xref: /linux/arch/mips/kernel/vpe.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/config.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/fs.h>
35 #include <linux/init.h>
36 #include <asm/uaccess.h>
37 #include <linux/slab.h>
38 #include <linux/list.h>
39 #include <linux/vmalloc.h>
40 #include <linux/elf.h>
41 #include <linux/seq_file.h>
42 #include <linux/syscalls.h>
43 #include <linux/moduleloader.h>
44 #include <linux/interrupt.h>
45 #include <linux/poll.h>
46 #include <linux/bootmem.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/cacheflush.h>
50 #include <asm/atomic.h>
51 #include <asm/cpu.h>
52 #include <asm/processor.h>
53 #include <asm/system.h>
54 #include <asm/vpe.h>
55 #include <asm/kspd.h>
56 
57 typedef void *vpe_handle;
58 
59 #ifndef ARCH_SHF_SMALL
60 #define ARCH_SHF_SMALL 0
61 #endif
62 
63 /* If this is set, the section belongs in the init part of the module */
64 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
65 
66 static char module_name[] = "vpe";
67 static int major;
68 
69 #ifdef CONFIG_MIPS_APSP_KSPD
70  static struct kspd_notifications kspd_events;
71 static int kspd_events_reqd = 0;
72 #endif
73 
74 /* grab the likely amount of memory we will need. */
75 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
76 #define P_SIZE (2 * 1024 * 1024)
77 #else
78 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
79 #define P_SIZE (256 * 1024)
80 #endif
81 
82 extern unsigned long physical_memsize;
83 
84 #define MAX_VPES 16
85 #define VPE_PATH_MAX 256
86 
87 enum vpe_state {
88 	VPE_STATE_UNUSED = 0,
89 	VPE_STATE_INUSE,
90 	VPE_STATE_RUNNING
91 };
92 
93 enum tc_state {
94 	TC_STATE_UNUSED = 0,
95 	TC_STATE_INUSE,
96 	TC_STATE_RUNNING,
97 	TC_STATE_DYNAMIC
98 };
99 
100 struct vpe {
101 	enum vpe_state state;
102 
103 	/* (device) minor associated with this vpe */
104 	int minor;
105 
106 	/* elfloader stuff */
107 	void *load_addr;
108 	unsigned long len;
109 	char *pbuffer;
110 	unsigned long plen;
111 	unsigned int uid, gid;
112 	char cwd[VPE_PATH_MAX];
113 
114 	unsigned long __start;
115 
116 	/* tc's associated with this vpe */
117 	struct list_head tc;
118 
119 	/* The list of vpe's */
120 	struct list_head list;
121 
122 	/* shared symbol address */
123 	void *shared_ptr;
124 
125 	/* the list of who wants to know when something major happens */
126 	struct list_head notify;
127 };
128 
129 struct tc {
130 	enum tc_state state;
131 	int index;
132 
133 	/* parent VPE */
134 	struct vpe *pvpe;
135 
136 	/* The list of TC's with this VPE */
137 	struct list_head tc;
138 
139 	/* The global list of tc's */
140 	struct list_head list;
141 };
142 
143 struct vpecontrol_ {
144 	/* Virtual processing elements */
145 	struct list_head vpe_list;
146 
147 	/* Thread contexts */
148 	struct list_head tc_list;
149 } vpecontrol;
150 
151 static void release_progmem(void *ptr);
152 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
153 extern void save_gp_address(unsigned int secbase, unsigned int rel);
154 
155 /* get the vpe associated with this minor */
156 struct vpe *get_vpe(int minor)
157 {
158 	struct vpe *v;
159 
160 	if (!cpu_has_mipsmt)
161 		return NULL;
162 
163 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
164 		if (v->minor == minor)
165 			return v;
166 	}
167 
168 	return NULL;
169 }
170 
171 /* get the vpe associated with this minor */
172 struct tc *get_tc(int index)
173 {
174 	struct tc *t;
175 
176 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
177 		if (t->index == index)
178 			return t;
179 	}
180 
181 	return NULL;
182 }
183 
184 struct tc *get_tc_unused(void)
185 {
186 	struct tc *t;
187 
188 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
189 		if (t->state == TC_STATE_UNUSED)
190 			return t;
191 	}
192 
193 	return NULL;
194 }
195 
196 /* allocate a vpe and associate it with this minor (or index) */
197 struct vpe *alloc_vpe(int minor)
198 {
199 	struct vpe *v;
200 
201 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
202 		return NULL;
203 	}
204 
205 	INIT_LIST_HEAD(&v->tc);
206 	list_add_tail(&v->list, &vpecontrol.vpe_list);
207 
208 	INIT_LIST_HEAD(&v->notify);
209 	v->minor = minor;
210 	return v;
211 }
212 
213 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
214 struct tc *alloc_tc(int index)
215 {
216 	struct tc *t;
217 
218 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
219 		return NULL;
220 	}
221 
222 	INIT_LIST_HEAD(&t->tc);
223 	list_add_tail(&t->list, &vpecontrol.tc_list);
224 
225 	t->index = index;
226 
227 	return t;
228 }
229 
230 /* clean up and free everything */
231 void release_vpe(struct vpe *v)
232 {
233 	list_del(&v->list);
234 	if (v->load_addr)
235 		release_progmem(v);
236 	kfree(v);
237 }
238 
239 void dump_mtregs(void)
240 {
241 	unsigned long val;
242 
243 	val = read_c0_config3();
244 	printk("config3 0x%lx MT %ld\n", val,
245 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
246 
