xref: /linux/arch/mips/kvm/emulate.c (revision db6d8d5fdf9537641c76ba7f32e02b4bcc600972)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <linux/random.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cacheops.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "interrupt.h"
33 #include "commpage.h"
34 
35 #include "trace.h"
36 
37 /*
38  * Compute the return address and do emulate branch simulation, if required.
39  * This function should be called only in branch delay slot active.
40  */
41 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
42 	unsigned long instpc)
43 {
44 	unsigned int dspcontrol;
45 	union mips_instruction insn;
46 	struct kvm_vcpu_arch *arch = &vcpu->arch;
47 	long epc = instpc;
48 	long nextpc = KVM_INVALID_INST;
49 
50 	if (epc & 3)
51 		goto unaligned;
52 
53 	/* Read the instruction */
54 	insn.word = kvm_get_inst((u32 *) epc, vcpu);
55 
56 	if (insn.word == KVM_INVALID_INST)
57 		return KVM_INVALID_INST;
58 
59 	switch (insn.i_format.opcode) {
60 		/* jr and jalr are in r_format format. */
61 	case spec_op:
62 		switch (insn.r_format.func) {
63 		case jalr_op:
64 			arch->gprs[insn.r_format.rd] = epc + 8;
65 			/* Fall through */
66 		case jr_op:
67 			nextpc = arch->gprs[insn.r_format.rs];
68 			break;
69 		}
70 		break;
71 
72 		/*
73 		 * This group contains:
74 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
75 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
76 		 */
77 	case bcond_op:
78 		switch (insn.i_format.rt) {
79 		case bltz_op:
80 		case bltzl_op:
81 			if ((long)arch->gprs[insn.i_format.rs] < 0)
82 				epc = epc + 4 + (insn.i_format.simmediate << 2);
83 			else
84 				epc += 8;
85 			nextpc = epc;
86 			break;
87 
88 		case bgez_op:
89 		case bgezl_op:
90 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
91 				epc = epc + 4 + (insn.i_format.simmediate << 2);
92 			else
93 				epc += 8;
94 			nextpc = epc;
95 			break;
96 
97 		case bltzal_op:
98 		case bltzall_op:
99 			arch->gprs[31] = epc + 8;
100 			if ((long)arch->gprs[insn.i_format.rs] < 0)
101 				epc = epc + 4 + (insn.i_format.simmediate << 2);
102 			else
103 				epc += 8;
104 			nextpc = epc;
105 			break;
106 
107 		case bgezal_op:
108 		case bgezall_op:
109 			arch->gprs[31] = epc + 8;
110 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
111 				epc = epc + 4 + (insn.i_format.simmediate << 2);
112 			else
113 				epc += 8;
114 			nextpc = epc;
115 			break;
116 		case bposge32_op:
117 			if (!cpu_has_dsp)
118 				goto sigill;
119 
120 			dspcontrol = rddsp(0x01);
121 
122 			if (dspcontrol >= 32)
123 				epc = epc + 4 + (insn.i_format.simmediate << 2);
124 			else
125 				epc += 8;
126 			nextpc = epc;
127 			break;
128 		}
129 		break;
130 
131 		/* These are unconditional and in j_format. */
132 	case jal_op:
133 		arch->gprs[31] = instpc + 8;
134 	case j_op:
135 		epc += 4;
136 		epc >>= 28;
137 		epc <<= 28;
138 		epc |= (insn.j_format.target << 2);
139 		nextpc = epc;
140 		break;
141 
142 		/* These are conditional and in i_format. */
143 	case beq_op:
144 	case beql_op:
145 		if (arch->gprs[insn.i_format.rs] ==
146 		    arch->gprs[insn.i_format.rt])
147 			epc = epc + 4 + (insn.i_format.simmediate << 2);
148 		else
149 			epc += 8;
150 		nextpc = epc;
151 		break;
152 
153 	case bne_op:
154 	case bnel_op:
155 		if (arch->gprs[insn.i_format.rs] !=
156 		    arch->gprs[insn.i_format.rt])
157 			epc = epc + 4 + (insn.i_format.simmediate << 2);
158 		else
159 			epc += 8;
160 		nextpc = epc;
161 		break;
162 
163 	case blez_op:	/* POP06 */
164 #ifndef CONFIG_CPU_MIPSR6
165 	case blezl_op:	/* removed in R6 */
166 #endif
167 		if (insn.i_format.rt != 0)
168 			goto compact_branch;
169 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
170 			epc = epc + 4 + (insn.i_format.simmediate << 2);
171 		else
172 			epc += 8;
173 		nextpc = epc;
174 		break;
175 
176 	case bgtz_op:	/* POP07 */
177 #ifndef CONFIG_CPU_MIPSR6
178 	case bgtzl_op:	/* removed in R6 */
179 #endif
180 		if (insn.i_format.rt != 0)
181 			goto compact_branch;
182 		if ((long)arch->gprs[insn.i_format.rs] > 0)
183 			epc = epc + 4 + (insn.i_format.simmediate << 2);
184 		else
185 			epc += 8;
186 		nextpc = epc;
187 		break;
188 
189 		/* And now the FPA/cp1 branch instructions. */
190 	case cop1_op:
191 		kvm_err("%s: unsupported cop1_op\n", __func__);
192 		break;
193 
194 #ifdef CONFIG_CPU_MIPSR6
195 	/* R6 added the following compact branches with forbidden slots */
196 	case blezl_op:	/* POP26 */
197 	case bgtzl_op:	/* POP27 */
198 		/* only rt == 0 isn't compact branch */
199 		if (insn.i_format.rt != 0)
200 			goto compact_branch;
201 		break;
202 	case pop10_op:
203 	case pop30_op:
204 		/* only rs == rt == 0 is reserved, rest are compact branches */
205 		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
206 			goto compact_branch;
207 		break;
208 	case pop66_op:
209 	case pop76_op:
210 		/* only rs == 0 isn't compact branch */
211 		if (insn.i_format.rs != 0)
212 			goto compact_branch;
213 		break;
214 compact_branch:
215 		/*
216 		 * If we've hit an exception on the forbidden slot, then
217 		 * the branch must not have been taken.
218 		 */
219 		epc += 8;
220 		nextpc = epc;
221 		break;
222 #else
223 compact_branch:
224 		/* Compact branches not supported before R6 */
225 		break;
226 #endif
227 	}
228 
229 	return nextpc;
230 
231 unaligned:
232 	kvm_err("%s: unaligned epc\n", __func__);
233 	return nextpc;
234 
235 sigill:
236 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
237 	return nextpc;
238 }
239 
240 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
241 {
242 	unsigned long branch_pc;
243 	enum emulation_result er = EMULATE_DONE;
244 
245 	if (cause & CAUSEF_BD) {
246 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
247 		if (branch_pc == KVM_INVALID_INST) {
248 			er = EMULATE_FAIL;
249 		} else {
250 			vcpu->arch.pc = branch_pc;
251 			kvm_debug("BD update_pc(): New PC: %#lx\n",
252 				  vcpu->arch.pc);
253 		}
254 	} else
255 		vcpu->arch.pc += 4;
256 
257 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258 
259 	return er;
260 }
261 
262 /**
263  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
264  * @vcpu:	Virtual CPU.
265  *
266  * Returns:	1 if the CP0_Count timer is disabled by either the guest
267  *		CP0_Cause.DC bit or the count_ctl.DC bit.
268  *		0 otherwise (in which case CP0_Count timer is running).
269  */
270 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
271 {
272 	struct mips_coproc *cop0 = vcpu->arch.cop0;
273 
274 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
275 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
276 }
277 
278 /**
279  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
280  *
281  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
282  *
283  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
284  */
285 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
286 {
287 	s64 now_ns, periods;
288 	u64 delta;
289 
290 	now_ns = ktime_to_ns(now);
291 	delta = now_ns + vcpu->arch.count_dyn_bias;
292 
293 	if (delta >= vcpu->arch.count_period) {
294 		/* If delta is out of safe range the bias needs adjusting */
295 		periods = div64_s64(now_ns, vcpu->arch.count_period);
296 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
297 		/* Recalculate delta with new bias */
298 		delta = now_ns + vcpu->arch.count_dyn_bias;
299 	}
300 
301 	/*
302 	 * We've ensured that:
303 	 *   delta < count_period
304 	 *
305 	 * Therefore the intermediate delta*count_hz will never overflow since
306 	 * at the boundary condition:
307 	 *   delta = count_period
308 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
309 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
310 	 */
311 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
312 }
313 
314 /**
315  * kvm_mips_count_time() - Get effective current time.
316  * @vcpu:	Virtual CPU.
317  *
318  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
319  * except when the master disable bit is set in count_ctl, in which case it is
320  * count_resume, i.e. the time that the count was disabled.
321  *
322  * Returns:	Effective monotonic ktime for CP0_Count.
323  */
324 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
325 {
326 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
327 		return vcpu->arch.count_resume;
328 
329 	return ktime_get();
330 }
331 
332 /**
333  * kvm_mips_read_count_running() - Read the current count value as if running.
334  * @vcpu:	Virtual CPU.
335  * @now:	Kernel time to read CP0_Count at.
336  *
337  * Returns the current guest CP0_Count register at time @now and handles if the
338  * timer interrupt is pending and hasn't been handled yet.
339  *
340  * Returns:	The current value of the guest CP0_Count register.
341  */
342 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
343 {
344 	struct mips_coproc *cop0 = vcpu->arch.cop0;
345 	ktime_t expires, threshold;
346 	u32 count, compare;
347 	int running;
348 
349 	/* Calculate the biased and scaled guest CP0_Count */
350 	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
351 	compare = kvm_read_c0_guest_compare(cop0);
352 
353 	/*
354 	 * Find whether CP0_Count has reached the closest timer interrupt. If
355 	 * not, we shouldn't inject it.
