xref: /linux/arch/mips/kernel/vpe.c (revision b454cc6636d254fbf6049b73e9560aee76fb04a3)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
55 
56 typedef void *vpe_handle;
57 
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
61 
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
64 
65 static char module_name[] = "vpe";
66 static int major;
67 
68 #ifdef CONFIG_MIPS_APSP_KSPD
69  static struct kspd_notifications kspd_events;
70 static int kspd_events_reqd = 0;
71 #endif
72 
73 /* grab the likely amount of memory we will need. */
74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
75 #define P_SIZE (2 * 1024 * 1024)
76 #else
77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
78 #define P_SIZE (256 * 1024)
79 #endif
80 
81 extern unsigned long physical_memsize;
82 
83 #define MAX_VPES 16
84 #define VPE_PATH_MAX 256
85 
86 enum vpe_state {
87 	VPE_STATE_UNUSED = 0,
88 	VPE_STATE_INUSE,
89 	VPE_STATE_RUNNING
90 };
91 
92 enum tc_state {
93 	TC_STATE_UNUSED = 0,
94 	TC_STATE_INUSE,
95 	TC_STATE_RUNNING,
96 	TC_STATE_DYNAMIC
97 };
98 
99 struct vpe {
100 	enum vpe_state state;
101 
102 	/* (device) minor associated with this vpe */
103 	int minor;
104 
105 	/* elfloader stuff */
106 	void *load_addr;
107 	unsigned long len;
108 	char *pbuffer;
109 	unsigned long plen;
110 	unsigned int uid, gid;
111 	char cwd[VPE_PATH_MAX];
112 
113 	unsigned long __start;
114 
115 	/* tc's associated with this vpe */
116 	struct list_head tc;
117 
118 	/* The list of vpe's */
119 	struct list_head list;
120 
121 	/* shared symbol address */
122 	void *shared_ptr;
123 
124 	/* the list of who wants to know when something major happens */
125 	struct list_head notify;
126 };
127 
128 struct tc {
129 	enum tc_state state;
130 	int index;
131 
132 	/* parent VPE */
133 	struct vpe *pvpe;
134 
135 	/* The list of TC's with this VPE */
136 	struct list_head tc;
137 
138 	/* The global list of tc's */
139 	struct list_head list;
140 };
141 
142 struct {
143 	/* Virtual processing elements */
144 	struct list_head vpe_list;
145 
146 	/* Thread contexts */
147 	struct list_head tc_list;
148 } vpecontrol = {
149 	.vpe_list = LIST_HEAD_INIT(vpecontrol.vpe_list),
150 	.tc_list = LIST_HEAD_INIT(vpecontrol.tc_list)
151 };
152 
153 static void release_progmem(void *ptr);
154 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
155 extern void save_gp_address(unsigned int secbase, unsigned int rel);
156 
157 /* get the vpe associated with this minor */
158 struct vpe *get_vpe(int minor)
159 {
160 	struct vpe *v;
161 
162 	if (!cpu_has_mipsmt)
163 		return NULL;
164 
165 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
166 		if (v->minor == minor)
167 			return v;
168 	}
169 
170 	return NULL;
171 }
172 
173 /* get the vpe associated with this minor */
174 struct tc *get_tc(int index)
175 {
176 	struct tc *t;
177 
178 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
179 		if (t->index == index)
180 			return t;
181 	}
182 
183 	return NULL;
184 }
185 
186 struct tc *get_tc_unused(void)
187 {
188 	struct tc *t;
189 
190 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
191 		if (t->state == TC_STATE_UNUSED)
192 			return t;
193 	}
194 
195 	return NULL;
196 }
197 
198 /* allocate a vpe and associate it with this minor (or index) */
199 struct vpe *alloc_vpe(int minor)
200 {
201 	struct vpe *v;
202 
203 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
204 		return NULL;
205 	}
206 
207 	INIT_LIST_HEAD(&v->tc);
208 	list_add_tail(&v->list, &vpecontrol.vpe_list);
209 
210 	INIT_LIST_HEAD(&v->notify);
211 	v->minor = minor;
212 	return v;
213 }
214 
215 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
216 struct tc *alloc_tc(int index)
217 {
218 	struct tc *t;
219 
220 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
221 		return NULL;
222 	}
223 
224 	INIT_LIST_HEAD(&t->tc);
225 	list_add_tail(&t->list, &vpecontrol.tc_list);
226 
227 	t->index = index;
228 
229 	return t;
230 }
231 
232 /* clean up and free everything */
233 void release_vpe(struct vpe *v)
234 {
235 	list_del(&v->list);
236 	if (v->load_addr)
237 		release_progmem(v);
238 	kfree(v);
239 }
240 
241 void dump_mtregs(void)
242 {
243 	unsigned long val;
244 
245 	val = read_c0_config3();
246 	printk("config3 0x%lx MT %ld\n", val,
247 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
248 
249 	val = read_c0_mvpcontrol();
250 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
251 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
252 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
253 	       (val & MVPCONTROL_EVP));
254 
255 	val = read_c0_mvpconf0();
256 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
257 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
258 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
259 }
260 
261 /* Find some VPE program space  */
262 static void *alloc_progmem(unsigned long len)
263 {
264 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