247 	val = read_c0_mvpcontrol();
248 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
249 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
250 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
251 	       (val & MVPCONTROL_EVP));
252 
253 	val = read_c0_mvpconf0();
254 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
255 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
256 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
257 }
258 
259 /* Find some VPE program space  */
260 static void *alloc_progmem(unsigned long len)
261 {
262 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
263 	/* this means you must tell linux to use less memory than you physically have */
264 	return pfn_to_kaddr(max_pfn);
265 #else
266 	// simple grab some mem for now
267 	return kmalloc(len, GFP_KERNEL);
268 #endif
269 }
270 
271 static void release_progmem(void *ptr)
272 {
273 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
274 	kfree(ptr);
275 #endif
276 }
277 
278 /* Update size with this section: return offset. */
279 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
280 {
281 	long ret;
282 
283 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
284 	*size = ret + sechdr->sh_size;
285 	return ret;
286 }
287 
288 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
289    might -- code, read-only data, read-write data, small data.  Tally
290    sizes, and place the offsets into sh_entsize fields: high bit means it
291    belongs in init. */
292 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
293 			    Elf_Shdr * sechdrs, const char *secstrings)
294 {
295 	static unsigned long const masks[][2] = {
296 		/* NOTE: all executable code must be the first section
297 		 * in this array; otherwise modify the text_size
298 		 * finder in the two loops below */
299 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
300 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
301 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
302 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
303 	};
304 	unsigned int m, i;
305 
306 	for (i = 0; i < hdr->e_shnum; i++)
307 		sechdrs[i].sh_entsize = ~0UL;
308 
309 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
310 		for (i = 0; i < hdr->e_shnum; ++i) {
311 			Elf_Shdr *s = &sechdrs[i];
312 
313 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
314 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
315 			    || (s->sh_flags & masks[m][1])
316 			    || s->sh_entsize != ~0UL)
317 				continue;
318 			s->sh_entsize = get_offset(&mod->core_size, s);
319 		}
320 
321 		if (m == 0)
322 			mod->core_text_size = mod->core_size;
323 
324 	}
325 }
326 
327 
328 /* from module-elf32.c, but subverted a little */
329 
330 struct mips_hi16 {
331 	struct mips_hi16 *next;
332 	Elf32_Addr *addr;
333 	Elf32_Addr value;
334 };
335 
336 static struct mips_hi16 *mips_hi16_list;
337 static unsigned int gp_offs, gp_addr;
338 
339 static int apply_r_mips_none(struct module *me, uint32_t *location,
340 			     Elf32_Addr v)
341 {
342 	return 0;
343 }
344 
345 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
346 				Elf32_Addr v)
347 {
348 	int rel;
349 
350 	if( !(*location & 0xffff) ) {
351 		rel = (int)v - gp_addr;
352 	}
353 	else {
354 		/* .sbss + gp(relative) + offset */
355 		/* kludge! */
356 		rel =  (int)(short)((int)v + gp_offs +
357 				    (int)(short)(*location & 0xffff) - gp_addr);
358 	}
359 
360 	if( (rel > 32768) || (rel < -32768) ) {
361 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
362 		       "relative address 0x%x out of range of gp register\n",
363 		       rel);
364 		return -ENOEXEC;
365 	}
366 
367 	*location = (*location & 0xffff0000) | (rel & 0xffff);
368 
369 	return 0;
370 }
371 
372 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
373 			     Elf32_Addr v)
374 {
375 	int rel;
376 	rel = (((unsigned int)v - (unsigned int)location));
377 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
378 	rel -= 1;		// and one instruction less due to the branch delay slot.
379 
380 	if( (rel > 32768) || (rel < -32768) ) {
381 		printk(KERN_DEBUG "VPE loader: "
382  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
383 		return -ENOEXEC;
384 	}
385 
386 	*location = (*location & 0xffff0000) | (rel & 0xffff);
387 
388 	return 0;
389 }
390 
391 static int apply_r_mips_32(struct module *me, uint32_t *location,
392 			   Elf32_Addr v)
393 {
394 	*location += v;
395 
396 	return 0;
397 }
398 
399 static int apply_r_mips_26(struct module *me, uint32_t *location,
400 			   Elf32_Addr v)
401 {
402 	if (v % 4) {
403 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
404 		       " unaligned relocation\n");
405 		return -ENOEXEC;
406 	}
407 
408 /*
409  * Not desperately convinced this is a good check of an overflow condition
410  * anyway. But it gets in the way of handling undefined weak symbols which
411  * we want to set to zero.
