xref: /linux/arch/mips/kvm/emulate.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11 
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cpu-info.h>
24 #include <asm/mmu_context.h>
25 #include <asm/tlbflush.h>
26 #include <asm/inst.h>
27 
28 #undef CONFIG_MIPS_MT
29 #include <asm/r4kcache.h>
30 #define CONFIG_MIPS_MT
31 
32 #include "opcode.h"
33 #include "interrupt.h"
34 #include "commpage.h"
35 
36 #include "trace.h"
37 
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 	unsigned long instpc)
44 {
45 	unsigned int dspcontrol;
46 	union mips_instruction insn;
47 	struct kvm_vcpu_arch *arch = &vcpu->arch;
48 	long epc = instpc;
49 	long nextpc = KVM_INVALID_INST;
50 
51 	if (epc & 3)
52 		goto unaligned;
53 
54 	/* Read the instruction */
55 	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56 
57 	if (insn.word == KVM_INVALID_INST)
58 		return KVM_INVALID_INST;
59 
60 	switch (insn.i_format.opcode) {
61 		/* jr and jalr are in r_format format. */
62 	case spec_op:
63 		switch (insn.r_format.func) {
64 		case jalr_op:
65 			arch->gprs[insn.r_format.rd] = epc + 8;
66 			/* Fall through */
67 		case jr_op:
68 			nextpc = arch->gprs[insn.r_format.rs];
69 			break;
70 		}
71 		break;
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 		switch (insn.i_format.rt) {
80 		case bltz_op:
81 		case bltzl_op:
82 			if ((long)arch->gprs[insn.i_format.rs] < 0)
83 				epc = epc + 4 + (insn.i_format.simmediate << 2);
84 			else
85 				epc += 8;
86 			nextpc = epc;
87 			break;
88 
89 		case bgez_op:
90 		case bgezl_op:
91 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 				epc = epc + 4 + (insn.i_format.simmediate << 2);
93 			else
94 				epc += 8;
95 			nextpc = epc;
96 			break;
97 
98 		case bltzal_op:
99 		case bltzall_op:
100 			arch->gprs[31] = epc + 8;
101 			if ((long)arch->gprs[insn.i_format.rs] < 0)
102 				epc = epc + 4 + (insn.i_format.simmediate << 2);
103 			else
104 				epc += 8;
105 			nextpc = epc;
106 			break;
107 
108 		case bgezal_op:
109 		case bgezall_op:
110 			arch->gprs[31] = epc + 8;
111 			if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 				epc = epc + 4 + (insn.i_format.simmediate << 2);
113 			else
114 				epc += 8;
115 			nextpc = epc;
116 			break;
117 		case bposge32_op:
118 			if (!cpu_has_dsp)
119 				goto sigill;
120 
121 			dspcontrol = rddsp(0x01);
122 
123 			if (dspcontrol >= 32)
124 				epc = epc + 4 + (insn.i_format.simmediate << 2);
125 			else
126 				epc += 8;
127 			nextpc = epc;
128 			break;
129 		}
130 		break;
131 
132 		/* These are unconditional and in j_format. */
133 	case jal_op:
134 		arch->gprs[31] = instpc + 8;
135 	case j_op:
136 		epc += 4;
137 		epc >>= 28;
138 		epc <<= 28;
139 		epc |= (insn.j_format.target << 2);
140 		nextpc = epc;
141 		break;
142 
143 		/* These are conditional and in i_format. */
144 	case beq_op:
145 	case beql_op:
146 		if (arch->gprs[insn.i_format.rs] ==
147 		    arch->gprs[insn.i_format.rt])
148 			epc = epc + 4 + (insn.i_format.simmediate << 2);
149 		else
150 			epc += 8;
151 		nextpc = epc;
152 		break;
153 
154 	case bne_op:
155 	case bnel_op:
156 		if (arch->gprs[insn.i_format.rs] !=
157 		    arch->gprs[insn.i_format.rt])
158 			epc = epc + 4 + (insn.i_format.simmediate << 2);
159 		else
160 			epc += 8;
161 		nextpc = epc;
162 		break;
163 
164 	case blez_op:		/* not really i_format */
165 	case blezl_op:
166 		/* rt field assumed to be zero */
167 		if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 			epc = epc + 4 + (insn.i_format.simmediate << 2);
169 		else
170 			epc += 8;
171 		nextpc = epc;
172 		break;
173 
174 	case bgtz_op:
175 	case bgtzl_op:
176 		/* rt field assumed to be zero */
177 		if ((long)arch->gprs[insn.i_format.rs] > 0)
178 			epc = epc + 4 + (insn.i_format.simmediate << 2);
179 		else
180 			epc += 8;
181 		nextpc = epc;
182 		break;
183 
184 		/* And now the FPA/cp1 branch instructions. */
185 	case cop1_op:
186 		kvm_err("%s: unsupported cop1_op\n", __func__);
187 		break;
188 	}
189 
190 	return nextpc;
191 
192 unaligned:
193 	kvm_err("%s: unaligned epc\n", __func__);
194 	return nextpc;
195 
196 sigill:
197 	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 	return nextpc;
199 }
200 
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203 	unsigned long branch_pc;
204 	enum emulation_result er = EMULATE_DONE;
205 
206 	if (cause & CAUSEF_BD) {
207 		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 		if (branch_pc == KVM_INVALID_INST) {
209 			er = EMULATE_FAIL;
210 		} else {
211 			vcpu->arch.pc = branch_pc;
212 			kvm_debug("BD update_pc(): New PC: %#lx\n",
213 				  vcpu->arch.pc);
214 		}
215 	} else
216 		vcpu->arch.pc += 4;
217 
218 	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219 
220 	return er;
221 }
222 
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:	Virtual CPU.
226  *
227  * Returns:	1 if the CP0_Count timer is disabled by either the guest
228  *		CP0_Cause.DC bit or the count_ctl.DC bit.
229  *		0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233 	struct mips_coproc *cop0 = vcpu->arch.cop0;
234 
235 	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238 
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248 	s64 now_ns, periods;
249 	u64 delta;
250 
251 	now_ns = ktime_to_ns(now);
252 	delta = now_ns + vcpu->arch.count_dyn_bias;
253 
254 	if (delta >= vcpu->arch.count_period) {
255 		/* If delta is out of safe range the bias needs adjusting */
256 		periods = div64_s64(now_ns, vcpu->arch.count_period);
257 		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 		/* Recalculate delta with new bias */
259 		delta = now_ns + vcpu->arch.count_dyn_bias;
260 	}
261 
262 	/*
263 	 * We've ensured that:
264 	 *   delta < count_period
265 	 *
266 	 * Therefore the intermediate delta*count_hz will never overflow since
267 	 * at the boundary condition:
268 	 *   delta = count_period
269 	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
270 	 *   delta * count_hz = NSEC_PER_SEC * 2^32
271 	 */
272 	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274 
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:	Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:	Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287 	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 		return vcpu->arch.count_resume;
289 
290 	return ktime_get();
291 }
292 
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:	Virtual CPU.
296  * @now:	Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:	The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305 	ktime_t expires;
306 	int running;
307 
308 	/* Is the hrtimer pending? */
309 	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310 	if (ktime_compare(now, expires) >= 0) {
311 		/*
312 		 * Cancel it while we handle it so there's no chance of
313 		 * interference with the timeout handler.
314 		 */
315 		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316 
317 		/* Nothing should be waiting on the timeout */
318 		kvm_mips_callbacks->queue_timer_int(vcpu);
319 
320 		/*
321 		 * Restart the timer if it was running based on the expiry time
322 		 * we read, so that we don't push it back 2 periods.
323 		 */
324 		if (running) {
325 			expires = ktime_add_ns(expires,
326 					       vcpu->arch.count_period);
327 			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328 				      HRTIMER_MODE_ABS);
329 		}
330 	}
331 
332 	/* Return the biased and scaled guest CP0_Count */
333 	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334 }
335 
336 /**
337  * kvm_mips_read_count() - Read the current count value.
338  * @vcpu:	Virtual CPU.
339  *
340  * Read the current guest CP0_Count value, taking into account whether the timer
341  * is stopped.
342  *
343  * Returns:	The current guest CP0_Count value.
344  */
345 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346 {
347 	struct mips_coproc *cop0 = vcpu->arch.cop0;
348 
349 	/* If count disabled just read static copy of count */
350 	if (kvm_mips_count_disabled(vcpu))
351 		return kvm_read_c0_guest_count(cop0);
352 
353 	return kvm_mips_read_count_running(vcpu, ktime_get());
354 }
355 
356 /**
357  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358  * @vcpu:	Virtual CPU.