356 	 */
357 	if ((s32)(count - compare) < 0)
358 		return count;
359 
360 	/*
361 	 * The CP0_Count we're going to return has already reached the closest
362 	 * timer interrupt. Quickly check if it really is a new interrupt by
363 	 * looking at whether the interval until the hrtimer expiry time is
364 	 * less than 1/4 of the timer period.
365 	 */
366 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
367 	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
368 	if (ktime_before(expires, threshold)) {
369 		/*
370 		 * Cancel it while we handle it so there's no chance of
371 		 * interference with the timeout handler.
372 		 */
373 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
374 
375 		/* Nothing should be waiting on the timeout */
376 		kvm_mips_callbacks->queue_timer_int(vcpu);
377 
378 		/*
379 		 * Restart the timer if it was running based on the expiry time
380 		 * we read, so that we don't push it back 2 periods.
381 		 */
382 		if (running) {
383 			expires = ktime_add_ns(expires,
384 					       vcpu->arch.count_period);
385 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
386 				      HRTIMER_MODE_ABS);
387 		}
388 	}
389 
390 	return count;
391 }
392 
393 /**
394  * kvm_mips_read_count() - Read the current count value.
395  * @vcpu:	Virtual CPU.
396  *
397  * Read the current guest CP0_Count value, taking into account whether the timer
398  * is stopped.
399  *
400  * Returns:	The current guest CP0_Count value.
401  */
402 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
403 {
404 	struct mips_coproc *cop0 = vcpu->arch.cop0;
405 
406 	/* If count disabled just read static copy of count */
407 	if (kvm_mips_count_disabled(vcpu))
408 		return kvm_read_c0_guest_count(cop0);
409 
410 	return kvm_mips_read_count_running(vcpu, ktime_get());
411 }
412 
413 /**
414  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
415  * @vcpu:	Virtual CPU.
416  * @count:	Output pointer for CP0_Count value at point of freeze.
417  *
418  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
419  * at the point it was frozen. It is guaranteed that any pending interrupts at
420  * the point it was frozen are handled, and none after that point.
421  *
422  * This is useful where the time/CP0_Count is needed in the calculation of the
423  * new parameters.
424  *
425  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
426  *
427  * Returns:	The ktime at the point of freeze.
428  */
429 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
430 {
431 	ktime_t now;
432 
433 	/* stop hrtimer before finding time */
434 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
435 	now = ktime_get();
436 
437 	/* find count at this point and handle pending hrtimer */
438 	*count = kvm_mips_read_count_running(vcpu, now);
439 
440 	return now;
441 }
442 
443 /**
444  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
445  * @vcpu:	Virtual CPU.
446  * @now:	ktime at point of resume.
447  * @count:	CP0_Count at point of resume.
448  *
449  * Resumes the timer and updates the timer expiry based on @now and @count.
450  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
451  * parameters need to be changed.
452  *
453  * It is guaranteed that a timer interrupt immediately after resume will be
454  * handled, but not if CP_Compare is exactly at @count. That case is already
455  * handled by kvm_mips_freeze_timer().
456  *
457  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
458  */
459 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
460 				    ktime_t now, u32 count)
461 {
462 	struct mips_coproc *cop0 = vcpu->arch.cop0;
463 	u32 compare;
464 	u64 delta;
465 	ktime_t expire;
466 
467 	/* Calculate timeout (wrap 0 to 2^32) */
468 	compare = kvm_read_c0_guest_compare(cop0);
469 	delta = (u64)(u32)(compare - count - 1) + 1;
470 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
471 	expire = ktime_add_ns(now, delta);
472 
473 	/* Update hrtimer to use new timeout */
474 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
475 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
476 }
477 
478 /**
479  * kvm_mips_write_count() - Modify the count and update timer.
480  * @vcpu:	Virtual CPU.
481  * @count:	Guest CP0_Count value to set.
482  *
483  * Sets the CP0_Count value and updates the timer accordingly.
484  */
485 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
486 {
487 	struct mips_coproc *cop0 = vcpu->arch.cop0;
488 	ktime_t now;
489 
490 	/* Calculate bias */
491 	now = kvm_mips_count_time(vcpu);
492 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
493 
494 	if (kvm_mips_count_disabled(vcpu))
495 		/* The timer's disabled, adjust the static count */
496 		kvm_write_c0_guest_count(cop0, count);
497 	else
498 		/* Update timeout */
499 		kvm_mips_resume_hrtimer(vcpu, now, count);
500 }
501 
502 /**
503  * kvm_mips_init_count() - Initialise timer.
504  * @vcpu:	Virtual CPU.
505  *
506  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
507  * it going if it's enabled.
508  */
509 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
510 {
511 	/* 100 MHz */
512 	vcpu->arch.count_hz = 100*1000*1000;
513 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
514 					  vcpu->arch.count_hz);
515 	vcpu->arch.count_dyn_bias = 0;
516 
517 	/* Starting at 0 */
518 	kvm_mips_write_count(vcpu, 0);
519 }
520 
521 /**
522  * kvm_mips_set_count_hz() - Update the frequency of the timer.
523  * @vcpu:	Virtual CPU.
524  * @count_hz:	Frequency of CP0_Count timer in Hz.
525  *
526  * Change the frequency of the CP0_Count timer. This is done atomically so that
527  * CP0_Count is continuous and no timer interrupt is lost.
528  *
529  * Returns:	-EINVAL if @count_hz is out of range.
530  *		0 on success.
531  */
532 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
533 {
534 	struct mips_coproc *cop0 = vcpu->arch.cop0;
535 	int dc;
536 	ktime_t now;
537 	u32 count;
538 
539 	/* ensure the frequency is in a sensible range... */
540 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
541 		return -EINVAL;
542 	/* ... and has actually changed */
543 	if (vcpu->arch.count_hz == count_hz)
544 		return 0;
545 
546 	/* Safely freeze timer so we can keep it continuous */
547 	dc = kvm_mips_count_disabled(vcpu);
548 	if (dc) {
549 		now = kvm_mips_count_time(vcpu);
550 		count = kvm_read_c0_guest_count(cop0);
551 	} else {
552 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
553 	}
554 
555 	/* Update the frequency */
556 	vcpu->arch.count_hz = count_hz;
557 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
558 	vcpu->arch.count_dyn_bias = 0;
559 
560 	/* Calculate adjusted bias so dynamic count is unchanged */
561 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
562 
563 	/* Update and resume hrtimer */
564 	if (!dc)
565 		kvm_mips_resume_hrtimer(vcpu, now, count);
566 	return 0;
567 }
568 
569 /**
570  * kvm_mips_write_compare() - Modify compare and update timer.
571  * @vcpu:	Virtual CPU.
572  * @compare:	New CP0_Compare value.
573  * @ack:	Whether to acknowledge timer interrupt.
574  *
575  * Update CP0_Compare to a new value and update the timeout.
576  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
577  * any pending timer interrupt is preserved.
578  */
579 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
580 {
581 	struct mips_coproc *cop0 = vcpu->arch.cop0;
582 	int dc;
583 	u32 old_compare = kvm_read_c0_guest_compare(cop0);
584 	ktime_t now;
585 	u32 count;
586 
587 	/* if unchanged, must just be an ack */
588 	if (old_compare == compare) {
589 		if (!ack)
590 			return;
591 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
592 		kvm_write_c0_guest_compare(cop0, compare);
593 		return;
594 	}
595 
596 	/* freeze_hrtimer() takes care of timer interrupts <= count */
597 	dc = kvm_mips_count_disabled(vcpu);
598 	if (!dc)
599 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
600 
601 	if (ack)
602 		kvm_mips_callbacks->dequeue_timer_int(vcpu);
603 
604 	kvm_write_c0_guest_compare(cop0, compare);
605 
606 	/* resume_hrtimer() takes care of timer interrupts > count */
607 	if (!dc)
608 		kvm_mips_resume_hrtimer(vcpu, now, count);
609 }
610 
611 /**
612  * kvm_mips_count_disable() - Disable count.
613  * @vcpu:	Virtual CPU.
614  *
615  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
616  * time will be handled but not after.
617  *
618  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
619  * count_ctl.DC has been set (count disabled).
620  *
621  * Returns:	The time that the timer was stopped.
622  */
623 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
624 {
625 	struct mips_coproc *cop0 = vcpu->arch.cop0;
626 	u32 count;
627 	ktime_t now;
628 
629 	/* Stop hrtimer */
630 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
631 
632 	/* Set the static count from the dynamic count, handling pending TI */
633 	now = ktime_get();
634 	count = kvm_mips_read_count_running(vcpu, now);
635 	kvm_write_c0_guest_count(cop0, count);
636 
637 	return now;
638 }
639 
640 /**
641  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
642  * @vcpu:	Virtual CPU.
643  *
644  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
645  * before the final stop time will be handled if the timer isn't disabled by
646  * count_ctl.DC, but not after.
647  *
648  * Assumes CP0_Cause.DC is clear (count enabled).
649  */
650 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
651 {
652 	struct mips_coproc *cop0 = vcpu->arch.cop0;
653 
654 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
655 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
656 		kvm_mips_count_disable(vcpu);
657 }
658 
659 /**
660  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
661  * @vcpu:	Virtual CPU.
662  *
663  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
664  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
665  * potentially before even returning, so the caller should be careful with
666  * ordering of CP0_Cause modifications so as not to lose it.
667  *
668  * Assumes CP0_Cause.DC is set (count disabled).
669  */
670 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
671 {
672 	struct mips_coproc *cop0 = vcpu->arch.cop0;
673 	u32 count;
674 
675 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
676 
677 	/*
678 	 * Set the dynamic count to match the static count.
