xref: /linux/arch/mips/kernel/vpe.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/device.h>
33 #include <linux/module.h>
34 #include <linux/fs.h>
35 #include <linux/init.h>
36 #include <asm/uaccess.h>
37 #include <linux/slab.h>
38 #include <linux/list.h>
39 #include <linux/vmalloc.h>
40 #include <linux/elf.h>
41 #include <linux/seq_file.h>
42 #include <linux/syscalls.h>
43 #include <linux/moduleloader.h>
44 #include <linux/interrupt.h>
45 #include <linux/poll.h>
46 #include <linux/bootmem.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/cacheflush.h>
50 #include <asm/atomic.h>
51 #include <asm/cpu.h>
52 #include <asm/mips_mt.h>
53 #include <asm/processor.h>
54 #include <asm/system.h>
55 #include <asm/vpe.h>
56 #include <asm/kspd.h>
57 
58 typedef void *vpe_handle;
59 
60 #ifndef ARCH_SHF_SMALL
61 #define ARCH_SHF_SMALL 0
62 #endif
63 
64 /* If this is set, the section belongs in the init part of the module */
65 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
66 
67 static char module_name[] = "vpe";
68 static int major;
69 static const int minor = 1;	/* fixed for now  */
70 
71 #ifdef CONFIG_MIPS_APSP_KSPD
72  static struct kspd_notifications kspd_events;
73 static int kspd_events_reqd = 0;
74 #endif
75 
76 /* grab the likely amount of memory we will need. */
77 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
78 #define P_SIZE (2 * 1024 * 1024)
79 #else
80 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
81 #define P_SIZE (256 * 1024)
82 #endif
83 
84 extern unsigned long physical_memsize;
85 
86 #define MAX_VPES 16
87 #define VPE_PATH_MAX 256
88 
89 enum vpe_state {
90 	VPE_STATE_UNUSED = 0,
91 	VPE_STATE_INUSE,
92 	VPE_STATE_RUNNING
93 };
94 
95 enum tc_state {
96 	TC_STATE_UNUSED = 0,
97 	TC_STATE_INUSE,
98 	TC_STATE_RUNNING,
99 	TC_STATE_DYNAMIC
100 };
101 
102 struct vpe {
103 	enum vpe_state state;
104 
105 	/* (device) minor associated with this vpe */
106 	int minor;
107 
108 	/* elfloader stuff */
109 	void *load_addr;
110 	unsigned long len;
111 	char *pbuffer;
112 	unsigned long plen;
113 	unsigned int uid, gid;
114 	char cwd[VPE_PATH_MAX];
115 
116 	unsigned long __start;
117 
118 	/* tc's associated with this vpe */
119 	struct list_head tc;
120 
121 	/* The list of vpe's */
122 	struct list_head list;
123 
124 	/* shared symbol address */
125 	void *shared_ptr;
126 
127 	/* the list of who wants to know when something major happens */
128 	struct list_head notify;
129 };
130 
131 struct tc {
132 	enum tc_state state;
133 	int index;
134 
135 	/* parent VPE */
136 	struct vpe *pvpe;
137 
138 	/* The list of TC's with this VPE */
139 	struct list_head tc;
140 
141 	/* The global list of tc's */
142 	struct list_head list;
143 };
144 
145 struct {
146 	/* Virtual processing elements */
147 	struct list_head vpe_list;
148 
149 	/* Thread contexts */
150 	struct list_head tc_list;
151 } vpecontrol = {
152 	.vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
153 	.tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
154 };
155 
156 static void release_progmem(void *ptr);
157 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
158 extern void save_gp_address(unsigned int secbase, unsigned int rel);
159 
160 /* get the vpe associated with this minor */
161 struct vpe *get_vpe(int minor)
162 {
163 	struct vpe *v;
164 
165 	if (!cpu_has_mipsmt)
166 		return NULL;
167 
168 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
169 		if (v->minor == minor)
170 			return v;
171 	}
172 
173 	return NULL;
174 }
175 
176 /* get the vpe associated with this minor */
177 struct tc *get_tc(int index)
178 {
179 	struct tc *t;
180 
181 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
182 		if (t->index == index)
183 			return t;
184 	}
185 
186 	return NULL;
187 }
188 
189 struct tc *get_tc_unused(void)
190 {
191 	struct tc *t;
192 
193 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
194 		if (t->state == TC_STATE_UNUSED)
195 			return t;
196 	}
197 
198 	return NULL;
199 }
200 
201 /* allocate a vpe and associate it with this minor (or index) */
202 struct vpe *alloc_vpe(int minor)
203 {
204 	struct vpe *v;
205 
206 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
207 		return NULL;
208 	}
209 
210 	INIT_LIST_HEAD(&v->tc);
211 	list_add_tail(&v->list, &vpecontrol.vpe_list);
212 
213 	INIT_LIST_HEAD(&v->notify);
214 	v->minor = minor;
215 	return v;
216 }
217 
218 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
219 struct tc *alloc_tc(int index)
220 {
221 	struct tc *t;
222 
223 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
224 		return NULL;
225 	}
226 
227 	INIT_LIST_HEAD(&t->tc);
228 	list_add_tail(&t->list, &vpecontrol.tc_list);
229 
230 	t->index = index;
231 
232 	return t;
233 }
234 
235 /* clean up and free everything */
236 void release_vpe(struct vpe *v)
237 {
238 	list_del(&v->list);
239 	if (v->load_addr)
240 		release_progmem(v);
241 	kfree(v);
242 }
243 
244 void dump_mtregs(void)
245 {
246 	unsigned long val;
247 
248 	val = read_c0_config3();