412  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
413  * printk(KERN_ERR
414  * "module %s: relocation overflow\n",
415  * me->name);
416  * return -ENOEXEC;
417  * }
418  */
419 
420 	*location = (*location & ~0x03ffffff) |
421 		((*location + (v >> 2)) & 0x03ffffff);
422 	return 0;
423 }
424 
425 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
426 			     Elf32_Addr v)
427 {
428 	struct mips_hi16 *n;
429 
430 	/*
431 	 * We cannot relocate this one now because we don't know the value of
432 	 * the carry we need to add.  Save the information, and let LO16 do the
433 	 * actual relocation.
434 	 */
435 	n = kmalloc(sizeof *n, GFP_KERNEL);
436 	if (!n)
437 		return -ENOMEM;
438 
439 	n->addr = location;
440 	n->value = v;
441 	n->next = mips_hi16_list;
442 	mips_hi16_list = n;
443 
444 	return 0;
445 }
446 
447 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
448 			     Elf32_Addr v)
449 {
450 	unsigned long insnlo = *location;
451 	Elf32_Addr val, vallo;
452 
453 	/* Sign extend the addend we extract from the lo insn.  */
454 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
455 
456 	if (mips_hi16_list != NULL) {
457 		struct mips_hi16 *l;
458 
459 		l = mips_hi16_list;
460 		while (l != NULL) {
461 			struct mips_hi16 *next;
462 			unsigned long insn;
463 
464 			/*
465 			 * The value for the HI16 had best be the same.
466 			 */
467  			if (v != l->value) {
468 				printk(KERN_DEBUG "VPE loader: "
469 				       "apply_r_mips_lo16/hi16: 	"
470 				       "inconsistent value information\n");
471 				return -ENOEXEC;
472 			}
473 
474 			/*
475 			 * Do the HI16 relocation.  Note that we actually don't
476 			 * need to know anything about the LO16 itself, except
477 			 * where to find the low 16 bits of the addend needed
478 			 * by the LO16.
479 			 */
480 			insn = *l->addr;
481 			val = ((insn & 0xffff) << 16) + vallo;
482 			val += v;
483 
484 			/*
485 			 * Account for the sign extension that will happen in
486 			 * the low bits.
487 			 */
488 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
489 
490 			insn = (insn & ~0xffff) | val;
491 			*l->addr = insn;
492 
493 			next = l->next;
494 			kfree(l);
495 			l = next;
496 		}
497 
498 		mips_hi16_list = NULL;
499 	}
500 
501 	/*
502 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
503 	 */
504 	val = v + vallo;
505 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
506 	*location = insnlo;
507 
508 	return 0;
509 }
510 
511 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
512 				Elf32_Addr v) = {
513 	[R_MIPS_NONE]	= apply_r_mips_none,
514 	[R_MIPS_32]	= apply_r_mips_32,
515 	[R_MIPS_26]	= apply_r_mips_26,
516 	[R_MIPS_HI16]	= apply_r_mips_hi16,
517 	[R_MIPS_LO16]	= apply_r_mips_lo16,
518 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
519 	[R_MIPS_PC16] = apply_r_mips_pc16
520 };
521 
522 static char *rstrs[] = {
523     	[R_MIPS_NONE]	= "MIPS_NONE",
524 	[R_MIPS_32]	= "MIPS_32",
525 	[R_MIPS_26]	= "MIPS_26",
526 	[R_MIPS_HI16]	= "MIPS_HI16",
527 	[R_MIPS_LO16]	= "MIPS_LO16",
528 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
529 	[R_MIPS_PC16] = "MIPS_PC16"
530 };
531 
532 int apply_relocations(Elf32_Shdr *sechdrs,
533 		      const char *strtab,
534 		      unsigned int symindex,
535 		      unsigned int relsec,
536 		      struct module *me)
537 {
538 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
539 	Elf32_Sym *sym;
540 	uint32_t *location;
541 	unsigned int i;
542 	Elf32_Addr v;
543 	int res;
544 
545 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
546 		Elf32_Word r_info = rel[i].r_info;
547 
548 		/* This is where to make the change */
549 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
550 			+ rel[i].r_offset;
551 		/* This is the symbol it is referring to */
552 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
553 			+ ELF32_R_SYM(r_info);
554 
555 		if (!sym->st_value) {
556 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
557 			       me->name, strtab + sym->st_name);
558 			/* just print the warning, dont barf */
559 		}
560 
561 		v = sym->st_value;
562 
563 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
564 		if( res ) {
565 			char *r = rstrs[ELF32_R_TYPE(r_info)];
566 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
567 			       "relocation type %s for symbol \"%s\" failed\n",
568 			       rel[i].r_offset, r ? r : "UNKNOWN",
569 			       strtab + sym->st_name);
570 			return res;
571 		}
572 	}
573 
574 	return 0;
575 }
576 
577 void save_gp_address(unsigned int secbase, unsigned int rel)
578 {
579 	gp_addr = secbase + rel;
580 	gp_offs = gp_addr - (secbase & 0xffff0000);
581 }
582 /* end module-elf32.c */
583 
584 
585 
586 /* Change all symbols so that sh_value encodes the pointer directly. */
587 static void simplify_symbols(Elf_Shdr * sechdrs,
588 			    unsigned int symindex,
589 			    const char *strtab,
590 			    const char *secstrings,
591 			    unsigned int nsecs, struct module *mod)
592 {
593 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
594 	unsigned long secbase, bssbase = 0;
595 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
596 	int size;
597 
598 	/* find the .bss section for COMMON symbols */
599 	for (i = 0; i < nsecs; i++) {
600 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
601 			bssbase = sechdrs[i].sh_addr;
602 			break;
603 		}
604 	}
605 
606 	for (i = 1; i < n; i++) {
607 		switch (sym[i].st_shndx) {
608 		case SHN_COMMON:
609 			/* Allocate space for the symbol in the .bss section.
