xref: /linux/arch/mips/kernel/vpe.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  *
17  */
18 
19 /*
20  * VPE support module
21  *
22  * Provides support for loading a MIPS SP program on VPE1.
23  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
24  * (or partially linked). You should initialise your stack in the startup
25  * code. This loader looks for the symbol __start and sets up
26  * execution to resume from there. The MIPS SDE kit contains suitable examples.
27  *
28  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
29  * i.e cat spapp >/dev/vpe1.
30  *
31  * You'll need to have the following device files.
32  * mknod /dev/vpe0 c 63 0
33  * mknod /dev/vpe1 c 63 1
34  */
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/init.h>
40 #include <asm/uaccess.h>
41 #include <linux/slab.h>
42 #include <linux/list.h>
43 #include <linux/vmalloc.h>
44 #include <linux/elf.h>
45 #include <linux/seq_file.h>
46 #include <linux/syscalls.h>
47 #include <linux/moduleloader.h>
48 #include <linux/interrupt.h>
49 #include <linux/poll.h>
50 #include <linux/bootmem.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/cacheflush.h>
54 #include <asm/atomic.h>
55 #include <asm/cpu.h>
56 #include <asm/processor.h>
57 #include <asm/system.h>
58 
59 typedef void *vpe_handle;
60 
61 // defined here because the kernel module loader doesn't have
62 // anything to do with it.
63 #define SHN_MIPS_SCOMMON 0xff03
64 
65 #ifndef ARCH_SHF_SMALL
66 #define ARCH_SHF_SMALL 0
67 #endif
68 
69 /* If this is set, the section belongs in the init part of the module */
70 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
71 
72 // temp number,
73 #define VPE_MAJOR 63
74 
75 static char module_name[] = "vpe";
76 static int major = 0;
77 
78 /* grab the likely amount of memory we will need. */
79 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
80 #define P_SIZE (2 * 1024 * 1024)
81 #else
82 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
83 #define P_SIZE (256 * 1024)
84 #endif
85 
86 #define MAX_VPES 16
87 
88 enum vpe_state {
89 	VPE_STATE_UNUSED = 0,
90 	VPE_STATE_INUSE,
91 	VPE_STATE_RUNNING
92 };
93 
94 enum tc_state {
95 	TC_STATE_UNUSED = 0,
96 	TC_STATE_INUSE,
97 	TC_STATE_RUNNING,
98 	TC_STATE_DYNAMIC
99 };
100 
101 struct vpe;
102 typedef struct tc {
103 	enum tc_state state;
104 	int index;
105 
106 	/* parent VPE */
107 	struct vpe *pvpe;
108 
109 	/* The list of TC's with this VPE */
110 	struct list_head tc;
111 
112 	/* The global list of tc's */
113 	struct list_head list;
114 } tc_t;
115 
116 typedef struct vpe {
117 	enum vpe_state state;
118 
119 	/* (device) minor associated with this vpe */
120 	int minor;
121 
122 	/* elfloader stuff */
123 	void *load_addr;
124 	u32 len;
125 	char *pbuffer;
126 	u32 plen;
127 
128 	unsigned long __start;
129 
130 	/* tc's associated with this vpe */
131 	struct list_head tc;
132 
133 	/* The list of vpe's */
134 	struct list_head list;
135 
136 	/* shared symbol address */
137 	void *shared_ptr;
138 } vpe_t;
139 
140 struct vpecontrol_ {
141 	/* Virtual processing elements */
142 	struct list_head vpe_list;
143 
144 	/* Thread contexts */
145 	struct list_head tc_list;
146 } vpecontrol;
147 
148 static void release_progmem(void *ptr);
149 static void dump_vpe(vpe_t * v);
150 extern void save_gp_address(unsigned int secbase, unsigned int rel);
151 
152 /* get the vpe associated with this minor */
153 struct vpe *get_vpe(int minor)
154 {
155 	struct vpe *v;
156 
157 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
158 		if (v->minor == minor)
159 			return v;
160 	}
161 
162 	printk(KERN_DEBUG "VPE: get_vpe minor %d not found\n", minor);
163 	return NULL;
164 }
165 
166 /* get the vpe associated with this minor */
167 struct tc *get_tc(int index)
168 {
169 	struct tc *t;
170 
171 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
172 		if (t->index == index)
173 			return t;
174 	}
175 
176 	printk(KERN_DEBUG "VPE: get_tc index %d not found\n", index);
177 
