1) 2099 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2100 else 2101 rv.l = 0; 2102 break; 2103 2104 case fmaddf_op: { 2105 union ieee754dp ft, fs, fd; 2106 2107 if (!cpu_has_mips_r6) 2108 return SIGILL; 2109 2110 DPFROMREG(ft, MIPSInst_FT(ir)); 2111 DPFROMREG(fs, MIPSInst_FS(ir)); 2112 DPFROMREG(fd, MIPSInst_FD(ir)); 2113 rv.d = ieee754dp_maddf(fd, fs, ft); 2114 break; 2115 } 2116 2117 case fmsubf_op: { 2118 union ieee754dp ft, fs, fd; 2119 2120 if (!cpu_has_mips_r6) 2121 return SIGILL; 2122 2123 DPFROMREG(ft, MIPSInst_FT(ir)); 2124 DPFROMREG(fs, MIPSInst_FS(ir)); 2125 DPFROMREG(fd, MIPSInst_FD(ir)); 2126 rv.d = ieee754dp_msubf(fd, fs, ft); 2127 break; 2128 } 2129 2130 case frint_op: { 2131 union ieee754dp fs; 2132 2133 if (!cpu_has_mips_r6) 2134 return SIGILL; 2135 2136 DPFROMREG(fs, MIPSInst_FS(ir)); 2137 rv.l = ieee754dp_tlong(fs); 2138 rv.d = ieee754dp_flong(rv.l); 2139 goto copcsr; 2140 } 2141 2142 case fclass_op: { 2143 union ieee754dp fs; 2144 2145 if (!cpu_has_mips_r6) 2146 return SIGILL; 2147 2148 DPFROMREG(fs, MIPSInst_FS(ir)); 2149 rv.w = ieee754dp_2008class(fs); 2150 rfmt = w_fmt; 2151 break; 2152 } 2153 2154 case fmin_op: { 2155 union ieee754dp fs, ft; 2156 2157 if (!cpu_has_mips_r6) 2158 return SIGILL; 2159 2160 DPFROMREG(ft, MIPSInst_FT(ir)); 2161 DPFROMREG(fs, MIPSInst_FS(ir)); 2162 rv.d = ieee754dp_fmin(fs, ft); 2163 break; 2164 } 2165 2166 case fmina_op: { 2167 union ieee754dp fs, ft; 2168 2169 if (!cpu_has_mips_r6) 2170 return SIGILL; 2171 2172 DPFROMREG(ft, MIPSInst_FT(ir)); 2173 DPFROMREG(fs, MIPSInst_FS(ir)); 2174 rv.d = ieee754dp_fmina(fs, ft); 2175 break; 2176 } 2177 2178 case fmax_op: { 2179 union ieee754dp fs, ft; 2180 2181 if (!cpu_has_mips_r6) 2182 return SIGILL; 2183 2184 DPFROMREG(ft, MIPSInst_FT(ir)); 2185 DPFROMREG(fs, MIPSInst_FS(ir)); 2186 rv.d = ieee754dp_fmax(fs, ft); 2187 break; 2188 } 2189 2190 case fmaxa_op: { 2191 union ieee754dp fs, ft; 2192 2193 if (!cpu_has_mips_r6) 2194 return SIGILL; 2195 2196 DPFROMREG(ft, MIPSInst_FT(ir)); 2197 DPFROMREG(fs, MIPSInst_FS(ir)); 2198 rv.d = ieee754dp_fmaxa(fs, ft); 2199 break; 2200 } 2201 2202 case fabs_op: 2203 handler.u = ieee754dp_abs; 2204 goto dcopuop; 2205 2206 case fneg_op: 2207 handler.u = ieee754dp_neg; 2208 goto dcopuop; 2209 2210 case fmov_op: 2211 /* an easy one */ 2212 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2213 goto copcsr; 2214 2215 /* binary op on handler */ 2216 dcopbop: 2217 DPFROMREG(fs, MIPSInst_FS(ir)); 2218 DPFROMREG(ft, MIPSInst_FT(ir)); 2219 2220 rv.d = (*handler.b) (fs, ft); 2221 goto copcsr; 2222 dcopuop: 2223 DPFROMREG(fs, MIPSInst_FS(ir)); 2224 rv.d = (*handler.u) (fs); 2225 goto copcsr; 2226 2227 /* 2228 * unary conv ops 2229 */ 2230 case fcvts_op: 2231 DPFROMREG(fs, MIPSInst_FS(ir)); 2232 rv.s = ieee754sp_fdp(fs); 2233 rfmt = s_fmt; 2234 goto copcsr; 2235 2236 case fcvtd_op: 2237 return SIGILL; /* not defined */ 2238 2239 case fcvtw_op: 2240 DPFROMREG(fs, MIPSInst_FS(ir)); 2241 rv.w = ieee754dp_tint(fs); /* wrong */ 2242 rfmt = w_fmt; 2243 goto copcsr; 2244 2245 case fround_op: 2246 case ftrunc_op: 2247 case fceil_op: 2248 case ffloor_op: 2249 if (!cpu_has_mips_2_3_4_5_r) 2250 return SIGILL; 