359  * @count:	Output pointer for CP0_Count value at point of freeze.
360  *
361  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362  * at the point it was frozen. It is guaranteed that any pending interrupts at
363  * the point it was frozen are handled, and none after that point.
364  *
365  * This is useful where the time/CP0_Count is needed in the calculation of the
366  * new parameters.
367  *
368  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369  *
370  * Returns:	The ktime at the point of freeze.
371  */
372 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373 				       uint32_t *count)
374 {
375 	ktime_t now;
376 
377 	/* stop hrtimer before finding time */
378 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
379 	now = ktime_get();
380 
381 	/* find count at this point and handle pending hrtimer */
382 	*count = kvm_mips_read_count_running(vcpu, now);
383 
384 	return now;
385 }
386 
387 /**
388  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389  * @vcpu:	Virtual CPU.
390  * @now:	ktime at point of resume.
391  * @count:	CP0_Count at point of resume.
392  *
393  * Resumes the timer and updates the timer expiry based on @now and @count.
394  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395  * parameters need to be changed.
396  *
397  * It is guaranteed that a timer interrupt immediately after resume will be
398  * handled, but not if CP_Compare is exactly at @count. That case is already
399  * handled by kvm_mips_freeze_timer().
400  *
401  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402  */
403 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404 				    ktime_t now, uint32_t count)
405 {
406 	struct mips_coproc *cop0 = vcpu->arch.cop0;
407 	uint32_t compare;
408 	u64 delta;
409 	ktime_t expire;
410 
411 	/* Calculate timeout (wrap 0 to 2^32) */
412 	compare = kvm_read_c0_guest_compare(cop0);
413 	delta = (u64)(uint32_t)(compare - count - 1) + 1;
414 	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415 	expire = ktime_add_ns(now, delta);
416 
417 	/* Update hrtimer to use new timeout */
418 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
419 	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420 }
421 
422 /**
423  * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424  * @vcpu:	Virtual CPU.
425  *
426  * Recalculates and updates the expiry time of the hrtimer. This can be used
427  * after timer parameters have been altered which do not depend on the time that
428  * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429  * kvm_mips_resume_hrtimer() are used directly).
430  *
431  * It is guaranteed that no timer interrupts will be lost in the process.
432  *
433  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434  */
435 static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436 {
437 	ktime_t now;
438 	uint32_t count;
439 
440 	/*
441 	 * freeze_hrtimer takes care of a timer interrupts <= count, and
442 	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443 	 */
444 	now = kvm_mips_freeze_hrtimer(vcpu, &count);
445 	kvm_mips_resume_hrtimer(vcpu, now, count);
446 }
447 
448 /**
449  * kvm_mips_write_count() - Modify the count and update timer.
450  * @vcpu:	Virtual CPU.
451  * @count:	Guest CP0_Count value to set.
452  *
453  * Sets the CP0_Count value and updates the timer accordingly.
454  */
455 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456 {
457 	struct mips_coproc *cop0 = vcpu->arch.cop0;
458 	ktime_t now;
459 
460 	/* Calculate bias */
461 	now = kvm_mips_count_time(vcpu);
462 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463 
464 	if (kvm_mips_count_disabled(vcpu))
465 		/* The timer's disabled, adjust the static count */
466 		kvm_write_c0_guest_count(cop0, count);
467 	else
468 		/* Update timeout */
469 		kvm_mips_resume_hrtimer(vcpu, now, count);
470 }
471 
472 /**
473  * kvm_mips_init_count() - Initialise timer.
474  * @vcpu:	Virtual CPU.
475  *
476  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477  * it going if it's enabled.
478  */
479 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480 {
481 	/* 100 MHz */
482 	vcpu->arch.count_hz = 100*1000*1000;
483 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484 					  vcpu->arch.count_hz);
485 	vcpu->arch.count_dyn_bias = 0;
486 
487 	/* Starting at 0 */
488 	kvm_mips_write_count(vcpu, 0);
489 }
490 
491 /**
492  * kvm_mips_set_count_hz() - Update the frequency of the timer.
493  * @vcpu:	Virtual CPU.
494  * @count_hz:	Frequency of CP0_Count timer in Hz.
495  *
496  * Change the frequency of the CP0_Count timer. This is done atomically so that
497  * CP0_Count is continuous and no timer interrupt is lost.
498  *
499  * Returns:	-EINVAL if @count_hz is out of range.
500  *		0 on success.
501  */
502 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503 {
504 	struct mips_coproc *cop0 = vcpu->arch.cop0;
505 	int dc;
506 	ktime_t now;
507 	u32 count;
508 
509 	/* ensure the frequency is in a sensible range... */
510 	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511 		return -EINVAL;
512 	/* ... and has actually changed */
513 	if (vcpu->arch.count_hz == count_hz)
514 		return 0;
515 
516 	/* Safely freeze timer so we can keep it continuous */
517 	dc = kvm_mips_count_disabled(vcpu);
518 	if (dc) {
519 		now = kvm_mips_count_time(vcpu);
520 		count = kvm_read_c0_guest_count(cop0);
521 	} else {
522 		now = kvm_mips_freeze_hrtimer(vcpu, &count);
523 	}
524 
525 	/* Update the frequency */
526 	vcpu->arch.count_hz = count_hz;
527 	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528 	vcpu->arch.count_dyn_bias = 0;
529 
530 	/* Calculate adjusted bias so dynamic count is unchanged */
531 	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532 
533 	/* Update and resume hrtimer */
534 	if (!dc)
535 		kvm_mips_resume_hrtimer(vcpu, now, count);
536 	return 0;
537 }
538 
539 /**
540  * kvm_mips_write_compare() - Modify compare and update timer.
541  * @vcpu:	Virtual CPU.
542  * @compare:	New CP0_Compare value.
543  *
544  * Update CP0_Compare to a new value and update the timeout.
545  */
546 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547 {
548 	struct mips_coproc *cop0 = vcpu->arch.cop0;
549 
550 	/* if unchanged, must just be an ack */
551 	if (kvm_read_c0_guest_compare(cop0) == compare)
552 		return;
553 
554 	/* Update compare */
555 	kvm_write_c0_guest_compare(cop0, compare);
556 
557 	/* Update timeout if count enabled */
558 	if (!kvm_mips_count_disabled(vcpu))
559 		kvm_mips_update_hrtimer(vcpu);
560 }
561 
562 /**
563  * kvm_mips_count_disable() - Disable count.
564  * @vcpu:	Virtual CPU.
565  *
566  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567  * time will be handled but not after.
568  *
569  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570  * count_ctl.DC has been set (count disabled).
571  *
572  * Returns:	The time that the timer was stopped.
573  */
574 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575 {
576 	struct mips_coproc *cop0 = vcpu->arch.cop0;
577 	uint32_t count;
578 	ktime_t now;
579 
580 	/* Stop hrtimer */
581 	hrtimer_cancel(&vcpu->arch.comparecount_timer);
582 
583 	/* Set the static count from the dynamic count, handling pending TI */
584 	now = ktime_get();
585 	count = kvm_mips_read_count_running(vcpu, now);
586 	kvm_write_c0_guest_count(cop0, count);
587 
588 	return now;
589 }
590 
591 /**
592  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593  * @vcpu:	Virtual CPU.
594  *
595  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596  * before the final stop time will be handled if the timer isn't disabled by
597  * count_ctl.DC, but not after.
598  *
599  * Assumes CP0_Cause.DC is clear (count enabled).
600  */
601 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602 {
603 	struct mips_coproc *cop0 = vcpu->arch.cop0;
604 
605 	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606 	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607 		kvm_mips_count_disable(vcpu);
608 }
609 
610 /**
611  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612  * @vcpu:	Virtual CPU.
613  *
614  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616  * potentially before even returning, so the caller should be careful with
617  * ordering of CP0_Cause modifications so as not to lose it.
618  *
619  * Assumes CP0_Cause.DC is set (count disabled).
620  */
621 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622 {
623 	struct mips_coproc *cop0 = vcpu->arch.cop0;
624 	uint32_t count;
625 
626 	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627 
628 	/*
629 	 * Set the dynamic count to match the static count.
630 	 * This starts the hrtimer if count_ctl.DC allows it.
631 	 * Otherwise it conveniently updates the biases.