249 	printk("config3 0x%lx MT %ld\n", val,
250 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
251 
252 	val = read_c0_mvpcontrol();
253 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
254 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
255 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
256 	       (val & MVPCONTROL_EVP));
257 
258 	val = read_c0_mvpconf0();
259 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
260 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
261 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
262 }
263 
264 /* Find some VPE program space  */
265 static void *alloc_progmem(unsigned long len)
266 {
267 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
268 	/* this means you must tell linux to use less memory than you physically have */
269 	return pfn_to_kaddr(max_pfn);
270 #else
271 	// simple grab some mem for now
272 	return kmalloc(len, GFP_KERNEL);
273 #endif
274 }
275 
276 static void release_progmem(void *ptr)
277 {
278 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
279 	kfree(ptr);
280 #endif
281 }
282 
283 /* Update size with this section: return offset. */
284 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
285 {
286 	long ret;
287 
288 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
289 	*size = ret + sechdr->sh_size;
290 	return ret;
291 }
292 
293 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
294    might -- code, read-only data, read-write data, small data.  Tally
295    sizes, and place the offsets into sh_entsize fields: high bit means it
296    belongs in init. */
297 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
298 			    Elf_Shdr * sechdrs, const char *secstrings)
299 {
300 	static unsigned long const masks[][2] = {
301 		/* NOTE: all executable code must be the first section
302 		 * in this array; otherwise modify the text_size
303 		 * finder in the two loops below */
304 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
305 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
306 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
307 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
308 	};
309 	unsigned int m, i;
310 
311 	for (i = 0; i < hdr->e_shnum; i++)
312 		sechdrs[i].sh_entsize = ~0UL;
313 
314 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
315 		for (i = 0; i < hdr->e_shnum; ++i) {
316 			Elf_Shdr *s = &sechdrs[i];
317 
318 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
319 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
320 			    || (s->sh_flags & masks[m][1])
321 			    || s->sh_entsize != ~0UL)
322 				continue;
323 			s->sh_entsize = get_offset(&mod->core_size, s);
324 		}
325 
326 		if (m == 0)
327 			mod->core_text_size = mod->core_size;
328 
329 	}
330 }
331 
332 
333 /* from module-elf32.c, but subverted a little */
334 
335 struct mips_hi16 {
336 	struct mips_hi16 *next;
337 	Elf32_Addr *addr;
338 	Elf32_Addr value;
339 };
340 
341 static struct mips_hi16 *mips_hi16_list;
342 static unsigned int gp_offs, gp_addr;
343 
344 static int apply_r_mips_none(struct module *me, uint32_t *location,
345 			     Elf32_Addr v)
346 {
347 	return 0;
348 }
349 
350 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
351 				Elf32_Addr v)
352 {
353 	int rel;
354 
355 	if( !(*location & 0xffff) ) {
356 		rel = (int)v - gp_addr;
357 	}
358 	else {
359 		/* .sbss + gp(relative) + offset */
360 		/* kludge! */
361 		rel =  (int)(short)((int)v + gp_offs +
362 				    (int)(short)(*location & 0xffff) - gp_addr);
363 	}
364 
365 	if( (rel > 32768) || (rel < -32768) ) {
366 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
367 		       "relative address 0x%x out of range of gp register\n",
368 		       rel);
369 		return -ENOEXEC;
370 	}
371 
372 	*location = (*location & 0xffff0000) | (rel & 0xffff);
373 
374 	return 0;
375 }
376 
377 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
378 			     Elf32_Addr v)
379 {
380 	int rel;
381 	rel = (((unsigned int)v - (unsigned int)location));
382 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
383 	rel -= 1;		// and one instruction less due to the branch delay slot.
384 
385 	if( (rel > 32768) || (rel < -32768) ) {
386 		printk(KERN_DEBUG "VPE loader: "
387  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
388 		return -ENOEXEC;
389 	}
390 
391 	*location = (*location & 0xffff0000) | (rel & 0xffff);
392 
393 	return 0;
394 }
395 
396 static int apply_r_mips_32(struct module *me, uint32_t *location,
397 			   Elf32_Addr v)
398 {
399 	*location += v;
400 
401 	return 0;
402 }
403 
404 static int apply_r_mips_26(struct module *me, uint32_t *location,
405 			   Elf32_Addr v)
406 {
407 	if (v % 4) {
408 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
409 		       " unaligned relocation\n");
410 		return -ENOEXEC;
411 	}
412 
413 /*
414  * Not desperately convinced this is a good check of an overflow condition
415  * anyway. But it gets in the way of handling undefined weak symbols which
416  * we want to set to zero.
