xref: /linux/arch/mips/kvm/entry.c (revision 8fc4e4aa2bfca8d32e8bc2a01526ea2da450e6cb)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Generation of main entry point for the guest, exception handling.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  *
11  * Copyright (C) 2016 Imagination Technologies Ltd.
12  */
13 
14 #include <linux/kvm_host.h>
15 #include <linux/log2.h>
16 #include <asm/mmu_context.h>
17 #include <asm/msa.h>
18 #include <asm/setup.h>
19 #include <asm/tlbex.h>
20 #include <asm/uasm.h>
21 
22 /* Register names */
23 #define ZERO		0
24 #define AT		1
25 #define V0		2
26 #define V1		3
27 #define A0		4
28 #define A1		5
29 
30 #if _MIPS_SIM == _MIPS_SIM_ABI32
31 #define T0		8
32 #define T1		9
33 #define T2		10
34 #define T3		11
35 #endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36 
37 #if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38 #define T0		12
39 #define T1		13
40 #define T2		14
41 #define T3		15
42 #endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43 
44 #define S0		16
45 #define S1		17
46 #define T9		25
47 #define K0		26
48 #define K1		27
49 #define GP		28
50 #define SP		29
51 #define RA		31
52 
53 /* Some CP0 registers */
54 #define C0_PWBASE	5, 5
55 #define C0_HWRENA	7, 0
56 #define C0_BADVADDR	8, 0
57 #define C0_BADINSTR	8, 1
58 #define C0_BADINSTRP	8, 2
59 #define C0_PGD		9, 7
60 #define C0_ENTRYHI	10, 0
61 #define C0_GUESTCTL1	10, 4
62 #define C0_STATUS	12, 0
63 #define C0_GUESTCTL0	12, 6
64 #define C0_CAUSE	13, 0
65 #define C0_EPC		14, 0
66 #define C0_EBASE	15, 1
67 #define C0_CONFIG5	16, 5
68 #define C0_DDATA_LO	28, 3
69 #define C0_ERROREPC	30, 0
70 
71 #define CALLFRAME_SIZ   32
72 
73 #ifdef CONFIG_64BIT
74 #define ST0_KX_IF_64	ST0_KX
75 #else
76 #define ST0_KX_IF_64	0
77 #endif
78 
79 static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80 static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81 
82 enum label_id {
83 	label_fpu_1 = 1,
84 	label_msa_1,
85 	label_return_to_host,
86 	label_kernel_asid,
87 	label_exit_common,
88 };
89 
90 UASM_L_LA(_fpu_1)
91 UASM_L_LA(_msa_1)
92 UASM_L_LA(_return_to_host)
93 UASM_L_LA(_kernel_asid)
94 UASM_L_LA(_exit_common)
95 
96 static void *kvm_mips_build_enter_guest(void *addr);
97 static void *kvm_mips_build_ret_from_exit(void *addr);
98 static void *kvm_mips_build_ret_to_guest(void *addr);
99 static void *kvm_mips_build_ret_to_host(void *addr);
100 
101 /*
102  * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103  * we assume symmetry.
104  */
105 static int c0_kscratch(void)
106 {
107 	switch (boot_cpu_type()) {
108 	case CPU_XLP:
109 	case CPU_XLR:
110 		return 22;
111 	default:
112 		return 31;
113 	}
114 }
115 
116 /**
117  * kvm_mips_entry_setup() - Perform global setup for entry code.
118  *
119  * Perform global setup for entry code, such as choosing a scratch register.
120  *
121  * Returns:	0 on success.
122  *		-errno on failure.
123  */
124 int kvm_mips_entry_setup(void)
125 {
126 	/*
127 	 * We prefer to use KScratchN registers if they are available over the
128 	 * defaults above, which may not work on all cores.