679 	 * This starts the hrtimer if count_ctl.DC allows it.
680 	 * Otherwise it conveniently updates the biases.
681 	 */
682 	count = kvm_read_c0_guest_count(cop0);
683 	kvm_mips_write_count(vcpu, count);
684 }
685 
686 /**
687  * kvm_mips_set_count_ctl() - Update the count control KVM register.
688  * @vcpu:	Virtual CPU.
689  * @count_ctl:	Count control register new value.
690  *
691  * Set the count control KVM register. The timer is updated accordingly.
692  *
693  * Returns:	-EINVAL if reserved bits are set.
694  *		0 on success.
695  */
696 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
697 {
698 	struct mips_coproc *cop0 = vcpu->arch.cop0;
699 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
700 	s64 delta;
701 	ktime_t expire, now;
702 	u32 count, compare;
703 
704 	/* Only allow defined bits to be changed */
705 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
706 		return -EINVAL;
707 
708 	/* Apply new value */
709 	vcpu->arch.count_ctl = count_ctl;
710 
711 	/* Master CP0_Count disable */
712 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
713 		/* Is CP0_Cause.DC already disabling CP0_Count? */
714 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
715 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
716 				/* Just record the current time */
717 				vcpu->arch.count_resume = ktime_get();
718 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
719 			/* disable timer and record current time */
720 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
721 		} else {
722 			/*
723 			 * Calculate timeout relative to static count at resume
724 			 * time (wrap 0 to 2^32).
725 			 */
726 			count = kvm_read_c0_guest_count(cop0);
727 			compare = kvm_read_c0_guest_compare(cop0);
728 			delta = (u64)(u32)(compare - count - 1) + 1;
729 			delta = div_u64(delta * NSEC_PER_SEC,
730 					vcpu->arch.count_hz);
731 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
732 
733 			/* Handle pending interrupt */
734 			now = ktime_get();
735 			if (ktime_compare(now, expire) >= 0)
736 				/* Nothing should be waiting on the timeout */
737 				kvm_mips_callbacks->queue_timer_int(vcpu);
738 
739 			/* Resume hrtimer without changing bias */
740 			count = kvm_mips_read_count_running(vcpu, now);
741 			kvm_mips_resume_hrtimer(vcpu, now, count);
742 		}
743 	}
744 
745 	return 0;
746 }
747 
748 /**
749  * kvm_mips_set_count_resume() - Update the count resume KVM register.
750  * @vcpu:		Virtual CPU.
751  * @count_resume:	Count resume register new value.
752  *
753  * Set the count resume KVM register.
754  *
755  * Returns:	-EINVAL if out of valid range (0..now).
756  *		0 on success.
757  */
758 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
759 {
760 	/*
761 	 * It doesn't make sense for the resume time to be in the future, as it
762 	 * would be possible for the next interrupt to be more than a full
763 	 * period in the future.
764 	 */
765 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
766 		return -EINVAL;
767 
768 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
769 	return 0;
770 }
771 
772 /**
773  * kvm_mips_count_timeout() - Push timer forward on timeout.
774  * @vcpu:	Virtual CPU.
775  *
776  * Handle an hrtimer event by push the hrtimer forward a period.
777  *
778  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
779  */
780 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
781 {
782 	/* Add the Count period to the current expiry time */
783 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
784 			       vcpu->arch.count_period);
785 	return HRTIMER_RESTART;
786 }
787 
788 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
789 {
790 	struct mips_coproc *cop0 = vcpu->arch.cop0;
791 	enum emulation_result er = EMULATE_DONE;
792 
793 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
794 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
795 			  kvm_read_c0_guest_epc(cop0));
796 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
797 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
798 
799 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
800 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
801 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
802 	} else {
803 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
804 			vcpu->arch.pc);
805 		er = EMULATE_FAIL;
806 	}
807 
808 	return er;
809 }
810 
811 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
812 {
813 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
814 		  vcpu->arch.pending_exceptions);
815 
816 	++vcpu->stat.wait_exits;
817 	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
818 	if (!vcpu->arch.pending_exceptions) {
819 		vcpu->arch.wait = 1;
820 		kvm_vcpu_block(vcpu);
821 
822 		/*
823 		 * We we are runnable, then definitely go off to user space to
824 		 * check if any I/O interrupts are pending.
825 		 */
826 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
827 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
828 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
829 		}
830 	}
831 
832 	return EMULATE_DONE;
833 }
834 
835 /*
836  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
837  * we can catch this, if things ever change
838  */
839 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
840 {
841 	struct mips_coproc *cop0 = vcpu->arch.cop0;
842 	unsigned long pc = vcpu->arch.pc;
843 
844 	kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
845 	return EMULATE_FAIL;
846 }
847 
848 /**
849  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
850  * @vcpu:	VCPU with changed mappings.
851  * @tlb:	TLB entry being removed.
852  *
853  * This is called to indicate a single change in guest MMU mappings, so that we
854  * can arrange TLB flushes on this and other CPUs.
855  */
856 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
857 					  struct kvm_mips_tlb *tlb)
858 {
859 	int cpu, i;
860 	bool user;
861 
862 	/* No need to flush for entries which are already invalid */
863 	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
864 		return;
865 	/* User address space doesn't need flushing for KSeg2/3 changes */
866 	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
867 
868 	preempt_disable();
869 
870 	/*
871 	 * Probe the shadow host TLB for the entry being overwritten, if one
872 	 * matches, invalidate it
873 	 */
874 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
875 
876 	/* Invalidate the whole ASID on other CPUs */
877 	cpu = smp_processor_id();
878 	for_each_possible_cpu(i) {
879 		if (i == cpu)
880 			continue;
881 		if (user)
882 			vcpu->arch.guest_user_asid[i] = 0;
883 		vcpu->arch.guest_kernel_asid[i] = 0;
884 	}
885 
886 	preempt_enable();
887 }
888 
889 /* Write Guest TLB Entry @ Index */
890 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
891 {
892 	struct mips_coproc *cop0 = vcpu->arch.cop0;
893 	int index = kvm_read_c0_guest_index(cop0);
894 	struct kvm_mips_tlb *tlb = NULL;
895 	unsigned long pc = vcpu->arch.pc;
896 
897 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
898 		kvm_debug("%s: illegal index: %d\n", __func__, index);
899 		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
900 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
901 			  kvm_read_c0_guest_entrylo0(cop0),
902 			  kvm_read_c0_guest_entrylo1(cop0),
903 			  kvm_read_c0_guest_pagemask(cop0));
904 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
905 	}
906 
907 	tlb = &vcpu->arch.guest_tlb[index];
908 
909 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
910 
911 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
912 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
913 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
914 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
915 
916 	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
917 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
918 		  kvm_read_c0_guest_entrylo0(cop0),
919 		  kvm_read_c0_guest_entrylo1(cop0),
920 		  kvm_read_c0_guest_pagemask(cop0));
921 
922 	return EMULATE_DONE;
923 }
924 
925 /* Write Guest TLB Entry @ Random Index */
926 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
927 {
928 	struct mips_coproc *cop0 = vcpu->arch.cop0;
929 	struct kvm_mips_tlb *tlb = NULL;
930 	unsigned long pc = vcpu->arch.pc;
931 	int index;
932 
933 	get_random_bytes(&index, sizeof(index));
934 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
935 
936 	tlb = &vcpu->arch.guest_tlb[index];
937 
938 	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
939 
940 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
941 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
942 	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
943 	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
944 
945 	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
946 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
947 		  kvm_read_c0_guest_entrylo0(cop0),
948 		  kvm_read_c0_guest_entrylo1(cop0));
949 
950 	return EMULATE_DONE;
951 }
952 
953 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
954 {
955 	struct mips_coproc *cop0 = vcpu->arch.cop0;
956 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
957 	unsigned long pc = vcpu->arch.pc;
958 	int index = -1;
959 
960 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
961 
962 	kvm_write_c0_guest_index(cop0, index);
963 
964 	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
965 		  index);
966 
967 	return EMULATE_DONE;
968 }
969 
970 /**
971  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
972  * @vcpu:	Virtual CPU.
973  *
974  * Finds the mask of bits which are writable in the guest's Config1 CP0
975  * register, by userland (currently read-only to the guest).
976  */
977 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
978 {
979 	unsigned int mask = 0;
980 
981 	/* Permit FPU to be present if FPU is supported */
982 	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
983 		mask |= MIPS_CONF1_FP;
984 
985 	return mask;
986 }
987 
988 /**
989  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
990  * @vcpu:	Virtual CPU.
991  *
992  * Finds the mask of bits which are writable in the guest's Config3 CP0
993  * register, by userland (currently read-only to the guest).
994  */
995 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
996 {
997 	/* Config4 and ULRI are optional */
998 	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
999 
1000 	/* Permit MSA to be present if MSA is supported */
1001 	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1002 		mask |= MIPS_CONF3_MSA;
1003 
1004 	return mask;
1005 }
1006 
1007 /**
1008  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1009  * @vcpu:	Virtual CPU.
1010  *
1011  * Finds the mask of bits which are writable in the guest's Config4 CP0
1012  * register, by userland (currently read-only to the guest).
1013  */
1014 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1015 {
1016 	/* Config5 is optional */
1017 	unsigned int mask = MIPS_CONF_M;
1018 
1019 	/* KScrExist */
1020 	mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
1021 
1022 	return mask;
1023 }
1024 
1025 /**
1026  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1027  * @vcpu:	Virtual CPU.
1028  *
1029  * Finds the mask of bits which are writable in the guest's Config5 CP0
1030  * register, by the guest itself.