178 	return NULL;
179 }
180 
181 struct tc *get_tc_unused(void)
182 {
183 	struct tc *t;
184 
185 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
186 		if (t->state == TC_STATE_UNUSED)
187 			return t;
188 	}
189 
190 	printk(KERN_DEBUG "VPE: All TC's are in use\n");
191 
192 	return NULL;
193 }
194 
195 /* allocate a vpe and associate it with this minor (or index) */
196 struct vpe *alloc_vpe(int minor)
197 {
198 	struct vpe *v;
199 
200 	if ((v = kmalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
201 		printk(KERN_WARNING "VPE: alloc_vpe no mem\n");
202 		return NULL;
203 	}
204 
205 	memset(v, 0, sizeof(struct vpe));
206 
207 	INIT_LIST_HEAD(&v->tc);
208 	list_add_tail(&v->list, &vpecontrol.vpe_list);
209 
210 	v->minor = minor;
211 	return v;
212 }
213 
214 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
215 struct tc *alloc_tc(int index)
216 {
217 	struct tc *t;
218 
219 	if ((t = kmalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
220 		printk(KERN_WARNING "VPE: alloc_tc no mem\n");
221 		return NULL;
222 	}
223 
224 	memset(t, 0, sizeof(struct tc));
225 
226 	INIT_LIST_HEAD(&t->tc);
227 	list_add_tail(&t->list, &vpecontrol.tc_list);
228 
229 	t->index = index;
230 
231 	return t;
232 }
233 
234 /* clean up and free everything */
235 void release_vpe(struct vpe *v)
236 {
237 	list_del(&v->list);
238 	if (v->load_addr)
239 		release_progmem(v);
240 	kfree(v);
241 }
242 
243 void dump_mtregs(void)
244 {
245 	unsigned long val;
246 
247 	val = read_c0_config3();
248 	printk("config3 0x%lx MT %ld\n", val,
249 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
250 
251 	val = read_c0_mvpconf0();
252 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
253 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
254 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
255 
256 	val = read_c0_mvpcontrol();
257 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
258 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
259 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
260 	       (val & MVPCONTROL_EVP));
261 
262 	val = read_c0_vpeconf0();
263 	printk("VPEConf0 0x%lx MVP %ld\n", val,
264 	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
265 }
266 
267 /* Find some VPE program space  */
268 static void *alloc_progmem(u32 len)
269 {
270 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
271 	/* this means you must tell linux to use less memory than you physically have */
272 	return (void *)((max_pfn * PAGE_SIZE) + KSEG0);
273 #else
274 	// simple grab some mem for now
275 	return kmalloc(len, GFP_KERNEL);
276 #endif
277 }
278 
279 static void release_progmem(void *ptr)
280 {
281 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
282 	kfree(ptr);
283 #endif
284 }
285 
286 /* Update size with this section: return offset. */
287 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
288 {
289 	long ret;
290 
291 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
292 	*size = ret + sechdr->sh_size;
293 	return ret;
294 }
295 
296 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
297    might -- code, read-only data, read-write data, small data.  Tally
298    sizes, and place the offsets into sh_entsize fields: high bit means it
299    belongs in init. */
300 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
301 			    Elf_Shdr * sechdrs, const char *secstrings)
302 {
303 	static unsigned long const masks[][2] = {
304 		/* NOTE: all executable code must be the first section
305 		 * in this array; otherwise modify the text_size
306 		 * finder in the two loops below */
307 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
308 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
309 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
310 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
311 	};
312 	unsigned int m, i;
313 
314 	for (i = 0; i < hdr->e_shnum; i++)
315 		sechdrs[i].sh_entsize = ~0UL;
316 
317 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