265 	/* this means you must tell linux to use less memory than you physically have */
266 	return pfn_to_kaddr(max_pfn);
267 #else
268 	// simple grab some mem for now
269 	return kmalloc(len, GFP_KERNEL);
270 #endif
271 }
272 
273 static void release_progmem(void *ptr)
274 {
275 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
276 	kfree(ptr);
277 #endif
278 }
279 
280 /* Update size with this section: return offset. */
281 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
282 {
283 	long ret;
284 
285 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
286 	*size = ret + sechdr->sh_size;
287 	return ret;
288 }
289 
290 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
291    might -- code, read-only data, read-write data, small data.  Tally
292    sizes, and place the offsets into sh_entsize fields: high bit means it
293    belongs in init. */
294 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
295 			    Elf_Shdr * sechdrs, const char *secstrings)
296 {
297 	static unsigned long const masks[][2] = {
298 		/* NOTE: all executable code must be the first section
299 		 * in this array; otherwise modify the text_size
300 		 * finder in the two loops below */
301 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
302 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
303 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
304 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
305 	};
306 	unsigned int m, i;
307 
308 	for (i = 0; i < hdr->e_shnum; i++)
309 		sechdrs[i].sh_entsize = ~0UL;
310 
311 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
312 		for (i = 0; i < hdr->e_shnum; ++i) {
313 			Elf_Shdr *s = &sechdrs[i];
314 
315 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
316 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
317 			    || (s->sh_flags & masks[m][1])
318 			    || s->sh_entsize != ~0UL)
319 				continue;
320 			s->sh_entsize = get_offset(&mod->core_size, s);
321 		}
322 
323 		if (m == 0)
324 			mod->core_text_size = mod->core_size;
325 
326 	}
327 }
328 
329 
330 /* from module-elf32.c, but subverted a little */
331 
332 struct mips_hi16 {
333 	struct mips_hi16 *next;
334 	Elf32_Addr *addr;
335 	Elf32_Addr value;
336 };
337 
338 static struct mips_hi16 *mips_hi16_list;
339 static unsigned int gp_offs, gp_addr;
340 
341 static int apply_r_mips_none(struct module *me, uint32_t *location,
342 			     Elf32_Addr v)
343 {
344 	return 0;
345 }
346 
347 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
348 				Elf32_Addr v)
349 {
350 	int rel;
351 
352 	if( !(*location & 0xffff) ) {
353 		rel = (int)v - gp_addr;
354 	}
355 	else {
356 		/* .sbss + gp(relative) + offset */
357 		/* kludge! */
358 		rel =  (int)(short)((int)v + gp_offs +
359 				    (int)(short)(*location & 0xffff) - gp_addr);
360 	}
361 
362 	if( (rel > 32768) || (rel < -32768) ) {
363 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
364 		       "relative address 0x%x out of range of gp register\n",
365 		       rel);
366 		return -ENOEXEC;
367 	}
368 
369 	*location = (*location & 0xffff0000) | (rel & 0xffff);
370 
371 	return 0;
372 }
373 
374 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
375 			     Elf32_Addr v)
376 {
377 	int rel;
378 	rel = (((unsigned int)v - (unsigned int)location));
379 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
380 	rel -= 1;		// and one instruction less due to the branch delay slot.
381 
382 	if( (rel > 32768) || (rel < -32768) ) {
383 		printk(KERN_DEBUG "VPE loader: "
384  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
385 		return -ENOEXEC;
386 	}
387 
388 	*location = (*location & 0xffff0000) | (rel & 0xffff);
389 
390 	return 0;
391 }
392 
393 static int apply_r_mips_32(struct module *me, uint32_t *location,
394 			   Elf32_Addr v)
395 {
396 	*location += v;
397 
398 	return 0;
399 }
400 
401 static int apply_r_mips_26(struct module *me, uint32_t *location,
402 			   Elf32_Addr v)
403 {
404 	if (v % 4) {
405 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
406 		       " unaligned relocation\n");
407 		return -ENOEXEC;
408 	}
409 
410 /*
411  * Not desperately convinced this is a good check of an overflow condition
412  * anyway. But it gets in the way of handling undefined weak symbols which
413  * we want to set to zero.
414  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
415  * printk(KERN_ERR
416  * "module %s: relocation overflow\n",
417  * me->name);
418  * return -ENOEXEC;
419  * }
420  */
421 
422 	*location = (*location & ~0x03ffffff) |
423 		((*location + (v >> 2)) & 0x03ffffff);
424 	return 0;
425 }
426 
427 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
428 			     Elf32_Addr v)
429 {
430 	struct mips_hi16 *n;
431 
432 	/*
433 	 * We cannot relocate this one now because we don't know the value of
434 	 * the carry we need to add.  Save the information, and let LO16 do the
435 	 * actual relocation.
