xref: /linux/arch/mips/kvm/mmu.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17 
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27 
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32 
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:	Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45 	unsigned long *p, *end;
46 	unsigned long entry;
47 
48 #ifdef __PAGETABLE_PMD_FOLDED
49 	entry = (unsigned long)invalid_pte_table;
50 #else
51 	entry = (unsigned long)invalid_pmd_table;
52 #endif
53 
54 	p = (unsigned long *)page;
55 	end = p + PTRS_PER_PGD;
56 
57 	do {
58 		p[0] = entry;
59 		p[1] = entry;
60 		p[2] = entry;
61 		p[3] = entry;
62 		p[4] = entry;
63 		p += 8;
64 		p[-3] = entry;
65 		p[-2] = entry;
66 		p[-1] = entry;
67 	} while (p != end);
68 }
69 
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:	Pointer to new KVM GPA page directory.
77  *		NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81 	pgd_t *ret;
82 
83 	ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER);
84 	if (ret)
85 		kvm_pgd_init(ret);
86 
87 	return ret;
88 }
89 
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:	Page directory pointer.
93  * @addr:	Address to index page table using.
94  * @cache:	MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:	Pointer to pte_t corresponding to @addr.
101  *		NULL if a page table doesn't exist for @addr and !@cache.
102  *		NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105 				unsigned long addr)
106 {
107 	p4d_t *p4d;
108 	pud_t *pud;
109 	pmd_t *pmd;
110 
111 	pgd += pgd_index(addr);
112 	if (pgd_none(*pgd)) {
113 		/* Not used on MIPS yet */
114 		BUG();
115 		return NULL;
116 	}
117 	p4d = p4d_offset(pgd, addr);
118 	pud = pud_offset(p4d, addr);
119 	if (pud_none(*pud)) {
120 		pmd_t *new_pmd;
121 
122 		if (!cache)
123 			return NULL;
124 		new_pmd = kvm_mmu_memory_cache_alloc(cache);
125 		pmd_init((unsigned long)new_pmd,
126 			 (unsigned long)invalid_pte_table);
127 		pud_populate(NULL, pud, new_pmd);
128 	}
129 	pmd = pmd_offset(pud, addr);
130 	if (pmd_none(*pmd)) {
131 		pte_t *new_pte;
132 
133 		if (!cache)
134 			return NULL;
135 		new_pte = kvm_mmu_memory_cache_alloc(cache);
136 		clear_page(new_pte);
137 		pmd_populate_kernel(NULL, pmd, new_pte);
138 	}
139 	return pte_offset_kernel(pmd, addr);
140 }
141 
142 /* Caller must hold kvm->mm_lock */
143 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
144 				   struct kvm_mmu_memory_cache *cache,
145 				   unsigned long addr)
146 {
147 	return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
148 }
149 
150 /*
151  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
152  * Flush a range of guest physical address space from the VM's GPA page tables.
153  */
154 
155 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
156 				   unsigned long end_gpa)
157 {
158 	int i_min = pte_index(start_gpa);
159 	int i_max = pte_index(end_gpa);
160 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
161 	int i;
162 
163 	for (i = i_min; i <= i_max; ++i) {
164 		if (!pte_present(pte[i]))
165 			continue;
166 
167 		set_pte(pte + i, __pte(0));
168 	}
169 	return safe_to_remove;
170 }
171 
172 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
173 				   unsigned long end_gpa)
174 {
175 	pte_t *pte;
176 	unsigned long end = ~0ul;
177 	int i_min = pmd_index(start_gpa);
178 	int i_max = pmd_index(end_gpa);
179 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
180 	int i;
181 
182 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
183 		if (!pmd_present(pmd[i]))
184 			continue;
185 
186 		pte = pte_offset_kernel(pmd + i, 0);
187 		if (i == i_max)
188 			end = end_gpa;
189 
190 		if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
191 			pmd_clear(pmd + i);
192 			pte_free_kernel(NULL, pte);
193 		} else {
194 			safe_to_remove = false;
195 		}
196 	}
197 	return safe_to_remove;
198 }
199 
200 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
201 				   unsigned long end_gpa)
202 {
203 	pmd_t *pmd;
204 	unsigned long end = ~0ul;
205 	int i_min = pud_index(start_gpa);
206 	int i_max = pud_index(end_gpa);
207 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
208 	int i;
209 
210 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
211 		if (!pud_present(pud[i]))
212 			continue;
213 
214 		pmd = pmd_offset(pud + i, 0);
215 		if (i == i_max)
216 			end = end_gpa;
217 
218 		if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
219 			pud_clear(pud + i);
220 			pmd_free(NULL, pmd);
221 		} else {
222 			safe_to_remove = false;
223 		}
224 	}
225 	return safe_to_remove;
226 }
227 
228 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
229 				   unsigned long end_gpa)
230 {
231 	p4d_t *p4d;
232 	pud_t *pud;
233 	unsigned long end = ~0ul;
234 	int i_min = pgd_index(start_gpa);
235 	int i_max = pgd_index(end_gpa);
236 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
237 	int i;
238 
239 	for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
240 		if (!pgd_present(pgd[i]))
241 			continue;
242 
243 		p4d = p4d_offset(pgd, 0);
244 		pud = pud_offset(p4d + i, 0);
245 		if (i == i_max)
246 			end = end_gpa;
247 
248 		if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
249 			pgd_clear(pgd + i);
250 			pud_free(NULL, pud);
251 		} else {
252 			safe_to_remove = false;
253 		}
254 	}
255 	return safe_to_remove;
256 }
257 
258 /**
259  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
260  * @kvm:	KVM pointer.