1031  */
1032 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1033 {
1034 	unsigned int mask = 0;
1035 
1036 	/* Permit MSAEn changes if MSA supported and enabled */
1037 	if (kvm_mips_guest_has_msa(&vcpu->arch))
1038 		mask |= MIPS_CONF5_MSAEN;
1039 
1040 	/*
1041 	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1042 	 * feature exists according to FIR register.
1043 	 */
1044 	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1045 		if (cpu_has_fre)
1046 			mask |= MIPS_CONF5_FRE;
1047 		/* We don't support UFR or UFE */
1048 	}
1049 
1050 	return mask;
1051 }
1052 
1053 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1054 					   u32 *opc, u32 cause,
1055 					   struct kvm_run *run,
1056 					   struct kvm_vcpu *vcpu)
1057 {
1058 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1059 	enum emulation_result er = EMULATE_DONE;
1060 	u32 rt, rd, sel;
1061 	unsigned long curr_pc;
1062 	int cpu, i;
1063 
1064 	/*
1065 	 * Update PC and hold onto current PC in case there is
1066 	 * an error and we want to rollback the PC
1067 	 */
1068 	curr_pc = vcpu->arch.pc;
1069 	er = update_pc(vcpu, cause);
1070 	if (er == EMULATE_FAIL)
1071 		return er;
1072 
1073 	if (inst.co_format.co) {
1074 		switch (inst.co_format.func) {
1075 		case tlbr_op:	/*  Read indexed TLB entry  */
1076 			er = kvm_mips_emul_tlbr(vcpu);
1077 			break;
1078 		case tlbwi_op:	/*  Write indexed  */
1079 			er = kvm_mips_emul_tlbwi(vcpu);
1080 			break;
1081 		case tlbwr_op:	/*  Write random  */
1082 			er = kvm_mips_emul_tlbwr(vcpu);
1083 			break;
1084 		case tlbp_op:	/* TLB Probe */
1085 			er = kvm_mips_emul_tlbp(vcpu);
1086 			break;
1087 		case rfe_op:
1088 			kvm_err("!!!COP0_RFE!!!\n");
1089 			break;
1090 		case eret_op:
1091 			er = kvm_mips_emul_eret(vcpu);
1092 			goto dont_update_pc;
1093 		case wait_op:
1094 			er = kvm_mips_emul_wait(vcpu);
1095 			break;
1096 		}
1097 	} else {
1098 		rt = inst.c0r_format.rt;
1099 		rd = inst.c0r_format.rd;
1100 		sel = inst.c0r_format.sel;
1101 
1102 		switch (inst.c0r_format.rs) {
1103 		case mfc_op:
1104 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1105 			cop0->stat[rd][sel]++;
1106 #endif
1107 			/* Get reg */
1108 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1109 				vcpu->arch.gprs[rt] =
1110 				    (s32)kvm_mips_read_count(vcpu);
1111 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1112 				vcpu->arch.gprs[rt] = 0x0;
1113 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1114 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1115 #endif
1116 			} else {
1117 				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1118 
1119 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1120 				kvm_mips_trans_mfc0(inst, opc, vcpu);
1121 #endif
1122 			}
1123 
1124 			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1125 				      KVM_TRACE_COP0(rd, sel),
1126 				      vcpu->arch.gprs[rt]);
1127 			break;
1128 
1129 		case dmfc_op:
1130 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1131 
1132 			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1133 				      KVM_TRACE_COP0(rd, sel),
1134 				      vcpu->arch.gprs[rt]);
1135 			break;
1136 
1137 		case mtc_op:
1138 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1139 			cop0->stat[rd][sel]++;
1140 #endif
1141 			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1142 				      KVM_TRACE_COP0(rd, sel),
1143 				      vcpu->arch.gprs[rt]);
1144 
1145 			if ((rd == MIPS_CP0_TLB_INDEX)
1146 			    && (vcpu->arch.gprs[rt] >=
1147 				KVM_MIPS_GUEST_TLB_SIZE)) {
1148 				kvm_err("Invalid TLB Index: %ld",
1149 					vcpu->arch.gprs[rt]);
1150 				er = EMULATE_FAIL;
1151 				break;
1152 			}
1153 #define C0_EBASE_CORE_MASK 0xff
1154 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1155 				/* Preserve CORE number */
1156 				kvm_change_c0_guest_ebase(cop0,
1157 							  ~(C0_EBASE_CORE_MASK),
1158 							  vcpu->arch.gprs[rt]);
1159 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1160 					kvm_read_c0_guest_ebase(cop0));
1161 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1162 				u32 nasid =
1163 					vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1164 				if (((kvm_read_c0_guest_entryhi(cop0) &
1165 				      KVM_ENTRYHI_ASID) != nasid)) {
1166 					trace_kvm_asid_change(vcpu,
1167 						kvm_read_c0_guest_entryhi(cop0)
1168 							& KVM_ENTRYHI_ASID,
1169 						nasid);
1170 
1171 					/*
1172 					 * Regenerate/invalidate kernel MMU
1173 					 * context.
1174 					 * The user MMU context will be
1175 					 * regenerated lazily on re-entry to
1176 					 * guest user if the guest ASID actually
1177 					 * changes.
1178 					 */
1179 					preempt_disable();
1180 					cpu = smp_processor_id();
1181 					kvm_get_new_mmu_context(&vcpu->arch.guest_kernel_mm,
1182 								cpu, vcpu);
1183 					vcpu->arch.guest_kernel_asid[cpu] =
1184 						vcpu->arch.guest_kernel_mm.context.asid[cpu];
1185 					for_each_possible_cpu(i)
1186 						if (i != cpu)
1187 							vcpu->arch.guest_kernel_asid[i] = 0;
1188 					preempt_enable();
1189 				}
1190 				kvm_write_c0_guest_entryhi(cop0,
1191 							   vcpu->arch.gprs[rt]);
1192 			}
1193 			/* Are we writing to COUNT */
1194 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1195 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1196 				goto done;
1197 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1198 				/* If we are writing to COMPARE */
1199 				/* Clear pending timer interrupt, if any */
1200 				kvm_mips_write_compare(vcpu,
1201 						       vcpu->arch.gprs[rt],
1202 						       true);
1203 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1204 				unsigned int old_val, val, change;
1205 
1206 				old_val = kvm_read_c0_guest_status(cop0);
1207 				val = vcpu->arch.gprs[rt];
1208 				change = val ^ old_val;
1209 
1210 				/* Make sure that the NMI bit is never set */
1211 				val &= ~ST0_NMI;
1212 
1213 				/*
1214 				 * Don't allow CU1 or FR to be set unless FPU
1215 				 * capability enabled and exists in guest
1216 				 * configuration.
1217 				 */
1218 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1219 					val &= ~(ST0_CU1 | ST0_FR);
1220 
1221 				/*
1222 				 * Also don't allow FR to be set if host doesn't
1223 				 * support it.
1224 				 */
1225 				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1226 					val &= ~ST0_FR;
1227 
1228 
1229 				/* Handle changes in FPU mode */
1230 				preempt_disable();
1231 
1232 				/*
1233 				 * FPU and Vector register state is made
1234 				 * UNPREDICTABLE by a change of FR, so don't
1235 				 * even bother saving it.
1236 				 */
1237 				if (change & ST0_FR)
1238 					kvm_drop_fpu(vcpu);
1239 
1240 				/*
1241 				 * If MSA state is already live, it is undefined
1242 				 * how it interacts with FR=0 FPU state, and we
1243 				 * don't want to hit reserved instruction
1244 				 * exceptions trying to save the MSA state later
1245 				 * when CU=1 && FR=1, so play it safe and save
1246 				 * it first.
1247 				 */
1248 				if (change & ST0_CU1 && !(val & ST0_FR) &&
1249 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1250 					kvm_lose_fpu(vcpu);
1251 
1252 				/*
1253 				 * Propagate CU1 (FPU enable) changes
1254 				 * immediately if the FPU context is already
1255 				 * loaded. When disabling we leave the context
1256 				 * loaded so it can be quickly enabled again in
1257 				 * the near future.
1258 				 */
1259 				if (change & ST0_CU1 &&
1260 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1261 					change_c0_status(ST0_CU1, val);
1262 
1263 				preempt_enable();
1264 
1265 				kvm_write_c0_guest_status(cop0, val);
1266 
1267 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1268 				/*
1269 				 * If FPU present, we need CU1/FR bits to take
1270 				 * effect fairly soon.
1271 				 */
1272 				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1273 					kvm_mips_trans_mtc0(inst, opc, vcpu);
1274 #endif
1275 			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1276 				unsigned int old_val, val, change, wrmask;
1277 
1278 				old_val = kvm_read_c0_guest_config5(cop0);
1279 				val = vcpu->arch.gprs[rt];
1280 
1281 				/* Only a few bits are writable in Config5 */
1282 				wrmask = kvm_mips_config5_wrmask(vcpu);
1283 				change = (val ^ old_val) & wrmask;
1284 				val = old_val ^ change;
1285 
1286 
1287 				/* Handle changes in FPU/MSA modes */
1288 				preempt_disable();
1289 
1290 				/*
1291 				 * Propagate FRE changes immediately if the FPU
1292 				 * context is already loaded.
1293 				 */
1294 				if (change & MIPS_CONF5_FRE &&
1295 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1296 					change_c0_config5(MIPS_CONF5_FRE, val);
1297 
1298 				/*
1299 				 * Propagate MSAEn changes immediately if the
1300 				 * MSA context is already loaded. When disabling
1301 				 * we leave the context loaded so it can be
1302 				 * quickly enabled again in the near future.