417  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
418  * printk(KERN_ERR
419  * "module %s: relocation overflow\n",
420  * me->name);
421  * return -ENOEXEC;
422  * }
423  */
424 
425 	*location = (*location & ~0x03ffffff) |
426 		((*location + (v >> 2)) & 0x03ffffff);
427 	return 0;
428 }
429 
430 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
431 			     Elf32_Addr v)
432 {
433 	struct mips_hi16 *n;
434 
435 	/*
436 	 * We cannot relocate this one now because we don't know the value of
437 	 * the carry we need to add.  Save the information, and let LO16 do the
438 	 * actual relocation.
439 	 */
440 	n = kmalloc(sizeof *n, GFP_KERNEL);
441 	if (!n)
442 		return -ENOMEM;
443 
444 	n->addr = location;
445 	n->value = v;
446 	n->next = mips_hi16_list;
447 	mips_hi16_list = n;
448 
449 	return 0;
450 }
451 
452 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
453 			     Elf32_Addr v)
454 {
455 	unsigned long insnlo = *location;
456 	Elf32_Addr val, vallo;
457 
458 	/* Sign extend the addend we extract from the lo insn.  */
459 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
460 
461 	if (mips_hi16_list != NULL) {
462 		struct mips_hi16 *l;
463 
464 		l = mips_hi16_list;
465 		while (l != NULL) {
466 			struct mips_hi16 *next;
467 			unsigned long insn;
468 
469 			/*
470 			 * The value for the HI16 had best be the same.
471 			 */
472  			if (v != l->value) {
473 				printk(KERN_DEBUG "VPE loader: "
474 				       "apply_r_mips_lo16/hi16: 	"
475 				       "inconsistent value information\n");
476 				return -ENOEXEC;
477 			}
478 
479 			/*
480 			 * Do the HI16 relocation.  Note that we actually don't
481 			 * need to know anything about the LO16 itself, except
482 			 * where to find the low 16 bits of the addend needed
483 			 * by the LO16.
484 			 */
485 			insn = *l->addr;
486 			val = ((insn & 0xffff) << 16) + vallo;
487 			val += v;
488 
489 			/*
490 			 * Account for the sign extension that will happen in
491 			 * the low bits.
492 			 */
493 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
494 
495 			insn = (insn & ~0xffff) | val;
496 			*l->addr = insn;
497 
498 			next = l->next;
499 			kfree(l);
500 			l = next;
501 		}
502 
503 		mips_hi16_list = NULL;
504 	}
505 
506 	/*
507 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
508 	 */
509 	val = v + vallo;
510 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
511 	*location = insnlo;
512 
513 	return 0;
514 }
515 
516 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
517 				Elf32_Addr v) = {
518 	[R_MIPS_NONE]	= apply_r_mips_none,
519 	[R_MIPS_32]	= apply_r_mips_32,
520 	[R_MIPS_26]	= apply_r_mips_26,
521 	[R_MIPS_HI16]	= apply_r_mips_hi16,
522 	[R_MIPS_LO16]	= apply_r_mips_lo16,
523 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
524 	[R_MIPS_PC16] = apply_r_mips_pc16
525 };
526 
527 static char *rstrs[] = {
528 	[R_MIPS_NONE]	= "MIPS_NONE",
529 	[R_MIPS_32]	= "MIPS_32",
530 	[R_MIPS_26]	= "MIPS_26",
531 	[R_MIPS_HI16]	= "MIPS_HI16",
532 	[R_MIPS_LO16]	= "MIPS_LO16",
533 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
534 	[R_MIPS_PC16] = "MIPS_PC16"
535 };
536 
537 int apply_relocations(Elf32_Shdr *sechdrs,
538 		      const char *strtab,
539 		      unsigned int symindex,
540 		      unsigned int relsec,
541 		      struct module *me)
542 {
543 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
544 	Elf32_Sym *sym;
545 	uint32_t *location;
546 	unsigned int i;
547 	Elf32_Addr v;
548 	int res;
549 
550 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
551 		Elf32_Word r_info = rel[i].r_info;
552 
553 		/* This is where to make the change */
554 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
555 			+ rel[i].r_offset;
556 		/* This is the symbol it is referring to */
557 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
558 			+ ELF32_R_SYM(r_info);
559 
560 		if (!sym->st_value) {
561 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
562 			       me->name, strtab + sym->st_name);
563 			/* just print the warning, dont barf */
564 		}
565 
566 		v = sym->st_value;
567 
568 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
569 		if( res ) {
570 			char *r = rstrs[ELF32_R_TYPE(r_info)];
571 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
572 			       "relocation type %s for symbol \"%s\" failed\n",
573 			       rel[i].r_offset, r ? r : "UNKNOWN",
574 			       strtab + sym->st_name);
575 			return res;
576 		}
577 	}
578 
579 	return 0;
580 }
581 
582 void save_gp_address(unsigned int secbase, unsigned int rel)
583 {
584 	gp_addr = secbase + rel;
585 	gp_offs = gp_addr - (secbase & 0xffff0000);
586 }
587 /* end module-elf32.c */
588 
589 
590 
591 /* Change all symbols so that sh_value encodes the pointer directly. */
592 static void simplify_symbols(Elf_Shdr * sechdrs,
593 			    unsigned int symindex,
594 			    const char *strtab,
595 			    const char *secstrings,
596 			    unsigned int nsecs, struct module *mod)
597 {
598 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
599 	unsigned long secbase, bssbase = 0;
600 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
601 	int size;
602 
603 	/* find the .bss section for COMMON symbols */
604 	for (i = 0; i < nsecs; i++) {
605 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
606 			bssbase = sechdrs[i].sh_addr;
607 			break;
608 		}
609 	}
610 
611 	for (i = 1; i < n; i++) {
612 		switch (sym[i].st_shndx) {
613 		case SHN_COMMON:
614 			/* Allocate space for the symbol in the .bss section.