318 		for (i = 0; i < hdr->e_shnum; ++i) {
319 			Elf_Shdr *s = &sechdrs[i];
320 
321 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
322 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
323 			    || (s->sh_flags & masks[m][1])
324 			    || s->sh_entsize != ~0UL)
325 				continue;
326 			s->sh_entsize = get_offset(&mod->core_size, s);
327 		}
328 
329 		if (m == 0)
330 			mod->core_text_size = mod->core_size;
331 
332 	}
333 }
334 
335 
336 /* from module-elf32.c, but subverted a little */
337 
338 struct mips_hi16 {
339 	struct mips_hi16 *next;
340 	Elf32_Addr *addr;
341 	Elf32_Addr value;
342 };
343 
344 static struct mips_hi16 *mips_hi16_list;
345 static unsigned int gp_offs, gp_addr;
346 
347 static int apply_r_mips_none(struct module *me, uint32_t *location,
348 			     Elf32_Addr v)
349 {
350 	return 0;
351 }
352 
353 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
354 				Elf32_Addr v)
355 {
356 	int rel;
357 
358 	if( !(*location & 0xffff) ) {
359 		rel = (int)v - gp_addr;
360 	}
361 	else {
362 		/* .sbss + gp(relative) + offset */
363 		/* kludge! */
364 		rel =  (int)(short)((int)v + gp_offs +
365 				    (int)(short)(*location & 0xffff) - gp_addr);
366 	}
367 
368 	if( (rel > 32768) || (rel < -32768) ) {
369 		printk(KERN_ERR
370 		       "apply_r_mips_gprel16: relative address out of range 0x%x %d\n",
371 		       rel, rel);
372 		return -ENOEXEC;
373 	}
374 
375 	*location = (*location & 0xffff0000) | (rel & 0xffff);
376 
377 	return 0;
378 }
379 
380 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
381 			     Elf32_Addr v)
382 {
383 	int rel;
384 	rel = (((unsigned int)v - (unsigned int)location));
385 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
386 	rel -= 1;		// and one instruction less due to the branch delay slot.
387 
388 	if( (rel > 32768) || (rel < -32768) ) {
389 		printk(KERN_ERR
390 		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
391 		return -ENOEXEC;
392 	}
393 
394 	*location = (*location & 0xffff0000) | (rel & 0xffff);
395 
396 	return 0;
397 }
398 
399 static int apply_r_mips_32(struct module *me, uint32_t *location,
400 			   Elf32_Addr v)
401 {
402 	*location += v;
403 
404 	return 0;
405 }
406 
407 static int apply_r_mips_26(struct module *me, uint32_t *location,
408 			   Elf32_Addr v)
409 {
410 	if (v % 4) {
411 		printk(KERN_ERR "module %s: dangerous relocation mod4\n", me->name);
412 		return -ENOEXEC;
413 	}
414 
415 /* Not desperately convinced this is a good check of an overflow condition
416    anyway. But it gets in the way of handling undefined weak symbols which
417    we want to set to zero.
418    if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
419    printk(KERN_ERR
420    "module %s: relocation overflow\n",
421    me->name);
422    return -ENOEXEC;
423    }
424 */
425 
426 	*location = (*location & ~0x03ffffff) |
427 		((*location + (v >> 2)) & 0x03ffffff);
428 	return 0;
429 }
430 
431 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
432 			     Elf32_Addr v)
433 {
434 	struct mips_hi16 *n;
435 
436 	/*
437 	 * We cannot relocate this one now because we don't know the value of
438 	 * the carry we need to add.  Save the information, and let LO16 do the
439 	 * actual relocation.
440 	 */
441 	n = kmalloc(sizeof *n, GFP_KERNEL);
442 	if (!n)
443 		return -ENOMEM;
444 
445 	n->addr = location;
446 	n->value = v;
447 	n->next = mips_hi16_list;
448 	mips_hi16_list = n;
449 
450 	return 0;
451 }
452 
453 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
454 			     Elf32_Addr v)
455 {
456 	unsigned long insnlo = *location;
457 	Elf32_Addr val, vallo;
458 
459 	/* Sign extend the addend we extract from the lo insn.  */
460 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
461 
462 	if (mips_hi16_list != NULL) {
463 		struct mips_hi16 *l;
464 
465 		l = mips_hi16_list;
466 		while (l != NULL) {
467 			struct mips_hi16 *next;
468 			unsigned long insn;
469 
470 			/*
471 			 * The value for the HI16 had best be the same.