261  * @start_gfn:	Guest frame number of first page in GPA range to flush.
262  * @end_gfn:	Guest frame number of last page in GPA range to flush.
263  *
264  * Flushes a range of GPA mappings from the GPA page tables.
265  *
266  * The caller must hold the @kvm->mmu_lock spinlock.
267  *
268  * Returns:	Whether its safe to remove the top level page directory because
269  *		all lower levels have been removed.
270  */
271 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
272 {
273 	return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
274 				      start_gfn << PAGE_SHIFT,
275 				      end_gfn << PAGE_SHIFT);
276 }
277 
278 #define BUILD_PTE_RANGE_OP(name, op)					\
279 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,	\
280 				 unsigned long end)			\
281 {									\
282 	int ret = 0;							\
283 	int i_min = pte_index(start);				\
284 	int i_max = pte_index(end);					\
285 	int i;								\
286 	pte_t old, new;							\
287 									\
288 	for (i = i_min; i <= i_max; ++i) {				\
289 		if (!pte_present(pte[i]))				\
290 			continue;					\
291 									\
292 		old = pte[i];						\
293 		new = op(old);						\
294 		if (pte_val(new) == pte_val(old))			\
295 			continue;					\
296 		set_pte(pte + i, new);					\
297 		ret = 1;						\
298 	}								\
299 	return ret;							\
300 }									\
301 									\
302 /* returns true if anything was done */					\
303 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,	\
304 				 unsigned long end)			\
305 {									\
306 	int ret = 0;							\
307 	pte_t *pte;							\
308 	unsigned long cur_end = ~0ul;					\
309 	int i_min = pmd_index(start);				\
310 	int i_max = pmd_index(end);					\
311 	int i;								\
312 									\
313 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
314 		if (!pmd_present(pmd[i]))				\
315 			continue;					\
316 									\
317 		pte = pte_offset_kernel(pmd + i, 0);				\
318 		if (i == i_max)						\
319 			cur_end = end;					\
320 									\
321 		ret |= kvm_mips_##name##_pte(pte, start, cur_end);	\
322 	}								\
323 	return ret;							\
324 }									\
325 									\
326 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,	\
327 				 unsigned long end)			\
328 {									\
329 	int ret = 0;							\
330 	pmd_t *pmd;							\
331 	unsigned long cur_end = ~0ul;					\
332 	int i_min = pud_index(start);				\
333 	int i_max = pud_index(end);					\
334 	int i;								\
335 									\
336 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
337 		if (!pud_present(pud[i]))				\
338 			continue;					\
339 									\
340 		pmd = pmd_offset(pud + i, 0);				\
341 		if (i == i_max)						\
342 			cur_end = end;					\
343 									\
344 		ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);	\
345 	}								\
346 	return ret;							\
347 }									\
348 									\
349 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,	\
350 				 unsigned long end)			\
351 {									\
352 	int ret = 0;							\
353 	p4d_t *p4d;							\
354 	pud_t *pud;							\
355 	unsigned long cur_end = ~0ul;					\
356 	int i_min = pgd_index(start);					\
357 	int i_max = pgd_index(end);					\
358 	int i;								\
359 									\
360 	for (i = i_min; i <= i_max; ++i, start = 0) {			\
361 		if (!pgd_present(pgd[i]))				\
362 			continue;					\
363 									\
364 		p4d = p4d_offset(pgd, 0);				\
365 		pud = pud_offset(p4d + i, 0);				\
366 		if (i == i_max)						\
367 			cur_end = end;					\
368 									\
369 		ret |= kvm_mips_##name##_pud(pud, start, cur_end);	\
370 	}								\
371 	return ret;							\
372 }
373 
374 /*
375  * kvm_mips_mkclean_gpa_pt.