615 			   st_value is currently size.
616 			   We want it to have the address of the symbol. */
617 
618 			size = sym[i].st_value;
619 			sym[i].st_value = bssbase;
620 
621 			bssbase += size;
622 			break;
623 
624 		case SHN_ABS:
625 			/* Don't need to do anything */
626 			break;
627 
628 		case SHN_UNDEF:
629 			/* ret = -ENOENT; */
630 			break;
631 
632 		case SHN_MIPS_SCOMMON:
633 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
634 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
635 			       sym[i].st_shndx);
636 			// .sbss section
637 			break;
638 
639 		default:
640 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
641 
642 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
643 				save_gp_address(secbase, sym[i].st_value);
644 			}
645 
646 			sym[i].st_value += secbase;
647 			break;
648 		}
649 	}
650 }
651 
652 #ifdef DEBUG_ELFLOADER
653 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
654 			    const char *strtab, struct module *mod)
655 {
656 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
657 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
658 
659 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
660 	for (i = 1; i < n; i++) {
661 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
662 		       strtab + sym[i].st_name, sym[i].st_value);
663 	}
664 }
665 #endif
666 
667 static void dump_tc(struct tc *t)
668 {
669   	unsigned long val;
670 
671   	settc(t->index);
672  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
673  	       "TCStatus 0x%lx halt 0x%lx\n",
674   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
675   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
676 
677  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
678  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
679 
680   	val = read_c0_vpeconf0();
681  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
682   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
683 
684  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
685  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
686 
687  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
688  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
689 }
690 
691 static void dump_tclist(void)
692 {
693 	struct tc *t;
694 
695 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
696 		dump_tc(t);
697 	}
698 }
699 
700 /* We are prepared so configure and start the VPE... */
701 static int vpe_run(struct vpe * v)
702 {
703 	struct vpe_notifications *n;
704 	unsigned long val, dmt_flag;
705 	struct tc *t;
706 
707 	/* check we are the Master VPE */
708 	val = read_c0_vpeconf0();
709 	if (!(val & VPECONF0_MVP)) {
710 		printk(KERN_WARNING
711 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
712 		return -1;
713 	}
714 
715 	/* disable MT (using dvpe) */
716 	dvpe();
717 
718 	if (!list_empty(&v->tc)) {
719 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
720 			printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
721 			       t->index);
722 			return -ENOEXEC;
723 		}
724 	} else {
725 		printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
726 		       v->minor);
727 		return -ENOEXEC;
728 	}
729 
730 	/* Put MVPE's into 'configuration state' */
731 	set_c0_mvpcontrol(MVPCONTROL_VPC);
732 
733 	settc(t->index);
734 
735 	/* should check it is halted, and not activated */
736 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
737 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
738 		       t->index);
739 		dump_tclist();
740 		return -ENOEXEC;
741 	}
742 
743 	/*
744 	 * Disable multi-threaded execution whilst we activate, clear the
745 	 * halt bit and bound the tc to the other VPE...
746 	 */
747 	dmt_flag = dmt();
748 
749 	/* Write the address we want it to start running from in the TCPC register. */
750 	write_tc_c0_tcrestart((unsigned long)v->__start);
751 	write_tc_c0_tccontext((unsigned long)0);
752 	/*
753 	 * Mark the TC as activated, not interrupt exempt and not dynamically
754 	 * allocatable
755 	 */
756 	val = read_tc_c0_tcstatus();
757 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
758 	write_tc_c0_tcstatus(val);
759 
760 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
761 
762 	/*
763 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
764 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
765 	 * DFLT_HEAP_SIZE when you compile your program
766 	 */
767  	mttgpr(7, physical_memsize);
768 
769 
770 	/* set up VPE1 */
771 	/*
772 	 * bind the TC to VPE 1 as late as possible so we only have the final
773 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
774 	 */
775  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
776 
777 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
778 
779 	back_to_back_c0_hazard();
780 
781 	/* Set up the XTC bit in vpeconf0 to point at our tc */
782 	write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
783 	                      | (t->index << VPECONF0_XTC_SHIFT));
784 
785 	back_to_back_c0_hazard();
786 
787 	/* enable this VPE */
788 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
789 
790 	/* clear out any left overs from a previous program */
791 	write_vpe_c0_status(0);
792 	write_vpe_c0_cause(0);
793 
794 	/* take system out of configuration state */
795 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
796 
797 	/* now safe to re-enable multi-threading */
798 	emt(dmt_flag);
799 
800 	/* set it running */
801 	evpe(EVPE_ENABLE);
802 
803 	list_for_each_entry(n, &v->notify, list) {
804 		n->start(v->minor);
805 	}
806 
807 	return 0;
808 }
809 
810 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
811 				      unsigned int symindex, const char *strtab,
812 				      struct module *mod)
813 {
814 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
815 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
816 
817 	for (i = 1; i < n; i++) {
818 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
819 			v->__start = sym[i].st_value;
820 		}
821 
822 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
823 			v->shared_ptr = (void *)sym[i].st_value;
824 		}
825 	}
826 
827 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
828 		return -1;
829 
830 	return 0;
831 }
832 
833 /*
834  * Allocates a VPE with some program code space(the load address), copies the
835  * contents of the program (p)buffer performing relocatations/etc, free's it
836  * when finished.