610 			   st_value is currently size.
611 			   We want it to have the address of the symbol. */
612 
613 			size = sym[i].st_value;
614 			sym[i].st_value = bssbase;
615 
616 			bssbase += size;
617 			break;
618 
619 		case SHN_ABS:
620 			/* Don't need to do anything */
621 			break;
622 
623 		case SHN_UNDEF:
624 			/* ret = -ENOENT; */
625 			break;
626 
627 		case SHN_MIPS_SCOMMON:
628 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
629 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
630 			       sym[i].st_shndx);
631 			// .sbss section
632 			break;
633 
634 		default:
635 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
636 
637 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
638 				save_gp_address(secbase, sym[i].st_value);
639 			}
640 
641 			sym[i].st_value += secbase;
642 			break;
643 		}
644 	}
645 }
646 
647 #ifdef DEBUG_ELFLOADER
648 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
649 			    const char *strtab, struct module *mod)
650 {
651 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
652 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
653 
654 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
655 	for (i = 1; i < n; i++) {
656 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
657 		       strtab + sym[i].st_name, sym[i].st_value);
658 	}
659 }
660 #endif
661 
662 static void dump_tc(struct tc *t)
663 {
664   	unsigned long val;
665 
666   	settc(t->index);
667  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
668  	       "TCStatus 0x%lx halt 0x%lx\n",
669   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
670   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
671 
672  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
673  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
674 
675   	val = read_c0_vpeconf0();
676  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
677   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
678 
679  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
680  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
681 
682  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
683  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
684 }
685 
686 static void dump_tclist(void)
687 {
688 	struct tc *t;
689 
690 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
691 		dump_tc(t);
692 	}
693 }
694 
695 /* We are prepared so configure and start the VPE... */
696 int vpe_run(struct vpe * v)
697 {
698 	struct vpe_notifications *n;
699 	unsigned long val, dmt_flag;
700 	struct tc *t;
701 
702 	/* check we are the Master VPE */
703 	val = read_c0_vpeconf0();
704 	if (!(val & VPECONF0_MVP)) {
705 		printk(KERN_WARNING
706 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
707 		return -1;
708 	}
709 
710 	/* disable MT (using dvpe) */
711 	dvpe();
712 
713 	if (!list_empty(&v->tc)) {
714                 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
715                         printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
716                                t->index);
717                         return -ENOEXEC;
718                 }
719         } else {
720                 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
721                        v->minor);
722                 return -ENOEXEC;
723         }
724 
725 	/* Put MVPE's into 'configuration state' */
726 	set_c0_mvpcontrol(MVPCONTROL_VPC);
727 
728 	settc(t->index);
729 
730 	/* should check it is halted, and not activated */
731 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
732 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
733 		       t->index);
734 		dump_tclist();
735 		return -ENOEXEC;
736 	}
737 
738 	/*
739 	 * Disable multi-threaded execution whilst we activate, clear the
740 	 * halt bit and bound the tc to the other VPE...
741 	 */
742 	dmt_flag = dmt();
743 
744 	/* Write the address we want it to start running from in the TCPC register. */
745 	write_tc_c0_tcrestart((unsigned long)v->__start);
746 	write_tc_c0_tccontext((unsigned long)0);
747 	/*
748 	 * Mark the TC as activated, not interrupt exempt and not dynamically
749 	 * allocatable
750 	 */
751 	val = read_tc_c0_tcstatus();
752 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
753 	write_tc_c0_tcstatus(val);
754 
755 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
756 
757 	/*
758 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
759 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
760 	 * DFLT_HEAP_SIZE when you compile your program
761 	 */
762  	mttgpr(7, physical_memsize);
763 
764 
765 	/* set up VPE1 */
766 	/*
767 	 * bind the TC to VPE 1 as late as possible so we only have the final
768 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
769 	 */
770  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
771 
772         /* Set up the XTC bit in vpeconf0 to point at our tc */
773         write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
774                                | (t->index << VPECONF0_XTC_SHIFT));
775 
776         /* enable this VPE */
777         write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
778 
779 	/* clear out any left overs from a previous program */
780 	write_vpe_c0_status(0);
781 	write_vpe_c0_cause(0);
782 
783 	/* take system out of configuration state */
784 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
785 
786 	/* now safe to re-enable multi-threading */
787 	emt(dmt_flag);
788 
789 	/* set it running */
790 	evpe(EVPE_ENABLE);
791 
792 	list_for_each_entry(n, &v->notify, list) {
793 		n->start(v->minor);
794 	}
795 
796 	return 0;
797 }
798 
799 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
800 				      unsigned int symindex, const char *strtab,
801 				      struct module *mod)
802 {
803 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
804 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
805 
806 	for (i = 1; i < n; i++) {
807 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
808 			v->__start = sym[i].st_value;
809 		}
810 
811 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
812 			v->shared_ptr = (void *)sym[i].st_value;
813 		}
814 	}
815 
816 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
817 		return -1;
818 
819 	return 0;
820 }
821 
822 /*
823  * Allocates a VPE with some program code space(the load address), copies the
824  * contents of the program (p)buffer performing relocatations/etc, free's it
825  * when finished.