129 	 */
130 	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131 
132 	if (pgd_reg != -1)
133 		kscratch_mask &= ~BIT(pgd_reg);
134 
135 	/* Pick a scratch register for storing VCPU */
136 	if (kscratch_mask) {
137 		scratch_vcpu[0] = c0_kscratch();
138 		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139 		kscratch_mask &= ~BIT(scratch_vcpu[1]);
140 	}
141 
142 	/* Pick a scratch register to use as a temp for saving state */
143 	if (kscratch_mask) {
144 		scratch_tmp[0] = c0_kscratch();
145 		scratch_tmp[1] = ffs(kscratch_mask) - 1;
146 		kscratch_mask &= ~BIT(scratch_tmp[1]);
147 	}
148 
149 	return 0;
150 }
151 
152 static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153 					unsigned int frame)
154 {
155 	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
156 	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157 	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158 
159 	/* Save the temp scratch register value in cp0_cause of stack frame */
160 	if (scratch_tmp[0] == c0_kscratch()) {
161 		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162 		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163 	}
164 }
165 
166 static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167 					   unsigned int frame)
168 {
169 	/*
170 	 * Restore host scratch register values saved by
171 	 * kvm_mips_build_save_scratch().
172 	 */
173 	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174 	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175 
176 	if (scratch_tmp[0] == c0_kscratch()) {
177 		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178 		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179 	}
180 }
181 
182 /**
183  * build_set_exc_base() - Assemble code to write exception base address.
184  * @p:		Code buffer pointer.
185  * @reg:	Source register (generated code may set WG bit in @reg).
186  *
187  * Assemble code to modify the exception base address in the EBase register,
188  * using the appropriately sized access and setting the WG bit if necessary.
189  */
190 static inline void build_set_exc_base(u32 **p, unsigned int reg)
191 {
192 	if (cpu_has_ebase_wg) {
193 		/* Set WG so that all the bits get written */
194 		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195 		UASM_i_MTC0(p, reg, C0_EBASE);
196 	} else {
197 		uasm_i_mtc0(p, reg, C0_EBASE);
198 	}
199 }
200 
201 /**
202  * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203  * @addr:	Address to start writing code.
204  *
205  * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206  * conforms to the following prototype:
207  *
208  * int vcpu_run(struct kvm_vcpu *vcpu);
209  *
210  * The exit from the guest and return to the caller is handled by the code
211  * generated by kvm_mips_build_ret_to_host().
212  *
213  * Returns:	Next address after end of written function.
214  */
215 void *kvm_mips_build_vcpu_run(void *addr)
216 {
217 	u32 *p = addr;
218 	unsigned int i;
219 
220 	/*
221 	 * A0: vcpu
222 	 */
223 
224 	/* k0/k1 not being used in host kernel context */
225 	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226 	for (i = 16; i < 32; ++i) {
227 		if (i == 24)
228 			i = 28;
229 		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230 	}
231 
232 	/* Save host status */
233 	uasm_i_mfc0(&p, V0, C0_STATUS);
234 	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235 
236 	/* Save scratch registers, will be used to store pointer to vcpu etc */
237 	kvm_mips_build_save_scratch(&p, V1, K1);
238 
239 	/* VCPU scratch register has pointer to vcpu */
240 	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
241 
242 	/* Offset into vcpu->arch */
243 	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
244 
245 	/*
246 	 * Save the host stack to VCPU, used for exception processing
247 	 * when we exit from the Guest
248 	 */
249 	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250 
251 	/* Save the kernel gp as well */
252 	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253 
254 	/*
255 	 * Setup status register for running the guest in UM, interrupts
256 	 * are disabled
257 	 */
258 	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259 	uasm_i_mtc0(&p, K0, C0_STATUS);
260 	uasm_i_ehb(&p);
261 
262 	/* load up the new EBASE */
263 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264 	build_set_exc_base(&p, K0);
265 
266 	/*
267 	 * Now that the new EBASE has been loaded, unset BEV, set
268 	 * interrupt mask as it was but make sure that timer interrupts
269 	 * are enabled
270 	 */
271 	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272 	uasm_i_andi(&p, V0, V0, ST0_IM);
273 	uasm_i_or(&p, K0, K0, V0);
274 	uasm_i_mtc0(&p, K0, C0_STATUS);
275 	uasm_i_ehb(&p);
276 
277 	p = kvm_mips_build_enter_guest(p);
278 
279 	return p;
280 }
281 
282 /**
283  * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284  * @addr:	Address to start writing code.