632 	 */
633 	count = kvm_read_c0_guest_count(cop0);
634 	kvm_mips_write_count(vcpu, count);
635 }
636 
637 /**
638  * kvm_mips_set_count_ctl() - Update the count control KVM register.
639  * @vcpu:	Virtual CPU.
640  * @count_ctl:	Count control register new value.
641  *
642  * Set the count control KVM register. The timer is updated accordingly.
643  *
644  * Returns:	-EINVAL if reserved bits are set.
645  *		0 on success.
646  */
647 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648 {
649 	struct mips_coproc *cop0 = vcpu->arch.cop0;
650 	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651 	s64 delta;
652 	ktime_t expire, now;
653 	uint32_t count, compare;
654 
655 	/* Only allow defined bits to be changed */
656 	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657 		return -EINVAL;
658 
659 	/* Apply new value */
660 	vcpu->arch.count_ctl = count_ctl;
661 
662 	/* Master CP0_Count disable */
663 	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664 		/* Is CP0_Cause.DC already disabling CP0_Count? */
665 		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666 			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667 				/* Just record the current time */
668 				vcpu->arch.count_resume = ktime_get();
669 		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670 			/* disable timer and record current time */
671 			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672 		} else {
673 			/*
674 			 * Calculate timeout relative to static count at resume
675 			 * time (wrap 0 to 2^32).
676 			 */
677 			count = kvm_read_c0_guest_count(cop0);
678 			compare = kvm_read_c0_guest_compare(cop0);
679 			delta = (u64)(uint32_t)(compare - count - 1) + 1;
680 			delta = div_u64(delta * NSEC_PER_SEC,
681 					vcpu->arch.count_hz);
682 			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683 
684 			/* Handle pending interrupt */
685 			now = ktime_get();
686 			if (ktime_compare(now, expire) >= 0)
687 				/* Nothing should be waiting on the timeout */
688 				kvm_mips_callbacks->queue_timer_int(vcpu);
689 
690 			/* Resume hrtimer without changing bias */
691 			count = kvm_mips_read_count_running(vcpu, now);
692 			kvm_mips_resume_hrtimer(vcpu, now, count);
693 		}
694 	}
695 
696 	return 0;
697 }
698 
699 /**
700  * kvm_mips_set_count_resume() - Update the count resume KVM register.
701  * @vcpu:		Virtual CPU.
702  * @count_resume:	Count resume register new value.
703  *
704  * Set the count resume KVM register.
705  *
706  * Returns:	-EINVAL if out of valid range (0..now).
707  *		0 on success.
708  */
709 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710 {
711 	/*
712 	 * It doesn't make sense for the resume time to be in the future, as it
713 	 * would be possible for the next interrupt to be more than a full
714 	 * period in the future.
715 	 */
716 	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717 		return -EINVAL;
718 
719 	vcpu->arch.count_resume = ns_to_ktime(count_resume);
720 	return 0;
721 }
722 
723 /**
724  * kvm_mips_count_timeout() - Push timer forward on timeout.
725  * @vcpu:	Virtual CPU.
726  *
727  * Handle an hrtimer event by push the hrtimer forward a period.
728  *
729  * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
730  */
731 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732 {
733 	/* Add the Count period to the current expiry time */
734 	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735 			       vcpu->arch.count_period);
736 	return HRTIMER_RESTART;
737 }
738 
739 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740 {
741 	struct mips_coproc *cop0 = vcpu->arch.cop0;
742 	enum emulation_result er = EMULATE_DONE;
743 
744 	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745 		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746 			  kvm_read_c0_guest_epc(cop0));
747 		kvm_clear_c0_guest_status(cop0, ST0_EXL);
748 		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749 
750 	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751 		kvm_clear_c0_guest_status(cop0, ST0_ERL);
752 		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753 	} else {
754 		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755 			vcpu->arch.pc);
756 		er = EMULATE_FAIL;
757 	}
758 
759 	return er;
760 }
761 
762 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763 {
764 	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765 		  vcpu->arch.pending_exceptions);
766 
767 	++vcpu->stat.wait_exits;
768 	trace_kvm_exit(vcpu, WAIT_EXITS);
769 	if (!vcpu->arch.pending_exceptions) {
770 		vcpu->arch.wait = 1;
771 		kvm_vcpu_block(vcpu);
772 
773 		/*
774 		 * We we are runnable, then definitely go off to user space to
775 		 * check if any I/O interrupts are pending.
776 		 */
777 		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778 			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780 		}
781 	}
782 
783 	return EMULATE_DONE;
784 }
785 
786 /*
787  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788  * we can catch this, if things ever change
789  */
790 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791 {
792 	struct mips_coproc *cop0 = vcpu->arch.cop0;
793 	uint32_t pc = vcpu->arch.pc;
794 
795 	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796 	return EMULATE_FAIL;
797 }
798 
799 /* Write Guest TLB Entry @ Index */
800 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801 {
802 	struct mips_coproc *cop0 = vcpu->arch.cop0;
803 	int index = kvm_read_c0_guest_index(cop0);
804 	struct kvm_mips_tlb *tlb = NULL;
805 	uint32_t pc = vcpu->arch.pc;
806 
807 	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808 		kvm_debug("%s: illegal index: %d\n", __func__, index);
809 		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810 			  pc, index, kvm_read_c0_guest_entryhi(cop0),
811 			  kvm_read_c0_guest_entrylo0(cop0),
812 			  kvm_read_c0_guest_entrylo1(cop0),
813 			  kvm_read_c0_guest_pagemask(cop0));
814 		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815 	}
816 
817 	tlb = &vcpu->arch.guest_tlb[index];
818 	/*
819 	 * Probe the shadow host TLB for the entry being overwritten, if one
820 	 * matches, invalidate it
821 	 */
822 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823 
824 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828 
829 	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
831 		  kvm_read_c0_guest_entrylo0(cop0),
832 		  kvm_read_c0_guest_entrylo1(cop0),
833 		  kvm_read_c0_guest_pagemask(cop0));
834 
835 	return EMULATE_DONE;
836 }
837 
838 /* Write Guest TLB Entry @ Random Index */
839 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840 {
841 	struct mips_coproc *cop0 = vcpu->arch.cop0;
842 	struct kvm_mips_tlb *tlb = NULL;
843 	uint32_t pc = vcpu->arch.pc;
844 	int index;
845 
846 	get_random_bytes(&index, sizeof(index));
847 	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848 
849 	tlb = &vcpu->arch.guest_tlb[index];
850 
851 	/*
852 	 * Probe the shadow host TLB for the entry being overwritten, if one
853 	 * matches, invalidate it
854 	 */
855 	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856 
857 	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858 	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859 	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860 	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861 
862 	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863 		  pc, index, kvm_read_c0_guest_entryhi(cop0),
864 		  kvm_read_c0_guest_entrylo0(cop0),
865 		  kvm_read_c0_guest_entrylo1(cop0));
866 
867 	return EMULATE_DONE;
868 }
869 
870 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871 {
872 	struct mips_coproc *cop0 = vcpu->arch.cop0;
873 	long entryhi = kvm_read_c0_guest_entryhi(cop0);
874 	uint32_t pc = vcpu->arch.pc;
875 	int index = -1;
876 
877 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878 
879 	kvm_write_c0_guest_index(cop0, index);
880 
881 	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882 		  index);
883 
884 	return EMULATE_DONE;
885 }
886 
887 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
888 					   uint32_t cause, struct kvm_run *run,
889 					   struct kvm_vcpu *vcpu)
890 {
891 	struct mips_coproc *cop0 = vcpu->arch.cop0;
892 	enum emulation_result er = EMULATE_DONE;
893 	int32_t rt, rd, copz, sel, co_bit, op;
894 	uint32_t pc = vcpu->arch.pc;
895 	unsigned long curr_pc;
896 
897 	/*
898 	 * Update PC and hold onto current PC in case there is
899 	 * an error and we want to rollback the PC
900 	 */
901 	curr_pc = vcpu->arch.pc;
902 	er = update_pc(vcpu, cause);
903 	if (er == EMULATE_FAIL)
904 		return er;
905 
906 	copz = (inst >> 21) & 0x1f;
907 	rt = (inst >> 16) & 0x1f;
908 	rd = (inst >> 11) & 0x1f;
909 	sel = inst & 0x7;
910 	co_bit = (inst >> 25) & 1;
911 
912 	if (co_bit) {
913 		op = (inst) & 0xff;
914 
915 		switch (op) {
916 		case tlbr_op:	/*  Read indexed TLB entry  */
917 			er = kvm_mips_emul_tlbr(vcpu);
918 			break;
919 		case tlbwi_op:	/*  Write indexed  */
920 			er = kvm_mips_emul_tlbwi(vcpu);