472 			 */
473 			if (v != l->value) {
474 				printk("%d != %d\n", v, l->value);
475 				goto out_danger;
476 			}
477 
478 
479 			/*
480 			 * Do the HI16 relocation.  Note that we actually don't
481 			 * need to know anything about the LO16 itself, except
482 			 * where to find the low 16 bits of the addend needed
483 			 * by the LO16.
484 			 */
485 			insn = *l->addr;
486 			val = ((insn & 0xffff) << 16) + vallo;
487 			val += v;
488 
489 			/*
490 			 * Account for the sign extension that will happen in
491 			 * the low bits.
492 			 */
493 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
494 
495 			insn = (insn & ~0xffff) | val;
496 			*l->addr = insn;
497 
498 			next = l->next;
499 			kfree(l);
500 			l = next;
501 		}
502 
503 		mips_hi16_list = NULL;
504 	}
505 
506 	/*
507 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
508 	 */
509 	val = v + vallo;
510 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
511 	*location = insnlo;
512 
513 	return 0;
514 
515 out_danger:
516 	printk(KERN_ERR "module %s: dangerous " "relocation\n", me->name);
517 
518 	return -ENOEXEC;
519 }
520 
521 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
522 				Elf32_Addr v) = {
523 	[R_MIPS_NONE]	= apply_r_mips_none,
524 	[R_MIPS_32]	= apply_r_mips_32,
525 	[R_MIPS_26]	= apply_r_mips_26,
526 	[R_MIPS_HI16]	= apply_r_mips_hi16,
527 	[R_MIPS_LO16]	= apply_r_mips_lo16,
528 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
529 	[R_MIPS_PC16] = apply_r_mips_pc16
530 };
531 
532 
533 int apply_relocations(Elf32_Shdr *sechdrs,
534 		      const char *strtab,
535 		      unsigned int symindex,
536 		      unsigned int relsec,
537 		      struct module *me)
538 {
539 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
540 	Elf32_Sym *sym;
541 	uint32_t *location;
542 	unsigned int i;
543 	Elf32_Addr v;
544 	int res;
545 
546 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
547 		Elf32_Word r_info = rel[i].r_info;
548 
549 		/* This is where to make the change */
550 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
551 			+ rel[i].r_offset;
552 		/* This is the symbol it is referring to */
553 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
554 			+ ELF32_R_SYM(r_info);
555 
556 		if (!sym->st_value) {
557 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
558 			       me->name, strtab + sym->st_name);
559 			/* just print the warning, dont barf */
560 		}
561 
562 		v = sym->st_value;
563 
564 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
565 		if( res ) {
566 			printk(KERN_DEBUG
567 			       "relocation error 0x%x sym refer <%s> value 0x%x "
568 			       "type 0x%x r_info 0x%x\n",
569 			       (unsigned int)location, strtab + sym->st_name, v,
570 			       r_info, ELF32_R_TYPE(r_info));
571 		}
572 
573 		if (res)
574 			return res;
575 	}
576 
577 	return 0;
578 }
579 
580 void save_gp_address(unsigned int secbase, unsigned int rel)
581 {
582 	gp_addr = secbase + rel;
583 	gp_offs = gp_addr - (secbase & 0xffff0000);
584 }
585 /* end module-elf32.c */
586 
587 
588 
589 /* Change all symbols so that sh_value encodes the pointer directly. */
590 static int simplify_symbols(Elf_Shdr * sechdrs,
591 			    unsigned int symindex,
592 			    const char *strtab,
593 			    const char *secstrings,
594 			    unsigned int nsecs, struct module *mod)
595 {
596 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
597 	unsigned long secbase, bssbase = 0;
598 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
599 	int ret = 0, size;
600 
601 	/* find the .bss section for COMMON symbols */
602 	for (i = 0; i < nsecs; i++) {
603 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0)
604 			bssbase = sechdrs[i].sh_addr;
605 	}
606 
607 	for (i = 1; i < n; i++) {
608 		switch (sym[i].st_shndx) {
609 		case SHN_COMMON:
610 			/* Allocate space for the symbol in the .bss section. st_value is currently size.