285  *
286  * Assemble the code to resume guest execution. This code is common between the
287  * initial entry into the guest from the host, and returning from the exit
288  * handler back to the guest.
289  *
290  * Returns:	Next address after end of written function.
291  */
292 static void *kvm_mips_build_enter_guest(void *addr)
293 {
294 	u32 *p = addr;
295 	unsigned int i;
296 	struct uasm_label labels[2];
297 	struct uasm_reloc relocs[2];
298 	struct uasm_label __maybe_unused *l = labels;
299 	struct uasm_reloc __maybe_unused *r = relocs;
300 
301 	memset(labels, 0, sizeof(labels));
302 	memset(relocs, 0, sizeof(relocs));
303 
304 	/* Set Guest EPC */
305 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306 	UASM_i_MTC0(&p, T0, C0_EPC);
307 
308 	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
309 	if (cpu_has_ldpte)
310 		UASM_i_MFC0(&p, K0, C0_PWBASE);
311 	else
312 		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
313 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
314 
315 	/*
316 	 * Set up KVM GPA pgd.
317 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
318 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
319 	 * - write mm->pgd into CP0_PWBase
320 	 *
321 	 * We keep S0 pointing at struct kvm so we can load the ASID below.
322 	 */
323 	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
324 			  (int)offsetof(struct kvm_vcpu, arch), K1);
325 	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
326 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
327 	uasm_i_jalr(&p, RA, T9);
328 	/* delay slot */
329 	if (cpu_has_htw)
330 		UASM_i_MTC0(&p, A0, C0_PWBASE);
331 	else
332 		uasm_i_nop(&p);
333 
334 	/* Set GM bit to setup eret to VZ guest context */
335 	uasm_i_addiu(&p, V1, ZERO, 1);
336 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
337 	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
338 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
339 
340 	if (cpu_has_guestid) {
341 		/*
342 		 * Set root mode GuestID, so that root TLB refill handler can
343 		 * use the correct GuestID in the root TLB.
344 		 */
345 
346 		/* Get current GuestID */
347 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
348 		/* Set GuestCtl1.RID = GuestCtl1.ID */
349 		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
350 			   MIPS_GCTL1_ID_WIDTH);
351 		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
352 			   MIPS_GCTL1_RID_WIDTH);
353 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
354 
355 		/* GuestID handles dealiasing so we don't need to touch ASID */
356 		goto skip_asid_restore;
357 	}
358 
359 	/* Root ASID Dealias (RAD) */
360 
361 	/* Save host ASID */
362 	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
363 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
364 		  K1);
365 
366 	/* Set the root ASID for the Guest */
367 	UASM_i_ADDIU(&p, T1, S0,
368 		     offsetof(struct kvm, arch.gpa_mm.context.asid));
369 
370 	/* t1: contains the base of the ASID array, need to get the cpu id  */
371 	/* smp_processor_id */
372 	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
373 	/* index the ASID array */
374 	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
375 	UASM_i_ADDU(&p, T3, T1, T2);
376 	UASM_i_LW(&p, K0, 0, T3);
377 #ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
378 	/*
379 	 * reuse ASID array offset
380 	 * cpuinfo_mips is a multiple of sizeof(long)
381 	 */
382 	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
383 	uasm_i_mul(&p, T2, T2, T3);
384 
385 	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
386 	UASM_i_ADDU(&p, AT, AT, T2);
387 	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
388 	uasm_i_and(&p, K0, K0, T2);
389 #else
390 	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
391 #endif
392 
393 	/* Set up KVM VZ root ASID (!guestid) */
394 	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
395 skip_asid_restore:
396 	uasm_i_ehb(&p);
397 
398 	/* Disable RDHWR access */
399 	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
400 
401 	/* load the guest context from VCPU and return */
402 	for (i = 1; i < 32; ++i) {
403 		/* Guest k0/k1 loaded later */
404 		if (i == K0 || i == K1)
405 			continue;
406 		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
407 	}
408 
409 #ifndef CONFIG_CPU_MIPSR6
410 	/* Restore hi/lo */
411 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
412 	uasm_i_mthi(&p, K0);
413 
414 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
415 	uasm_i_mtlo(&p, K0);
416 #endif
417 
418 	/* Restore the guest's k0/k1 registers */
419 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
420 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
421 
422 	/* Jump to guest */
423 	uasm_i_eret(&p);
424 
425 	uasm_resolve_relocs(relocs, labels);
426 
427 	return p;
428 }
429 
430 /**
431  * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
432  * @addr:	Address to start writing code.