376  * Mark a range of guest physical address space clean (writes fault) in the VM's
377  * GPA page table to allow dirty page tracking.
378  */
379 
380 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
381 
382 /**
383  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
384  * @kvm:	KVM pointer.
385  * @start_gfn:	Guest frame number of first page in GPA range to flush.
386  * @end_gfn:	Guest frame number of last page in GPA range to flush.
387  *
388  * Make a range of GPA mappings clean so that guest writes will fault and
389  * trigger dirty page logging.
390  *
391  * The caller must hold the @kvm->mmu_lock spinlock.
392  *
393  * Returns:	Whether any GPA mappings were modified, which would require
394  *		derived mappings (GVA page tables & TLB enties) to be
395  *		invalidated.
396  */
397 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
398 {
399 	return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
400 				    start_gfn << PAGE_SHIFT,
401 				    end_gfn << PAGE_SHIFT);
402 }
403 
404 /**
405  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
406  * @kvm:	The KVM pointer
407  * @slot:	The memory slot associated with mask
408  * @gfn_offset:	The gfn offset in memory slot
409  * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
410  *		slot to be write protected
411  *
412  * Walks bits set in mask write protects the associated pte's. Caller must
413  * acquire @kvm->mmu_lock.
414  */
415 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
416 		struct kvm_memory_slot *slot,
417 		gfn_t gfn_offset, unsigned long mask)
418 {
419 	gfn_t base_gfn = slot->base_gfn + gfn_offset;
420 	gfn_t start = base_gfn +  __ffs(mask);
421 	gfn_t end = base_gfn + __fls(mask);
422 
423 	kvm_mips_mkclean_gpa_pt(kvm, start, end);
424 }
425 
426 /*
427  * kvm_mips_mkold_gpa_pt.
428  * Mark a range of guest physical address space old (all accesses fault) in the
429  * VM's GPA page table to allow detection of commonly used pages.
430  */
431 
432 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
433 
434 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
435 				 gfn_t end_gfn)
436 {
437 	return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
438 				  start_gfn << PAGE_SHIFT,
439 				  end_gfn << PAGE_SHIFT);
440 }
441 
442 static int handle_hva_to_gpa(struct kvm *kvm,
443 			     unsigned long start,
444 			     unsigned long end,
445 			     int (*handler)(struct kvm *kvm, gfn_t gfn,
446 					    gpa_t gfn_end,
447 					    struct kvm_memory_slot *memslot,
448 					    void *data),
449 			     void *data)
450 {
451 	struct kvm_memslots *slots;
452 	struct kvm_memory_slot *memslot;
453 	int ret = 0;
454 
455 	slots = kvm_memslots(kvm);
456 
457 	/* we only care about the pages that the guest sees */
458 	kvm_for_each_memslot(memslot, slots) {
459 		unsigned long hva_start, hva_end;
460 		gfn_t gfn, gfn_end;
461 
462 		hva_start = max(start, memslot->userspace_addr);
463 		hva_end = min(end, memslot->userspace_addr +
464 					(memslot->npages << PAGE_SHIFT));
465 		if (hva_start >= hva_end)
466 			continue;
467 
468 		/*
469 		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
470 		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
471 		 */
472 		gfn = hva_to_gfn_memslot(hva_start, memslot);
473 		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
474 
475 		ret |= handler(kvm, gfn, gfn_end, memslot, data);
476 	}
477 
478 	return ret;
479 }
480 
481 
482 static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
483 				 struct kvm_memory_slot *memslot, void *data)
484 {
485 	kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end);
486 	return 1;
487 }
488 
489 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
490 			unsigned flags)
491 {
492 	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
493 
494 	kvm_mips_callbacks->flush_shadow_all(kvm);
495 	return 0;
496 }
497 
498 static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
499 				struct kvm_memory_slot *memslot, void *data)
500 {
501 	gpa_t gpa = gfn << PAGE_SHIFT;
502 	pte_t hva_pte = *(pte_t *)data;
503 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
504 	pte_t old_pte;
505 
506 	if (!gpa_pte)
507 		return 0;
508 
509 	/* Mapping may need adjusting depending on memslot flags */
510 	old_pte = *gpa_pte;
511 	if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
512 		hva_pte = pte_mkclean(hva_pte);
513 	else if (memslot->flags & KVM_MEM_READONLY)
514 		hva_pte = pte_wrprotect(hva_pte);
515 
516 	set_pte(gpa_pte, hva_pte);
517 
518 	/* Replacing an absent or old page doesn't need flushes */
519 	if (!pte_present(old_pte) || !pte_young(old_pte))
520 		return 0;
521 
522 	/* Pages swapped, aged, moved, or cleaned require flushes */
523 	return !pte_present(hva_pte) ||
524 	       !pte_young(hva_pte) ||
525 	       pte_pfn(old_pte) != pte_pfn(hva_pte) ||
526 	       (pte_dirty(old_pte) && !pte_dirty(hva_pte));
527 }
528 
529 int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
530 {
531 	unsigned long end = hva + PAGE_SIZE;
532 	int ret;
533 
534 	ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte);
535 	if (ret)
536 		kvm_mips_callbacks->flush_shadow_all(kvm);
537 	return 0;
538 }
539 
540 static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
541 			       struct kvm_memory_slot *memslot, void *data)
542 {
543 	return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end);
544 }
545 
546 static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end,
547 				    struct kvm_memory_slot *memslot, void *data)
548 {
549 	gpa_t gpa = gfn << PAGE_SHIFT;
550 	pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
551 
552 	if (!gpa_pte)
553 		return 0;
554 	return pte_young(*gpa_pte);
555 }
556 
557 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
558 {
559 	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
560 }
561 
562 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
563 {
564 	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
565 }
566 
567 /**
568  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
569  * @vcpu:		VCPU pointer.