837  */
838 static int vpe_elfload(struct vpe * v)
839 {
840 	Elf_Ehdr *hdr;
841 	Elf_Shdr *sechdrs;
842 	long err = 0;
843 	char *secstrings, *strtab = NULL;
844 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
845 	struct module mod;	// so we can re-use the relocations code
846 
847 	memset(&mod, 0, sizeof(struct module));
848 	strcpy(mod.name, "VPE loader");
849 
850 	hdr = (Elf_Ehdr *) v->pbuffer;
851 	len = v->plen;
852 
853 	/* Sanity checks against insmoding binaries or wrong arch,
854 	   weird elf version */
855 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
856 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
857 	    || !elf_check_arch(hdr)
858 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
859 		printk(KERN_WARNING
860 		       "VPE loader: program wrong arch or weird elf version\n");
861 
862 		return -ENOEXEC;
863 	}
864 
865 	if (hdr->e_type == ET_REL)
866 		relocate = 1;
867 
868 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
869 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
870 		       len);
871 
872 		return -ENOEXEC;
873 	}
874 
875 	/* Convenience variables */
876 	sechdrs = (void *)hdr + hdr->e_shoff;
877 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
878 	sechdrs[0].sh_addr = 0;
879 
880 	/* And these should exist, but gcc whinges if we don't init them */
881 	symindex = strindex = 0;
882 
883 	if (relocate) {
884 		for (i = 1; i < hdr->e_shnum; i++) {
885 			if (sechdrs[i].sh_type != SHT_NOBITS
886 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
887 				printk(KERN_ERR "VPE program length %u truncated\n",
888 				       len);
889 				return -ENOEXEC;
890 			}
891 
892 			/* Mark all sections sh_addr with their address in the
893 			   temporary image. */
894 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
895 
896 			/* Internal symbols and strings. */
897 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
898 				symindex = i;
899 				strindex = sechdrs[i].sh_link;
900 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
901 			}
902 		}
903 		layout_sections(&mod, hdr, sechdrs, secstrings);
904 	}
905 
906 	v->load_addr = alloc_progmem(mod.core_size);
907 	memset(v->load_addr, 0, mod.core_size);
908 
909 	printk("VPE loader: loading to %p\n", v->load_addr);
910 
911 	if (relocate) {
912 		for (i = 0; i < hdr->e_shnum; i++) {
913 			void *dest;
914 
915 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
916 				continue;
917 
918 			dest = v->load_addr + sechdrs[i].sh_entsize;
919 
920 			if (sechdrs[i].sh_type != SHT_NOBITS)
921 				memcpy(dest, (void *)sechdrs[i].sh_addr,
922 				       sechdrs[i].sh_size);
923 			/* Update sh_addr to point to copy in image. */
924 			sechdrs[i].sh_addr = (unsigned long)dest;
925 
926 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
927 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
928 		}
929 
930  		/* Fix up syms, so that st_value is a pointer to location. */
931  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
932  				 hdr->e_shnum, &mod);
933 
934  		/* Now do relocations. */
935  		for (i = 1; i < hdr->e_shnum; i++) {
936  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
937  			unsigned int info = sechdrs[i].sh_info;
938 
939  			/* Not a valid relocation section? */
940  			if (info >= hdr->e_shnum)
941  				continue;
942 
943  			/* Don't bother with non-allocated sections */
944  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
945  				continue;
946 
947  			if (sechdrs[i].sh_type == SHT_REL)
948  				err = apply_relocations(sechdrs, strtab, symindex, i,
949  							&mod);
950  			else if (sechdrs[i].sh_type == SHT_RELA)
951  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
952  							 &mod);
953  			if (err < 0)
954  				return err;
955 
956   		}
957   	} else {
958   		for (i = 0; i < hdr->e_shnum; i++) {
959 
960  			/* Internal symbols and strings. */
961  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
962  				symindex = i;
963  				strindex = sechdrs[i].sh_link;
964  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
965 
966  				/* mark the symtab's address for when we try to find the
967  				   magic symbols */
968  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
969  			}
970 
971  			/* filter sections we dont want in the final image */
972  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
973  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
974  				printk( KERN_DEBUG " ignoring section, "
975  					"name %s type %x address 0x%x \n",
976  					secstrings + sechdrs[i].sh_name,
977  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
978  				continue;
979  			}
980 
981   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