611 			   We want it to have the address of the symbol. */
612 
613 			size = sym[i].st_value;
614 			sym[i].st_value = bssbase;
615 
616 			bssbase += size;
617 			break;
618 
619 		case SHN_ABS:
620 			/* Don't need to do anything */
621 			break;
622 
623 		case SHN_UNDEF:
624 			/* ret = -ENOENT; */
625 			break;
626 
627 		case SHN_MIPS_SCOMMON:
628 
629 			printk(KERN_DEBUG
630 			       "simplify_symbols: ignoring SHN_MIPS_SCOMMON symbol <%s> st_shndx %d\n",
631 			       strtab + sym[i].st_name, sym[i].st_shndx);
632 
633 			// .sbss section
634 			break;
635 
636 		default:
637 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
638 
639 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
640 				save_gp_address(secbase, sym[i].st_value);
641 			}
642 
643 			sym[i].st_value += secbase;
644 			break;
645 		}
646 
647 	}
648 
649 	return ret;
650 }
651 
652 #ifdef DEBUG_ELFLOADER
653 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
654 			    const char *strtab, struct module *mod)
655 {
656 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
657 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
658 
659 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
660 	for (i = 1; i < n; i++) {
661 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
662 		       strtab + sym[i].st_name, sym[i].st_value);
663 	}
664 }
665 #endif
666 
667 static void dump_tc(struct tc *t)
668 {
669 	printk(KERN_WARNING "VPE: TC index %d TCStatus 0x%lx halt 0x%lx\n",
670 	       t->index, read_tc_c0_tcstatus(), read_tc_c0_tchalt());
671 	printk(KERN_WARNING "VPE: tcrestart 0x%lx\n", read_tc_c0_tcrestart());
672 }
673 
674 static void dump_tclist(void)
675 {
676 	struct tc *t;
677 
678 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
679 		dump_tc(t);
680 	}
681 }
682 
683 /* We are prepared so configure and start the VPE... */
684 int vpe_run(vpe_t * v)
685 {
686 	unsigned long val;
687 	struct tc *t;
688 
689 	/* check we are the Master VPE */
690 	val = read_c0_vpeconf0();
691 	if (!(val & VPECONF0_MVP)) {
692 		printk(KERN_WARNING
693 		       "VPE: only Master VPE's are allowed to configure MT\n");
694 		return -1;
695 	}
696 
697 	/* disable MT (using dvpe) */
698 	dvpe();
699 
700 	/* Put MVPE's into 'configuration state' */
701 	set_c0_mvpcontrol(MVPCONTROL_VPC);
702 
703 	if (!list_empty(&v->tc)) {
704 		if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
705 			printk(KERN_WARNING "VPE: TC %d is already in use.\n",
706 			       t->index);
707 			return -ENOEXEC;
708 		}
709 	} else {
710 		printk(KERN_WARNING "VPE: No TC's associated with VPE %d\n",
711 		       v->minor);
712 		return -ENOEXEC;
713 	}
714 
715 	settc(t->index);
716 
717 	val = read_vpe_c0_vpeconf0();
718 
719 	/* should check it is halted, and not activated */
720 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
721 		printk(KERN_WARNING "VPE: TC %d is already doing something!\n",
722 		       t->index);
723 
724 		dump_tclist();
725 		return -ENOEXEC;
726 	}
727 
728 	/* Write the address we want it to start running from in the TCPC register. */
729 	write_tc_c0_tcrestart((unsigned long)v->__start);
730 
731 	/* write the sivc_info address to tccontext */
732 	write_tc_c0_tccontext((unsigned long)0);
733 
734 	/* Set up the XTC bit in vpeconf0 to point at our tc */
735 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | (t->index << VPECONF0_XTC_SHIFT));
736 
737 	/* mark the TC as activated, not interrupt exempt and not dynamically allocatable */
738 	val = read_tc_c0_tcstatus();
739 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
740 	write_tc_c0_tcstatus(val);
741 
742 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
743 
744 	/* set up VPE1 */
745 	write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);	// no multiple TC's
746 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);	// enable this VPE
747 
748 	/*
749 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
750 	 * here...