570  * @gpa:		Guest physical address of fault.
571  * @write_fault:	Whether the fault was due to a write.
572  * @out_entry:		New PTE for @gpa (written on success unless NULL).
573  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
574  *			NULL).
575  *
576  * Perform fast path GPA fault handling, doing all that can be done without
577  * calling into KVM. This handles marking old pages young (for idle page
578  * tracking), and dirtying of clean pages (for dirty page logging).
579  *
580  * Returns:	0 on success, in which case we can update derived mappings and
581  *		resume guest execution.
582  *		-EFAULT on failure due to absent GPA mapping or write to
583  *		read-only page, in which case KVM must be consulted.
584  */
585 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
586 				   bool write_fault,
587 				   pte_t *out_entry, pte_t *out_buddy)
588 {
589 	struct kvm *kvm = vcpu->kvm;
590 	gfn_t gfn = gpa >> PAGE_SHIFT;
591 	pte_t *ptep;
592 	kvm_pfn_t pfn = 0;	/* silence bogus GCC warning */
593 	bool pfn_valid = false;
594 	int ret = 0;
595 
596 	spin_lock(&kvm->mmu_lock);
597 
598 	/* Fast path - just check GPA page table for an existing entry */
599 	ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
600 	if (!ptep || !pte_present(*ptep)) {
601 		ret = -EFAULT;
602 		goto out;
603 	}
604 
605 	/* Track access to pages marked old */
606 	if (!pte_young(*ptep)) {
607 		set_pte(ptep, pte_mkyoung(*ptep));
608 		pfn = pte_pfn(*ptep);
609 		pfn_valid = true;
610 		/* call kvm_set_pfn_accessed() after unlock */
611 	}
612 	if (write_fault && !pte_dirty(*ptep)) {
613 		if (!pte_write(*ptep)) {
614 			ret = -EFAULT;
615 			goto out;
616 		}
617 
618 		/* Track dirtying of writeable pages */
619 		set_pte(ptep, pte_mkdirty(*ptep));
620 		pfn = pte_pfn(*ptep);
621 		mark_page_dirty(kvm, gfn);
622 		kvm_set_pfn_dirty(pfn);
623 	}
624 
625 	if (out_entry)
626 		*out_entry = *ptep;
627 	if (out_buddy)
628 		*out_buddy = *ptep_buddy(ptep);
629 
630 out:
631 	spin_unlock(&kvm->mmu_lock);
632 	if (pfn_valid)
633 		kvm_set_pfn_accessed(pfn);
634 	return ret;
635 }
636 
637 /**
638  * kvm_mips_map_page() - Map a guest physical page.
639  * @vcpu:		VCPU pointer.
640  * @gpa:		Guest physical address of fault.
641  * @write_fault:	Whether the fault was due to a write.
642  * @out_entry:		New PTE for @gpa (written on success unless NULL).
643  * @out_buddy:		New PTE for @gpa's buddy (written on success unless
644  *			NULL).
645  *
646  * Handle GPA faults by creating a new GPA mapping (or updating an existing
647  * one).
648  *
649  * This takes care of marking pages young or dirty (idle/dirty page tracking),
650  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
651  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
652  * caller.
653  *
654  * Returns:	0 on success, in which case the caller may use the @out_entry
655  *		and @out_buddy PTEs to update derived mappings and resume guest
656  *		execution.
657  *		-EFAULT if there is no memory region at @gpa or a write was
658  *		attempted to a read-only memory region. This is usually handled
659  *		as an MMIO access.
