xref: /linux/arch/mips/kvm/entry.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_PWBASE	5, 5
55 #define C0_HWRENA	7, 0
56 #define C0_BADVADDR	8, 0
57 #define C0_BADINSTR	8, 1
58 #define C0_BADINSTRP	8, 2
59 #define C0_PGD		9, 7
60 #define C0_ENTRYHI	10, 0
61 #define C0_GUESTCTL1	10, 4
62 #define C0_STATUS	12, 0
63 #define C0_GUESTCTL0	12, 6
64 #define C0_CAUSE	13, 0
65 #define C0_EPC		14, 0
66 #define C0_EBASE	15, 1
67 #define C0_CONFIG5	16, 5
68 #define C0_DDATA_LO	28, 3
69 #define C0_ERROREPC	30, 0
70 
71 #define CALLFRAME_SIZ   32
72 
73 #ifdef CONFIG_64BIT
74 #define ST0_KX_IF_64	ST0_KX
75 #else
76 #define ST0_KX_IF_64	0
77 #endif
78 
79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81 
82 enum label_id {
83 	label_fpu_1 = 1,
84 	label_msa_1,
85 	label_return_to_host,
86 	label_kernel_asid,
87 	label_exit_common,
88 };
89 
90 UASM_L_LA(_fpu_1)
91 UASM_L_LA(_msa_1)
92 UASM_L_LA(_return_to_host)
93 UASM_L_LA(_kernel_asid)
94 UASM_L_LA(_exit_common)
95 
96 static void *kvm_mips_build_enter_guest(void *addr);
97 static void *kvm_mips_build_ret_from_exit(void *addr);
98 static void *kvm_mips_build_ret_to_guest(void *addr);
99 static void *kvm_mips_build_ret_to_host(void *addr);
100 
101 /*
102  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103  * we assume symmetry.
104  */
105 static int c0_kscratch(void)
106 {
107 	switch (boot_cpu_type()) {
108 	case CPU_XLP:
109 	case CPU_XLR:
110 		return 22;
111 	default:
112 		return 31;
113 	}
114 }
115 
116 /**
117  * kvm_mips_entry_setup() - Perform global setup for entry code.
118  *
119  * Perform global setup for entry code, such as choosing a scratch register.
120  *
121  * Returns:	0 on success.
122  *		-errno on failure.
123  */
124 int kvm_mips_entry_setup(void)
125 {
126 	/*
127 	 * We prefer to use KScratchN registers if they are available over the
128 	 * defaults above, which may not work on all cores.
129 	 */
130 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131 
132 	if (pgd_reg != -1)
133 		kscratch_mask &= ~BIT(pgd_reg);
134 
135 	/* Pick a scratch register for storing VCPU */
136 	if (kscratch_mask) {
137 		scratch_vcpu[0] = c0_kscratch();
138 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
140 	}
141 
142 	/* Pick a scratch register to use as a temp for saving state */
143 	if (kscratch_mask) {
144 		scratch_tmp[0] = c0_kscratch();
145 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
146 		kscratch_mask &= ~BIT(scratch_tmp[1]);
147 	}
148 
149 	return 0;
150 }
151 
152 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153 					unsigned int frame)
154 {
155 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
156 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158 
159 	/* Save the temp scratch register value in cp0_cause of stack frame */
160 	if (scratch_tmp[0] == c0_kscratch()) {
161 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163 	}
164 }
165 
166 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167 					   unsigned int frame)
168 {
169 	/*
170 	 * Restore host scratch register values saved by
171 	 * kvm_mips_build_save_scratch().
172 	 */
173 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175 
176 	if (scratch_tmp[0] == c0_kscratch()) {
177 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179 	}
180 }
181 
182 /**
183  * build_set_exc_base() - Assemble code to write exception base address.
184  * @p:		Code buffer pointer.
185  * @reg:	Source register (generated code may set WG bit in @reg).