751 	 * Or set $a3 (register 7) to zero and define DFLT_STACK_SIZE and
752 	 * DFLT_HEAP_SIZE when you compile your program
753 	 */
754 
755 	mttgpr(7, 0);
756 
757 	/* set config to be the same as vpe0, particularly kseg0 coherency alg */
758 	write_vpe_c0_config(read_c0_config());
759 
760 	/* clear out any left overs from a previous program */
761 	write_vpe_c0_cause(0);
762 
763 	/* take system out of configuration state */
764 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
765 
766 	/* clear interrupts enabled IE, ERL, EXL, and KSU from c0 status */
767 	write_vpe_c0_status(read_vpe_c0_status() & ~(ST0_ERL | ST0_KSU | ST0_IE | ST0_EXL));
768 
769 	/* set it running */
770 	evpe(EVPE_ENABLE);
771 
772 	return 0;
773 }
774 
775 static unsigned long find_vpe_symbols(vpe_t * v, Elf_Shdr * sechdrs,
776 				      unsigned int symindex, const char *strtab,
777 				      struct module *mod)
778 {
779 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
780 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
781 
782 	for (i = 1; i < n; i++) {
783 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
784 			v->__start = sym[i].st_value;
785 		}
786 
787 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
788 			v->shared_ptr = (void *)sym[i].st_value;
789 		}
790 	}
791 
792 	return 0;
793 }
794 
795 /* Allocates a VPE with some program code space(the load address), copies the contents
796    of the program (p)buffer performing relocatations/etc, free's it when finished.
797 */
798 int vpe_elfload(vpe_t * v)
799 {
800 	Elf_Ehdr *hdr;
801 	Elf_Shdr *sechdrs;
802 	long err = 0;
803 	char *secstrings, *strtab = NULL;
804 	unsigned int len, i, symindex = 0, strindex = 0;
805 
806 	struct module mod;	// so we can re-use the relocations code
807 
808 	memset(&mod, 0, sizeof(struct module));
809 	strcpy(mod.name, "VPE dummy prog module");
810 
811 	hdr = (Elf_Ehdr *) v->pbuffer;
812 	len = v->plen;
813 
814 	/* Sanity checks against insmoding binaries or wrong arch,
815 	   weird elf version */
816 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
817 	    || hdr->e_type != ET_REL || !elf_check_arch(hdr)
818 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
819 		printk(KERN_WARNING
820 		       "VPE program, wrong arch or weird elf version\n");
821 
822 		return -ENOEXEC;
823 	}
824 
825 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
826 		printk(KERN_ERR "VPE program length %u truncated\n", len);
827 		return -ENOEXEC;
828 	}
829 
830 	/* Convenience variables */
831 	sechdrs = (void *)hdr + hdr->e_shoff;
832 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
833 	sechdrs[0].sh_addr = 0;
834 
835 	/* And these should exist, but gcc whinges if we don't init them */
836 	symindex = strindex = 0;
837 
838 	for (i = 1; i < hdr->e_shnum; i++) {
839 
840 		if (sechdrs[i].sh_type != SHT_NOBITS
841 		    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
842 			printk(KERN_ERR "VPE program length %u truncated\n",
843 			       len);
844 			return -ENOEXEC;
845 		}
846 
847 		/* Mark all sections sh_addr with their address in the
848 		   temporary image. */
849 		sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
850 
851 		/* Internal symbols and strings. */
852 		if (sechdrs[i].sh_type == SHT_SYMTAB) {
853 			symindex = i;