660  */
661 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
662 			     bool write_fault,
663 			     pte_t *out_entry, pte_t *out_buddy)
664 {
665 	struct kvm *kvm = vcpu->kvm;
666 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
667 	gfn_t gfn = gpa >> PAGE_SHIFT;
668 	int srcu_idx, err;
669 	kvm_pfn_t pfn;
670 	pte_t *ptep, entry, old_pte;
671 	bool writeable;
672 	unsigned long prot_bits;
673 	unsigned long mmu_seq;
674 
675 	/* Try the fast path to handle old / clean pages */
676 	srcu_idx = srcu_read_lock(&kvm->srcu);
677 	err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
678 				      out_buddy);
679 	if (!err)
680 		goto out;
681 
682 	/* We need a minimum of cached pages ready for page table creation */
683 	err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
684 	if (err)
685 		goto out;
686 
687 retry:
688 	/*
689 	 * Used to check for invalidations in progress, of the pfn that is
690 	 * returned by pfn_to_pfn_prot below.
691 	 */
692 	mmu_seq = kvm->mmu_notifier_seq;
693 	/*
694 	 * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in
695 	 * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
696 	 * risk the page we get a reference to getting unmapped before we have a
697 	 * chance to grab the mmu_lock without mmu_notifier_retry() noticing.
698 	 *
699 	 * This smp_rmb() pairs with the effective smp_wmb() of the combination
700 	 * of the pte_unmap_unlock() after the PTE is zapped, and the
701 	 * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
702 	 * mmu_notifier_seq is incremented.
703 	 */
704 	smp_rmb();
705 
706 	/* Slow path - ask KVM core whether we can access this GPA */
707 	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
708 	if (is_error_noslot_pfn(pfn)) {
709 		err = -EFAULT;
710 		goto out;
711 	}
712 
713 	spin_lock(&kvm->mmu_lock);
714 	/* Check if an invalidation has taken place since we got pfn */
715 	if (mmu_notifier_retry(kvm, mmu_seq)) {
716 		/*
717 		 * This can happen when mappings are changed asynchronously, but
718 		 * also synchronously if a COW is triggered by
719 		 * gfn_to_pfn_prot().
720 		 */
721 		spin_unlock(&kvm->mmu_lock);
722 		kvm_release_pfn_clean(pfn);
723 		goto retry;
724 	}
725 
726 	/* Ensure page tables are allocated */
727 	ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
728 
729 	/* Set up the PTE */
730 	prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
731 	if (writeable) {
732 		prot_bits |= _PAGE_WRITE;
733 		if (write_fault) {
734 			prot_bits |= __WRITEABLE;
735 			mark_page_dirty(kvm, gfn);
736 			kvm_set_pfn_dirty(pfn);
737 		}
738 	}
739 	entry = pfn_pte(pfn, __pgprot(prot_bits));
740 
741 	/* Write the PTE */
742 	old_pte = *ptep;
743 	set_pte(ptep, entry);
744 
745 	err = 0;
746 	if (out_entry)
747 		*out_entry = *ptep;
748 	if (out_buddy)
749 		*out_buddy = *ptep_buddy(ptep);
750 
751 	spin_unlock(&kvm->mmu_lock);
752 	kvm_release_pfn_clean(pfn);
753 	kvm_set_pfn_accessed(pfn);
754 out:
755 	srcu_read_unlock(&kvm->srcu, srcu_idx);
756 	return err;
757 }
758 
759 static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu,
760 					unsigned long addr)
761 {
762 	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
763 	pgd_t *pgdp;
764 	int ret;
765 
766 	/* We need a minimum of cached pages ready for page table creation */
767 	ret = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
768 	if (ret)
769 		return NULL;
770 
771 	if (KVM_GUEST_KERNEL_MODE(vcpu))
772 		pgdp = vcpu->arch.guest_kernel_mm.pgd;
773 	else
774 		pgdp = vcpu->arch.guest_user_mm.pgd;
775 
776 	return kvm_mips_walk_pgd(pgdp, memcache, addr);
777 }
778 
779 void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr,
780 				  bool user)
781 {
782 	pgd_t *pgdp;
783 	pte_t *ptep;
784 
785 	addr &= PAGE_MASK << 1;
786 
787 	pgdp = vcpu->arch.guest_kernel_mm.pgd;
788 	ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
789 	if (ptep) {
790 		ptep[0] = pfn_pte(0, __pgprot(0));
791 		ptep[1] = pfn_pte(0, __pgprot(0));
792 	}
793 
794 	if (user) {
795 		pgdp = vcpu->arch.guest_user_mm.pgd;
796 		ptep = kvm_mips_walk_pgd(pgdp, NULL, addr);
797 		if (ptep) {
798 			ptep[0] = pfn_pte(0, __pgprot(0));
799 			ptep[1] = pfn_pte(0, __pgprot(0));
800 		}
801 	}
802 }
803 
804 /*
805  * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}.