921 			break;
922 		case tlbwr_op:	/*  Write random  */
923 			er = kvm_mips_emul_tlbwr(vcpu);
924 			break;
925 		case tlbp_op:	/* TLB Probe */
926 			er = kvm_mips_emul_tlbp(vcpu);
927 			break;
928 		case rfe_op:
929 			kvm_err("!!!COP0_RFE!!!\n");
930 			break;
931 		case eret_op:
932 			er = kvm_mips_emul_eret(vcpu);
933 			goto dont_update_pc;
934 			break;
935 		case wait_op:
936 			er = kvm_mips_emul_wait(vcpu);
937 			break;
938 		}
939 	} else {
940 		switch (copz) {
941 		case mfc_op:
942 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
943 			cop0->stat[rd][sel]++;
944 #endif
945 			/* Get reg */
946 			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
947 				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
948 			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
949 				vcpu->arch.gprs[rt] = 0x0;
950 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
951 				kvm_mips_trans_mfc0(inst, opc, vcpu);
952 #endif
953 			} else {
954 				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
955 
956 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
957 				kvm_mips_trans_mfc0(inst, opc, vcpu);
958 #endif
959 			}
960 
961 			kvm_debug
962 			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
963 			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
964 
965 			break;
966 
967 		case dmfc_op:
968 			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
969 			break;
970 
971 		case mtc_op:
972 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
973 			cop0->stat[rd][sel]++;
974 #endif
975 			if ((rd == MIPS_CP0_TLB_INDEX)
976 			    && (vcpu->arch.gprs[rt] >=
977 				KVM_MIPS_GUEST_TLB_SIZE)) {
978 				kvm_err("Invalid TLB Index: %ld",
979 					vcpu->arch.gprs[rt]);
980 				er = EMULATE_FAIL;
981 				break;
982 			}
983 #define C0_EBASE_CORE_MASK 0xff
984 			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
985 				/* Preserve CORE number */
986 				kvm_change_c0_guest_ebase(cop0,
987 							  ~(C0_EBASE_CORE_MASK),
988 							  vcpu->arch.gprs[rt]);
989 				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
990 					kvm_read_c0_guest_ebase(cop0));
991 			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
992 				uint32_t nasid =
993 					vcpu->arch.gprs[rt] & ASID_MASK;
994 				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
995 				    ((kvm_read_c0_guest_entryhi(cop0) &
996 				      ASID_MASK) != nasid)) {
997 					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
998 						kvm_read_c0_guest_entryhi(cop0)
999 						& ASID_MASK,
1000 						vcpu->arch.gprs[rt]
1001 						& ASID_MASK);
1002 
1003 					/* Blow away the shadow host TLBs */
1004 					kvm_mips_flush_host_tlb(1);
1005 				}
1006 				kvm_write_c0_guest_entryhi(cop0,
1007 							   vcpu->arch.gprs[rt]);
1008 			}
1009 			/* Are we writing to COUNT */
1010 			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1011 				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1012 				goto done;
1013 			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1014 				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1015 					  pc, kvm_read_c0_guest_compare(cop0),
1016 					  vcpu->arch.gprs[rt]);
1017 
1018 				/* If we are writing to COMPARE */
1019 				/* Clear pending timer interrupt, if any */
1020 				kvm_mips_callbacks->dequeue_timer_int(vcpu);
1021 				kvm_mips_write_compare(vcpu,
1022 						       vcpu->arch.gprs[rt]);
1023 			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1024 				kvm_write_c0_guest_status(cop0,
1025 							  vcpu->arch.gprs[rt]);
1026 				/*
1027 				 * Make sure that CU1 and NMI bits are
1028 				 * never set
1029 				 */
1030 				kvm_clear_c0_guest_status(cop0,
1031 							  (ST0_CU1 | ST0_NMI));
1032 
1033 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1034 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1035 #endif
1036 			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1037 				uint32_t old_cause, new_cause;
1038 
1039 				old_cause = kvm_read_c0_guest_cause(cop0);
1040 				new_cause = vcpu->arch.gprs[rt];
1041 				/* Update R/W bits */
1042 				kvm_change_c0_guest_cause(cop0, 0x08800300,
1043 							  new_cause);
1044 				/* DC bit enabling/disabling timer? */
1045 				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1046 					if (new_cause & CAUSEF_DC)
1047 						kvm_mips_count_disable_cause(vcpu);
1048 					else
1049 						kvm_mips_count_enable_cause(vcpu);
1050 				}
1051 			} else {
1052 				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1053 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1054 				kvm_mips_trans_mtc0(inst, opc, vcpu);
1055 #endif
1056 			}
1057 
1058 			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1059 				  rd, sel, cop0->reg[rd][sel]);
1060 			break;
1061 
1062 		case dmtc_op:
1063 			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1064 				vcpu->arch.pc, rt, rd, sel);
1065 			er = EMULATE_FAIL;
1066 			break;
1067 
1068 		case mfmcz_op:
1069 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1070 			cop0->stat[MIPS_CP0_STATUS][0]++;
1071 #endif
1072 			if (rt != 0) {
1073 				vcpu->arch.gprs[rt] =
1074 				    kvm_read_c0_guest_status(cop0);
1075 			}
1076 			/* EI */
1077 			if (inst & 0x20) {
1078 				kvm_debug("[%#lx] mfmcz_op: EI\n",
1079 					  vcpu->arch.pc);
1080 				kvm_set_c0_guest_status(cop0, ST0_IE);
1081 			} else {
1082 				kvm_debug("[%#lx] mfmcz_op: DI\n",
1083 					  vcpu->arch.pc);
1084 				kvm_clear_c0_guest_status(cop0, ST0_IE);
1085 			}
1086 
1087 			break;
1088 
1089 		case wrpgpr_op:
1090 			{
1091 				uint32_t css =
1092 				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1093 				uint32_t pss =
1094 				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1095 				/*
1096 				 * We don't support any shadow register sets, so
1097 				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1098 				 */
1099 				if (css || pss) {
1100 					er = EMULATE_FAIL;
1101 					break;
1102 				}
1103 				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1104 					  vcpu->arch.gprs[rt]);
1105 				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1106 			}
1107 			break;
1108 		default:
1109 			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1110 				vcpu->arch.pc, copz);
1111 			er = EMULATE_FAIL;
1112 			break;
1113 		}
1114 	}
1115 
1116 done:
1117 	/* Rollback PC only if emulation was unsuccessful */
1118 	if (er == EMULATE_FAIL)
1119 		vcpu->arch.pc = curr_pc;
1120 
1121 dont_update_pc:
1122 	/*
1123 	 * This is for special instructions whose emulation
1124 	 * updates the PC, so do not overwrite the PC under
1125 	 * any circumstances
1126 	 */
1127 
1128 	return er;
1129 }
1130 
1131 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1132 					     struct kvm_run *run,
1133 					     struct kvm_vcpu *vcpu)
1134 {
1135 	enum emulation_result er = EMULATE_DO_MMIO;
1136 	int32_t op, base, rt, offset;
1137 	uint32_t bytes;
1138 	void *data = run->mmio.data;
1139 	unsigned long curr_pc;
1140 
1141 	/*
1142 	 * Update PC and hold onto current PC in case there is
1143 	 * an error and we want to rollback the PC
1144 	 */
1145 	curr_pc = vcpu->arch.pc;
1146 	er = update_pc(vcpu, cause);
1147 	if (er == EMULATE_FAIL)
1148 		return er;
1149 
1150 	rt = (inst >> 16) & 0x1f;
1151 	base = (inst >> 21) & 0x1f;
1152 	offset = inst & 0xffff;
1153 	op = (inst >> 26) & 0x3f;
1154 
1155 	switch (op) {
1156 	case sb_op:
1157 		bytes = 1;
1158 		if (bytes > sizeof(run->mmio.data)) {
1159 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1160 			       run->mmio.len);
1161 		}
1162 		run->mmio.phys_addr =
1163 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1164 						   host_cp0_badvaddr);
1165 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1166 			er = EMULATE_FAIL;
1167 			break;
1168 		}
1169 		run->mmio.len = bytes;
1170 		run->mmio.is_write = 1;
1171 		vcpu->mmio_needed = 1;
1172 		vcpu->mmio_is_write = 1;
1173 		*(u8 *) data = vcpu->arch.gprs[rt];
1174 		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1175 			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1176 			  *(uint8_t *) data);
1177 
1178 		break;
1179 
1180 	case sw_op:
1181 		bytes = 4;
1182 		if (bytes > sizeof(run->mmio.data)) {
1183 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1184 			       run->mmio.len);
1185 		}
1186 		run->mmio.phys_addr =
1187 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1188 						   host_cp0_badvaddr);
1189 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1190 			er = EMULATE_FAIL;
1191 			break;
1192 		}
1193 
1194 		run->mmio.len = bytes;
1195 		run->mmio.is_write = 1;
1196 		vcpu->mmio_needed = 1;
1197 		vcpu->mmio_is_write = 1;
1198 		*(uint32_t *) data = vcpu->arch.gprs[rt];
1199 
1200 		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1201 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1202 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1203 		break;
1204 
1205 	case sh_op:
1206 		bytes = 2;
1207 		if (bytes > sizeof(run->mmio.data)) {