1303 				 */
1304 				if (change & MIPS_CONF5_MSAEN &&
1305 				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1306 					change_c0_config5(MIPS_CONF5_MSAEN,
1307 							  val);
1308 
1309 				preempt_enable();
1310 
1311 				kvm_write_c0_guest_config5(cop0, val);
1312 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1313 				u32 old_cause, new_cause;
1314 
1315 				old_cause = kvm_read_c0_guest_cause(cop0);
1316 				new_cause = vcpu->arch.gprs[rt];
1317 				/* Update R/W bits */
1318 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1319 							  new_cause);
1320 				/* DC bit enabling/disabling timer? */
1321 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1322 					if (new_cause & CAUSEF_DC)
1323 						kvm_mips_count_disable_cause(vcpu);
1324 					else
1325 						kvm_mips_count_enable_cause(vcpu);
1326 				}
1327 			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1328 				u32 mask = MIPS_HWRENA_CPUNUM |
1329 					   MIPS_HWRENA_SYNCISTEP |
1330 					   MIPS_HWRENA_CC |
1331 					   MIPS_HWRENA_CCRES;
1332 
1333 				if (kvm_read_c0_guest_config3(cop0) &
1334 				    MIPS_CONF3_ULRI)
1335 					mask |= MIPS_HWRENA_ULR;
1336 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1337 			} else {
1338 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1339 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1340 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1341 #endif
1342 			}
1343 			break;
1344 
1345 		case dmtc_op:
1346 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1347 				vcpu->arch.pc, rt, rd, sel);
1348 			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1349 				      KVM_TRACE_COP0(rd, sel),
1350 				      vcpu->arch.gprs[rt]);
1351 			er = EMULATE_FAIL;
1352 			break;
1353 
1354 		case mfmc0_op:
1355 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1356 			cop0->stat[MIPS_CP0_STATUS][0]++;
1357 #endif
1358 			if (rt != 0)
1359 				vcpu->arch.gprs[rt] =
1360 				    kvm_read_c0_guest_status(cop0);
1361 			/* EI */
1362 			if (inst.mfmc0_format.sc) {
1363 				kvm_debug("[%#lx] mfmc0_op: EI\n",
1364 					  vcpu->arch.pc);
1365 				kvm_set_c0_guest_status(cop0, ST0_IE);
1366 			} else {
1367 				kvm_debug("[%#lx] mfmc0_op: DI\n",
1368 					  vcpu->arch.pc);
1369 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1370 			}
1371 
1372 			break;
1373 
1374 		case wrpgpr_op:
1375 			{
1376 				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1377 				u32 pss =
1378 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1379 				/*
1380 				 * We don't support any shadow register sets, so
1381 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1382 				 */
1383 				if (css || pss) {
1384 					er = EMULATE_FAIL;
1385 					break;
1386 				}
1387 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1388 					  vcpu->arch.gprs[rt]);
1389 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1390 			}
1391 			break;
1392 		default:
1393 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1394 				vcpu->arch.pc, inst.c0r_format.rs);
1395 			er = EMULATE_FAIL;
1396 			break;
1397 		}
1398 	}
1399 
1400 done:
1401 	/* Rollback PC only if emulation was unsuccessful */
1402 	if (er == EMULATE_FAIL)
1403 		vcpu->arch.pc = curr_pc;
1404 
1405 dont_update_pc:
1406 	/*
1407 	 * This is for special instructions whose emulation
1408 	 * updates the PC, so do not overwrite the PC under
1409 	 * any circumstances
1410 	 */
1411 
1412 	return er;
1413 }
1414 
1415 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1416 					     u32 cause,
1417 					     struct kvm_run *run,
1418 					     struct kvm_vcpu *vcpu)
1419 {
1420 	enum emulation_result er = EMULATE_DO_MMIO;
1421 	u32 rt;
1422 	u32 bytes;
1423 	void *data = run->mmio.data;
1424 	unsigned long curr_pc;
1425 
1426 	/*
1427 	 * Update PC and hold onto current PC in case there is
1428 	 * an error and we want to rollback the PC
1429 	 */
1430 	curr_pc = vcpu->arch.pc;
1431 	er = update_pc(vcpu, cause);
1432 	if (er == EMULATE_FAIL)
1433 		return er;
1434 
1435 	rt = inst.i_format.rt;
1436 
1437 	switch (inst.i_format.opcode) {
1438 	case sb_op:
1439 		bytes = 1;
1440 		if (bytes > sizeof(run->mmio.data)) {
1441 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1442 			       run->mmio.len);
1443 		}
1444 		run->mmio.phys_addr =
1445 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1446 						   host_cp0_badvaddr);
1447 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1448 			er = EMULATE_FAIL;
1449 			break;
1450 		}
1451 		run->mmio.len = bytes;
1452 		run->mmio.is_write = 1;
1453 		vcpu->mmio_needed = 1;
1454 		vcpu->mmio_is_write = 1;
1455 		*(u8 *) data = vcpu->arch.gprs[rt];
1456 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1457 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1458 			  *(u8 *) data);
1459 
1460 		break;
1461 
1462 	case sw_op:
1463 		bytes = 4;
1464 		if (bytes > sizeof(run->mmio.data)) {
1465 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1466 			       run->mmio.len);
1467 		}
1468 		run->mmio.phys_addr =
1469 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1470 						   host_cp0_badvaddr);
1471 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1472 			er = EMULATE_FAIL;
1473 			break;
1474 		}
1475 
1476 		run->mmio.len = bytes;
1477 		run->mmio.is_write = 1;
1478 		vcpu->mmio_needed = 1;
1479 		vcpu->mmio_is_write = 1;
1480 		*(u32 *) data = vcpu->arch.gprs[rt];
1481 
1482 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1483 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1484 			  vcpu->arch.gprs[rt], *(u32 *) data);
1485 		break;
1486 
1487 	case sh_op:
1488 		bytes = 2;
1489 		if (bytes > sizeof(run->mmio.data)) {
1490 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1491 			       run->mmio.len);
1492 		}
1493 		run->mmio.phys_addr =
1494 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1495 						   host_cp0_badvaddr);
1496 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1497 			er = EMULATE_FAIL;
1498 			break;
1499 		}
1500 
1501 		run->mmio.len = bytes;
1502 		run->mmio.is_write = 1;
1503 		vcpu->mmio_needed = 1;
1504 		vcpu->mmio_is_write = 1;
1505 		*(u16 *) data = vcpu->arch.gprs[rt];
1506 
1507 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1508 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1509 			  vcpu->arch.gprs[rt], *(u32 *) data);
1510 		break;
1511 
1512 	default:
1513 		kvm_err("Store not yet supported (inst=0x%08x)\n",
1514 			inst.word);
1515 		er = EMULATE_FAIL;
1516 		break;
1517 	}
1518 
1519 	/* Rollback PC if emulation was unsuccessful */
1520 	if (er == EMULATE_FAIL)
1521 		vcpu->arch.pc = curr_pc;
1522 
1523 	return er;
1524 }
1525 
1526 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1527 					    u32 cause, struct kvm_run *run,
1528 					    struct kvm_vcpu *vcpu)
1529 {
1530 	enum emulation_result er = EMULATE_DO_MMIO;
1531 	u32 op, rt;
1532 	u32 bytes;
1533 
1534 	rt = inst.i_format.rt;
1535 	op = inst.i_format.opcode;
1536 
1537 	vcpu->arch.pending_load_cause = cause;
1538 	vcpu->arch.io_gpr = rt;
1539 
1540 	switch (op) {
1541 	case lw_op:
1542 		bytes = 4;
1543 		if (bytes > sizeof(run->mmio.data)) {
1544 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1545 			       run->mmio.len);
1546 			er = EMULATE_FAIL;
1547 			break;
1548 		}
1549 		run->mmio.phys_addr =
1550 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1551 						   host_cp0_badvaddr);
1552 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1553 			er = EMULATE_FAIL;
1554 			break;
1555 		}
1556 
1557 		run->mmio.len = bytes;
1558 		run->mmio.is_write = 0;
1559 		vcpu->mmio_needed = 1;
1560 		vcpu->mmio_is_write = 0;
1561 		break;
1562 
1563 	case lh_op:
1564 	case lhu_op:
1565 		bytes = 2;
1566 		if (bytes > sizeof(run->mmio.data)) {
1567 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1568 			       run->mmio.len);
1569 			er = EMULATE_FAIL;
1570 			break;
1571 		}
1572 		run->mmio.phys_addr =
1573 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1574 						   host_cp0_badvaddr);
1575 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1576 			er = EMULATE_FAIL;
1577 			break;
1578 		}
1579 
1580 		run->mmio.len = bytes;
1581 		run->mmio.is_write = 0;
1582 		vcpu->mmio_needed = 1;
1583 		vcpu->mmio_is_write = 0;
1584 
1585 		if (op == lh_op)
1586 			vcpu->mmio_needed = 2;
1587 		else
1588 			vcpu->mmio_needed = 1;
1589 
1590 		break;
1591 
1592 	case lbu_op:
1593 	case lb_op:
1594 		bytes = 1;
1595 		if (bytes > sizeof(run->mmio.data)) {
1596 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1597 			       run->mmio.len);
1598 			er = EMULATE_FAIL;
1599 			break;
1600 		}
1601 		run->mmio.phys_addr =
1602 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1603 						   host_cp0_badvaddr);
1604 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1605 			er = EMULATE_FAIL;
1606 			break;
1607 		}
1608 
1609 		run->mmio.len = bytes;
1610 		run->mmio.is_write = 0;
1611 		vcpu->mmio_is_write = 0;
1612 
1613 		if (op == lb_op)
1614 			vcpu->mmio_needed = 2;
1615 		else
1616 			vcpu->mmio_needed = 1;
1617 
1618 		break;
1619 
1620 	default:
1621 		kvm_err("Load not yet supported (inst=0x%08x)\n",
1622 			inst.word);
1623 		er = EMULATE_FAIL;
1624 		break;
1625 	}
1626 
1627 	return er;
1628 }
1629 
1630 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1631 					     u32 *opc, u32 cause,
1632 					     struct kvm_run *run,
1633 					     struct kvm_vcpu *vcpu)
1634 {
1635 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1636 	enum emulation_result er = EMULATE_DONE;
1637 	u32 cache, op_inst, op, base;
1638 	s16 offset;
1639 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1640 	unsigned long va;
1641 	unsigned long curr_pc;
1642 
1643 	/*
1644 	 * Update PC and hold onto current PC in case there is
1645 	 * an error and we want to rollback the PC
1646 	 */
1647 	curr_pc = vcpu->arch.pc;
1648 	er = update_pc(vcpu, cause);
1649 	if (er == EMULATE_FAIL)
1650 		return er;
1651 
1652 	base = inst.i_format.rs;
1653 	op_inst = inst.i_format.rt;
1654 	if (cpu_has_mips_r6)
1655 		offset = inst.spec3_format.simmediate;
1656 	else
1657 		offset = inst.i_format.simmediate;
1658 	cache = op_inst & CacheOp_Cache;
1659 	op = op_inst & CacheOp_Op;
1660 
1661 	va = arch->gprs[base] + offset;
1662 
1663 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1664 		  cache, op, base, arch->gprs[base], offset);
1665 
1666 	/*
1667 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1668 	 * invalidate the caches entirely by stepping through all the
1669 	 * ways/indexes
1670 	 */
1671 	if (op == Index_Writeback_Inv) {
1672 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1673 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1674 			  arch->gprs[base], offset);
1675 
1676 		if (cache == Cache_D)
1677 			r4k_blast_dcache();
1678 		else if (cache == Cache_I)
1679 			r4k_blast_icache();
1680 		else {
1681 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1682 				__func__);
1683 			return EMULATE_FAIL;
1684 		}
1685 
1686 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1687 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1688 #endif
1689 		goto done;
1690 	}
1691 
1692 	preempt_disable();
1693 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1694 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1695 		    kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1696 			kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1697 				__func__, va, vcpu, read_c0_entryhi());
1698 			er = EMULATE_FAIL;
1699 			preempt_enable();
1700 			goto done;
1701 		}
1702 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1703 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1704 		int index;
1705 
1706 		/* If an entry already exists then skip */
1707 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1708 			goto skip_fault;
1709 
1710 		/*
1711 		 * If address not in the guest TLB, then give the guest a fault,
1712 		 * the resulting handler will do the right thing
1713 		 */
1714 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1715 						  (kvm_read_c0_guest_entryhi
1716 						   (cop0) & KVM_ENTRYHI_ASID));
1717 
1718 		if (index < 0) {
1719 			vcpu->arch.host_cp0_badvaddr = va;
1720 			vcpu->arch.pc = curr_pc;
1721 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1722 							 vcpu);