433  * @handler:	Address of common handler (within range of @addr).
434  *
435  * Assemble TLB refill exception fast path handler for guest execution.
436  *
437  * Returns:	Next address after end of written function.
438  */
439 void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
440 {
441 	u32 *p = addr;
442 	struct uasm_label labels[2];
443 	struct uasm_reloc relocs[2];
444 #ifndef CONFIG_CPU_LOONGSON64
445 	struct uasm_label *l = labels;
446 	struct uasm_reloc *r = relocs;
447 #endif
448 
449 	memset(labels, 0, sizeof(labels));
450 	memset(relocs, 0, sizeof(relocs));
451 
452 	/* Save guest k1 into scratch register */
453 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
454 
455 	/* Get the VCPU pointer from the VCPU scratch register */
456 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
457 
458 	/* Save guest k0 into VCPU structure */
459 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
460 
461 	/*
462 	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
463 	 * assume symmetry and just disable preemption to silence the warning.
464 	 */
465 	preempt_disable();
466 
467 #ifdef CONFIG_CPU_LOONGSON64
468 	UASM_i_MFC0(&p, K1, C0_PGD);
469 	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
470 #ifndef __PAGETABLE_PMD_FOLDED
471 	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
472 #endif
473 	uasm_i_ldpte(&p, K1, 0);      /* even */
474 	uasm_i_ldpte(&p, K1, 1);      /* odd */
475 	uasm_i_tlbwr(&p);
476 #else
477 	/*
478 	 * Now for the actual refill bit. A lot of this can be common with the
479 	 * Linux TLB refill handler, however we don't need to handle so many
480 	 * cases. We only need to handle user mode refills, and user mode runs
481 	 * with 32-bit addressing.
482 	 *
483 	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
484 	 * that isn't resolved should never actually get taken and is harmless
485 	 * to leave in place for now.
486 	 */
487 
488 #ifdef CONFIG_64BIT
489 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
490 #else
491 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
492 #endif
493 
494 	/* we don't support huge pages yet */
495 
496 	build_get_ptep(&p, K0, K1);
497 	build_update_entries(&p, K0, K1);
498 	build_tlb_write_entry(&p, &l, &r, tlb_random);
499 #endif
500 
501 	preempt_enable();
502 
503 	/* Get the VCPU pointer from the VCPU scratch register again */
504 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
505 
506 	/* Restore the guest's k0/k1 registers */
507 	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
508 	uasm_i_ehb(&p);
509 	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
510 
511 	/* Jump to guest */
512 	uasm_i_eret(&p);
513 
514 	return p;
515 }
516 
517 /**
518  * kvm_mips_build_exception() - Assemble first level guest exception handler.
519  * @addr:	Address to start writing code.
520  * @handler:	Address of common handler (within range of @addr).
521  *
522  * Assemble exception vector code for guest execution. The generated vector will
523  * branch to the common exception handler generated by kvm_mips_build_exit().
524  *
525  * Returns:	Next address after end of written function.