436 	 */
437 	n = kmalloc(sizeof *n, GFP_KERNEL);
438 	if (!n)
439 		return -ENOMEM;
440 
441 	n->addr = location;
442 	n->value = v;
443 	n->next = mips_hi16_list;
444 	mips_hi16_list = n;
445 
446 	return 0;
447 }
448 
449 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
450 			     Elf32_Addr v)
451 {
452 	unsigned long insnlo = *location;
453 	Elf32_Addr val, vallo;
454 
455 	/* Sign extend the addend we extract from the lo insn.  */
456 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
457 
458 	if (mips_hi16_list != NULL) {
459 		struct mips_hi16 *l;
460 
461 		l = mips_hi16_list;
462 		while (l != NULL) {
463 			struct mips_hi16 *next;
464 			unsigned long insn;
465 
466 			/*
467 			 * The value for the HI16 had best be the same.
468 			 */
469  			if (v != l->value) {
470 				printk(KERN_DEBUG "VPE loader: "
471 				       "apply_r_mips_lo16/hi16: 	"
472 				       "inconsistent value information\n");
473 				return -ENOEXEC;
474 			}
475 
476 			/*
477 			 * Do the HI16 relocation.  Note that we actually don't
478 			 * need to know anything about the LO16 itself, except
479 			 * where to find the low 16 bits of the addend needed
480 			 * by the LO16.
481 			 */
482 			insn = *l->addr;
483 			val = ((insn & 0xffff) << 16) + vallo;
484 			val += v;
485 
486 			/*
487 			 * Account for the sign extension that will happen in
488 			 * the low bits.
489 			 */
490 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
491 
492 			insn = (insn & ~0xffff) | val;
493 			*l->addr = insn;
494 
495 			next = l->next;
496 			kfree(l);
497 			l = next;
498 		}
499 
500 		mips_hi16_list = NULL;
501 	}
502 
503 	/*
504 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
505 	 */
506 	val = v + vallo;
507 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
508 	*location = insnlo;
509 
510 	return 0;
511 }
512 
513 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
514 				Elf32_Addr v) = {
515 	[R_MIPS_NONE]	= apply_r_mips_none,
516 	[R_MIPS_32]	= apply_r_mips_32,
517 	[R_MIPS_26]	= apply_r_mips_26,
518 	[R_MIPS_HI16]	= apply_r_mips_hi16,
519 	[R_MIPS_LO16]	= apply_r_mips_lo16,
520 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
521 	[R_MIPS_PC16] = apply_r_mips_pc16
522 };
523 
524 static char *rstrs[] = {
525 	[R_MIPS_NONE]	= "MIPS_NONE",
526 	[R_MIPS_32]	= "MIPS_32",
527 	[R_MIPS_26]	= "MIPS_26",
528 	[R_MIPS_HI16]	= "MIPS_HI16",
529 	[R_MIPS_LO16]	= "MIPS_LO16",
530 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
531 	[R_MIPS_PC16] = "MIPS_PC16"
532 };
533 
534 int apply_relocations(Elf32_Shdr *sechdrs,
535 		      const char *strtab,
536 		      unsigned int symindex,
537 		      unsigned int relsec,
538 		      struct module *me)
539 {
540 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
541 	Elf32_Sym *sym;
542 	uint32_t *location;
543 	unsigned int i;
544 	Elf32_Addr v;
545 	int res;
546 
547 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
548 		Elf32_Word r_info = rel[i].r_info;
549 
550 		/* This is where to make the change */
551 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
552 			+ rel[i].r_offset;
553 		/* This is the symbol it is referring to */
554 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
555 			+ ELF32_R_SYM(r_info);
556 
557 		if (!sym->st_value) {
558 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
559 			       me->name, strtab + sym->st_name);
560 			/* just print the warning, dont barf */
561 		}
562 
563 		v = sym->st_value;
564 
565 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
566 		if( res ) {
567 			char *r = rstrs[ELF32_R_TYPE(r_info)];
568 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
569 			       "relocation type %s for symbol \"%s\" failed\n",
570 			       rel[i].r_offset, r ? r : "UNKNOWN",
571 			       strtab + sym->st_name);
572 			return res;
573 		}
574 	}
575 
576 	return 0;
577 }
578 
579 void save_gp_address(unsigned int secbase, unsigned int rel)
580 {
581 	gp_addr = secbase + rel;
582 	gp_offs = gp_addr - (secbase & 0xffff0000);
583 }
584 /* end module-elf32.c */
585 
586 
587 
588 /* Change all symbols so that sh_value encodes the pointer directly. */
589 static void simplify_symbols(Elf_Shdr * sechdrs,
590 			    unsigned int symindex,
591 			    const char *strtab,
592 			    const char *secstrings,
593 			    unsigned int nsecs, struct module *mod)
594 {
595 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
596 	unsigned long secbase, bssbase = 0;
597 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
598 	int size;
599 
600 	/* find the .bss section for COMMON symbols */
601 	for (i = 0; i < nsecs; i++) {
602 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
603 			bssbase = sechdrs[i].sh_addr;
604 			break;
605 		}
606 	}
607 
608 	for (i = 1; i < n; i++) {
609 		switch (sym[i].st_shndx) {
610 		case SHN_COMMON:
611 			/* Allocate space for the symbol in the .bss section.