186  *
187  * Assemble code to modify the exception base address in the EBase register,
188  * using the appropriately sized access and setting the WG bit if necessary.
189  */
190 static inline void build_set_exc_base(u32 **p, unsigned int reg)
191 {
192 	if (cpu_has_ebase_wg) {
193 		/* Set WG so that all the bits get written */
194 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195 		UASM_i_MTC0(p, reg, C0_EBASE);
196 	} else {
197 		uasm_i_mtc0(p, reg, C0_EBASE);
198 	}
199 }
200 
201 /**
202  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203  * @addr:	Address to start writing code.
204  *
205  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206  * conforms to the following prototype:
207  *
208  * int vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu);
209  *
210  * The exit from the guest and return to the caller is handled by the code
211  * generated by kvm_mips_build_ret_to_host().
212  *
213  * Returns:	Next address after end of written function.
214  */
215 void *kvm_mips_build_vcpu_run(void *addr)
216 {
217 	u32 *p = addr;
218 	unsigned int i;
219 
220 	/*
221 	 * A0: run
222 	 * A1: vcpu
223 	 */
224 
225 	/* k0/k1 not being used in host kernel context */
226 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
227 	for (i = 16; i < 32; ++i) {
228 		if (i == 24)
229 			i = 28;
230 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
231 	}
232 
233 	/* Save host status */
234 	uasm_i_mfc0(&p, V0, C0_STATUS);
235 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
236 
237 	/* Save scratch registers, will be used to store pointer to vcpu etc */
238 	kvm_mips_build_save_scratch(&p, V1, K1);
239 
240 	/* VCPU scratch register has pointer to vcpu */
241 	UASM_i_MTC0(&p, A1, scratch_vcpu[0], scratch_vcpu[1]);
242 
243 	/* Offset into vcpu->arch */
244 	UASM_i_ADDIU(&p, K1, A1, offsetof(struct kvm_vcpu, arch));
245 
246 	/*
247 	 * Save the host stack to VCPU, used for exception processing
248 	 * when we exit from the Guest
249 	 */
250 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
251 
252 	/* Save the kernel gp as well */
253 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
254 
255 	/*
256 	 * Setup status register for running the guest in UM, interrupts
257 	 * are disabled
258 	 */
259 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
260 	uasm_i_mtc0(&p, K0, C0_STATUS);
261 	uasm_i_ehb(&p);
262 
263 	/* load up the new EBASE */
264 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
265 	build_set_exc_base(&p, K0);
266 
267 	/*
268 	 * Now that the new EBASE has been loaded, unset BEV, set
269 	 * interrupt mask as it was but make sure that timer interrupts
270 	 * are enabled
271 	 */
272 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
273 	uasm_i_andi(&p, V0, V0, ST0_IM);
274 	uasm_i_or(&p, K0, K0, V0);
275 	uasm_i_mtc0(&p, K0, C0_STATUS);
276 	uasm_i_ehb(&p);
277 
278 	p = kvm_mips_build_enter_guest(p);
279 
280 	return p;
281 }
282 
283 /**
284  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
285  * @addr:	Address to start writing code.
286  *
287  * Assemble the code to resume guest execution. This code is common between the
288  * initial entry into the guest from the host, and returning from the exit
289  * handler back to the guest.
290  *
291  * Returns:	Next address after end of written function.
292  */
293 static void *kvm_mips_build_enter_guest(void *addr)
294 {
295 	u32 *p = addr;
296 	unsigned int i;
297 	struct uasm_label labels[2];
298 	struct uasm_reloc relocs[2];
299 	struct uasm_label __maybe_unused *l = labels;
300 	struct uasm_reloc __maybe_unused *r = relocs;
301 
302 	memset(labels, 0, sizeof(labels));
303 	memset(relocs, 0, sizeof(relocs));
304 
305 	/* Set Guest EPC */
306 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
307 	UASM_i_MTC0(&p, T0, C0_EPC);
308 
309 #ifdef CONFIG_KVM_MIPS_VZ
310 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
311 	if (cpu_has_ldpte)
312 		UASM_i_MFC0(&p, K0, C0_PWBASE);
313 	else
314 		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
315 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
316 
317 	/*
318 	 * Set up KVM GPA pgd.