826  */
827 int vpe_elfload(struct vpe * v)
828 {
829 	Elf_Ehdr *hdr;
830 	Elf_Shdr *sechdrs;
831 	long err = 0;
832 	char *secstrings, *strtab = NULL;
833 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
834 	struct module mod;	// so we can re-use the relocations code
835 
836 	memset(&mod, 0, sizeof(struct module));
837 	strcpy(mod.name, "VPE loader");
838 
839 	hdr = (Elf_Ehdr *) v->pbuffer;
840 	len = v->plen;
841 
842 	/* Sanity checks against insmoding binaries or wrong arch,
843 	   weird elf version */
844 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
845 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
846 	    || !elf_check_arch(hdr)
847 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
848 		printk(KERN_WARNING
849 		       "VPE loader: program wrong arch or weird elf version\n");
850 
851 		return -ENOEXEC;
852 	}
853 
854 	if (hdr->e_type == ET_REL)
855 		relocate = 1;
856 
857 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
858 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
859 		       len);
860 
861 		return -ENOEXEC;
862 	}
863 
864 	/* Convenience variables */
865 	sechdrs = (void *)hdr + hdr->e_shoff;
866 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
867 	sechdrs[0].sh_addr = 0;
868 
869 	/* And these should exist, but gcc whinges if we don't init them */
870 	symindex = strindex = 0;
871 
872 	if (relocate) {
873 		for (i = 1; i < hdr->e_shnum; i++) {
874 			if (sechdrs[i].sh_type != SHT_NOBITS
875 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
876 				printk(KERN_ERR "VPE program length %u truncated\n",
877 				       len);
878 				return -ENOEXEC;
879 			}
880 
881 			/* Mark all sections sh_addr with their address in the
882 			   temporary image. */
883 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
884 
885 			/* Internal symbols and strings. */
886 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
887 				symindex = i;
888 				strindex = sechdrs[i].sh_link;
889 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
890 			}
891 		}
892 		layout_sections(&mod, hdr, sechdrs, secstrings);
893 	}
894 
895 	v->load_addr = alloc_progmem(mod.core_size);
896 	memset(v->load_addr, 0, mod.core_size);
897 
898 	printk("VPE loader: loading to %p\n", v->load_addr);
899 
900 	if (relocate) {
901 		for (i = 0; i < hdr->e_shnum; i++) {
902 			void *dest;
903 
904 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
905 				continue;
906 
907 			dest = v->load_addr + sechdrs[i].sh_entsize;
908 
909 			if (sechdrs[i].sh_type != SHT_NOBITS)
910 				memcpy(dest, (void *)sechdrs[i].sh_addr,
911 				       sechdrs[i].sh_size);
912 			/* Update sh_addr to point to copy in image. */
913 			sechdrs[i].sh_addr = (unsigned long)dest;
914 
915 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
916 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
917 		}
918 
919  		/* Fix up syms, so that st_value is a pointer to location. */
920  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
921  				 hdr->e_shnum, &mod);
922 
923  		/* Now do relocations. */
924  		for (i = 1; i < hdr->e_shnum; i++) {
925  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
926  			unsigned int info = sechdrs[i].sh_info;
927 
928  			/* Not a valid relocation section? */
929  			if (info >= hdr->e_shnum)
930  				continue;
931 
932  			/* Don't bother with non-allocated sections */
933  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
934  				continue;
935 
936  			if (sechdrs[i].sh_type == SHT_REL)
937  				err = apply_relocations(sechdrs, strtab, symindex, i,
938  							&mod);
939  			else if (sechdrs[i].sh_type == SHT_RELA)
940  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
941  							 &mod);
942  			if (err < 0)
943  				return err;
944 
945   		}
946   	} else {
947   		for (i = 0; i < hdr->e_shnum; i++) {
948 
949  			/* Internal symbols and strings. */
950  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
951  				symindex = i;
952  				strindex = sechdrs[i].sh_link;
953  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
954 
955  				/* mark the symtab's address for when we try to find the
956  				   magic symbols */
957  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
958  			}
959 
960  			/* filter sections we dont want in the final image */
961  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
962  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
963  				printk( KERN_DEBUG " ignoring section, "
964  					"name %s type %x address 0x%x \n",
965  					secstrings + sechdrs[i].sh_name,
966  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
967  				continue;
968  			}
969 
970   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
971  				printk( KERN_WARNING "VPE loader: "