2251 2252 oldrm = ieee754_csr.rm; 2253 DPFROMREG(fs, MIPSInst_FS(ir)); 2254 ieee754_csr.rm = MIPSInst_FUNC(ir); 2255 rv.w = ieee754dp_tint(fs); 2256 ieee754_csr.rm = oldrm; 2257 rfmt = w_fmt; 2258 goto copcsr; 2259 2260 case fsel_op: 2261 if (!cpu_has_mips_r6) 2262 return SIGILL; 2263 2264 DPFROMREG(fd, MIPSInst_FD(ir)); 2265 if (fd.bits & 0x1) 2266 DPFROMREG(rv.d, MIPSInst_FT(ir)); 2267 else 2268 DPFROMREG(rv.d, MIPSInst_FS(ir)); 2269 break; 2270 2271 case fcvtl_op: 2272 if (!cpu_has_mips_3_4_5_64_r2_r6) 2273 return SIGILL; 2274 2275 DPFROMREG(fs, MIPSInst_FS(ir)); 2276 rv.l = ieee754dp_tlong(fs); 2277 rfmt = l_fmt; 2278 goto copcsr; 2279 2280 case froundl_op: 2281 case ftruncl_op: 2282 case fceill_op: 2283 case ffloorl_op: 2284 if (!cpu_has_mips_3_4_5_64_r2_r6) 2285 return SIGILL; 2286 2287 oldrm = ieee754_csr.rm; 2288 DPFROMREG(fs, MIPSInst_FS(ir)); 2289 ieee754_csr.rm = MIPSInst_FUNC(ir); 2290 rv.l = ieee754dp_tlong(fs); 2291 ieee754_csr.rm = oldrm; 2292 rfmt = l_fmt; 2293 goto copcsr; 2294 2295 default: 2296 if (!NO_R6EMU && MIPSInst_FUNC(ir) >= fcmp_op) { 2297 unsigned cmpop = MIPSInst_FUNC(ir) - fcmp_op; 2298 union ieee754dp fs, ft; 2299 2300 DPFROMREG(fs, MIPSInst_FS(ir)); 2301 DPFROMREG(ft, MIPSInst_FT(ir)); 2302 rv.w = ieee754dp_cmp(fs, ft, 2303 cmptab[cmpop & 0x7], cmpop & 0x8); 2304 rfmt = -1; 2305 if ((cmpop & 0x8) 2306 && 2307 ieee754_cxtest 2308 (IEEE754_INVALID_OPERATION)) 2309 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2310 else 2311 goto copcsr; 2312 2313 } 2314 else { 2315 return SIGILL; 2316 } 2317 break; 2318 } 2319 break; 2320 } 2321 2322 case w_fmt: { 2323 union ieee754dp fs; 2324 2325 switch (MIPSInst_FUNC(ir)) { 2326 case fcvts_op: 2327 /* convert word to single precision real */ 2328 SPFROMREG(fs, MIPSInst_FS(ir)); 2329 rv.s = ieee754sp_fint(fs.bits); 2330 rfmt = s_fmt; 2331 goto copcsr; 2332 case fcvtd_op: 2333 /* convert word to double precision real */ 2334 SPFROMREG(fs, MIPSInst_FS(ir)); 2335 rv.d = ieee754dp_fint(fs.bits); 2336 rfmt = d_fmt; 2337 goto copcsr; 2338 default: { 2339 /* Emulating the new CMP.condn.fmt R6 instruction */ 2340 #define CMPOP_MASK 0x7 2341 #define SIGN_BIT (0x1 << 3) 2342 #define PREDICATE_BIT (0x1 << 4) 2343 2344 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2345 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2346 union ieee754sp fs, ft; 2347 2348 /* This is an R6 only instruction */ 2349 if (!cpu_has_mips_r6 || 2350 (MIPSInst_FUNC(ir) & 0x20)) 2351 return SIGILL; 2352 2353 /* fmt is w_fmt for single precision so fix it */ 2354 rfmt = s_fmt; 2355 /* default to false */ 2356 rv.w = 0; 2357 2358 /* CMP.condn.S */ 2359 SPFROMREG(fs, MIPSInst_FS(ir)); 2360 SPFROMREG(ft, MIPSInst_FT(ir)); 2361 2362 /* positive predicates */ 2363 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2364 if (ieee754sp_cmp(fs, ft, cmptab[cmpop], 2365 sig)) 2366 rv.w = -1; /* true, all 1s */ 2367 if ((sig) && 2368 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2369 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2370 else 2371 goto copcsr; 2372 } else { 2373 /* negative predicates */ 2374 switch (cmpop) { 2375 case 1: 2376 case 2: 2377 case 3: 2378 if (ieee754sp_cmp(fs, ft, 2379 negative_cmptab[cmpop], 2380 sig)) 2381 rv.w = -1; /* true, all 1s */ 2382 if (sig && 2383 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2384 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2385 else 2386 goto copcsr; 2387 break; 2388 default: 2389 /* Reserved R6 ops */ 2390 pr_err("Reserved MIPS R6 CMP.condn.S operation\n"); 2391 return SIGILL; 2392 } 2393 } 2394 break; 2395 } 2396 } 2397 } 2398 2399 case l_fmt: 2400 2401 if (!cpu_has_mips_3_4_5_64_r2_r6) 2402 return SIGILL; 2403 2404 DIFROMREG(bits, MIPSInst_FS(ir)); 2405 2406 switch (MIPSInst_FUNC(ir)) { 2407 case fcvts_op: 2408 /* convert long to single precision real */ 2409 rv.s = ieee754sp_flong(bits); 2410 rfmt = s_fmt; 2411 goto copcsr; 2412 case fcvtd_op: 2413 /* convert long to double precision real */ 2414 rv.d = ieee754dp_flong(bits); 2415 rfmt = d_fmt; 2416 goto copcsr; 2417 default: { 2418 /* Emulating the new CMP.condn.fmt R6 instruction */ 2419 int cmpop = MIPSInst_FUNC(ir) & CMPOP_MASK; 2420 int sig = MIPSInst_FUNC(ir) & SIGN_BIT; 2421 union ieee754dp fs, ft; 2422 2423 if (!cpu_has_mips_r6 || 2424 (MIPSInst_FUNC(ir) & 0x20)) 2425 return SIGILL; 2426 2427 /* fmt is l_fmt for double precision so fix it */ 2428 rfmt = d_fmt; 2429 /* default to false */ 2430 rv.l = 0; 2431 2432 /* CMP.condn.D */ 2433 DPFROMREG(fs, MIPSInst_FS(ir)); 2434 DPFROMREG(ft, MIPSInst_FT(ir)); 2435 2436 /* positive predicates */ 2437 if (!(MIPSInst_FUNC(ir) & PREDICATE_BIT)) { 2438 if (ieee754dp_cmp(fs, ft, 2439 cmptab[cmpop], sig)) 2440 rv.l = -1LL; /* true, all 1s */ 2441 if (sig && 2442 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2443 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2444 else 2445 goto copcsr; 2446 } else { 2447 /* negative predicates */ 2448 switch (cmpop) { 2449 case 1: 2450 case 2: 2451 case 3: 2452 if (ieee754dp_cmp(fs, ft, 2453 negative_cmptab[cmpop], 2454 sig)) 2455 rv.l = -1LL; /* true, all 1s */ 2456 if (sig && 2457 ieee754_cxtest(IEEE754_INVALID_OPERATION)) 2458 rcsr = FPU_CSR_INV_X | FPU_CSR_INV_S; 2459 else 2460 goto copcsr; 2461 break; 2462 default: 2463 /* Reserved R6 ops */ 2464 pr_err("Reserved MIPS R6 CMP.condn.D operation\n"); 2465 return SIGILL; 2466 } 2467 } 2468 break; 2469 } 2470 } 2471 default: 2472 return SIGILL; 2473 } 2474 2475 /* 2476 * Update the fpu CSR register for this operation. 2477 * If an exception is required, generate a tidy SIGFPE exception, 2478 * without updating the result register. 2479 * Note: cause exception bits do not accumulate, they are rewritten 2480 * for each op; only the flag/sticky bits accumulate. 2481 */ 2482 ctx->fcr31 = (ctx->fcr31 & ~FPU_CSR_ALL_X) | rcsr; 2483 if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) { 2484 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */ 2485 return SIGFPE; 2486 } 2487 2488 /* 2489 * Now we can safely write the result back to the register file. 2490 */ 2491 switch (rfmt) { 2492 case -1: 2493 2494 if (cpu_has_mips_4_5_r) 2495 cbit = fpucondbit[MIPSInst_FD(ir) >> 2]; 2496 else 2497 cbit = FPU_CSR_COND; 2498 if (rv.w) 2499 ctx->fcr31 |= cbit; 2500 else 2501 ctx->fcr31 &= ~cbit; 2502 break; 2503 2504 case d_fmt: 2505 