319 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
320 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
321 	 * - write mm->pgd into CP0_PWBase
322 	 *
323 	 * We keep S0 pointing at struct kvm so we can load the ASID below.
324 	 */
325 	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
326 			  (int)offsetof(struct kvm_vcpu, arch), K1);
327 	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
328 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
329 	uasm_i_jalr(&p, RA, T9);
330 	/* delay slot */
331 	if (cpu_has_htw)
332 		UASM_i_MTC0(&p, A0, C0_PWBASE);
333 	else
334 		uasm_i_nop(&p);
335 
336 	/* Set GM bit to setup eret to VZ guest context */
337 	uasm_i_addiu(&p, V1, ZERO, 1);
338 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
339 	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
340 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
341 
342 	if (cpu_has_guestid) {
343 		/*
344 		 * Set root mode GuestID, so that root TLB refill handler can
345 		 * use the correct GuestID in the root TLB.
346 		 */
347 
348 		/* Get current GuestID */
349 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
350 		/* Set GuestCtl1.RID = GuestCtl1.ID */
351 		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
352 			   MIPS_GCTL1_ID_WIDTH);
353 		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
354 			   MIPS_GCTL1_RID_WIDTH);
355 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
356 
357 		/* GuestID handles dealiasing so we don't need to touch ASID */
358 		goto skip_asid_restore;
359 	}
360 
361 	/* Root ASID Dealias (RAD) */
362 
363 	/* Save host ASID */
364 	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
365 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
366 		  K1);
367 
368 	/* Set the root ASID for the Guest */
369 	UASM_i_ADDIU(&p, T1, S0,
370 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
371 #else
372 	/* Set the ASID for the Guest Kernel or User */
373 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
374 	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
375 		  T0);
376 	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
377 	uasm_i_xori(&p, T0, T0, KSU_USER);
378 	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
379 	 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
380 					   guest_kernel_mm.context.asid));
381 	/* else user */
382 	UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
383 					  guest_user_mm.context.asid));
384 	uasm_l_kernel_asid(&l, p);
385 #endif
386 
387 	/* t1: contains the base of the ASID array, need to get the cpu id  */
388 	/* smp_processor_id */
389 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
390 	/* index the ASID array */
391 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
392 	UASM_i_ADDU(&p, T3, T1, T2);
393 	UASM_i_LW(&p, K0, 0, T3);
394 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
395 	/*
396 	 * reuse ASID array offset
397 	 * cpuinfo_mips is a multiple of sizeof(long)
398 	 */
399 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
400 	uasm_i_mul(&p, T2, T2, T3);
401 
402 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
403 	UASM_i_ADDU(&p, AT, AT, T2);
404 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
405 	uasm_i_and(&p, K0, K0, T2);
406 #else
407 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
408 #endif
409 
410 #ifndef CONFIG_KVM_MIPS_VZ
411 	/*
412 	 * Set up KVM T&E GVA pgd.