1208 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1209 			       run->mmio.len);
1210 		}
1211 		run->mmio.phys_addr =
1212 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1213 						   host_cp0_badvaddr);
1214 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1215 			er = EMULATE_FAIL;
1216 			break;
1217 		}
1218 
1219 		run->mmio.len = bytes;
1220 		run->mmio.is_write = 1;
1221 		vcpu->mmio_needed = 1;
1222 		vcpu->mmio_is_write = 1;
1223 		*(uint16_t *) data = vcpu->arch.gprs[rt];
1224 
1225 		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1226 			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1227 			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1228 		break;
1229 
1230 	default:
1231 		kvm_err("Store not yet supported");
1232 		er = EMULATE_FAIL;
1233 		break;
1234 	}
1235 
1236 	/* Rollback PC if emulation was unsuccessful */
1237 	if (er == EMULATE_FAIL)
1238 		vcpu->arch.pc = curr_pc;
1239 
1240 	return er;
1241 }
1242 
1243 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1244 					    struct kvm_run *run,
1245 					    struct kvm_vcpu *vcpu)
1246 {
1247 	enum emulation_result er = EMULATE_DO_MMIO;
1248 	int32_t op, base, rt, offset;
1249 	uint32_t bytes;
1250 
1251 	rt = (inst >> 16) & 0x1f;
1252 	base = (inst >> 21) & 0x1f;
1253 	offset = inst & 0xffff;
1254 	op = (inst >> 26) & 0x3f;
1255 
1256 	vcpu->arch.pending_load_cause = cause;
1257 	vcpu->arch.io_gpr = rt;
1258 
1259 	switch (op) {
1260 	case lw_op:
1261 		bytes = 4;
1262 		if (bytes > sizeof(run->mmio.data)) {
1263 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1264 			       run->mmio.len);
1265 			er = EMULATE_FAIL;
1266 			break;
1267 		}
1268 		run->mmio.phys_addr =
1269 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1270 						   host_cp0_badvaddr);
1271 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1272 			er = EMULATE_FAIL;
1273 			break;
1274 		}
1275 
1276 		run->mmio.len = bytes;
1277 		run->mmio.is_write = 0;
1278 		vcpu->mmio_needed = 1;
1279 		vcpu->mmio_is_write = 0;
1280 		break;
1281 
1282 	case lh_op:
1283 	case lhu_op:
1284 		bytes = 2;
1285 		if (bytes > sizeof(run->mmio.data)) {
1286 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1287 			       run->mmio.len);
1288 			er = EMULATE_FAIL;
1289 			break;
1290 		}
1291 		run->mmio.phys_addr =
1292 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1293 						   host_cp0_badvaddr);
1294 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1295 			er = EMULATE_FAIL;
1296 			break;
1297 		}
1298 
1299 		run->mmio.len = bytes;
1300 		run->mmio.is_write = 0;
1301 		vcpu->mmio_needed = 1;
1302 		vcpu->mmio_is_write = 0;
1303 
1304 		if (op == lh_op)
1305 			vcpu->mmio_needed = 2;
1306 		else
1307 			vcpu->mmio_needed = 1;
1308 
1309 		break;
1310 
1311 	case lbu_op:
1312 	case lb_op:
1313 		bytes = 1;
1314 		if (bytes > sizeof(run->mmio.data)) {
1315 			kvm_err("%s: bad MMIO length: %d\n", __func__,
1316 			       run->mmio.len);
1317 			er = EMULATE_FAIL;
1318 			break;
1319 		}
1320 		run->mmio.phys_addr =
1321 		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1322 						   host_cp0_badvaddr);
1323 		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1324 			er = EMULATE_FAIL;
1325 			break;
1326 		}
1327 
1328 		run->mmio.len = bytes;
1329 		run->mmio.is_write = 0;
1330 		vcpu->mmio_is_write = 0;
1331 
1332 		if (op == lb_op)
1333 			vcpu->mmio_needed = 2;
1334 		else
1335 			vcpu->mmio_needed = 1;
1336 
1337 		break;
1338 
1339 	default:
1340 		kvm_err("Load not yet supported");
1341 		er = EMULATE_FAIL;
1342 		break;
1343 	}
1344 
1345 	return er;
1346 }
1347 
1348 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1349 {
1350 	unsigned long offset = (va & ~PAGE_MASK);
1351 	struct kvm *kvm = vcpu->kvm;
1352 	unsigned long pa;
1353 	gfn_t gfn;
1354 	pfn_t pfn;
1355 
1356 	gfn = va >> PAGE_SHIFT;
1357 
1358 	if (gfn >= kvm->arch.guest_pmap_npages) {
1359 		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1360 		kvm_mips_dump_host_tlbs();
1361 		kvm_arch_vcpu_dump_regs(vcpu);
1362 		return -1;
1363 	}
1364 	pfn = kvm->arch.guest_pmap[gfn];
1365 	pa = (pfn << PAGE_SHIFT) | offset;
1366 
1367 	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1368 		  CKSEG0ADDR(pa));
1369 
1370 	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1371 	return 0;
1372 }
1373 
1374 #define MIPS_CACHE_OP_INDEX_INV         0x0
1375 #define MIPS_CACHE_OP_INDEX_LD_TAG      0x1
1376 #define MIPS_CACHE_OP_INDEX_ST_TAG      0x2
1377 #define MIPS_CACHE_OP_IMP               0x3
1378 #define MIPS_CACHE_OP_HIT_INV           0x4
1379 #define MIPS_CACHE_OP_FILL_WB_INV       0x5
1380 #define MIPS_CACHE_OP_HIT_HB            0x6
1381 #define MIPS_CACHE_OP_FETCH_LOCK        0x7
1382 
1383 #define MIPS_CACHE_ICACHE               0x0
1384 #define MIPS_CACHE_DCACHE               0x1
1385 #define MIPS_CACHE_SEC                  0x3
1386 
1387 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1388 					     uint32_t cause,
1389 					     struct kvm_run *run,
1390 					     struct kvm_vcpu *vcpu)
1391 {
1392 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1393 	enum emulation_result er = EMULATE_DONE;
1394 	int32_t offset, cache, op_inst, op, base;
1395 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1396 	unsigned long va;
1397 	unsigned long curr_pc;
1398 
1399 	/*
1400 	 * Update PC and hold onto current PC in case there is
1401 	 * an error and we want to rollback the PC
1402 	 */
1403 	curr_pc = vcpu->arch.pc;
1404 	er = update_pc(vcpu, cause);
1405 	if (er == EMULATE_FAIL)
1406 		return er;
1407 
1408 	base = (inst >> 21) & 0x1f;
1409 	op_inst = (inst >> 16) & 0x1f;
1410 	offset = inst & 0xffff;
1411 	cache = (inst >> 16) & 0x3;
1412 	op = (inst >> 18) & 0x7;
1413 
1414 	va = arch->gprs[base] + offset;
1415 
1416 	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1417 		  cache, op, base, arch->gprs[base], offset);
1418 
1419 	/*
1420 	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1421 	 * invalidate the caches entirely by stepping through all the
1422 	 * ways/indexes
1423 	 */
1424 	if (op == MIPS_CACHE_OP_INDEX_INV) {
1425 		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1426 			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1427 			  arch->gprs[base], offset);
1428 
1429 		if (cache == MIPS_CACHE_DCACHE)
1430 			r4k_blast_dcache();
1431 		else if (cache == MIPS_CACHE_ICACHE)
1432 			r4k_blast_icache();
1433 		else {
1434 			kvm_err("%s: unsupported CACHE INDEX operation\n",
1435 				__func__);
1436 			return EMULATE_FAIL;
1437 		}
1438 
1439 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1440 		kvm_mips_trans_cache_index(inst, opc, vcpu);
1441 #endif
1442 		goto done;
1443 	}
1444 
1445 	preempt_disable();
1446 	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1447 		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1448 			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1449 	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1450 		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1451 		int index;
1452 
1453 		/* If an entry already exists then skip */
1454 		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1455 			goto skip_fault;
1456 
1457 		/*
1458 		 * If address not in the guest TLB, then give the guest a fault,
1459 		 * the resulting handler will do the right thing
1460 		 */
1461 		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1462 						  (kvm_read_c0_guest_entryhi
1463 						   (cop0) & ASID_MASK));
1464 
1465 		if (index < 0) {
1466 			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1467 			vcpu->arch.host_cp0_badvaddr = va;
1468 			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1469 							 vcpu);
1470 			preempt_enable();
1471 			goto dont_update_pc;
1472 		} else {
1473 			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1474 			/*
1475 			 * Check if the entry is valid, if not then setup a TLB
1476 			 * invalid exception to the guest
1477 			 */
1478 			if (!TLB_IS_VALID(*tlb, va)) {
1479 				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1480 								run, vcpu);
1481 				preempt_enable();
1482 				goto dont_update_pc;
1483 			} else {
1484 				/*
1485 				 * We fault an entry from the guest tlb to the
1486 				 * shadow host TLB
1487 				 */
1488 				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1489 								     NULL,
1490 								     NULL);
1491 			}
1492 		}
1493 	} else {
1494 		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1495 			cache, op, base, arch->gprs[base], offset);
1496 		er = EMULATE_FAIL;
1497 		preempt_enable();
1498 		goto dont_update_pc;
1499 
1500 	}
1501 
1502 skip_fault:
1503 	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1504 	if (cache == MIPS_CACHE_DCACHE
1505 	    && (op == MIPS_CACHE_OP_FILL_WB_INV
1506 		|| op == MIPS_CACHE_OP_HIT_INV)) {
1507 		flush_dcache_line(va);
1508 
1509 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1510 		/*
1511 		 * Replace the CACHE instruction, with a SYNCI, not the same,
1512 		 * but avoids a trap
1513 		 */