1723 			preempt_enable();
1724 			goto dont_update_pc;
1725 		} else {
1726 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1727 			/*
1728 			 * Check if the entry is valid, if not then setup a TLB
1729 			 * invalid exception to the guest
1730 			 */
1731 			if (!TLB_IS_VALID(*tlb, va)) {
1732 				vcpu->arch.host_cp0_badvaddr = va;
1733 				vcpu->arch.pc = curr_pc;
1734 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1735 								run, vcpu);
1736 				preempt_enable();
1737 				goto dont_update_pc;
1738 			}
1739 			/*
1740 			 * We fault an entry from the guest tlb to the
1741 			 * shadow host TLB
1742 			 */
1743 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
1744 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1745 					__func__, va, index, vcpu,
1746 					read_c0_entryhi());
1747 				er = EMULATE_FAIL;
1748 				preempt_enable();
1749 				goto done;
1750 			}
1751 		}
1752 	} else {
1753 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1754 			cache, op, base, arch->gprs[base], offset);
1755 		er = EMULATE_FAIL;
1756 		preempt_enable();
1757 		goto done;
1758 
1759 	}
1760 
1761 skip_fault:
1762 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1763 	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1764 		flush_dcache_line(va);
1765 
1766 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1767 		/*
1768 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1769 		 * but avoids a trap
1770 		 */
1771 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1772 #endif
1773 	} else if (op_inst == Hit_Invalidate_I) {
1774 		flush_dcache_line(va);
1775 		flush_icache_line(va);
1776 
1777 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1778 		/* Replace the CACHE instruction, with a SYNCI */
1779 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1780 #endif
1781 	} else {
1782 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1783 			cache, op, base, arch->gprs[base], offset);
1784 		er = EMULATE_FAIL;
1785 	}
1786 
1787 	preempt_enable();
1788 done:
1789 	/* Rollback PC only if emulation was unsuccessful */
1790 	if (er == EMULATE_FAIL)
1791 		vcpu->arch.pc = curr_pc;
1792 
1793 dont_update_pc:
1794 	/*
1795 	 * This is for exceptions whose emulation updates the PC, so do not
1796 	 * overwrite the PC under any circumstances
1797 	 */
1798 
1799 	return er;
1800 }
1801 
1802 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1803 					    struct kvm_run *run,
1804 					    struct kvm_vcpu *vcpu)
1805 {
1806 	union mips_instruction inst;
1807 	enum emulation_result er = EMULATE_DONE;
1808 
1809 	/* Fetch the instruction. */
1810 	if (cause & CAUSEF_BD)
1811 		opc += 1;
1812 
1813 	inst.word = kvm_get_inst(opc, vcpu);
1814 
1815 	switch (inst.r_format.opcode) {
1816 	case cop0_op:
1817 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1818 		break;
1819 	case sb_op:
1820 	case sh_op:
1821 	case sw_op:
1822 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1823 		break;
1824 	case lb_op:
1825 	case lbu_op:
1826 	case lhu_op:
1827 	case lh_op:
1828 	case lw_op:
1829 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1830 		break;
1831 
1832 #ifndef CONFIG_CPU_MIPSR6
1833 	case cache_op:
1834 		++vcpu->stat.cache_exits;
1835 		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1836 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1837 		break;
1838 #else
1839 	case spec3_op:
1840 		switch (inst.spec3_format.func) {
1841 		case cache6_op:
1842 			++vcpu->stat.cache_exits;
1843 			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1844 			er = kvm_mips_emulate_cache(inst, opc, cause, run,
1845 						    vcpu);
1846 			break;
1847 		default:
1848 			goto unknown;
1849 		};
1850 		break;
1851 unknown:
1852 #endif
1853 
1854 	default:
1855 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1856 			inst.word);
1857 		kvm_arch_vcpu_dump_regs(vcpu);
1858 		er = EMULATE_FAIL;
1859 		break;
1860 	}
1861 
1862 	return er;
1863 }
1864 
1865 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1866 					       u32 *opc,
1867 					       struct kvm_run *run,
1868 					       struct kvm_vcpu *vcpu)
1869 {
1870 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1871 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1872 	enum emulation_result er = EMULATE_DONE;
1873 
1874 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1875 		/* save old pc */
1876 		kvm_write_c0_guest_epc(cop0, arch->pc);
1877 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1878 
1879 		if (cause & CAUSEF_BD)
1880 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1881 		else
1882 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1883 
1884 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1885 
1886 		kvm_change_c0_guest_cause(cop0, (0xff),
1887 					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1888 
1889 		/* Set PC to the exception entry point */
1890 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1891 
1892 	} else {
1893 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1894 		er = EMULATE_FAIL;
1895 	}
1896 
1897 	return er;
1898 }
1899 
1900 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1901 						  u32 *opc,
1902 						  struct kvm_run *run,
1903 						  struct kvm_vcpu *vcpu)
1904 {
1905 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1906 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1907 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1908 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1909 
1910 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1911 		/* save old pc */
1912 		kvm_write_c0_guest_epc(cop0, arch->pc);
1913 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1914 
1915 		if (cause & CAUSEF_BD)
1916 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1917 		else
1918 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1919 
1920 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1921 			  arch->pc);
1922 
1923 		/* set pc to the exception entry point */
1924 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1925 
1926 	} else {
1927 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1928 			  arch->pc);
1929 
1930 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1931 	}
1932 
1933 	kvm_change_c0_guest_cause(cop0, (0xff),
1934 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1935 
1936 	/* setup badvaddr, context and entryhi registers for the guest */
1937 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1938 	/* XXXKYMA: is the context register used by linux??? */
1939 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1940 	/* Blow away the shadow host TLBs */
1941 	kvm_mips_flush_host_tlb(1);
1942 
1943 	return EMULATE_DONE;
1944 }
1945 
1946 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1947 						 u32 *opc,
1948 						 struct kvm_run *run,
1949 						 struct kvm_vcpu *vcpu)
1950 {
1951 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1952 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1953 	unsigned long entryhi =
1954 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1955 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1956 
1957 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1958 		/* save old pc */
1959 		kvm_write_c0_guest_epc(cop0, arch->pc);
1960 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1961 
1962 		if (cause & CAUSEF_BD)
1963 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1964 		else
1965 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1966 
1967 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1968 			  arch->pc);
1969 
1970 		/* set pc to the exception entry point */
1971 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1972 
1973 	} else {
1974 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1975 			  arch->pc);
1976 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1977 	}
1978 
1979 	kvm_change_c0_guest_cause(cop0, (0xff),
1980 				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1981 
1982 	/* setup badvaddr, context and entryhi registers for the guest */
1983 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1984 	/* XXXKYMA: is the context register used by linux??? */
1985 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1986 	/* Blow away the shadow host TLBs */
1987 	kvm_mips_flush_host_tlb(1);
1988 
1989 	return EMULATE_DONE;
1990 }
1991 
1992 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1993 						  u32 *opc,
1994 						  struct kvm_run *run,
1995 						  struct kvm_vcpu *vcpu)
1996 {
1997 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1998 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1999 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2000 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2001 
2002 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2003 		/* save old pc */
2004 		kvm_write_c0_guest_epc(cop0, arch->pc);
2005 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2006 
2007 		if (cause & CAUSEF_BD)
2008 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2009 		else
2010 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2011 
2012 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2013 			  arch->pc);
2014 
2015 		/* Set PC to the exception entry point */
2016 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
2017 	} else {
2018 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2019 			  arch->pc);
2020 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2021 	}
2022 
2023 	kvm_change_c0_guest_cause(cop0, (0xff),
2024 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2025 
2026 	/* setup badvaddr, context and entryhi registers for the guest */
2027 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2028 	/* XXXKYMA: is the context register used by linux??? */
2029 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2030 	/* Blow away the shadow host TLBs */
2031 	kvm_mips_flush_host_tlb(1);
2032 
2033 	return EMULATE_DONE;
2034 }
2035 
2036 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2037 						 u32 *opc,
2038 						 struct kvm_run *run,
2039 						 struct kvm_vcpu *vcpu)
2040 {
2041 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2042 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2043 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2044 		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2045 
2046 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2047 		/* save old pc */
2048 		kvm_write_c0_guest_epc(cop0, arch->pc);
2049 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2050 
2051 		if (cause & CAUSEF_BD)
2052 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2053 		else
2054 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2055 
2056 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2057 			  arch->pc);
2058 
2059 		/* Set PC to the exception entry point */
2060 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2061 	} else {
2062 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2063 			  arch->pc);
2064 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2065 	}
2066 
2067 	kvm_change_c0_guest_cause(cop0, (0xff),
2068 				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2069 
2070 	/* setup badvaddr, context and entryhi registers for the guest */
2071 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2072 	/* XXXKYMA: is the context register used by linux??? */
2073 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2074 	/* Blow away the shadow host TLBs */
2075 	kvm_mips_flush_host_tlb(1);
2076 
2077 	return EMULATE_DONE;
2078 }
2079 
2080 /* TLBMOD: store into address matching TLB with Dirty bit off */
2081 enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
2082 					     struct kvm_run *run,
2083 					     struct kvm_vcpu *vcpu)
2084 {
2085 	enum emulation_result er = EMULATE_DONE;
2086 #ifdef DEBUG
2087 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2088 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2089 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2090 	int index;
2091 
2092 	/* If address not in the guest TLB, then we are in trouble */
2093 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2094 	if (index < 0) {
2095 		/* XXXKYMA Invalidate and retry */
2096 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2097 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2098 		     __func__, entryhi);