413 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
414 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
415 	 * - but skips write into CP0_PWBase for now
416 	 */
417 	UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
418 			  (int)offsetof(struct mm_struct, context.asid), T1);
419 
420 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
421 	uasm_i_jalr(&p, RA, T9);
422 	 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
423 #else
424 	/* Set up KVM VZ root ASID (!guestid) */
425 	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
426 skip_asid_restore:
427 #endif
428 	uasm_i_ehb(&p);
429 
430 	/* Disable RDHWR access */
431 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
432 
433 	/* load the guest context from VCPU and return */
434 	for (i = 1; i < 32; ++i) {
435 		/* Guest k0/k1 loaded later */
436 		if (i == K0 || i == K1)
437 			continue;
438 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
439 	}
440 
441 #ifndef CONFIG_CPU_MIPSR6
442 	/* Restore hi/lo */
443 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
444 	uasm_i_mthi(&p, K0);
445 
446 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
447 	uasm_i_mtlo(&p, K0);
448 #endif
449 
450 	/* Restore the guest's k0/k1 registers */
451 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
452 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
453 
454 	/* Jump to guest */
455 	uasm_i_eret(&p);
456 
457 	uasm_resolve_relocs(relocs, labels);
458 
459 	return p;
460 }
461 
462 /**
463  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
464  * @addr:	Address to start writing code.
465  * @handler:	Address of common handler (within range of @addr).
466  *
467  * Assemble TLB refill exception fast path handler for guest execution.
468  *
469  * Returns:	Next address after end of written function.
470  */
471 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
472 {
473 	u32 *p = addr;
474 	struct uasm_label labels[2];
475 	struct uasm_reloc relocs[2];
476 #ifndef CONFIG_CPU_LOONGSON64
477 	struct uasm_label *l = labels;
478 	struct uasm_reloc *r = relocs;
479 #endif
480 
481 	memset(labels, 0, sizeof(labels));
482 	memset(relocs, 0, sizeof(relocs));
483 
484 	/* Save guest k1 into scratch register */
485 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
486 
487 	/* Get the VCPU pointer from the VCPU scratch register */
488 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
489 
490 	/* Save guest k0 into VCPU structure */
491 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
492 
493 	/*
494 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
495 	 * assume symmetry and just disable preemption to silence the warning.
496 	 */
497 	preempt_disable();
498 
499 #ifdef CONFIG_CPU_LOONGSON64
500 	UASM_i_MFC0(&p, K1, C0_PGD);
501 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
502 #ifndef __PAGETABLE_PMD_FOLDED
503 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
504 #endif
505 	uasm_i_ldpte(&p, K1, 0);      /* even */
506 	uasm_i_ldpte(&p, K1, 1);      /* odd */
507 	uasm_i_tlbwr(&p);
508 #else
509 	/*
510 	 * Now for the actual refill bit. A lot of this can be common with the
511 	 * Linux TLB refill handler, however we don't need to handle so many
512 	 * cases. We only need to handle user mode refills, and user mode runs
513 	 * with 32-bit addressing.
514 	 *
515 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
516 	 * that isn't resolved should never actually get taken and is harmless
517 	 * to leave in place for now.
518 	 */
519 
520 #ifdef CONFIG_64BIT
521 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
522 #else
523 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
524 #endif
525 
526 	/* we don't support huge pages yet */
527 
528 	build_get_ptep(&p, K0, K1);
529 	build_update_entries(&p, K0, K1);
530 	build_tlb_write_entry(&p, &l, &r, tlb_random);
531 #endif
532 
533 	preempt_enable();
534 
535 	/* Get the VCPU pointer from the VCPU scratch register again */
536 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
537 
538 	/* Restore the guest's k0/k1 registers */
539 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
540 	uasm_i_ehb(&p);
541 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
542 
543 	/* Jump to guest */
544 	uasm_i_eret(&p);
545 
546 	return p;
547 }
548 
549 /**
550  * kvm_mips_build_exception() - Assemble first level guest exception handler.
551  * @addr:	Address to start writing code.
552  * @handler:	Address of common handler (within range of @addr).
553  *
554  * Assemble exception vector code for guest execution. The generated vector will
555  * branch to the common exception handler generated by kvm_mips_build_exit().
556  *
557  * Returns:	Next address after end of written function.