1514 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1515 #endif
1516 	} else if (op == MIPS_CACHE_OP_HIT_INV && cache == MIPS_CACHE_ICACHE) {
1517 		flush_dcache_line(va);
1518 		flush_icache_line(va);
1519 
1520 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1521 		/* Replace the CACHE instruction, with a SYNCI */
1522 		kvm_mips_trans_cache_va(inst, opc, vcpu);
1523 #endif
1524 	} else {
1525 		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1526 			cache, op, base, arch->gprs[base], offset);
1527 		er = EMULATE_FAIL;
1528 		preempt_enable();
1529 		goto dont_update_pc;
1530 	}
1531 
1532 	preempt_enable();
1533 
1534 dont_update_pc:
1535 	/* Rollback PC */
1536 	vcpu->arch.pc = curr_pc;
1537 done:
1538 	return er;
1539 }
1540 
1541 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1542 					    struct kvm_run *run,
1543 					    struct kvm_vcpu *vcpu)
1544 {
1545 	enum emulation_result er = EMULATE_DONE;
1546 	uint32_t inst;
1547 
1548 	/* Fetch the instruction. */
1549 	if (cause & CAUSEF_BD)
1550 		opc += 1;
1551 
1552 	inst = kvm_get_inst(opc, vcpu);
1553 
1554 	switch (((union mips_instruction)inst).r_format.opcode) {
1555 	case cop0_op:
1556 		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1557 		break;
1558 	case sb_op:
1559 	case sh_op:
1560 	case sw_op:
1561 		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1562 		break;
1563 	case lb_op:
1564 	case lbu_op:
1565 	case lhu_op:
1566 	case lh_op:
1567 	case lw_op:
1568 		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1569 		break;
1570 
1571 	case cache_op:
1572 		++vcpu->stat.cache_exits;
1573 		trace_kvm_exit(vcpu, CACHE_EXITS);
1574 		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1575 		break;
1576 
1577 	default:
1578 		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1579 			inst);
1580 		kvm_arch_vcpu_dump_regs(vcpu);
1581 		er = EMULATE_FAIL;
1582 		break;
1583 	}
1584 
1585 	return er;
1586 }
1587 
1588 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1589 					       uint32_t *opc,
1590 					       struct kvm_run *run,
1591 					       struct kvm_vcpu *vcpu)
1592 {
1593 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1594 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1595 	enum emulation_result er = EMULATE_DONE;
1596 
1597 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1598 		/* save old pc */
1599 		kvm_write_c0_guest_epc(cop0, arch->pc);
1600 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1601 
1602 		if (cause & CAUSEF_BD)
1603 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1604 		else
1605 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1606 
1607 		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1608 
1609 		kvm_change_c0_guest_cause(cop0, (0xff),
1610 					  (T_SYSCALL << CAUSEB_EXCCODE));
1611 
1612 		/* Set PC to the exception entry point */
1613 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1614 
1615 	} else {
1616 		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1617 		er = EMULATE_FAIL;
1618 	}
1619 
1620 	return er;
1621 }
1622 
1623 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1624 						  uint32_t *opc,
1625 						  struct kvm_run *run,
1626 						  struct kvm_vcpu *vcpu)
1627 {
1628 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1629 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1630 	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1631 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1632 
1633 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1634 		/* save old pc */
1635 		kvm_write_c0_guest_epc(cop0, arch->pc);
1636 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1637 
1638 		if (cause & CAUSEF_BD)
1639 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1640 		else
1641 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1642 
1643 		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1644 			  arch->pc);
1645 
1646 		/* set pc to the exception entry point */
1647 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1648 
1649 	} else {
1650 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1651 			  arch->pc);
1652 
1653 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1654 	}
1655 
1656 	kvm_change_c0_guest_cause(cop0, (0xff),
1657 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1658 
1659 	/* setup badvaddr, context and entryhi registers for the guest */
1660 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1661 	/* XXXKYMA: is the context register used by linux??? */
1662 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1663 	/* Blow away the shadow host TLBs */
1664 	kvm_mips_flush_host_tlb(1);
1665 
1666 	return EMULATE_DONE;
1667 }
1668 
1669 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1670 						 uint32_t *opc,
1671 						 struct kvm_run *run,
1672 						 struct kvm_vcpu *vcpu)
1673 {
1674 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1675 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1676 	unsigned long entryhi =
1677 		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1678 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1679 
1680 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1681 		/* save old pc */
1682 		kvm_write_c0_guest_epc(cop0, arch->pc);
1683 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1684 
1685 		if (cause & CAUSEF_BD)
1686 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1687 		else
1688 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1689 
1690 		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1691 			  arch->pc);
1692 
1693 		/* set pc to the exception entry point */
1694 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1695 
1696 	} else {
1697 		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1698 			  arch->pc);
1699 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1700 	}
1701 
1702 	kvm_change_c0_guest_cause(cop0, (0xff),
1703 				  (T_TLB_LD_MISS << CAUSEB_EXCCODE));
1704 
1705 	/* setup badvaddr, context and entryhi registers for the guest */
1706 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1707 	/* XXXKYMA: is the context register used by linux??? */
1708 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1709 	/* Blow away the shadow host TLBs */
1710 	kvm_mips_flush_host_tlb(1);
1711 
1712 	return EMULATE_DONE;
1713 }
1714 
1715 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1716 						  uint32_t *opc,
1717 						  struct kvm_run *run,
1718 						  struct kvm_vcpu *vcpu)
1719 {
1720 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1721 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1722 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1723 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1724 
1725 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1726 		/* save old pc */
1727 		kvm_write_c0_guest_epc(cop0, arch->pc);
1728 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1729 
1730 		if (cause & CAUSEF_BD)
1731 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1732 		else
1733 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1734 
1735 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1736 			  arch->pc);
1737 
1738 		/* Set PC to the exception entry point */
1739 		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1740 	} else {
1741 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1742 			  arch->pc);
1743 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1744 	}
1745 
1746 	kvm_change_c0_guest_cause(cop0, (0xff),
1747 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1748 
1749 	/* setup badvaddr, context and entryhi registers for the guest */
1750 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1751 	/* XXXKYMA: is the context register used by linux??? */
1752 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1753 	/* Blow away the shadow host TLBs */
1754 	kvm_mips_flush_host_tlb(1);
1755 
1756 	return EMULATE_DONE;
1757 }
1758 
1759 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1760 						 uint32_t *opc,
1761 						 struct kvm_run *run,
1762 						 struct kvm_vcpu *vcpu)
1763 {
1764 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1765 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1766 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1767 		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1768 
1769 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1770 		/* save old pc */
1771 		kvm_write_c0_guest_epc(cop0, arch->pc);
1772 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1773 
1774 		if (cause & CAUSEF_BD)
1775 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1776 		else
1777 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1778 
1779 		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1780 			  arch->pc);
1781 
1782 		/* Set PC to the exception entry point */
1783 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1784 	} else {
1785 		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1786 			  arch->pc);
1787 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1788 	}
1789 