526  */
527 void *kvm_mips_build_exception(void *addr, void *handler)
528 {
529 	u32 *p = addr;
530 	struct uasm_label labels[2];
531 	struct uasm_reloc relocs[2];
532 	struct uasm_label *l = labels;
533 	struct uasm_reloc *r = relocs;
534 
535 	memset(labels, 0, sizeof(labels));
536 	memset(relocs, 0, sizeof(relocs));
537 
538 	/* Save guest k1 into scratch register */
539 	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
540 
541 	/* Get the VCPU pointer from the VCPU scratch register */
542 	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
543 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
544 
545 	/* Save guest k0 into VCPU structure */
546 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
547 
548 	/* Branch to the common handler */
549 	uasm_il_b(&p, &r, label_exit_common);
550 	 uasm_i_nop(&p);
551 
552 	uasm_l_exit_common(&l, handler);
553 	uasm_resolve_relocs(relocs, labels);
554 
555 	return p;
556 }
557 
558 /**
559  * kvm_mips_build_exit() - Assemble common guest exit handler.
560  * @addr:	Address to start writing code.
561  *
562  * Assemble the generic guest exit handling code. This is called by the
563  * exception vectors (generated by kvm_mips_build_exception()), and calls
564  * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
565  * depending on the return value.
566  *
567  * Returns:	Next address after end of written function.
568  */
569 void *kvm_mips_build_exit(void *addr)
570 {
571 	u32 *p = addr;
572 	unsigned int i;
573 	struct uasm_label labels[3];
574 	struct uasm_reloc relocs[3];
575 	struct uasm_label *l = labels;
576 	struct uasm_reloc *r = relocs;
577 
578 	memset(labels, 0, sizeof(labels));
579 	memset(relocs, 0, sizeof(relocs));
580 
581 	/*
582 	 * Generic Guest exception handler. We end up here when the guest
583 	 * does something that causes a trap to kernel mode.
584 	 *
585 	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
586 	 * structure, and k1 into the scratch_tmp register).
587 	 *
588 	 * The k1 register will already contain the kvm_vcpu_arch pointer.
589 	 */
590 
591 	/* Start saving Guest context to VCPU */
592 	for (i = 0; i < 32; ++i) {
593 		/* Guest k0/k1 saved later */
594 		if (i == K0 || i == K1)
595 			continue;
596 		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
597 	}
598 
599 #ifndef CONFIG_CPU_MIPSR6
600 	/* We need to save hi/lo and restore them on the way out */
601 	uasm_i_mfhi(&p, T0);
602 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
603 
604 	uasm_i_mflo(&p, T0);
605 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
606 #endif
607 
608 	/* Finally save guest k1 to VCPU */
609 	uasm_i_ehb(&p);
610 	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
611 	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
612 
613 	/* Now that context has been saved, we can use other registers */
614 
615 	/* Restore vcpu */
616 	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
617 
618 	/*
619 	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
620 	 * the exception
621 	 */
622 	UASM_i_MFC0(&p, K0, C0_EPC);
623 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
624 
625 	UASM_i_MFC0(&p, K0, C0_BADVADDR);
626 	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
627 		  K1);
628 
629 	uasm_i_mfc0(&p, K0, C0_CAUSE);
630 	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
631 
632 	if (cpu_has_badinstr) {
633 		uasm_i_mfc0(&p, K0, C0_BADINSTR);
634 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
635 					   host_cp0_badinstr), K1);
636 	}
637 
638 	if (cpu_has_badinstrp) {
639 		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
640 		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
641 					   host_cp0_badinstrp), K1);
642 	}
643 
644 	/* Now restore the host state just enough to run the handlers */
645 
646 	/* Switch EBASE to the one used by Linux */
647 	/* load up the host EBASE */
648 	uasm_i_mfc0(&p, V0, C0_STATUS);
649 
650 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
651 	uasm_i_or(&p, K0, V0, AT);
652 
653 	uasm_i_mtc0(&p, K0, C0_STATUS);
654 	uasm_i_ehb(&p);
655 
656 	UASM_i_LA_mostly(&p, K0, (long)&ebase);
657 	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
658 	build_set_exc_base(&p, K0);
659 
660 	if (raw_cpu_has_fpu) {
661 		/*
662 		 * If FPU is enabled, save FCR31 and clear it so that later
663 		 * ctc1's don't trigger FPE for pending exceptions.