558  */
559 void *kvm_mips_build_exception(void *addr, void *handler)
560 {
561 	u32 *p = addr;
562 	struct uasm_label labels[2];
563 	struct uasm_reloc relocs[2];
564 	struct uasm_label *l = labels;
565 	struct uasm_reloc *r = relocs;
566 
567 	memset(labels, 0, sizeof(labels));
568 	memset(relocs, 0, sizeof(relocs));
569 
570 	/* Save guest k1 into scratch register */
571 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
572 
573 	/* Get the VCPU pointer from the VCPU scratch register */
574 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
575 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
576 
577 	/* Save guest k0 into VCPU structure */
578 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
579 
580 	/* Branch to the common handler */
581 	uasm_il_b(&p, &r, label_exit_common);
582 	 uasm_i_nop(&p);
583 
584 	uasm_l_exit_common(&l, handler);
585 	uasm_resolve_relocs(relocs, labels);
586 
587 	return p;
588 }
589 
590 /**
591  * kvm_mips_build_exit() - Assemble common guest exit handler.
592  * @addr:	Address to start writing code.
593  *
594  * Assemble the generic guest exit handling code. This is called by the
595  * exception vectors (generated by kvm_mips_build_exception()), and calls
596  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
597  * depending on the return value.
598  *
599  * Returns:	Next address after end of written function.
600  */
601 void *kvm_mips_build_exit(void *addr)
602 {
603 	u32 *p = addr;
604 	unsigned int i;
605 	struct uasm_label labels[3];
606 	struct uasm_reloc relocs[3];
607 	struct uasm_label *l = labels;
608 	struct uasm_reloc *r = relocs;
609 
610 	memset(labels, 0, sizeof(labels));
611 	memset(relocs, 0, sizeof(relocs));
612 
613 	/*
614 	 * Generic Guest exception handler. We end up here when the guest
615 	 * does something that causes a trap to kernel mode.
616 	 *
617 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
618 	 * structure, and k1 into the scratch_tmp register).
619 	 *
620 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
621 	 */
622 
623 	/* Start saving Guest context to VCPU */
624 	for (i = 0; i < 32; ++i) {
625 		/* Guest k0/k1 saved later */
626 		if (i == K0 || i == K1)
627 			continue;
628 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
629 	}
630 
631 #ifndef CONFIG_CPU_MIPSR6
632 	/* We need to save hi/lo and restore them on the way out */
633 	uasm_i_mfhi(&p, T0);
634 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
635 
636 	uasm_i_mflo(&p, T0);
637 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
638 #endif
639 
640 	/* Finally save guest k1 to VCPU */
641 	uasm_i_ehb(&p);
642 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
643 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
644 
645 	/* Now that context has been saved, we can use other registers */
646 
647 	/* Restore vcpu */
648 	UASM_i_MFC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
649 
650 	/* Restore run (vcpu->run) */
651 	UASM_i_LW(&p, S0, offsetof(struct kvm_vcpu, run), S1);
652 
653 	/*
654 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
655 	 * the exception
656 	 */
657 	UASM_i_MFC0(&p, K0, C0_EPC);
658 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
659 
660 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
661 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
662 		  K1);
663 
664 	uasm_i_mfc0(&p, K0, C0_CAUSE);
665 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
666 
667 	if (cpu_has_badinstr) {
668 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
669 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
670 					   host_cp0_badinstr), K1);
671 	}
672 
673 	if (cpu_has_badinstrp) {
674 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
675 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
676 					   host_cp0_badinstrp), K1);
677 	}
678 
679 	/* Now restore the host state just enough to run the handlers */
680 
681 	/* Switch EBASE to the one used by Linux */
682 	/* load up the host EBASE */
683 	uasm_i_mfc0(&p, V0, C0_STATUS);
684 
685 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
686 	uasm_i_or(&p, K0, V0, AT);
687 
688 	uasm_i_mtc0(&p, K0, C0_STATUS);
689 	uasm_i_ehb(&p);
690 
691 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
692 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
693 	build_set_exc_base(&p, K0);
694 
695 	if (raw_cpu_has_fpu) {
696 		/*
697 		 * If FPU is enabled, save FCR31 and clear it so that later
698 		 * ctc1's don't trigger FPE for pending exceptions.