806  * Flush a range of guest physical address space from the VM's GPA page tables.
807  */
808 
809 static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva,
810 				   unsigned long end_gva)
811 {
812 	int i_min = pte_index(start_gva);
813 	int i_max = pte_index(end_gva);
814 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
815 	int i;
816 
817 	/*
818 	 * There's no freeing to do, so there's no point clearing individual
819 	 * entries unless only part of the last level page table needs flushing.
820 	 */
821 	if (safe_to_remove)
822 		return true;
823 
824 	for (i = i_min; i <= i_max; ++i) {
825 		if (!pte_present(pte[i]))
826 			continue;
827 
828 		set_pte(pte + i, __pte(0));
829 	}
830 	return false;
831 }
832 
833 static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva,
834 				   unsigned long end_gva)
835 {
836 	pte_t *pte;
837 	unsigned long end = ~0ul;
838 	int i_min = pmd_index(start_gva);
839 	int i_max = pmd_index(end_gva);
840 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
841 	int i;
842 
843 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
844 		if (!pmd_present(pmd[i]))
845 			continue;
846 
847 		pte = pte_offset_kernel(pmd + i, 0);
848 		if (i == i_max)
849 			end = end_gva;
850 
851 		if (kvm_mips_flush_gva_pte(pte, start_gva, end)) {
852 			pmd_clear(pmd + i);
853 			pte_free_kernel(NULL, pte);
854 		} else {
855 			safe_to_remove = false;
856 		}
857 	}
858 	return safe_to_remove;
859 }
860 
861 static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva,
862 				   unsigned long end_gva)
863 {
864 	pmd_t *pmd;
865 	unsigned long end = ~0ul;
866 	int i_min = pud_index(start_gva);
867 	int i_max = pud_index(end_gva);
868 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
869 	int i;
870 
871 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
872 		if (!pud_present(pud[i]))
873 			continue;
874 
875 		pmd = pmd_offset(pud + i, 0);
876 		if (i == i_max)
877 			end = end_gva;
878 
879 		if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) {
880 			pud_clear(pud + i);
881 			pmd_free(NULL, pmd);
882 		} else {
883 			safe_to_remove = false;
884 		}
885 	}
886 	return safe_to_remove;
887 }
888 
889 static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva,
890 				   unsigned long end_gva)
891 {
892 	p4d_t *p4d;
893 	pud_t *pud;
894 	unsigned long end = ~0ul;
895 	int i_min = pgd_index(start_gva);
896 	int i_max = pgd_index(end_gva);
897 	bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
898 	int i;
899 
900 	for (i = i_min; i <= i_max; ++i, start_gva = 0) {
901 		if (!pgd_present(pgd[i]))
902 			continue;
903 
904 		p4d = p4d_offset(pgd, 0);
905 		pud = pud_offset(p4d + i, 0);
906 		if (i == i_max)
907 			end = end_gva;
908 
909 		if (kvm_mips_flush_gva_pud(pud, start_gva, end)) {
910 			pgd_clear(pgd + i);
911 			pud_free(NULL, pud);
912 		} else {
913 			safe_to_remove = false;
914 		}
915 	}
916 	return safe_to_remove;
917 }
918 
919 void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags)
920 {
921 	if (flags & KMF_GPA) {
922 		/* all of guest virtual address space could be affected */
923 		if (flags & KMF_KERN)
924 			/* useg, kseg0, seg2/3 */
925 			kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff);
926 		else
927 			/* useg */
928 			kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
929 	} else {
930 		/* useg */
931 		kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff);
932 
933 		/* kseg2/3 */
934 		if (flags & KMF_KERN)
935 			kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff);
936 	}
937 }
938 
939 static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte)
940 {
941 	/*
942 	 * Don't leak writeable but clean entries from GPA page tables. We don't
943 	 * want the normal Linux tlbmod handler to handle dirtying when KVM
944 	 * accesses guest memory.