972  					"fully linked image has invalid section, "
973  					"name %s type %x address 0x%x, before load "
974  					"address of 0x%x\n",
975  					secstrings + sechdrs[i].sh_name,
976  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
977  					(unsigned int)v->load_addr);
978   				return -ENOEXEC;
979   			}
980 
981  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
982 			       "size 0x%x0 from x%p\n",
983 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
984 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
985 
986   			if (sechdrs[i].sh_type != SHT_NOBITS)
987 				memcpy((void *)sechdrs[i].sh_addr,
988 				       (char *)hdr + sechdrs[i].sh_offset,
989  				       sechdrs[i].sh_size);
990 			else
991 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
992 		}
993 	}
994 
995 	/* make sure it's physically written out */
996 	flush_icache_range((unsigned long)v->load_addr,
997 			   (unsigned long)v->load_addr + v->len);
998 
999 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1000 		if (v->__start == 0) {
1001 			printk(KERN_WARNING "VPE loader: program does not contain "
1002 			       "a __start symbol\n");
1003 			return -ENOEXEC;
1004 		}
1005 
1006 		if (v->shared_ptr == NULL)
1007 			printk(KERN_WARNING "VPE loader: "
1008 			       "program does not contain vpe_shared symbol.\n"
1009 			       " Unable to use AMVP (AP/SP) facilities.\n");
1010 	}
1011 
1012 	printk(" elf loaded\n");
1013 	return 0;
1014 }
1015 
1016 __attribute_used__ void dump_vpe(struct vpe * v)
1017 {
1018 	struct tc *t;
1019 
1020 	settc(v->minor);
1021 
1022 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1023 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1024 
1025 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1026 		dump_tc(t);
1027 }
1028 
1029 static void cleanup_tc(struct tc *tc)
1030 {
1031 	int tmp;
1032 
1033 	/* Put MVPE's into 'configuration state' */
1034 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1035 
1036 	settc(tc->index);
1037 	tmp = read_tc_c0_tcstatus();
1038 
1039 	/* mark not allocated and not dynamically allocatable */
1040 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1041 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1042 	write_tc_c0_tcstatus(tmp);
1043 
1044 	write_tc_c0_tchalt(TCHALT_H);
1045 
1046 	/* bind it to anything other than VPE1 */
1047 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1048 
1049 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1050 }
1051 
1052 static int getcwd(char *buff, int size)
1053 {
1054 	mm_segment_t old_fs;
1055 	int ret;
1056 
1057 	old_fs = get_fs();
1058 	set_fs(KERNEL_DS);
1059 
1060 	ret = sys_getcwd(buff,size);
1061 
1062 	set_fs(old_fs);
1063 
1064 	return ret;
1065 }
1066 
1067 /* checks VPE is unused and gets ready to load program  */
1068 static int vpe_open(struct inode *inode, struct file *filp)
1069 {
1070 	int minor, ret;
1071 	struct vpe *v;
1072 	struct vpe_notifications *not;
1073 
1074 	/* assume only 1 device at the mo. */
1075 	if ((minor = iminor(inode)) != 1) {
1076 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1077 		return -ENODEV;
1078 	}
1079 
1080 	if ((v = get_vpe(minor)) == NULL) {
1081 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1082 		return -ENODEV;
1083 	}
1084 
1085 	if (v->state != VPE_STATE_UNUSED) {
1086 		dvpe();
1087 
1088 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1089 
1090 		dump_tc(get_tc(minor));
1091 
1092 		list_for_each_entry(not, &v->notify, list) {
1093 			not->stop(minor);
1094 		}
1095 
1096 		release_progmem(v->load_addr);
1097 		cleanup_tc(get_tc(minor));
1098 	}
1099 
1100 	// allocate it so when we get write ops we know it's expected.
1101 	v->state = VPE_STATE_INUSE;
1102 
1103 	/* this of-course trashes what was there before... */
1104 	v->pbuffer = vmalloc(P_SIZE);
1105 	v->plen = P_SIZE;
1106 	v->load_addr = NULL;
1107 	v->len = 0;
1108 
1109 	v->uid = filp->f_uid;
1110 	v->gid = filp->f_gid;
1111 
1112 #ifdef CONFIG_MIPS_APSP_KSPD
1113 	/* get kspd to tell us when a syscall_exit happens */
1114 	if (!kspd_events_reqd) {
1115 		kspd_notify(&kspd_events);
1116 		kspd_events_reqd++;
1117 	}
1118 #endif
1119 
1120 	v->cwd[0] = 0;
1121 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1122 	if (ret < 0)
1123 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1124 
1125 	v->shared_ptr = NULL;
1126 	v->__start = 0;
1127 	return 0;
1128 }
1129 
1130 static int vpe_release(struct inode *inode, struct file *filp)
1131 {
1132 	int minor, ret = 0;
1133 	struct vpe *v;
1134 	Elf_Ehdr *hdr;
1135 
1136 	minor = iminor(inode);
1137 	if ((v = get_vpe(minor)) == NULL)
1138 		return -ENODEV;
1139 
1140 	// simple case of fire and forget, so tell the VPE to run...