699 		 */
700 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
701 		uasm_i_and(&p, V1, V0, AT);
702 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
703 		 uasm_i_nop(&p);
704 		uasm_i_cfc1(&p, T0, 31);
705 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
706 			  K1);
707 		uasm_i_ctc1(&p, ZERO, 31);
708 		uasm_l_fpu_1(&l, p);
709 	}
710 
711 	if (cpu_has_msa) {
712 		/*
713 		 * If MSA is enabled, save MSACSR and clear it so that later
714 		 * instructions don't trigger MSAFPE for pending exceptions.
715 		 */
716 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
717 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
718 		uasm_il_beqz(&p, &r, T0, label_msa_1);
719 		 uasm_i_nop(&p);
720 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
721 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
722 			  K1);
723 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
724 		uasm_l_msa_1(&l, p);
725 	}
726 
727 #ifdef CONFIG_KVM_MIPS_VZ
728 	/* Restore host ASID */
729 	if (!cpu_has_guestid) {
730 		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
731 			  K1);
732 		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
733 	}
734 
735 	/*
736 	 * Set up normal Linux process pgd.
737 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
738 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
739 	 * - write mm->pgd into CP0_PWBase
740 	 */
741 	UASM_i_LW(&p, A0,
742 		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
743 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
744 	uasm_i_jalr(&p, RA, T9);
745 	/* delay slot */
746 	if (cpu_has_htw)
747 		UASM_i_MTC0(&p, A0, C0_PWBASE);
748 	else
749 		uasm_i_nop(&p);
750 
751 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
752 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
753 	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
754 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
755 
756 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
757 	uasm_i_sw(&p, K0,
758 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
759 
760 	if (cpu_has_guestid) {
761 		/*
762 		 * Clear root mode GuestID, so that root TLB operations use the
763 		 * root GuestID in the root TLB.
764 		 */
765 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
766 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
767 		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
768 			   MIPS_GCTL1_RID_WIDTH);
769 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
770 	}
771 #endif
772 
773 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
774 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
775 	uasm_i_and(&p, V0, V0, AT);
776 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
777 	uasm_i_or(&p, V0, V0, AT);
778 #ifdef CONFIG_64BIT
779 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
780 #endif
781 	uasm_i_mtc0(&p, V0, C0_STATUS);
782 	uasm_i_ehb(&p);
783 
784 	/* Load up host GP */
785 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
786 
787 	/* Need a stack before we can jump to "C" */
788 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
789 
790 	/* Saved host state */
791 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
792 
793 	/*
794 	 * XXXKYMA do we need to load the host ASID, maybe not because the
795 	 * kernel entries are marked GLOBAL, need to verify
796 	 */
797 
798 	/* Restore host scratch registers, as we'll have clobbered them */
799 	kvm_mips_build_restore_scratch(&p, K0, SP);
800 
801 	/* Restore RDHWR access */
802 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
803 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
804 	uasm_i_mtc0(&p, K0, C0_HWRENA);
805 
806 	/* Jump to handler */
807 	/*
808 	 * XXXKYMA: not sure if this is safe, how large is the stack??
809 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
810 	 * with this in the kernel
811 	 */
812 	uasm_i_move(&p, A0, S0);
813 	uasm_i_move(&p, A1, S1);
814 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
815 	uasm_i_jalr(&p, RA, T9);
816 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
817 
818 	uasm_resolve_relocs(relocs, labels);
819 
820 	p = kvm_mips_build_ret_from_exit(p);
821 
822 	return p;
823 }
824 
825 /**
826  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
827  * @addr:	Address to start writing code.
828  *
829  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
830  * resuming the guest or returning to the host depending on the return value.
831  *
832  * Returns:	Next address after end of written function.