945 	 */
946 	if (!pte_dirty(pte))
947 		pte = pte_wrprotect(pte);
948 
949 	return pte;
950 }
951 
952 static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo)
953 {
954 	/* Guest EntryLo overrides host EntryLo */
955 	if (!(entrylo & ENTRYLO_D))
956 		pte = pte_mkclean(pte);
957 
958 	return kvm_mips_gpa_pte_to_gva_unmapped(pte);
959 }
960 
961 #ifdef CONFIG_KVM_MIPS_VZ
962 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
963 				      struct kvm_vcpu *vcpu,
964 				      bool write_fault)
965 {
966 	int ret;
967 
968 	ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
969 	if (ret)
970 		return ret;
971 
972 	/* Invalidate this entry in the TLB */
973 	return kvm_vz_host_tlb_inv(vcpu, badvaddr);
974 }
975 #endif
976 
977 /* XXXKYMA: Must be called with interrupts disabled */
978 int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr,
979 				    struct kvm_vcpu *vcpu,
980 				    bool write_fault)
981 {
982 	unsigned long gpa;
983 	pte_t pte_gpa[2], *ptep_gva;
984 	int idx;
985 
986 	if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) {
987 		kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr);
988 		kvm_mips_dump_host_tlbs();
989 		return -1;
990 	}
991 
992 	/* Get the GPA page table entry */
993 	gpa = KVM_GUEST_CPHYSADDR(badvaddr);
994 	idx = (badvaddr >> PAGE_SHIFT) & 1;
995 	if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx],
996 			      &pte_gpa[!idx]) < 0)
997 		return -1;
998 
999 	/* Get the GVA page table entry */
1000 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE);
1001 	if (!ptep_gva) {
1002 		kvm_err("No ptep for gva %lx\n", badvaddr);
1003 		return -1;
1004 	}
1005 
1006 	/* Copy a pair of entries from GPA page table to GVA page table */
1007 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]);
1008 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]);
1009 
1010 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1011 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1012 	return 0;
1013 }
1014 
1015 int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu,
1016 					 struct kvm_mips_tlb *tlb,
1017 					 unsigned long gva,
1018 					 bool write_fault)
1019 {
1020 	struct kvm *kvm = vcpu->kvm;
1021 	long tlb_lo[2];
1022 	pte_t pte_gpa[2], *ptep_buddy, *ptep_gva;
1023 	unsigned int idx = TLB_LO_IDX(*tlb, gva);
1024 	bool kernel = KVM_GUEST_KERNEL_MODE(vcpu);
1025 
1026 	tlb_lo[0] = tlb->tlb_lo[0];
1027 	tlb_lo[1] = tlb->tlb_lo[1];
1028 
1029 	/*
1030 	 * The commpage address must not be mapped to anything else if the guest
1031 	 * TLB contains entries nearby, or commpage accesses will break.
1032 	 */
1033 	if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1)))
1034 		tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0;
1035 
1036 	/* Get the GPA page table entry */
1037 	if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]),
1038 			      write_fault, &pte_gpa[idx], NULL) < 0)
1039 		return -1;
1040 
1041 	/* And its GVA buddy's GPA page table entry if it also exists */
1042 	pte_gpa[!idx] = pfn_pte(0, __pgprot(0));
1043 	if (tlb_lo[!idx] & ENTRYLO_V) {
1044 		spin_lock(&kvm->mmu_lock);
1045 		ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL,
1046 					mips3_tlbpfn_to_paddr(tlb_lo[!idx]));
1047 		if (ptep_buddy)
1048 			pte_gpa[!idx] = *ptep_buddy;
1049 		spin_unlock(&kvm->mmu_lock);
1050 	}
1051 
1052 	/* Get the GVA page table entry pair */
1053 	ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE);
1054 	if (!ptep_gva) {
1055 		kvm_err("No ptep for gva %lx\n", gva);
1056 		return -1;
1057 	}
1058 
1059 	/* Copy a pair of entries from GPA page table to GVA page table */
1060 	ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]);
1061 	ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]);
1062 
1063 	/* Invalidate this entry in the TLB, current guest mode ASID only */
1064 	kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel);
1065 
1066 	kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc,
1067 		  tlb->tlb_lo[0], tlb->tlb_lo[1]);
1068 
1069 	return 0;
1070 }
1071 
1072 int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr,
1073 				       struct kvm_vcpu *vcpu)
1074 {
1075 	kvm_pfn_t pfn;
1076 	pte_t *ptep;
1077 
1078 	ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr);
1079 	if (!ptep) {
1080 		kvm_err("No ptep for commpage %lx\n", badvaddr);
1081 		return -1;
1082 	}
1083 
1084 	pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage));
1085 	/* Also set valid and dirty, so refill handler doesn't have to */
1086 	*ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED)));
1087 
1088 	/* Invalidate this entry in the TLB, guest kernel ASID only */
1089 	kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true);
1090 	return 0;
1091 }
1092 
1093 /**
1094  * kvm_mips_migrate_count() - Migrate timer.
1095  * @vcpu:	Virtual CPU.
1096  *
1097  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
1098  * if it was running prior to being cancelled.