982  				printk( KERN_WARNING "VPE loader: "
983  					"fully linked image has invalid section, "
984  					"name %s type %x address 0x%x, before load "
985  					"address of 0x%x\n",
986  					secstrings + sechdrs[i].sh_name,
987  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
988  					(unsigned int)v->load_addr);
989   				return -ENOEXEC;
990   			}
991 
992  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
993 			       "size 0x%x0 from x%p\n",
994 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
995 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
996 
997   			if (sechdrs[i].sh_type != SHT_NOBITS)
998 				memcpy((void *)sechdrs[i].sh_addr,
999 				       (char *)hdr + sechdrs[i].sh_offset,
1000  				       sechdrs[i].sh_size);
1001 			else
1002 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
1003 		}
1004 	}
1005 
1006 	/* make sure it's physically written out */
1007 	flush_icache_range((unsigned long)v->load_addr,
1008 			   (unsigned long)v->load_addr + v->len);
1009 
1010 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1011 		if (v->__start == 0) {
1012 			printk(KERN_WARNING "VPE loader: program does not contain "
1013 			       "a __start symbol\n");
1014 			return -ENOEXEC;
1015 		}
1016 
1017 		if (v->shared_ptr == NULL)
1018 			printk(KERN_WARNING "VPE loader: "
1019 			       "program does not contain vpe_shared symbol.\n"
1020 			       " Unable to use AMVP (AP/SP) facilities.\n");
1021 	}
1022 
1023 	printk(" elf loaded\n");
1024 	return 0;
1025 }
1026 
1027 __attribute_used__ void dump_vpe(struct vpe * v)
1028 {
1029 	struct tc *t;
1030 
1031 	settc(v->minor);
1032 
1033 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1034 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1035 
1036 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1037 		dump_tc(t);
1038 }
1039 
1040 static void cleanup_tc(struct tc *tc)
1041 {
1042 	int tmp;
1043 
1044 	/* Put MVPE's into 'configuration state' */
1045 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1046 
1047 	settc(tc->index);
1048 	tmp = read_tc_c0_tcstatus();
1049 
1050 	/* mark not allocated and not dynamically allocatable */
1051 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1052 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1053 	write_tc_c0_tcstatus(tmp);
1054 
1055 	write_tc_c0_tchalt(TCHALT_H);
1056 
1057 	/* bind it to anything other than VPE1 */
1058 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1059 
1060 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1061 }
1062 
1063 static int getcwd(char *buff, int size)
1064 {
1065 	mm_segment_t old_fs;
1066 	int ret;
1067 
1068 	old_fs = get_fs();
1069 	set_fs(KERNEL_DS);
1070 
1071 	ret = sys_getcwd(buff,size);
1072 
1073 	set_fs(old_fs);
1074 
1075 	return ret;
1076 }
1077 
1078 /* checks VPE is unused and gets ready to load program  */
1079 static int vpe_open(struct inode *inode, struct file *filp)
1080 {
1081 	int minor, ret;
1082 	enum vpe_state state;
1083 	struct vpe *v;
1084 	struct vpe_notifications *not;
1085 
1086 	/* assume only 1 device at the mo. */
1087 	if ((minor = iminor(inode)) != 1) {
1088 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1089 		return -ENODEV;
1090 	}
1091 
1092 	if ((v = get_vpe(minor)) == NULL) {
1093 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1094 		return -ENODEV;
1095 	}
1096 
1097 	state = xchg(&v->state, VPE_STATE_INUSE);
1098 	if (state != VPE_STATE_UNUSED) {
1099 		dvpe();
1100 
1101 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1102 
1103 		dump_tc(get_tc(minor));
1104 
1105 		list_for_each_entry(not, &v->notify, list) {
1106 			not->stop(minor);
1107 		}
1108 
1109 		release_progmem(v->load_addr);
1110 		cleanup_tc(get_tc(minor));
1111 	}
1112 
1113 	/* this of-course trashes what was there before... */
1114 	v->pbuffer = vmalloc(P_SIZE);
1115 	v->plen = P_SIZE;
1116 	v->load_addr = NULL;
1117 	v->len = 0;
1118 
1119 	v->uid = filp->f_uid;
1120 	v->gid = filp->f_gid;
1121 
1122 #ifdef CONFIG_MIPS_APSP_KSPD
1123 	/* get kspd to tell us when a syscall_exit happens */
1124 	if (!kspd_events_reqd) {
1125 		kspd_notify(&kspd_events);
1126 		kspd_events_reqd++;
1127 	}
1128 #endif
1129 
1130 	v->cwd[0] = 0;
1131 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1132 	if (ret < 0)
1133 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1134 
1135 	v->shared_ptr = NULL;
1136 	v->__start = 0;
1137 	return 0;
1138 }
1139 
1140 static int vpe_release(struct inode *inode, struct file *filp)
1141 {
1142 	int minor, ret = 0;
1143 	struct vpe *v;
1144 	Elf_Ehdr *hdr;
1145 
1146 	minor = iminor(inode);
1147 	if ((v = get_vpe(minor)) == NULL)
1148 		return -ENODEV;
1149 
1150 	// simple case of fire and forget, so tell the VPE to run...