1790 	kvm_change_c0_guest_cause(cop0, (0xff),
1791 				  (T_TLB_ST_MISS << CAUSEB_EXCCODE));
1792 
1793 	/* setup badvaddr, context and entryhi registers for the guest */
1794 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1795 	/* XXXKYMA: is the context register used by linux??? */
1796 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1797 	/* Blow away the shadow host TLBs */
1798 	kvm_mips_flush_host_tlb(1);
1799 
1800 	return EMULATE_DONE;
1801 }
1802 
1803 /* TLBMOD: store into address matching TLB with Dirty bit off */
1804 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1805 					     struct kvm_run *run,
1806 					     struct kvm_vcpu *vcpu)
1807 {
1808 	enum emulation_result er = EMULATE_DONE;
1809 #ifdef DEBUG
1810 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1811 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1812 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1813 	int index;
1814 
1815 	/* If address not in the guest TLB, then we are in trouble */
1816 	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1817 	if (index < 0) {
1818 		/* XXXKYMA Invalidate and retry */
1819 		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1820 		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1821 		     __func__, entryhi);
1822 		kvm_mips_dump_guest_tlbs(vcpu);
1823 		kvm_mips_dump_host_tlbs();
1824 		return EMULATE_FAIL;
1825 	}
1826 #endif
1827 
1828 	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1829 	return er;
1830 }
1831 
1832 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1833 					      uint32_t *opc,
1834 					      struct kvm_run *run,
1835 					      struct kvm_vcpu *vcpu)
1836 {
1837 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1838 	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1839 				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1840 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1841 
1842 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1843 		/* save old pc */
1844 		kvm_write_c0_guest_epc(cop0, arch->pc);
1845 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1846 
1847 		if (cause & CAUSEF_BD)
1848 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1849 		else
1850 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1851 
1852 		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
1853 			  arch->pc);
1854 
1855 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1856 	} else {
1857 		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
1858 			  arch->pc);
1859 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1860 	}
1861 
1862 	kvm_change_c0_guest_cause(cop0, (0xff), (T_TLB_MOD << CAUSEB_EXCCODE));
1863 
1864 	/* setup badvaddr, context and entryhi registers for the guest */
1865 	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1866 	/* XXXKYMA: is the context register used by linux??? */
1867 	kvm_write_c0_guest_entryhi(cop0, entryhi);
1868 	/* Blow away the shadow host TLBs */
1869 	kvm_mips_flush_host_tlb(1);
1870 
1871 	return EMULATE_DONE;
1872 }
1873 
1874 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
1875 					       uint32_t *opc,
1876 					       struct kvm_run *run,
1877 					       struct kvm_vcpu *vcpu)
1878 {
1879 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1880 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1881 
1882 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1883 		/* save old pc */
1884 		kvm_write_c0_guest_epc(cop0, arch->pc);
1885 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1886 
1887 		if (cause & CAUSEF_BD)
1888 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1889 		else
1890 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1891 
1892 	}
1893 
1894 	arch->pc = KVM_GUEST_KSEG0 + 0x180;
1895 
1896 	kvm_change_c0_guest_cause(cop0, (0xff),
1897 				  (T_COP_UNUSABLE << CAUSEB_EXCCODE));
1898 	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
1899 
1900 	return EMULATE_DONE;
1901 }
1902 
1903 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
1904 					      uint32_t *opc,
1905 					      struct kvm_run *run,
1906 					      struct kvm_vcpu *vcpu)
1907 {
1908 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1909 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1910 	enum emulation_result er = EMULATE_DONE;
1911 
1912 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1913 		/* save old pc */
1914 		kvm_write_c0_guest_epc(cop0, arch->pc);
1915 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1916 
1917 		if (cause & CAUSEF_BD)
1918 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1919 		else
1920 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1921 
1922 		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
1923 
1924 		kvm_change_c0_guest_cause(cop0, (0xff),
1925 					  (T_RES_INST << CAUSEB_EXCCODE));
1926 
1927 		/* Set PC to the exception entry point */
1928 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1929 
1930 	} else {
1931 		kvm_err("Trying to deliver RI when EXL is already set\n");
1932 		er = EMULATE_FAIL;
1933 	}
1934 
1935 	return er;
1936 }
1937 
1938 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
1939 					      uint32_t *opc,
1940 					      struct kvm_run *run,
1941 					      struct kvm_vcpu *vcpu)
1942 {
1943 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1944 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1945 	enum emulation_result er = EMULATE_DONE;
1946 
1947 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1948 		/* save old pc */
1949 		kvm_write_c0_guest_epc(cop0, arch->pc);
1950 		kvm_set_c0_guest_status(cop0, ST0_EXL);
1951 
1952 		if (cause & CAUSEF_BD)
1953 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1954 		else
1955 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1956 
1957 		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
1958 
1959 		kvm_change_c0_guest_cause(cop0, (0xff),
1960 					  (T_BREAK << CAUSEB_EXCCODE));
1961 
1962 		/* Set PC to the exception entry point */
1963 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1964 
1965 	} else {
1966 		kvm_err("Trying to deliver BP when EXL is already set\n");
1967 		er = EMULATE_FAIL;
1968 	}
1969 
1970 	return er;
1971 }
1972 
1973 /* ll/sc, rdhwr, sync emulation */
1974 
1975 #define OPCODE 0xfc000000
1976 #define BASE   0x03e00000
1977 #define RT     0x001f0000
1978 #define OFFSET 0x0000ffff
1979 #define LL     0xc0000000
1980 #define SC     0xe0000000
1981 #define SPEC0  0x00000000
1982 #define SPEC3  0x7c000000
1983 #define RD     0x0000f800
1984 #define FUNC   0x0000003f
1985 #define SYNC   0x0000000f
1986 #define RDHWR  0x0000003b
1987 
1988 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
1989 					 struct kvm_run *run,
1990 					 struct kvm_vcpu *vcpu)
1991 {
1992 	struct mips_coproc *cop0 = vcpu->arch.cop0;
1993 	struct kvm_vcpu_arch *arch = &vcpu->arch;
1994 	enum emulation_result er = EMULATE_DONE;
1995 	unsigned long curr_pc;
1996 	uint32_t inst;
1997 
1998 	/*
1999 	 * Update PC and hold onto current PC in case there is
2000 	 * an error and we want to rollback the PC
2001 	 */
2002 	curr_pc = vcpu->arch.pc;
2003 	er = update_pc(vcpu, cause);
2004 	if (er == EMULATE_FAIL)
2005 		return er;
2006 
2007 	/* Fetch the instruction. */
2008 	if (cause & CAUSEF_BD)
2009 		opc += 1;
2010 
2011 	inst = kvm_get_inst(opc, vcpu);
2012 
2013 	if (inst == KVM_INVALID_INST) {
2014 		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2015 		return EMULATE_FAIL;
2016 	}
2017 
2018 	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2019 		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2020 		int rd = (inst & RD) >> 11;
2021 		int rt = (inst & RT) >> 16;
2022 		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2023 		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2024 			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2025 				  rd, opc);
2026 			goto emulate_ri;
2027 		}
2028 		switch (rd) {
2029 		case 0:	/* CPU number */
2030 			arch->gprs[rt] = 0;
2031 			break;
2032 		case 1:	/* SYNCI length */
2033 			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2034 					     current_cpu_data.icache.linesz);
2035 			break;
2036 		case 2:	/* Read count register */
2037 			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2038 			break;
2039 		case 3:	/* Count register resolution */
2040 			switch (current_cpu_data.cputype) {
2041 			case CPU_20KC:
2042 			case CPU_25KF:
2043 				arch->gprs[rt] = 1;
2044 				break;
2045 			default:
2046 				arch->gprs[rt] = 2;
2047 			}
2048 			break;
2049 		case 29:
2050 			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2051 			break;
2052 
2053 		default:
2054 			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2055 			goto emulate_ri;
2056 		}
2057 	} else {
2058 		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2059 		goto emulate_ri;
2060 	}
2061 
2062 	return EMULATE_DONE;
2063 
2064 emulate_ri:
2065 	/*
2066 	 * Rollback PC (if in branch delay slot then the PC already points to
2067 	 * branch target), and pass the RI exception to the guest OS.