1141 
1142 	hdr = (Elf_Ehdr *) v->pbuffer;
1143 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1144 		if (vpe_elfload(v) >= 0)
1145 			vpe_run(v);
1146 		else {
1147  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1148 			ret = -ENOEXEC;
1149 		}
1150 	} else {
1151  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1152 		ret = -ENOEXEC;
1153 	}
1154 
1155 	/* It's good to be able to run the SP and if it chokes have a look at
1156 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1157 	   loose what has happened. So perhaps if garbage is sent to the vpe
1158 	   device, use it as a trigger for the reset. Hopefully a nice
1159 	   executable will be along shortly. */
1160 	if (ret < 0)
1161 		v->shared_ptr = NULL;
1162 
1163 	// cleanup any temp buffers
1164 	if (v->pbuffer)
1165 		vfree(v->pbuffer);
1166 	v->plen = 0;
1167 	return ret;
1168 }
1169 
1170 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1171 			 size_t count, loff_t * ppos)
1172 {
1173 	int minor;
1174 	size_t ret = count;
1175 	struct vpe *v;
1176 
1177 	minor = iminor(file->f_dentry->d_inode);
1178 	if ((v = get_vpe(minor)) == NULL)
1179 		return -ENODEV;
1180 
1181 	if (v->pbuffer == NULL) {
1182 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1183 		return -ENOMEM;
1184 	}
1185 
1186 	if ((count + v->len) > v->plen) {
1187 		printk(KERN_WARNING
1188 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1189 		return -ENOMEM;
1190 	}
1191 
1192 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1193 	if (!count)
1194 		return -EFAULT;
1195 
1196 	v->len += count;
1197 	return ret;
1198 }
1199 
1200 static struct file_operations vpe_fops = {
1201 	.owner = THIS_MODULE,
1202 	.open = vpe_open,
1203 	.release = vpe_release,
1204 	.write = vpe_write
1205 };
1206 
1207 /* module wrapper entry points */
1208 /* give me a vpe */
1209 vpe_handle vpe_alloc(void)
1210 {
1211 	int i;
1212 	struct vpe *v;
1213 
1214 	/* find a vpe */
1215 	for (i = 1; i < MAX_VPES; i++) {
1216 		if ((v = get_vpe(i)) != NULL) {
1217 			v->state = VPE_STATE_INUSE;
1218 			return v;
1219 		}
1220 	}
1221 	return NULL;
1222 }
1223 
1224 EXPORT_SYMBOL(vpe_alloc);
1225 
1226 /* start running from here */
1227 int vpe_start(vpe_handle vpe, unsigned long start)
1228 {
1229 	struct vpe *v = vpe;
1230 
1231 	v->__start = start;
1232 	return vpe_run(v);
1233 }
1234 
1235 EXPORT_SYMBOL(vpe_start);
1236 
1237 /* halt it for now */
1238 int vpe_stop(vpe_handle vpe)
1239 {
1240 	struct vpe *v = vpe;
1241 	struct tc *t;
1242 	unsigned int evpe_flags;
1243 
1244 	evpe_flags = dvpe();
1245 
1246 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1247 
1248 		settc(t->index);
1249 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1250 	}
1251 
1252 	evpe(evpe_flags);
1253 
1254 	return 0;
1255 }
1256 
1257 EXPORT_SYMBOL(vpe_stop);
1258 
1259 /* I've done with it thank you */
1260 int vpe_free(vpe_handle vpe)
1261 {
1262 	struct vpe *v = vpe;
1263 	struct tc *t;
1264 	unsigned int evpe_flags;
1265 
1266 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1267 		return -ENOEXEC;
1268 	}
1269 
1270 	evpe_flags = dvpe();
1271 
1272 	/* Put MVPE's into 'configuration state' */
1273 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1274 
1275 	settc(t->index);
1276 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1277 
1278 	/* mark the TC unallocated and halt'ed */
1279 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1280 	write_tc_c0_tchalt(TCHALT_H);
1281 
1282 	v->state = VPE_STATE_UNUSED;
1283 
1284 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1285 	evpe(evpe_flags);
1286 
1287 	return 0;
1288 }
1289 
1290 EXPORT_SYMBOL(vpe_free);
1291 
1292 void *vpe_get_shared(int index)
1293 {
1294 	struct vpe *v;
1295 
1296 	if ((v = get_vpe(index)) == NULL)
1297 		return NULL;
1298 
1299 	return v->shared_ptr;
1300 }
1301 
1302 EXPORT_SYMBOL(vpe_get_shared);
1303 
1304 int vpe_getuid(int index)
1305 {
1306 	struct vpe *v;
1307 
1308 	if ((v = get_vpe(index)) == NULL)
1309 		return -1;
1310 
1311 	return v->uid;
1312 }
1313 
1314 EXPORT_SYMBOL(vpe_getuid);
1315 
1316 int vpe_getgid(int index)
1317 {
1318 	struct vpe *v;
1319 
1320 	if ((v = get_vpe(index)) == NULL)
1321 		return -1;
1322 
1323 	return v->gid;
1324 }
1325 
1326 EXPORT_SYMBOL(vpe_getgid);
1327 
1328 int vpe_notify(int index, struct vpe_notifications *notify)