612 			   st_value is currently size.
613 			   We want it to have the address of the symbol. */
614 
615 			size = sym[i].st_value;
616 			sym[i].st_value = bssbase;
617 
618 			bssbase += size;
619 			break;
620 
621 		case SHN_ABS:
622 			/* Don't need to do anything */
623 			break;
624 
625 		case SHN_UNDEF:
626 			/* ret = -ENOENT; */
627 			break;
628 
629 		case SHN_MIPS_SCOMMON:
630 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
631 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
632 			       sym[i].st_shndx);
633 			// .sbss section
634 			break;
635 
636 		default:
637 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
638 
639 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
640 				save_gp_address(secbase, sym[i].st_value);
641 			}
642 
643 			sym[i].st_value += secbase;
644 			break;
645 		}
646 	}
647 }
648 
649 #ifdef DEBUG_ELFLOADER
650 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
651 			    const char *strtab, struct module *mod)
652 {
653 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
654 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
655 
656 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
657 	for (i = 1; i < n; i++) {
658 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
659 		       strtab + sym[i].st_name, sym[i].st_value);
660 	}
661 }
662 #endif
663 
664 static void dump_tc(struct tc *t)
665 {
666   	unsigned long val;
667 
668   	settc(t->index);
669  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
670  	       "TCStatus 0x%lx halt 0x%lx\n",
671   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
672   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
673 
674  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
675  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
676 
677   	val = read_c0_vpeconf0();
678  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
679   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
680 
681  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
682  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
683 
684  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
685  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
686 }
687 
688 static void dump_tclist(void)
689 {
690 	struct tc *t;
691 
692 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
693 		dump_tc(t);
694 	}
695 }
696 
697 /* We are prepared so configure and start the VPE... */
698 static int vpe_run(struct vpe * v)
699 {
700 	struct vpe_notifications *n;
701 	unsigned long val, dmt_flag;
702 	struct tc *t;
703 
704 	/* check we are the Master VPE */
705 	val = read_c0_vpeconf0();
706 	if (!(val & VPECONF0_MVP)) {
707 		printk(KERN_WARNING
708 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
709 		return -1;
710 	}
711 
712 	/* disable MT (using dvpe) */
713 	dvpe();
714 
715 	if (!list_empty(&v->tc)) {
716 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
717 			printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
718 			       t->index);
719 			return -ENOEXEC;
720 		}
721 	} else {
722 		printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
723 		       v->minor);
724 		return -ENOEXEC;
725 	}
726 
727 	/* Put MVPE's into 'configuration state' */
728 	set_c0_mvpcontrol(MVPCONTROL_VPC);
729 
730 	settc(t->index);
731 
732 	/* should check it is halted, and not activated */
733 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
734 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
735 		       t->index);
736 		dump_tclist();
737 		return -ENOEXEC;
738 	}
739 
740 	/*
741 	 * Disable multi-threaded execution whilst we activate, clear the
742 	 * halt bit and bound the tc to the other VPE...
743 	 */
744 	dmt_flag = dmt();
745 
746 	/* Write the address we want it to start running from in the TCPC register. */
747 	write_tc_c0_tcrestart((unsigned long)v->__start);
748 	write_tc_c0_tccontext((unsigned long)0);
749 	/*
750 	 * Mark the TC as activated, not interrupt exempt and not dynamically
751 	 * allocatable
752 	 */
753 	val = read_tc_c0_tcstatus();
754 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
755 	write_tc_c0_tcstatus(val);
756 
757 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
758 
759 	/*
760 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
761 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
762 	 * DFLT_HEAP_SIZE when you compile your program
763 	 */
764  	mttgpr(7, physical_memsize);
765 
766 
767 	/* set up VPE1 */
768 	/*
769 	 * bind the TC to VPE 1 as late as possible so we only have the final
770 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
771 	 */
772  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
773 
774 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
775 
776 	back_to_back_c0_hazard();
777 
778 	/* Set up the XTC bit in vpeconf0 to point at our tc */
779 	write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
780 	                      | (t->index << VPECONF0_XTC_SHIFT));
781 
782 	back_to_back_c0_hazard();
783 
784 	/* enable this VPE */
785 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
786 
787 	/* clear out any left overs from a previous program */
788 	write_vpe_c0_status(0);
789 	write_vpe_c0_cause(0);
790 
791 	/* take system out of configuration state */
792 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
793 
794 	/* now safe to re-enable multi-threading */
795 	emt(dmt_flag);
796 
797 	/* set it running */
798 	evpe(EVPE_ENABLE);
799 
800 	list_for_each_entry(n, &v->notify, list) {
801 		n->start(v->minor);
802 	}
803 
804 	return 0;
805 }
806 
807 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
808 				      unsigned int symindex, const char *strtab,
809 				      struct module *mod)
810 {
811 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
812 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
813 
814 	for (i = 1; i < n; i++) {
815 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
816 			v->__start = sym[i].st_value;
817 		}
818 
819 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
820 			v->shared_ptr = (void *)sym[i].st_value;
821 		}
822 	}
823 
824 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
825 		return -1;
826 
827 	return 0;
828 }
829 
830 /*
831  * Allocates a VPE with some program code space(the load address), copies the
832  * contents of the program (p)buffer performing relocatations/etc, free's it
833  * when finished.