664 		 */
665 		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
666 		uasm_i_and(&p, V1, V0, AT);
667 		uasm_il_beqz(&p, &r, V1, label_fpu_1);
668 		 uasm_i_nop(&p);
669 		uasm_i_cfc1(&p, T0, 31);
670 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
671 			  K1);
672 		uasm_i_ctc1(&p, ZERO, 31);
673 		uasm_l_fpu_1(&l, p);
674 	}
675 
676 	if (cpu_has_msa) {
677 		/*
678 		 * If MSA is enabled, save MSACSR and clear it so that later
679 		 * instructions don't trigger MSAFPE for pending exceptions.
680 		 */
681 		uasm_i_mfc0(&p, T0, C0_CONFIG5);
682 		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
683 		uasm_il_beqz(&p, &r, T0, label_msa_1);
684 		 uasm_i_nop(&p);
685 		uasm_i_cfcmsa(&p, T0, MSA_CSR);
686 		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
687 			  K1);
688 		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
689 		uasm_l_msa_1(&l, p);
690 	}
691 
692 	/* Restore host ASID */
693 	if (!cpu_has_guestid) {
694 		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
695 			  K1);
696 		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
697 	}
698 
699 	/*
700 	 * Set up normal Linux process pgd.
701 	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
702 	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
703 	 * - write mm->pgd into CP0_PWBase
704 	 */
705 	UASM_i_LW(&p, A0,
706 		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
707 	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
708 	uasm_i_jalr(&p, RA, T9);
709 	/* delay slot */
710 	if (cpu_has_htw)
711 		UASM_i_MTC0(&p, A0, C0_PWBASE);
712 	else
713 		uasm_i_nop(&p);
714 
715 	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
716 	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
717 	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
718 	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
719 
720 	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
721 	uasm_i_sw(&p, K0,
722 		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
723 
724 	if (cpu_has_guestid) {
725 		/*
726 		 * Clear root mode GuestID, so that root TLB operations use the
727 		 * root GuestID in the root TLB.
728 		 */
729 		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
730 		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
731 		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
732 			   MIPS_GCTL1_RID_WIDTH);
733 		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
734 	}
735 
736 	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
737 	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
738 	uasm_i_and(&p, V0, V0, AT);
739 	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
740 	uasm_i_or(&p, V0, V0, AT);
741 #ifdef CONFIG_64BIT
742 	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
743 #endif
744 	uasm_i_mtc0(&p, V0, C0_STATUS);
745 	uasm_i_ehb(&p);
746 
747 	/* Load up host GP */
748 	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
749 
750 	/* Need a stack before we can jump to "C" */
751 	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
752 
753 	/* Saved host state */
754 	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
755 
756 	/*
757 	 * XXXKYMA do we need to load the host ASID, maybe not because the
758 	 * kernel entries are marked GLOBAL, need to verify
759 	 */
760 
761 	/* Restore host scratch registers, as we'll have clobbered them */
762 	kvm_mips_build_restore_scratch(&p, K0, SP);
763 
764 	/* Restore RDHWR access */
765 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
766 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
767 	uasm_i_mtc0(&p, K0, C0_HWRENA);
768 
769 	/* Jump to handler */
770 	/*
771 	 * XXXKYMA: not sure if this is safe, how large is the stack??
772 	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
773 	 * with this in the kernel
774 	 */
775 	uasm_i_move(&p, A0, S0);
776 	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
777 	uasm_i_jalr(&p, RA, T9);
778 	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
779 
780 	uasm_resolve_relocs(relocs, labels);
781 
782 	p = kvm_mips_build_ret_from_exit(p);
783 
784 	return p;
785 }
786 
787 /**
788  * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
789  * @addr:	Address to start writing code.
790  *
791  * Assemble the code to handle the return from kvm_mips_handle_exit(), either
792  * resuming the guest or returning to the host depending on the return value.
793  *
794  * Returns:	Next address after end of written function.