833  */
834 static void *kvm_mips_build_ret_from_exit(void *addr)
835 {
836 	u32 *p = addr;
837 	struct uasm_label labels[2];
838 	struct uasm_reloc relocs[2];
839 	struct uasm_label *l = labels;
840 	struct uasm_reloc *r = relocs;
841 
842 	memset(labels, 0, sizeof(labels));
843 	memset(relocs, 0, sizeof(relocs));
844 
845 	/* Return from handler Make sure interrupts are disabled */
846 	uasm_i_di(&p, ZERO);
847 	uasm_i_ehb(&p);
848 
849 	/*
850 	 * XXXKYMA: k0/k1 could have been blown away if we processed
851 	 * an exception while we were handling the exception from the
852 	 * guest, reload k1
853 	 */
854 
855 	uasm_i_move(&p, K1, S1);
856 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
857 
858 	/*
859 	 * Check return value, should tell us if we are returning to the
860 	 * host (handle I/O etc)or resuming the guest
861 	 */
862 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
863 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
864 	 uasm_i_nop(&p);
865 
866 	p = kvm_mips_build_ret_to_guest(p);
867 
868 	uasm_l_return_to_host(&l, p);
869 	p = kvm_mips_build_ret_to_host(p);
870 
871 	uasm_resolve_relocs(relocs, labels);
872 
873 	return p;
874 }
875 
876 /**
877  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
878  * @addr:	Address to start writing code.
879  *
880  * Assemble the code to handle return from the guest exit handler
881  * (kvm_mips_handle_exit()) back to the guest.
882  *
883  * Returns:	Next address after end of written function.
884  */
885 static void *kvm_mips_build_ret_to_guest(void *addr)
886 {
887 	u32 *p = addr;
888 
889 	/* Put the saved pointer to vcpu (s1) back into the scratch register */
890 	UASM_i_MTC0(&p, S1, scratch_vcpu[0], scratch_vcpu[1]);
891 
892 	/* Load up the Guest EBASE to minimize the window where BEV is set */
893 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
894 
895 	/* Switch EBASE back to the one used by KVM */
896 	uasm_i_mfc0(&p, V1, C0_STATUS);
897 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
898 	uasm_i_or(&p, K0, V1, AT);
899 	uasm_i_mtc0(&p, K0, C0_STATUS);
900 	uasm_i_ehb(&p);
901 	build_set_exc_base(&p, T0);
902 
903 	/* Setup status register for running guest in UM */
904 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
905 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
906 	uasm_i_and(&p, V1, V1, AT);
907 	uasm_i_mtc0(&p, V1, C0_STATUS);
908 	uasm_i_ehb(&p);
909 
910 	p = kvm_mips_build_enter_guest(p);
911 
912 	return p;
913 }
914 
915 /**
916  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
917  * @addr:	Address to start writing code.
918  *
919  * Assemble the code to handle return from the guest exit handler
920  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
921  * function generated by kvm_mips_build_vcpu_run().
922  *
923  * Returns:	Next address after end of written function.
924  */
925 static void *kvm_mips_build_ret_to_host(void *addr)
926 {
927 	u32 *p = addr;
928 	unsigned int i;
929 
930 	/* EBASE is already pointing to Linux */
931 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
932 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
933 
934 	/*
935 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
936 	 * to recover the err code
937 	 */
938 	uasm_i_sra(&p, K0, V0, 2);
939 	uasm_i_move(&p, V0, K0);
940 
941 	/* Load context saved on the host stack */
942 	for (i = 16; i < 31; ++i) {
943 		if (i == 24)
944 			i = 28;
945 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
946 	}
947 
948 	/* Restore RDHWR access */
949 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
950 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
951 	uasm_i_mtc0(&p, K0, C0_HWRENA);
952 
953 	/* Restore RA, which is the address we will return to */
954 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
955 	uasm_i_jr(&p, RA);
956 	 uasm_i_nop(&p);
957 
958 	return p;
959 }
960 
961