1151 
1152 	hdr = (Elf_Ehdr *) v->pbuffer;
1153 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1154 		if (vpe_elfload(v) >= 0)
1155 			vpe_run(v);
1156 		else {
1157  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1158 			ret = -ENOEXEC;
1159 		}
1160 	} else {
1161  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1162 		ret = -ENOEXEC;
1163 	}
1164 
1165 	/* It's good to be able to run the SP and if it chokes have a look at
1166 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1167 	   loose what has happened. So perhaps if garbage is sent to the vpe
1168 	   device, use it as a trigger for the reset. Hopefully a nice
1169 	   executable will be along shortly. */
1170 	if (ret < 0)
1171 		v->shared_ptr = NULL;
1172 
1173 	// cleanup any temp buffers
1174 	if (v->pbuffer)
1175 		vfree(v->pbuffer);
1176 	v->plen = 0;
1177 	return ret;
1178 }
1179 
1180 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1181 			 size_t count, loff_t * ppos)
1182 {
1183 	int minor;
1184 	size_t ret = count;
1185 	struct vpe *v;
1186 
1187 	minor = iminor(file->f_path.dentry->d_inode);
1188 	if ((v = get_vpe(minor)) == NULL)
1189 		return -ENODEV;
1190 
1191 	if (v->pbuffer == NULL) {
1192 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1193 		return -ENOMEM;
1194 	}
1195 
1196 	if ((count + v->len) > v->plen) {
1197 		printk(KERN_WARNING
1198 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1199 		return -ENOMEM;
1200 	}
1201 
1202 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1203 	if (!count)
1204 		return -EFAULT;
1205 
1206 	v->len += count;
1207 	return ret;
1208 }
1209 
1210 static const struct file_operations vpe_fops = {
1211 	.owner = THIS_MODULE,
1212 	.open = vpe_open,
1213 	.release = vpe_release,
1214 	.write = vpe_write
1215 };
1216 
1217 /* module wrapper entry points */
1218 /* give me a vpe */
1219 vpe_handle vpe_alloc(void)
1220 {
1221 	int i;
1222 	struct vpe *v;
1223 
1224 	/* find a vpe */
1225 	for (i = 1; i < MAX_VPES; i++) {
1226 		if ((v = get_vpe(i)) != NULL) {
1227 			v->state = VPE_STATE_INUSE;
1228 			return v;
1229 		}
1230 	}
1231 	return NULL;
1232 }
1233 
1234 EXPORT_SYMBOL(vpe_alloc);
1235 
1236 /* start running from here */
1237 int vpe_start(vpe_handle vpe, unsigned long start)
1238 {
1239 	struct vpe *v = vpe;
1240 
1241 	v->__start = start;
1242 	return vpe_run(v);
1243 }
1244 
1245 EXPORT_SYMBOL(vpe_start);
1246 
1247 /* halt it for now */
1248 int vpe_stop(vpe_handle vpe)
1249 {
1250 	struct vpe *v = vpe;
1251 	struct tc *t;
1252 	unsigned int evpe_flags;
1253 
1254 	evpe_flags = dvpe();
1255 
1256 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1257 
1258 		settc(t->index);
1259 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1260 	}
1261 
1262 	evpe(evpe_flags);
1263 
1264 	return 0;
1265 }
1266 
1267 EXPORT_SYMBOL(vpe_stop);
1268 
1269 /* I've done with it thank you */
1270 int vpe_free(vpe_handle vpe)
1271 {
1272 	struct vpe *v = vpe;
1273 	struct tc *t;
1274 	unsigned int evpe_flags;
1275 
1276 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1277 		return -ENOEXEC;
1278 	}
1279 
1280 	evpe_flags = dvpe();
1281 
1282 	/* Put MVPE's into 'configuration state' */
1283 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1284 
1285 	settc(t->index);
1286 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1287 
1288 	/* mark the TC unallocated and halt'ed */
1289 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1290 	write_tc_c0_tchalt(TCHALT_H);
1291 
1292 	v->state = VPE_STATE_UNUSED;
1293 
1294 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1295 	evpe(evpe_flags);
1296 
1297 	return 0;
1298 }
1299 
1300 EXPORT_SYMBOL(vpe_free);
1301 
1302 void *vpe_get_shared(int index)
1303 {
1304 	struct vpe *v;
1305 
1306 	if ((v = get_vpe(index)) == NULL)
1307 		return NULL;
1308 
1309 	return v->shared_ptr;
1310 }
1311 
1312 EXPORT_SYMBOL(vpe_get_shared);
1313 
1314 int vpe_getuid(int index)
1315 {
1316 	struct vpe *v;
1317 
1318 	if ((v = get_vpe(index)) == NULL)
1319 		return -1;
1320 
1321 	return v->uid;
1322 }
1323 
1324 EXPORT_SYMBOL(vpe_getuid);
1325 
1326 int vpe_getgid(int index)
1327 {
1328 	struct vpe *v;
1329 
1330 	if ((v = get_vpe(index)) == NULL)
1331 		return -1;
1332 
1333 	return v->gid;
1334 }
1335 
1336 EXPORT_SYMBOL(vpe_getgid);
1337 
1338 int vpe_notify(int index, struct vpe_notifications *notify)
1339 {
1340 	struct vpe *v;
1341 
1342 	if ((v = get_vpe(index)) == NULL)
1343 		return -1;
1344 
1345 	list_add(&notify->list, &v->notify);
1346 	return 0;