795  */
796 static void *kvm_mips_build_ret_from_exit(void *addr)
797 {
798 	u32 *p = addr;
799 	struct uasm_label labels[2];
800 	struct uasm_reloc relocs[2];
801 	struct uasm_label *l = labels;
802 	struct uasm_reloc *r = relocs;
803 
804 	memset(labels, 0, sizeof(labels));
805 	memset(relocs, 0, sizeof(relocs));
806 
807 	/* Return from handler Make sure interrupts are disabled */
808 	uasm_i_di(&p, ZERO);
809 	uasm_i_ehb(&p);
810 
811 	/*
812 	 * XXXKYMA: k0/k1 could have been blown away if we processed
813 	 * an exception while we were handling the exception from the
814 	 * guest, reload k1
815 	 */
816 
817 	uasm_i_move(&p, K1, S0);
818 	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
819 
820 	/*
821 	 * Check return value, should tell us if we are returning to the
822 	 * host (handle I/O etc)or resuming the guest
823 	 */
824 	uasm_i_andi(&p, T0, V0, RESUME_HOST);
825 	uasm_il_bnez(&p, &r, T0, label_return_to_host);
826 	 uasm_i_nop(&p);
827 
828 	p = kvm_mips_build_ret_to_guest(p);
829 
830 	uasm_l_return_to_host(&l, p);
831 	p = kvm_mips_build_ret_to_host(p);
832 
833 	uasm_resolve_relocs(relocs, labels);
834 
835 	return p;
836 }
837 
838 /**
839  * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
840  * @addr:	Address to start writing code.
841  *
842  * Assemble the code to handle return from the guest exit handler
843  * (kvm_mips_handle_exit()) back to the guest.
844  *
845  * Returns:	Next address after end of written function.
846  */
847 static void *kvm_mips_build_ret_to_guest(void *addr)
848 {
849 	u32 *p = addr;
850 
851 	/* Put the saved pointer to vcpu (s0) back into the scratch register */
852 	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
853 
854 	/* Load up the Guest EBASE to minimize the window where BEV is set */
855 	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
856 
857 	/* Switch EBASE back to the one used by KVM */
858 	uasm_i_mfc0(&p, V1, C0_STATUS);
859 	uasm_i_lui(&p, AT, ST0_BEV >> 16);
860 	uasm_i_or(&p, K0, V1, AT);
861 	uasm_i_mtc0(&p, K0, C0_STATUS);
862 	uasm_i_ehb(&p);
863 	build_set_exc_base(&p, T0);
864 
865 	/* Setup status register for running guest in UM */
866 	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
867 	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
868 	uasm_i_and(&p, V1, V1, AT);
869 	uasm_i_mtc0(&p, V1, C0_STATUS);
870 	uasm_i_ehb(&p);
871 
872 	p = kvm_mips_build_enter_guest(p);
873 
874 	return p;
875 }
876 
877 /**
878  * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
879  * @addr:	Address to start writing code.
880  *
881  * Assemble the code to handle return from the guest exit handler
882  * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
883  * function generated by kvm_mips_build_vcpu_run().
884  *
885  * Returns:	Next address after end of written function.
886  */
887 static void *kvm_mips_build_ret_to_host(void *addr)
888 {
889 	u32 *p = addr;
890 	unsigned int i;
891 
892 	/* EBASE is already pointing to Linux */
893 	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
894 	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
895 
896 	/*
897 	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
898 	 * to recover the err code
899 	 */
900 	uasm_i_sra(&p, K0, V0, 2);
901 	uasm_i_move(&p, V0, K0);
902 
903 	/* Load context saved on the host stack */
904 	for (i = 16; i < 31; ++i) {
905 		if (i == 24)
906 			i = 28;
907 		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
908 	}
909 
910 	/* Restore RDHWR access */
911 	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
912 	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
913 	uasm_i_mtc0(&p, K0, C0_HWRENA);
914 
915 	/* Restore RA, which is the address we will return to */
916 	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
917 	uasm_i_jr(&p, RA);
918 	 uasm_i_nop(&p);
919 
920 	return p;
921 }
922 
923