834  */
835 static int vpe_elfload(struct vpe * v)
836 {
837 	Elf_Ehdr *hdr;
838 	Elf_Shdr *sechdrs;
839 	long err = 0;
840 	char *secstrings, *strtab = NULL;
841 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
842 	struct module mod;	// so we can re-use the relocations code
843 
844 	memset(&mod, 0, sizeof(struct module));
845 	strcpy(mod.name, "VPE loader");
846 
847 	hdr = (Elf_Ehdr *) v->pbuffer;
848 	len = v->plen;
849 
850 	/* Sanity checks against insmoding binaries or wrong arch,
851 	   weird elf version */
852 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
853 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
854 	    || !elf_check_arch(hdr)
855 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
856 		printk(KERN_WARNING
857 		       "VPE loader: program wrong arch or weird elf version\n");
858 
859 		return -ENOEXEC;
860 	}
861 
862 	if (hdr->e_type == ET_REL)
863 		relocate = 1;
864 
865 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
866 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
867 		       len);
868 
869 		return -ENOEXEC;
870 	}
871 
872 	/* Convenience variables */
873 	sechdrs = (void *)hdr + hdr->e_shoff;
874 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
875 	sechdrs[0].sh_addr = 0;
876 
877 	/* And these should exist, but gcc whinges if we don't init them */
878 	symindex = strindex = 0;
879 
880 	if (relocate) {
881 		for (i = 1; i < hdr->e_shnum; i++) {
882 			if (sechdrs[i].sh_type != SHT_NOBITS
883 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
884 				printk(KERN_ERR "VPE program length %u truncated\n",
885 				       len);
886 				return -ENOEXEC;
887 			}
888 
889 			/* Mark all sections sh_addr with their address in the
890 			   temporary image. */
891 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
892 
893 			/* Internal symbols and strings. */
894 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
895 				symindex = i;
896 				strindex = sechdrs[i].sh_link;
897 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
898 			}
899 		}
900 		layout_sections(&mod, hdr, sechdrs, secstrings);
901 	}
902 
903 	v->load_addr = alloc_progmem(mod.core_size);
904 	memset(v->load_addr, 0, mod.core_size);
905 
906 	printk("VPE loader: loading to %p\n", v->load_addr);
907 
908 	if (relocate) {
909 		for (i = 0; i < hdr->e_shnum; i++) {
910 			void *dest;
911 
912 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
913 				continue;
914 
915 			dest = v->load_addr + sechdrs[i].sh_entsize;
916 
917 			if (sechdrs[i].sh_type != SHT_NOBITS)
918 				memcpy(dest, (void *)sechdrs[i].sh_addr,
919 				       sechdrs[i].sh_size);
920 			/* Update sh_addr to point to copy in image. */
921 			sechdrs[i].sh_addr = (unsigned long)dest;
922 
923 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
924 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
925 		}
926 
927  		/* Fix up syms, so that st_value is a pointer to location. */
928  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
929  				 hdr->e_shnum, &mod);
930 
931  		/* Now do relocations. */
932  		for (i = 1; i < hdr->e_shnum; i++) {
933  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
934  			unsigned int info = sechdrs[i].sh_info;
935 
936  			/* Not a valid relocation section? */
937  			if (info >= hdr->e_shnum)
938  				continue;
939 
940  			/* Don't bother with non-allocated sections */
941  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
942  				continue;
943 
944  			if (sechdrs[i].sh_type == SHT_REL)
945  				err = apply_relocations(sechdrs, strtab, symindex, i,
946  							&mod);
947  			else if (sechdrs[i].sh_type == SHT_RELA)
948  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
949  							 &mod);
950  			if (err < 0)
951  				return err;
952 
953   		}
954   	} else {
955   		for (i = 0; i < hdr->e_shnum; i++) {
956 
957  			/* Internal symbols and strings. */
958  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
959  				symindex = i;
960  				strindex = sechdrs[i].sh_link;
961  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
962 
963  				/* mark the symtab's address for when we try to find the
964  				   magic symbols */
965  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
966  			}
967 
968  			/* filter sections we dont want in the final image */
969  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
970  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
971  				printk( KERN_DEBUG " ignoring section, "
972  					"name %s type %x address 0x%x \n",
973  					secstrings + sechdrs[i].sh_name,
974  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
975  				continue;
976  			}
977 
978   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
979  				printk( KERN_WARNING "VPE loader: "