2099 		kvm_mips_dump_guest_tlbs(vcpu);
2100 		kvm_mips_dump_host_tlbs();
2101 		return EMULATE_FAIL;
2102 	}
2103 #endif
2104 
2105 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2106 	return er;
2107 }
2108 
2109 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2110 					      u32 *opc,
2111 					      struct kvm_run *run,
2112 					      struct kvm_vcpu *vcpu)
2113 {
2114 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2115 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2116 			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2117 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2118 
2119 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2120 		/* save old pc */
2121 		kvm_write_c0_guest_epc(cop0, arch->pc);
2122 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2123 
2124 		if (cause & CAUSEF_BD)
2125 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2126 		else
2127 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2128 
2129 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2130 			  arch->pc);
2131 
2132 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2133 	} else {
2134 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2135 			  arch->pc);
2136 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2137 	}
2138 
2139 	kvm_change_c0_guest_cause(cop0, (0xff),
2140 				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2141 
2142 	/* setup badvaddr, context and entryhi registers for the guest */
2143 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2144 	/* XXXKYMA: is the context register used by linux??? */
2145 	kvm_write_c0_guest_entryhi(cop0, entryhi);
2146 	/* Blow away the shadow host TLBs */
2147 	kvm_mips_flush_host_tlb(1);
2148 
2149 	return EMULATE_DONE;
2150 }
2151 
2152 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2153 					       u32 *opc,
2154 					       struct kvm_run *run,
2155 					       struct kvm_vcpu *vcpu)
2156 {
2157 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2158 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2159 
2160 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2161 		/* save old pc */
2162 		kvm_write_c0_guest_epc(cop0, arch->pc);
2163 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2164 
2165 		if (cause & CAUSEF_BD)
2166 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2167 		else
2168 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2169 
2170 	}
2171 
2172 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2173 
2174 	kvm_change_c0_guest_cause(cop0, (0xff),
2175 				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2176 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2177 
2178 	return EMULATE_DONE;
2179 }
2180 
2181 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2182 					      u32 *opc,
2183 					      struct kvm_run *run,
2184 					      struct kvm_vcpu *vcpu)
2185 {
2186 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2187 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2188 	enum emulation_result er = EMULATE_DONE;
2189 
2190 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2191 		/* save old pc */
2192 		kvm_write_c0_guest_epc(cop0, arch->pc);
2193 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2194 
2195 		if (cause & CAUSEF_BD)
2196 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2197 		else
2198 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2199 
2200 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2201 
2202 		kvm_change_c0_guest_cause(cop0, (0xff),
2203 					  (EXCCODE_RI << CAUSEB_EXCCODE));
2204 
2205 		/* Set PC to the exception entry point */
2206 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2207 
2208 	} else {
2209 		kvm_err("Trying to deliver RI when EXL is already set\n");
2210 		er = EMULATE_FAIL;
2211 	}
2212 
2213 	return er;
2214 }
2215 
2216 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2217 					      u32 *opc,
2218 					      struct kvm_run *run,
2219 					      struct kvm_vcpu *vcpu)
2220 {
2221 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2222 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2223 	enum emulation_result er = EMULATE_DONE;
2224 
2225 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2226 		/* save old pc */
2227 		kvm_write_c0_guest_epc(cop0, arch->pc);
2228 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2229 
2230 		if (cause & CAUSEF_BD)
2231 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2232 		else
2233 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2234 
2235 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2236 
2237 		kvm_change_c0_guest_cause(cop0, (0xff),
2238 					  (EXCCODE_BP << CAUSEB_EXCCODE));
2239 
2240 		/* Set PC to the exception entry point */
2241 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2242 
2243 	} else {
2244 		kvm_err("Trying to deliver BP when EXL is already set\n");
2245 		er = EMULATE_FAIL;
2246 	}
2247 
2248 	return er;
2249 }
2250 
2251 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2252 						u32 *opc,
2253 						struct kvm_run *run,
2254 						struct kvm_vcpu *vcpu)
2255 {
2256 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2257 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2258 	enum emulation_result er = EMULATE_DONE;
2259 
2260 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2261 		/* save old pc */
2262 		kvm_write_c0_guest_epc(cop0, arch->pc);
2263 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2264 
2265 		if (cause & CAUSEF_BD)
2266 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2267 		else
2268 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2269 
2270 		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2271 
2272 		kvm_change_c0_guest_cause(cop0, (0xff),
2273 					  (EXCCODE_TR << CAUSEB_EXCCODE));
2274 
2275 		/* Set PC to the exception entry point */
2276 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2277 
2278 	} else {
2279 		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2280 		er = EMULATE_FAIL;
2281 	}
2282 
2283 	return er;
2284 }
2285 
2286 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2287 						  u32 *opc,
2288 						  struct kvm_run *run,
2289 						  struct kvm_vcpu *vcpu)
2290 {
2291 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2292 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2293 	enum emulation_result er = EMULATE_DONE;
2294 
2295 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2296 		/* save old pc */
2297 		kvm_write_c0_guest_epc(cop0, arch->pc);
2298 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2299 
2300 		if (cause & CAUSEF_BD)
2301 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2302 		else
2303 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2304 
2305 		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2306 
2307 		kvm_change_c0_guest_cause(cop0, (0xff),
2308 					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2309 
2310 		/* Set PC to the exception entry point */
2311 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2312 
2313 	} else {
2314 		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2315 		er = EMULATE_FAIL;
2316 	}
2317 
2318 	return er;
2319 }
2320 
2321 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2322 					       u32 *opc,
2323 					       struct kvm_run *run,
2324 					       struct kvm_vcpu *vcpu)
2325 {
2326 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2327 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2328 	enum emulation_result er = EMULATE_DONE;
2329 
2330 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2331 		/* save old pc */
2332 		kvm_write_c0_guest_epc(cop0, arch->pc);
2333 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2334 
2335 		if (cause & CAUSEF_BD)
2336 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2337 		else
2338 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2339 
2340 		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2341 
2342 		kvm_change_c0_guest_cause(cop0, (0xff),
2343 					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2344 
2345 		/* Set PC to the exception entry point */
2346 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2347 
2348 	} else {
2349 		kvm_err("Trying to deliver FPE when EXL is already set\n");
2350 		er = EMULATE_FAIL;
2351 	}
2352 
2353 	return er;
2354 }
2355 
2356 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2357 						  u32 *opc,
2358 						  struct kvm_run *run,
2359 						  struct kvm_vcpu *vcpu)
2360 {
2361 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2362 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2363 	enum emulation_result er = EMULATE_DONE;
2364 
2365 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2366 		/* save old pc */
2367 		kvm_write_c0_guest_epc(cop0, arch->pc);
2368 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2369 
2370 		if (cause & CAUSEF_BD)
2371 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2372 		else
2373 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2374 
2375 		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2376 
2377 		kvm_change_c0_guest_cause(cop0, (0xff),
2378 					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2379 
2380 		/* Set PC to the exception entry point */
2381 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2382 
2383 	} else {
2384 		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2385 		er = EMULATE_FAIL;
2386 	}
2387 
2388 	return er;
2389 }
2390 
2391 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2392 					 struct kvm_run *run,
2393 					 struct kvm_vcpu *vcpu)
2394 {
2395 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2396 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2397 	enum emulation_result er = EMULATE_DONE;
2398 	unsigned long curr_pc;
2399 	union mips_instruction inst;
2400 
2401 	/*
2402 	 * Update PC and hold onto current PC in case there is
2403 	 * an error and we want to rollback the PC
2404 	 */
2405 	curr_pc = vcpu->arch.pc;
2406 	er = update_pc(vcpu, cause);
2407 	if (er == EMULATE_FAIL)
2408 		return er;
2409 
2410 	/* Fetch the instruction. */
2411 	if (cause & CAUSEF_BD)
2412 		opc += 1;
2413 
2414 	inst.word = kvm_get_inst(opc, vcpu);
2415 
2416 	if (inst.word == KVM_INVALID_INST) {
2417 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2418 		return EMULATE_FAIL;
2419 	}
2420 
2421 	if (inst.r_format.opcode == spec3_op &&
2422 	    inst.r_format.func == rdhwr_op &&
2423 	    inst.r_format.rs == 0 &&
2424 	    (inst.r_format.re >> 3) == 0) {
2425 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2426 		int rd = inst.r_format.rd;
2427 		int rt = inst.r_format.rt;
2428 		int sel = inst.r_format.re & 0x7;
2429 
2430 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2431 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2432 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2433 				  rd, opc);
2434 			goto emulate_ri;
2435 		}
2436 		switch (rd) {
2437 		case MIPS_HWR_CPUNUM:		/* CPU number */
2438 			arch->gprs[rt] = vcpu->vcpu_id;
2439 			break;
2440 		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2441 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2442 					     current_cpu_data.icache.linesz);
2443 			break;
2444 		case MIPS_HWR_CC:		/* Read count register */
2445 			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2446 			break;
2447 		case MIPS_HWR_CCRES:		/* Count register resolution */
2448 			switch (current_cpu_data.cputype) {
2449 			case CPU_20KC:
2450 			case CPU_25KF:
2451 				arch->gprs[rt] = 1;
2452 				break;
2453 			default:
2454 				arch->gprs[rt] = 2;
2455 			}
2456 			break;
2457 		case MIPS_HWR_ULR:		/* Read UserLocal register */
2458 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2459 			break;
2460 
2461 		default:
2462 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2463 			goto emulate_ri;
2464 		}
2465 
2466 		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2467 			      vcpu->arch.gprs[rt]);
2468 	} else {
2469 		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2470 			  opc, inst.word);
2471 		goto emulate_ri;
2472 	}
2473 
2474 	return EMULATE_DONE;
2475 
2476 emulate_ri:
2477 	/*
2478 	 * Rollback PC (if in branch delay slot then the PC already points to
2479 	 * branch target), and pass the RI exception to the guest OS.