1099  *
1100  * Must be called when the VCPU is migrated to a different CPU to ensure that
1101  * timer expiry during guest execution interrupts the guest and causes the
1102  * interrupt to be delivered in a timely manner.
1103  */
1104 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
1105 {
1106 	if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
1107 		hrtimer_restart(&vcpu->arch.comparecount_timer);
1108 }
1109 
1110 /* Restore ASID once we are scheduled back after preemption */
1111 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1112 {
1113 	unsigned long flags;
1114 
1115 	kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
1116 
1117 	local_irq_save(flags);
1118 
1119 	vcpu->cpu = cpu;
1120 	if (vcpu->arch.last_sched_cpu != cpu) {
1121 		kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
1122 			  vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
1123 		/*
1124 		 * Migrate the timer interrupt to the current CPU so that it
1125 		 * always interrupts the guest and synchronously triggers a
1126 		 * guest timer interrupt.
1127 		 */
1128 		kvm_mips_migrate_count(vcpu);
1129 	}
1130 
1131 	/* restore guest state to registers */
1132 	kvm_mips_callbacks->vcpu_load(vcpu, cpu);
1133 
1134 	local_irq_restore(flags);
1135 }
1136 
1137 /* ASID can change if another task is scheduled during preemption */
1138 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1139 {
1140 	unsigned long flags;
1141 	int cpu;
1142 
1143 	local_irq_save(flags);
1144 
1145 	cpu = smp_processor_id();
1146 	vcpu->arch.last_sched_cpu = cpu;
1147 	vcpu->cpu = -1;
1148 
1149 	/* save guest state in registers */
1150 	kvm_mips_callbacks->vcpu_put(vcpu, cpu);
1151 
1152 	local_irq_restore(flags);
1153 }
1154 
1155 /**
1156  * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault.
1157  * @vcpu:	Virtual CPU.
1158  * @gva:	Guest virtual address to be accessed.
1159  * @write:	True if write attempted (must be dirtied and made writable).
1160  *
1161  * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and
1162  * dirtying the page if @write so that guest instructions can be modified.
1163  *
1164  * Returns:	KVM_MIPS_MAPPED on success.
1165  *		KVM_MIPS_GVA if bad guest virtual address.
1166  *		KVM_MIPS_GPA if bad guest physical address.
1167  *		KVM_MIPS_TLB if guest TLB not present.
1168  *		KVM_MIPS_TLBINV if guest TLB present but not valid.
1169  *		KVM_MIPS_TLBMOD if guest TLB read only.
1170  */
1171 enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu,
1172 						   unsigned long gva,
1173 						   bool write)
1174 {
1175 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1176 	struct kvm_mips_tlb *tlb;
1177 	int index;
1178 
1179 	if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) {
1180 		if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0)
1181 			return KVM_MIPS_GPA;
1182 	} else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) ||
1183 		   KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) {
1184 		/* Address should be in the guest TLB */
1185 		index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) |
1186 			  (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID));
1187 		if (index < 0)
1188 			return KVM_MIPS_TLB;
1189 		tlb = &vcpu->arch.guest_tlb[index];
1190 
1191 		/* Entry should be valid, and dirty for writes */
1192 		if (!TLB_IS_VALID(*tlb, gva))
1193 			return KVM_MIPS_TLBINV;
1194 		if (write && !TLB_IS_DIRTY(*tlb, gva))
1195 			return KVM_MIPS_TLBMOD;
1196 
1197 		if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write))
1198 			return KVM_MIPS_GPA;
1199 	} else {
1200 		return KVM_MIPS_GVA;
1201 	}
1202 
1203 	return KVM_MIPS_MAPPED;
1204 }
1205 
1206 int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
1207 {
1208 	int err;
1209 
1210 	if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ),
1211 		 "Expect BadInstr/BadInstrP registers to be used with VZ\n"))
1212 		return -EINVAL;
1213 
1214 retry:
1215 	kvm_trap_emul_gva_lockless_begin(vcpu);
1216 	err = get_user(*out, opc);
1217 	kvm_trap_emul_gva_lockless_end(vcpu);
1218 
1219 	if (unlikely(err)) {
1220 		/*
1221 		 * Try to handle the fault, maybe we just raced with a GVA
1222 		 * invalidation.
1223 		 */
1224 		err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc,
1225 					      false);
1226 		if (unlikely(err)) {
1227 			kvm_err("%s: illegal address: %p\n",
1228 				__func__, opc);
1229 			return -EFAULT;
1230 		}
1231 
1232 		/* Hopefully it'll work now */
1233 		goto retry;
1234 	}
1235 	return 0;
1236 }
1237