980  					"fully linked image has invalid section, "
981  					"name %s type %x address 0x%x, before load "
982  					"address of 0x%x\n",
983  					secstrings + sechdrs[i].sh_name,
984  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
985  					(unsigned int)v->load_addr);
986   				return -ENOEXEC;
987   			}
988 
989  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
990 			       "size 0x%x0 from x%p\n",
991 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
992 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
993 
994   			if (sechdrs[i].sh_type != SHT_NOBITS)
995 				memcpy((void *)sechdrs[i].sh_addr,
996 				       (char *)hdr + sechdrs[i].sh_offset,
997  				       sechdrs[i].sh_size);
998 			else
999 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
1000 		}
1001 	}
1002 
1003 	/* make sure it's physically written out */
1004 	flush_icache_range((unsigned long)v->load_addr,
1005 			   (unsigned long)v->load_addr + v->len);
1006 
1007 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1008 		if (v->__start == 0) {
1009 			printk(KERN_WARNING "VPE loader: program does not contain "
1010 			       "a __start symbol\n");
1011 			return -ENOEXEC;
1012 		}
1013 
1014 		if (v->shared_ptr == NULL)
1015 			printk(KERN_WARNING "VPE loader: "
1016 			       "program does not contain vpe_shared symbol.\n"
1017 			       " Unable to use AMVP (AP/SP) facilities.\n");
1018 	}
1019 
1020 	printk(" elf loaded\n");
1021 	return 0;
1022 }
1023 
1024 __attribute_used__ void dump_vpe(struct vpe * v)
1025 {
1026 	struct tc *t;
1027 
1028 	settc(v->minor);
1029 
1030 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1031 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1032 
1033 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1034 		dump_tc(t);
1035 }
1036 
1037 static void cleanup_tc(struct tc *tc)
1038 {
1039 	int tmp;
1040 
1041 	/* Put MVPE's into 'configuration state' */
1042 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1043 
1044 	settc(tc->index);
1045 	tmp = read_tc_c0_tcstatus();
1046 
1047 	/* mark not allocated and not dynamically allocatable */
1048 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1049 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1050 	write_tc_c0_tcstatus(tmp);
1051 
1052 	write_tc_c0_tchalt(TCHALT_H);
1053 
1054 	/* bind it to anything other than VPE1 */
1055 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1056 
1057 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1058 }
1059 
1060 static int getcwd(char *buff, int size)
1061 {
1062 	mm_segment_t old_fs;
1063 	int ret;
1064 
1065 	old_fs = get_fs();
1066 	set_fs(KERNEL_DS);
1067 
1068 	ret = sys_getcwd(buff,size);
1069 
1070 	set_fs(old_fs);
1071 
1072 	return ret;
1073 }
1074 
1075 /* checks VPE is unused and gets ready to load program  */
1076 static int vpe_open(struct inode *inode, struct file *filp)
1077 {
1078 	int minor, ret;
1079 	struct vpe *v;
1080 	struct vpe_notifications *not;
1081 
1082 	/* assume only 1 device at the mo. */
1083 	if ((minor = iminor(inode)) != 1) {
1084 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1085 		return -ENODEV;
1086 	}
1087 
1088 	if ((v = get_vpe(minor)) == NULL) {
1089 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1090 		return -ENODEV;
1091 	}
1092 
1093 	if (v->state != VPE_STATE_UNUSED) {
1094 		dvpe();
1095 
1096 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1097 
1098 		dump_tc(get_tc(minor));
1099 
1100 		list_for_each_entry(not, &v->notify, list) {
1101 			not->stop(minor);
1102 		}
1103 
1104 		release_progmem(v->load_addr);
1105 		cleanup_tc(get_tc(minor));
1106 	}
1107 
1108 	// allocate it so when we get write ops we know it's expected.
1109 	v->state = VPE_STATE_INUSE;
1110 
1111 	/* this of-course trashes what was there before... */
1112 	v->pbuffer = vmalloc(P_SIZE);
1113 	v->plen = P_SIZE;
1114 	v->load_addr = NULL;
1115 	v->len = 0;
1116 
1117 	v->uid = filp->f_uid;
1118 	v->gid = filp->f_gid;
1119 
1120 #ifdef CONFIG_MIPS_APSP_KSPD
1121 	/* get kspd to tell us when a syscall_exit happens */
1122 	if (!kspd_events_reqd) {
1123 		kspd_notify(&kspd_events);
1124 		kspd_events_reqd++;
1125 	}
1126 #endif
1127 
1128 	v->cwd[0] = 0;
1129 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1130 	if (ret < 0)
1131 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1132 
1133 	v->shared_ptr = NULL;
1134 	v->__start = 0;
1135 	return 0;
1136 }
1137 
1138 static int vpe_release(struct inode *inode, struct file *filp)
1139 {
1140 	int minor, ret = 0;
1141 	struct vpe *v;
1142 	Elf_Ehdr *hdr;
1143 
1144 	minor = iminor(inode);
1145 	if ((v = get_vpe(minor)) == NULL)
1146 		return -ENODEV;
1147 
1148 	// simple case of fire and forget, so tell the VPE to run...