DPTOREG(rv.d, MIPSInst_FD(ir)); 2506 break; 2507 case s_fmt: 2508 SPTOREG(rv.s, MIPSInst_FD(ir)); 2509 break; 2510 case w_fmt: 2511 SITOREG(rv.w, MIPSInst_FD(ir)); 2512 break; 2513 case l_fmt: 2514 if (!cpu_has_mips_3_4_5_64_r2_r6) 2515 return SIGILL; 2516 2517 DITOREG(rv.l, MIPSInst_FD(ir)); 2518 break; 2519 default: 2520 return SIGILL; 2521 } 2522 2523 return 0; 2524 } 2525 2526 int fpu_emulator_cop1Handler(struct pt_regs *xcp, struct mips_fpu_struct *ctx, 2527 int has_fpu, void *__user *fault_addr) 2528 { 2529 unsigned long oldepc, prevepc; 2530 struct mm_decoded_insn dec_insn; 2531 u16 instr[4]; 2532 u16 *instr_ptr; 2533 int sig = 0; 2534 2535 oldepc = xcp->cp0_epc; 2536 do { 2537 prevepc = xcp->cp0_epc; 2538 2539 if (get_isa16_mode(prevepc) && cpu_has_mmips) { 2540 /* 2541 * Get next 2 microMIPS instructions and convert them 2542 * into 32-bit instructions. 2543 */ 2544 if ((get_user(instr[0], (u16 __user *)msk_isa16_mode(xcp->cp0_epc))) || 2545 (get_user(instr[1], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 2))) || 2546 (get_user(instr[2], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 4))) || 2547 (get_user(instr[3], (u16 __user *)msk_isa16_mode(xcp->cp0_epc + 6)))) { 2548 MIPS_FPU_EMU_INC_STATS(errors); 2549 return SIGBUS; 2550 } 2551 instr_ptr = instr; 2552 2553 /* Get first instruction. */ 2554 if (mm_insn_16bit(*instr_ptr)) { 2555 /* Duplicate the half-word. */ 2556 dec_insn.insn = (*instr_ptr << 16) | 2557 (*instr_ptr); 2558 /* 16-bit instruction. */ 2559 dec_insn.pc_inc = 2; 2560 instr_ptr += 1; 2561 } else { 2562 dec_insn.insn = (*instr_ptr << 16) | 2563 *(instr_ptr+1); 2564 /* 32-bit instruction. */ 2565 dec_insn.pc_inc = 4; 2566 instr_ptr += 2; 2567 } 2568 /* Get second instruction. */ 2569 if (mm_insn_16bit(*instr_ptr)) { 2570 /* Duplicate the half-word. */ 2571 dec_insn.next_insn = (*instr_ptr << 16) | 2572 (*instr_ptr); 2573 /* 16-bit instruction. */ 2574 dec_insn.next_pc_inc = 2; 2575 } else { 2576 dec_insn.next_insn = (*instr_ptr << 16) | 2577 *(instr_ptr+1); 2578 /* 32-bit instruction. */ 2579 dec_insn.next_pc_inc = 4; 2580 } 2581 dec_insn.micro_mips_mode = 1; 2582 } else { 2583 if ((get_user(dec_insn.insn, 2584 (mips_instruction __user *) xcp->cp0_epc)) || 2585 (get_user(dec_insn.next_insn, 2586 (mips_instruction __user *)(xcp->cp0_epc+4)))) { 2587 MIPS_FPU_EMU_INC_STATS(errors); 2588 return SIGBUS; 2589 } 2590 dec_insn.pc_inc = 4; 2591 dec_insn.next_pc_inc = 4; 2592 dec_insn.micro_mips_mode = 0; 2593 } 2594 2595 if ((dec_insn.insn == 0) || 2596 ((dec_insn.pc_inc == 2) && 2597 ((dec_insn.insn & 0xffff) == MM_NOP16))) 2598 xcp->cp0_epc += dec_insn.pc_inc; /* Skip NOPs */ 2599 else { 2600 /* 2601 * The 'ieee754_csr' is an alias of ctx->fcr31. 2602 * No need to copy ctx->fcr31 to ieee754_csr. 2603 */ 2604 sig = cop1Emulate(xcp, ctx, dec_insn, fault_addr); 2605 } 2606 2607 if (has_fpu) 2608 break; 2609 if (sig) 2610 break; 2611 2612 cond_resched(); 2613 } while (xcp->cp0_epc > prevepc); 2614 2615 /* SIGILL indicates a non-fpu instruction */ 2616 if (sig == SIGILL && xcp->cp0_epc != oldepc) 2617 /* but if EPC has advanced, then ignore it */ 2618 sig = 0; 2619 2620 return sig; 2621 } 2622