2068 	 */
2069 	vcpu->arch.pc = curr_pc;
2070 	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2071 }
2072 
2073 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2074 						  struct kvm_run *run)
2075 {
2076 	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2077 	enum emulation_result er = EMULATE_DONE;
2078 	unsigned long curr_pc;
2079 
2080 	if (run->mmio.len > sizeof(*gpr)) {
2081 		kvm_err("Bad MMIO length: %d", run->mmio.len);
2082 		er = EMULATE_FAIL;
2083 		goto done;
2084 	}
2085 
2086 	/*
2087 	 * Update PC and hold onto current PC in case there is
2088 	 * an error and we want to rollback the PC
2089 	 */
2090 	curr_pc = vcpu->arch.pc;
2091 	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2092 	if (er == EMULATE_FAIL)
2093 		return er;
2094 
2095 	switch (run->mmio.len) {
2096 	case 4:
2097 		*gpr = *(int32_t *) run->mmio.data;
2098 		break;
2099 
2100 	case 2:
2101 		if (vcpu->mmio_needed == 2)
2102 			*gpr = *(int16_t *) run->mmio.data;
2103 		else
2104 			*gpr = *(int16_t *) run->mmio.data;
2105 
2106 		break;
2107 	case 1:
2108 		if (vcpu->mmio_needed == 2)
2109 			*gpr = *(int8_t *) run->mmio.data;
2110 		else
2111 			*gpr = *(u8 *) run->mmio.data;
2112 		break;
2113 	}
2114 
2115 	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2116 		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2117 			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2118 			  vcpu->mmio_needed);
2119 
2120 done:
2121 	return er;
2122 }
2123 
2124 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2125 						  uint32_t *opc,
2126 						  struct kvm_run *run,
2127 						  struct kvm_vcpu *vcpu)
2128 {
2129 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2130 	struct mips_coproc *cop0 = vcpu->arch.cop0;
2131 	struct kvm_vcpu_arch *arch = &vcpu->arch;
2132 	enum emulation_result er = EMULATE_DONE;
2133 
2134 	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2135 		/* save old pc */
2136 		kvm_write_c0_guest_epc(cop0, arch->pc);
2137 		kvm_set_c0_guest_status(cop0, ST0_EXL);
2138 
2139 		if (cause & CAUSEF_BD)
2140 			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2141 		else
2142 			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2143 
2144 		kvm_change_c0_guest_cause(cop0, (0xff),
2145 					  (exccode << CAUSEB_EXCCODE));
2146 
2147 		/* Set PC to the exception entry point */
2148 		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2149 		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2150 
2151 		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2152 			  exccode, kvm_read_c0_guest_epc(cop0),
2153 			  kvm_read_c0_guest_badvaddr(cop0));
2154 	} else {
2155 		kvm_err("Trying to deliver EXC when EXL is already set\n");
2156 		er = EMULATE_FAIL;
2157 	}
2158 
2159 	return er;
2160 }
2161 
2162 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2163 					       uint32_t *opc,
2164 					       struct kvm_run *run,
2165 					       struct kvm_vcpu *vcpu)
2166 {
2167 	enum emulation_result er = EMULATE_DONE;
2168 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2169 	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2170 
2171 	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2172 
2173 	if (usermode) {
2174 		switch (exccode) {
2175 		case T_INT:
2176 		case T_SYSCALL:
2177 		case T_BREAK:
2178 		case T_RES_INST:
2179 			break;
2180 
2181 		case T_COP_UNUSABLE:
2182 			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2183 				er = EMULATE_PRIV_FAIL;
2184 			break;
2185 
2186 		case T_TLB_MOD:
2187 			break;
2188 
2189 		case T_TLB_LD_MISS:
2190 			/*
2191 			 * We we are accessing Guest kernel space, then send an
2192 			 * address error exception to the guest
2193 			 */
2194 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2195 				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2196 					  badvaddr);
2197 				cause &= ~0xff;
2198 				cause |= (T_ADDR_ERR_LD << CAUSEB_EXCCODE);
2199 				er = EMULATE_PRIV_FAIL;
2200 			}
2201 			break;
2202 
2203 		case T_TLB_ST_MISS:
2204 			/*
2205 			 * We we are accessing Guest kernel space, then send an
2206 			 * address error exception to the guest
2207 			 */
2208 			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2209 				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2210 					  badvaddr);
2211 				cause &= ~0xff;
2212 				cause |= (T_ADDR_ERR_ST << CAUSEB_EXCCODE);
2213 				er = EMULATE_PRIV_FAIL;
2214 			}
2215 			break;
2216 
2217 		case T_ADDR_ERR_ST:
2218 			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2219 				  badvaddr);
2220 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2221 				cause &= ~0xff;
2222 				cause |= (T_TLB_ST_MISS << CAUSEB_EXCCODE);
2223 			}
2224 			er = EMULATE_PRIV_FAIL;
2225 			break;
2226 		case T_ADDR_ERR_LD:
2227 			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2228 				  badvaddr);
2229 			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2230 				cause &= ~0xff;
2231 				cause |= (T_TLB_LD_MISS << CAUSEB_EXCCODE);
2232 			}
2233 			er = EMULATE_PRIV_FAIL;
2234 			break;
2235 		default:
2236 			er = EMULATE_PRIV_FAIL;
2237 			break;
2238 		}
2239 	}
2240 
2241 	if (er == EMULATE_PRIV_FAIL)
2242 		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2243 
2244 	return er;
2245 }
2246 
2247 /*
2248  * User Address (UA) fault, this could happen if
2249  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2250  *     case we pass on the fault to the guest kernel and let it handle it.
2251  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2252  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2253  */
2254 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2255 					      uint32_t *opc,
2256 					      struct kvm_run *run,
2257 					      struct kvm_vcpu *vcpu)
2258 {
2259 	enum emulation_result er = EMULATE_DONE;
2260 	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2261 	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2262 	int index;
2263 
2264 	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2265 		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2266 
2267 	/*
2268 	 * KVM would not have got the exception if this entry was valid in the
2269 	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2270 	 * send the guest an exception. The guest exc handler should then inject
2271 	 * an entry into the guest TLB.
2272 	 */
2273 	index = kvm_mips_guest_tlb_lookup(vcpu,
2274 					  (va & VPN2_MASK) |
2275 					  (kvm_read_c0_guest_entryhi
2276 					   (vcpu->arch.cop0) & ASID_MASK));
2277 	if (index < 0) {
2278 		if (exccode == T_TLB_LD_MISS) {
2279 			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2280 		} else if (exccode == T_TLB_ST_MISS) {
2281 			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2282 		} else {
2283 			kvm_err("%s: invalid exc code: %d\n", __func__,
2284 				exccode);
2285 			er = EMULATE_FAIL;
2286 		}
2287 	} else {
2288 		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2289 
2290 		/*
2291 		 * Check if the entry is valid, if not then setup a TLB invalid
2292 		 * exception to the guest
2293 		 */
2294 		if (!TLB_IS_VALID(*tlb, va)) {
2295 			if (exccode == T_TLB_LD_MISS) {
2296 				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2297 								vcpu);
2298 			} else if (exccode == T_TLB_ST_MISS) {
2299 				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2300 								vcpu);
2301 			} else {
2302 				kvm_err("%s: invalid exc code: %d\n", __func__,
2303 					exccode);
2304 				er = EMULATE_FAIL;
2305 			}
2306 		} else {
2307 			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2308 				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2309 			/*
2310 			 * OK we have a Guest TLB entry, now inject it into the
2311 			 * shadow host TLB
2312 			 */
2313 			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2314 							     NULL);
2315 		}
2316 	}
2317 
2318 	return er;
2319 }
2320