1149 
1150 	hdr = (Elf_Ehdr *) v->pbuffer;
1151 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1152 		if (vpe_elfload(v) >= 0)
1153 			vpe_run(v);
1154 		else {
1155  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1156 			ret = -ENOEXEC;
1157 		}
1158 	} else {
1159  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1160 		ret = -ENOEXEC;
1161 	}
1162 
1163 	/* It's good to be able to run the SP and if it chokes have a look at
1164 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1165 	   loose what has happened. So perhaps if garbage is sent to the vpe
1166 	   device, use it as a trigger for the reset. Hopefully a nice
1167 	   executable will be along shortly. */
1168 	if (ret < 0)
1169 		v->shared_ptr = NULL;
1170 
1171 	// cleanup any temp buffers
1172 	if (v->pbuffer)
1173 		vfree(v->pbuffer);
1174 	v->plen = 0;
1175 	return ret;
1176 }
1177 
1178 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1179 			 size_t count, loff_t * ppos)
1180 {
1181 	int minor;
1182 	size_t ret = count;
1183 	struct vpe *v;
1184 
1185 	minor = iminor(file->f_path.dentry->d_inode);
1186 	if ((v = get_vpe(minor)) == NULL)
1187 		return -ENODEV;
1188 
1189 	if (v->pbuffer == NULL) {
1190 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1191 		return -ENOMEM;
1192 	}
1193 
1194 	if ((count + v->len) > v->plen) {
1195 		printk(KERN_WARNING
1196 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1197 		return -ENOMEM;
1198 	}
1199 
1200 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1201 	if (!count)
1202 		return -EFAULT;
1203 
1204 	v->len += count;
1205 	return ret;
1206 }
1207 
1208 static struct file_operations vpe_fops = {
1209 	.owner = THIS_MODULE,
1210 	.open = vpe_open,
1211 	.release = vpe_release,
1212 	.write = vpe_write
1213 };
1214 
1215 /* module wrapper entry points */
1216 /* give me a vpe */
1217 vpe_handle vpe_alloc(void)
1218 {
1219 	int i;
1220 	struct vpe *v;
1221 
1222 	/* find a vpe */
1223 	for (i = 1; i < MAX_VPES; i++) {
1224 		if ((v = get_vpe(i)) != NULL) {
1225 			v->state = VPE_STATE_INUSE;
1226 			return v;
1227 		}
1228 	}
1229 	return NULL;
1230 }
1231 
1232 EXPORT_SYMBOL(vpe_alloc);
1233 
1234 /* start running from here */
1235 int vpe_start(vpe_handle vpe, unsigned long start)
1236 {
1237 	struct vpe *v = vpe;
1238 
1239 	v->__start = start;
1240 	return vpe_run(v);
1241 }
1242 
1243 EXPORT_SYMBOL(vpe_start);
1244 
1245 /* halt it for now */
1246 int vpe_stop(vpe_handle vpe)
1247 {
1248 	struct vpe *v = vpe;
1249 	struct tc *t;
1250 	unsigned int evpe_flags;
1251 
1252 	evpe_flags = dvpe();
1253 
1254 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1255 
1256 		settc(t->index);
1257 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1258 	}
1259 
1260 	evpe(evpe_flags);
1261 
1262 	return 0;
1263 }
1264 
1265 EXPORT_SYMBOL(vpe_stop);
1266 
1267 /* I've done with it thank you */
1268 int vpe_free(vpe_handle vpe)
1269 {
1270 	struct vpe *v = vpe;
1271 	struct tc *t;
1272 	unsigned int evpe_flags;
1273 
1274 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1275 		return -ENOEXEC;
1276 	}
1277 
1278 	evpe_flags = dvpe();
1279 
1280 	/* Put MVPE's into 'configuration state' */
1281 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1282 
1283 	settc(t->index);
1284 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1285 
1286 	/* mark the TC unallocated and halt'ed */
1287 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1288 	write_tc_c0_tchalt(TCHALT_H);
1289 
1290 	v->state = VPE_STATE_UNUSED;
1291 
1292 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1293 	evpe(evpe_flags);
1294 
1295 	return 0;
1296 }
1297 
1298 EXPORT_SYMBOL(vpe_free);
1299 
1300 void *vpe_get_shared(int index)
1301 {
1302 	struct vpe *v;
1303 
1304 	if ((v = get_vpe(index)) == NULL)
1305 		return NULL;
1306 
1307 	return v->shared_ptr;
1308 }
1309 
1310 EXPORT_SYMBOL(vpe_get_shared);
1311 
1312 int vpe_getuid(int index)
1313 {
1314 	struct vpe *v;
1315 
1316 	if ((v = get_vpe(index)) == NULL)
1317 		return -1;
1318 
1319 	return v->uid;
1320 }
1321 
1322 EXPORT_SYMBOL(vpe_getuid);
1323 
1324 int vpe_getgid(int index)
1325 {
1326 	struct vpe *v;
1327 
1328 	if ((v = get_vpe(index)) == NULL)
1329 		return -1;
1330 
1331 	return v->gid;
1332 }
1333 
1334 EXPORT_SYMBOL(vpe_getgid);
1335 