1347 }
1348 
1349 EXPORT_SYMBOL(vpe_notify);
1350 
1351 char *vpe_getcwd(int index)
1352 {
1353 	struct vpe *v;
1354 
1355 	if ((v = get_vpe(index)) == NULL)
1356 		return NULL;
1357 
1358 	return v->cwd;
1359 }
1360 
1361 EXPORT_SYMBOL(vpe_getcwd);
1362 
1363 #ifdef CONFIG_MIPS_APSP_KSPD
1364 static void kspd_sp_exit( int sp_id)
1365 {
1366 	cleanup_tc(get_tc(sp_id));
1367 }
1368 #endif
1369 
1370 static struct device *vpe_dev;
1371 
1372 static int __init vpe_module_init(void)
1373 {
1374 	struct vpe *v = NULL;
1375 	struct device *dev;
1376 	struct tc *t;
1377 	unsigned long val;
1378 	int i, err;
1379 
1380 	if (!cpu_has_mipsmt) {
1381 		printk("VPE loader: not a MIPS MT capable processor\n");
1382 		return -ENODEV;
1383 	}
1384 
1385 	major = register_chrdev(0, module_name, &vpe_fops);
1386 	if (major < 0) {
1387 		printk("VPE loader: unable to register character device\n");
1388 		return major;
1389 	}
1390 
1391 	dev = device_create(mt_class, NULL, MKDEV(major, minor),
1392 	                    "tc%d", minor);
1393 	if (IS_ERR(dev)) {
1394 		err = PTR_ERR(dev);
1395 		goto out_chrdev;
1396 	}
1397 	vpe_dev = dev;
1398 
1399 	dmt();
1400 	dvpe();
1401 
1402 	/* Put MVPE's into 'configuration state' */
1403 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1404 
1405 	/* dump_mtregs(); */
1406 
1407 
1408 	val = read_c0_mvpconf0();
1409 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1410 		t = alloc_tc(i);
1411 
1412 		/* VPE's */
1413 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1414 			settc(i);
1415 
1416 			if ((v = alloc_vpe(i)) == NULL) {
1417 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1418 				return -ENODEV;
1419 			}
1420 
1421 			/* add the tc to the list of this vpe's tc's. */
1422 			list_add(&t->tc, &v->tc);
1423 
1424 			/* deactivate all but vpe0 */
1425 			if (i != 0) {
1426 				unsigned long tmp = read_vpe_c0_vpeconf0();
1427 
1428 				tmp &= ~VPECONF0_VPA;
1429 
1430 				/* master VPE */
1431 				tmp |= VPECONF0_MVP;
1432 				write_vpe_c0_vpeconf0(tmp);
1433 			}
1434 
1435 			/* disable multi-threading with TC's */
1436 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1437 
1438 			if (i != 0) {
1439 				write_vpe_c0_status((read_c0_status() &
1440 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1441 						    | ST0_CU0);
1442 
1443 				/*
1444 				 * Set config to be the same as vpe0,
1445 				 * particularly kseg0 coherency alg
1446 				 */
1447 				write_vpe_c0_config(read_c0_config());
1448 			}
1449 		}
1450 
1451 		/* TC's */
1452 		t->pvpe = v;	/* set the parent vpe */
1453 
1454 		if (i != 0) {
1455 			unsigned long tmp;
1456 
1457 			settc(i);
1458 
1459 			/* Any TC that is bound to VPE0 gets left as is - in case
1460 			   we are running SMTC on VPE0. A TC that is bound to any
1461 			   other VPE gets bound to VPE0, ideally I'd like to make
1462 			   it homeless but it doesn't appear to let me bind a TC
1463 			   to a non-existent VPE. Which is perfectly reasonable.
1464 
1465 			   The (un)bound state is visible to an EJTAG probe so may
1466 			   notify GDB...
1467 			*/
1468 
1469 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1470 				/* tc is bound >vpe0 */
1471 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1472 
1473 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1474 			}
1475 
1476 			tmp = read_tc_c0_tcstatus();
1477 
1478 			/* mark not activated and not dynamically allocatable */
1479 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1480 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1481 			write_tc_c0_tcstatus(tmp);
1482 
1483 			write_tc_c0_tchalt(TCHALT_H);
1484 		}
1485 	}
1486 
1487 	/* release config state */
1488 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1489 
1490 #ifdef CONFIG_MIPS_APSP_KSPD
1491 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1492 #endif
1493 	return 0;
1494 
1495 out_chrdev:
1496 	unregister_chrdev(major, module_name);
1497 
1498 	return err;
1499 }
1500 
1501 static void __exit vpe_module_exit(void)
1502 {
1503 	struct vpe *v, *n;
1504 
1505 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1506 		if (v->state != VPE_STATE_UNUSED) {
1507 			release_vpe(v);
1508 		}
1509 	}
1510 
1511 	device_destroy(mt_class, MKDEV(major, minor));
1512 	unregister_chrdev(major, module_name);
1513 }
1514 
1515 module_init(vpe_module_init);
1516 module_exit(vpe_module_exit);
1517 MODULE_DESCRIPTION("MIPS VPE Loader");
1518 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1519 MODULE_LICENSE("GPL");
1520