2480 	 */
2481 	vcpu->arch.pc = curr_pc;
2482 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2483 }
2484 
2485 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2486 						  struct kvm_run *run)
2487 {
2488 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2489 	enum emulation_result er = EMULATE_DONE;
2490 
2491 	if (run->mmio.len > sizeof(*gpr)) {
2492 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2493 		er = EMULATE_FAIL;
2494 		goto done;
2495 	}
2496 
2497 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2498 	if (er == EMULATE_FAIL)
2499 		return er;
2500 
2501 	switch (run->mmio.len) {
2502 	case 4:
2503 		*gpr = *(s32 *) run->mmio.data;
2504 		break;
2505 
2506 	case 2:
2507 		if (vcpu->mmio_needed == 2)
2508 			*gpr = *(s16 *) run->mmio.data;
2509 		else
2510 			*gpr = *(u16 *)run->mmio.data;
2511 
2512 		break;
2513 	case 1:
2514 		if (vcpu->mmio_needed == 2)
2515 			*gpr = *(s8 *) run->mmio.data;
2516 		else
2517 			*gpr = *(u8 *) run->mmio.data;
2518 		break;
2519 	}
2520 
2521 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2522 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2523 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2524 			  vcpu->mmio_needed);
2525 
2526 done:
2527 	return er;
2528 }
2529 
2530 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2531 						  u32 *opc,
2532 						  struct kvm_run *run,
2533 						  struct kvm_vcpu *vcpu)
2534 {
2535 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2536 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2537 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2538 	enum emulation_result er = EMULATE_DONE;
2539 
2540 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2541 		/* save old pc */
2542 		kvm_write_c0_guest_epc(cop0, arch->pc);
2543 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2544 
2545 		if (cause & CAUSEF_BD)
2546 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2547 		else
2548 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2549 
2550 		kvm_change_c0_guest_cause(cop0, (0xff),
2551 					  (exccode << CAUSEB_EXCCODE));
2552 
2553 		/* Set PC to the exception entry point */
2554 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2555 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2556 
2557 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2558 			  exccode, kvm_read_c0_guest_epc(cop0),
2559 			  kvm_read_c0_guest_badvaddr(cop0));
2560 	} else {
2561 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2562 		er = EMULATE_FAIL;
2563 	}
2564 
2565 	return er;
2566 }
2567 
2568 enum emulation_result kvm_mips_check_privilege(u32 cause,
2569 					       u32 *opc,
2570 					       struct kvm_run *run,
2571 					       struct kvm_vcpu *vcpu)
2572 {
2573 	enum emulation_result er = EMULATE_DONE;
2574 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2575 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2576 
2577 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2578 
2579 	if (usermode) {
2580 		switch (exccode) {
2581 		case EXCCODE_INT:
2582 		case EXCCODE_SYS:
2583 		case EXCCODE_BP:
2584 		case EXCCODE_RI:
2585 		case EXCCODE_TR:
2586 		case EXCCODE_MSAFPE:
2587 		case EXCCODE_FPE:
2588 		case EXCCODE_MSADIS:
2589 			break;
2590 
2591 		case EXCCODE_CPU:
2592 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2593 				er = EMULATE_PRIV_FAIL;
2594 			break;
2595 
2596 		case EXCCODE_MOD:
2597 			break;
2598 
2599 		case EXCCODE_TLBL:
2600 			/*
2601 			 * We we are accessing Guest kernel space, then send an
2602 			 * address error exception to the guest
2603 			 */
2604 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2605 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2606 					  badvaddr);
2607 				cause &= ~0xff;
2608 				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2609 				er = EMULATE_PRIV_FAIL;
2610 			}
2611 			break;
2612 
2613 		case EXCCODE_TLBS:
2614 			/*
2615 			 * We we are accessing Guest kernel space, then send an
2616 			 * address error exception to the guest
2617 			 */
2618 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2619 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2620 					  badvaddr);
2621 				cause &= ~0xff;
2622 				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2623 				er = EMULATE_PRIV_FAIL;
2624 			}
2625 			break;
2626 
2627 		case EXCCODE_ADES:
2628 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2629 				  badvaddr);
2630 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2631 				cause &= ~0xff;
2632 				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2633 			}
2634 			er = EMULATE_PRIV_FAIL;
2635 			break;
2636 		case EXCCODE_ADEL:
2637 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2638 				  badvaddr);
2639 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2640 				cause &= ~0xff;
2641 				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2642 			}
2643 			er = EMULATE_PRIV_FAIL;
2644 			break;
2645 		default:
2646 			er = EMULATE_PRIV_FAIL;
2647 			break;
2648 		}
2649 	}
2650 
2651 	if (er == EMULATE_PRIV_FAIL)
2652 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2653 
2654 	return er;
2655 }
2656 
2657 /*
2658  * User Address (UA) fault, this could happen if
2659  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2660  *     case we pass on the fault to the guest kernel and let it handle it.
2661  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2662  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2663  */
2664 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2665 					      u32 *opc,
2666 					      struct kvm_run *run,
2667 					      struct kvm_vcpu *vcpu)
2668 {
2669 	enum emulation_result er = EMULATE_DONE;
2670 	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2671 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2672 	int index;
2673 
2674 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2675 		  vcpu->arch.host_cp0_badvaddr);
2676 
2677 	/*
2678 	 * KVM would not have got the exception if this entry was valid in the
2679 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2680 	 * send the guest an exception. The guest exc handler should then inject
2681 	 * an entry into the guest TLB.
2682 	 */
2683 	index = kvm_mips_guest_tlb_lookup(vcpu,
2684 		      (va & VPN2_MASK) |
2685 		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2686 		       KVM_ENTRYHI_ASID));
2687 	if (index < 0) {
2688 		if (exccode == EXCCODE_TLBL) {
2689 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2690 		} else if (exccode == EXCCODE_TLBS) {
2691 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2692 		} else {
2693 			kvm_err("%s: invalid exc code: %d\n", __func__,
2694 				exccode);
2695 			er = EMULATE_FAIL;
2696 		}
2697 	} else {
2698 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2699 
2700 		/*
2701 		 * Check if the entry is valid, if not then setup a TLB invalid
2702 		 * exception to the guest
2703 		 */
2704 		if (!TLB_IS_VALID(*tlb, va)) {
2705 			if (exccode == EXCCODE_TLBL) {
2706 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2707 								vcpu);
2708 			} else if (exccode == EXCCODE_TLBS) {
2709 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2710 								vcpu);
2711 			} else {
2712 				kvm_err("%s: invalid exc code: %d\n", __func__,
2713 					exccode);
2714 				er = EMULATE_FAIL;
2715 			}
2716 		} else {
2717 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2718 				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2719 			/*
2720 			 * OK we have a Guest TLB entry, now inject it into the
2721 			 * shadow host TLB
2722 			 */
2723 			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
2724 				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2725 					__func__, va, index, vcpu,
2726 					read_c0_entryhi());
2727 				er = EMULATE_FAIL;
2728 			}
2729 		}
2730 	}
2731 
2732 	return er;
2733 }
2734