1329 {
1330 	struct vpe *v;
1331 
1332 	if ((v = get_vpe(index)) == NULL)
1333 		return -1;
1334 
1335 	list_add(&notify->list, &v->notify);
1336 	return 0;
1337 }
1338 
1339 EXPORT_SYMBOL(vpe_notify);
1340 
1341 char *vpe_getcwd(int index)
1342 {
1343 	struct vpe *v;
1344 
1345 	if ((v = get_vpe(index)) == NULL)
1346 		return NULL;
1347 
1348 	return v->cwd;
1349 }
1350 
1351 EXPORT_SYMBOL(vpe_getcwd);
1352 
1353 #ifdef CONFIG_MIPS_APSP_KSPD
1354 static void kspd_sp_exit( int sp_id)
1355 {
1356 	cleanup_tc(get_tc(sp_id));
1357 }
1358 #endif
1359 
1360 static int __init vpe_module_init(void)
1361 {
1362 	struct vpe *v = NULL;
1363 	struct tc *t;
1364 	unsigned long val;
1365 	int i;
1366 
1367 	if (!cpu_has_mipsmt) {
1368 		printk("VPE loader: not a MIPS MT capable processor\n");
1369 		return -ENODEV;
1370 	}
1371 
1372 	major = register_chrdev(0, module_name, &vpe_fops);
1373 	if (major < 0) {
1374 		printk("VPE loader: unable to register character device\n");
1375 		return major;
1376 	}
1377 
1378 	dmt();
1379 	dvpe();
1380 
1381 	/* Put MVPE's into 'configuration state' */
1382 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1383 
1384 	/* dump_mtregs(); */
1385 
1386 	INIT_LIST_HEAD(&vpecontrol.vpe_list);
1387 	INIT_LIST_HEAD(&vpecontrol.tc_list);
1388 
1389 	val = read_c0_mvpconf0();
1390 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1391 		t = alloc_tc(i);
1392 
1393 		/* VPE's */
1394 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1395 			settc(i);
1396 
1397 			if ((v = alloc_vpe(i)) == NULL) {
1398 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1399 				return -ENODEV;
1400 			}
1401 
1402 			/* add the tc to the list of this vpe's tc's. */
1403 			list_add(&t->tc, &v->tc);
1404 
1405 			/* deactivate all but vpe0 */
1406 			if (i != 0) {
1407 				unsigned long tmp = read_vpe_c0_vpeconf0();
1408 
1409 				tmp &= ~VPECONF0_VPA;
1410 
1411 				/* master VPE */
1412 				tmp |= VPECONF0_MVP;
1413 				write_vpe_c0_vpeconf0(tmp);
1414 			}
1415 
1416 			/* disable multi-threading with TC's */
1417 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1418 
1419 			if (i != 0) {
1420 				write_vpe_c0_status((read_c0_status() &
1421 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1422 						    | ST0_CU0);
1423 
1424 				/*
1425 				 * Set config to be the same as vpe0,
1426 				 * particularly kseg0 coherency alg
1427 				 */
1428 				write_vpe_c0_config(read_c0_config());
1429 			}
1430 		}
1431 
1432 		/* TC's */
1433 		t->pvpe = v;	/* set the parent vpe */
1434 
1435 		if (i != 0) {
1436 			unsigned long tmp;
1437 
1438 			settc(i);
1439 
1440 			/* Any TC that is bound to VPE0 gets left as is - in case
1441 			   we are running SMTC on VPE0. A TC that is bound to any
1442 			   other VPE gets bound to VPE0, ideally I'd like to make
1443 			   it homeless but it doesn't appear to let me bind a TC
1444 			   to a non-existent VPE. Which is perfectly reasonable.
1445 
1446 			   The (un)bound state is visible to an EJTAG probe so may
1447 			   notify GDB...
1448 			*/
1449 
1450 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1451 				/* tc is bound >vpe0 */
1452 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1453 
1454 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1455 			}
1456 
1457 			tmp = read_tc_c0_tcstatus();
1458 
1459 			/* mark not activated and not dynamically allocatable */
1460 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1461 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1462 			write_tc_c0_tcstatus(tmp);
1463 
1464 			write_tc_c0_tchalt(TCHALT_H);
1465 		}
1466 	}
1467 
1468 	/* release config state */
1469 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1470 
1471 #ifdef CONFIG_MIPS_APSP_KSPD
1472 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1473 #endif
1474 	return 0;
1475 }
1476 
1477 static void __exit vpe_module_exit(void)
1478 {
1479 	struct vpe *v, *n;
1480 
1481 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1482 		if (v->state != VPE_STATE_UNUSED) {
1483 			release_vpe(v);
1484 		}
1485 	}
1486 
1487 	unregister_chrdev(major, module_name);
1488 }
1489 
1490 module_init(vpe_module_init);
1491 module_exit(vpe_module_exit);
1492 MODULE_DESCRIPTION("MIPS VPE Loader");
1493 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1494 MODULE_LICENSE("GPL");
1495