1336 int vpe_notify(int index, struct vpe_notifications *notify)
1337 {
1338 	struct vpe *v;
1339 
1340 	if ((v = get_vpe(index)) == NULL)
1341 		return -1;
1342 
1343 	list_add(&notify->list, &v->notify);
1344 	return 0;
1345 }
1346 
1347 EXPORT_SYMBOL(vpe_notify);
1348 
1349 char *vpe_getcwd(int index)
1350 {
1351 	struct vpe *v;
1352 
1353 	if ((v = get_vpe(index)) == NULL)
1354 		return NULL;
1355 
1356 	return v->cwd;
1357 }
1358 
1359 EXPORT_SYMBOL(vpe_getcwd);
1360 
1361 #ifdef CONFIG_MIPS_APSP_KSPD
1362 static void kspd_sp_exit( int sp_id)
1363 {
1364 	cleanup_tc(get_tc(sp_id));
1365 }
1366 #endif
1367 
1368 static int __init vpe_module_init(void)
1369 {
1370 	struct vpe *v = NULL;
1371 	struct tc *t;
1372 	unsigned long val;
1373 	int i;
1374 
1375 	if (!cpu_has_mipsmt) {
1376 		printk("VPE loader: not a MIPS MT capable processor\n");
1377 		return -ENODEV;
1378 	}
1379 
1380 	major = register_chrdev(0, module_name, &vpe_fops);
1381 	if (major < 0) {
1382 		printk("VPE loader: unable to register character device\n");
1383 		return major;
1384 	}
1385 
1386 	dmt();
1387 	dvpe();
1388 
1389 	/* Put MVPE's into 'configuration state' */
1390 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1391 
1392 	/* dump_mtregs(); */
1393 
1394 
1395 	val = read_c0_mvpconf0();
1396 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1397 		t = alloc_tc(i);
1398 
1399 		/* VPE's */
1400 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1401 			settc(i);
1402 
1403 			if ((v = alloc_vpe(i)) == NULL) {
1404 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1405 				return -ENODEV;
1406 			}
1407 
1408 			/* add the tc to the list of this vpe's tc's. */
1409 			list_add(&t->tc, &v->tc);
1410 
1411 			/* deactivate all but vpe0 */
1412 			if (i != 0) {
1413 				unsigned long tmp = read_vpe_c0_vpeconf0();
1414 
1415 				tmp &= ~VPECONF0_VPA;
1416 
1417 				/* master VPE */
1418 				tmp |= VPECONF0_MVP;
1419 				write_vpe_c0_vpeconf0(tmp);
1420 			}
1421 
1422 			/* disable multi-threading with TC's */
1423 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1424 
1425 			if (i != 0) {
1426 				write_vpe_c0_status((read_c0_status() &
1427 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1428 						    | ST0_CU0);
1429 
1430 				/*
1431 				 * Set config to be the same as vpe0,
1432 				 * particularly kseg0 coherency alg
1433 				 */
1434 				write_vpe_c0_config(read_c0_config());
1435 			}
1436 		}
1437 
1438 		/* TC's */
1439 		t->pvpe = v;	/* set the parent vpe */
1440 
1441 		if (i != 0) {
1442 			unsigned long tmp;
1443 
1444 			settc(i);
1445 
1446 			/* Any TC that is bound to VPE0 gets left as is - in case
1447 			   we are running SMTC on VPE0. A TC that is bound to any
1448 			   other VPE gets bound to VPE0, ideally I'd like to make
1449 			   it homeless but it doesn't appear to let me bind a TC
1450 			   to a non-existent VPE. Which is perfectly reasonable.
1451 
1452 			   The (un)bound state is visible to an EJTAG probe so may
1453 			   notify GDB...
1454 			*/
1455 
1456 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1457 				/* tc is bound >vpe0 */
1458 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1459 
1460 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1461 			}
1462 
1463 			tmp = read_tc_c0_tcstatus();
1464 
1465 			/* mark not activated and not dynamically allocatable */
1466 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1467 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1468 			write_tc_c0_tcstatus(tmp);
1469 
1470 			write_tc_c0_tchalt(TCHALT_H);
1471 		}
1472 	}
1473 
1474 	/* release config state */
1475 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1476 
1477 #ifdef CONFIG_MIPS_APSP_KSPD
1478 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1479 #endif
1480 	return 0;
1481 }
1482 
1483 static void __exit vpe_module_exit(void)
1484 {
1485 	struct vpe *v, *n;
1486 
1487 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1488 		if (v->state != VPE_STATE_UNUSED) {
1489 			release_vpe(v);
1490 		}
1491 	}
1492 
1493 	unregister_chrdev(major, module_name);
1494 }
1495 
1496 module_init(vpe_module_init);
1497 module_exit(vpe_module_exit);
1498 MODULE_DESCRIPTION("MIPS VPE Loader");
1499 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1500 MODULE_LICENSE("GPL");
1501