854 			strindex = sechdrs[i].sh_link;
855 			strtab = (char *)hdr + sechdrs[strindex].sh_offset;
856 		}
857 	}
858 
859 	layout_sections(&mod, hdr, sechdrs, secstrings);
860 
861 	v->load_addr = alloc_progmem(mod.core_size);
862 	memset(v->load_addr, 0, mod.core_size);
863 
864 	printk("VPE elf_loader: loading to %p\n", v->load_addr);
865 
866 	for (i = 0; i < hdr->e_shnum; i++) {
867 		void *dest;
868 
869 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
870 			continue;
871 
872 		dest = v->load_addr + sechdrs[i].sh_entsize;
873 
874 		if (sechdrs[i].sh_type != SHT_NOBITS)
875 			memcpy(dest, (void *)sechdrs[i].sh_addr,
876 			       sechdrs[i].sh_size);
877 		/* Update sh_addr to point to copy in image. */
878 		sechdrs[i].sh_addr = (unsigned long)dest;
879 	}
880 
881 	/* Fix up syms, so that st_value is a pointer to location. */
882 	err =
883 		simplify_symbols(sechdrs, symindex, strtab, secstrings,
884 				 hdr->e_shnum, &mod);
885 	if (err < 0) {
886 		printk(KERN_WARNING "VPE: unable to simplify symbols\n");
887 		goto cleanup;
888 	}
889 
890 	/* Now do relocations. */
891 	for (i = 1; i < hdr->e_shnum; i++) {
892 		const char *strtab = (char *)sechdrs[strindex].sh_addr;
893 		unsigned int info = sechdrs[i].sh_info;
894 
895 		/* Not a valid relocation section? */
896 		if (info >= hdr->e_shnum)
897 			continue;
898 
899 		/* Don't bother with non-allocated sections */
900 		if (!(sechdrs[info].sh_flags & SHF_ALLOC))
901 			continue;
902 
903 		if (sechdrs[i].sh_type == SHT_REL)
904 			err =
905 				apply_relocations(sechdrs, strtab, symindex, i, &mod);
906 		else if (sechdrs[i].sh_type == SHT_RELA)
907 			err = apply_relocate_add(sechdrs, strtab, symindex, i,
908 						 &mod);
909 		if (err < 0) {
910 			printk(KERN_WARNING
911 			       "vpe_elfload: error in relocations err %ld\n",
912 			       err);
913 			goto cleanup;
914 		}
915 	}
916 
917 	/* make sure it's physically written out */
918 	flush_icache_range((unsigned long)v->load_addr,
919 			   (unsigned long)v->load_addr + v->len);
920 
921 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
922 
923 		printk(KERN_WARNING
924 		       "VPE: program doesn't contain __start or vpe_shared symbols\n");
925 		err = -ENOEXEC;
926 	}
927 
928 	printk(" elf loaded\n");
929 
930 cleanup:
931 	return err;
932 }
933 
934 static void dump_vpe(vpe_t * v)
935 {
936 	struct tc *t;
937 
938 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
939 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
940 
941 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
942 		dump_tc(t);
943 	}
944 }
945 
946 /* checks for VPE is unused and gets ready to load program	 */
947 static int vpe_open(struct inode *inode, struct file *filp)
948 {
949 	int minor;
950 	vpe_t *v;
951 
952 	/* assume only 1 device at the mo. */
953 	if ((minor = MINOR(inode->i_rdev)) != 1) {
954 		printk(KERN_WARNING "VPE: only vpe1 is supported\n");
955 		return -ENODEV;
956 	}
957 
958 	if ((v = get_vpe(minor)) == NULL) {
959 		printk(KERN_WARNING "VPE: unable to get vpe\n");
960 		return -ENODEV;
961 	}
962 
963 	if (v->state != VPE_STATE_UNUSED) {
964 		unsigned long tmp;
965 		struct tc *t;
966 
967 		printk(KERN_WARNING "VPE: device %d already in use\n", minor);
968 
969 		dvpe();
970 		dump_vpe(v);
971 
972 		printk(KERN_WARNING "VPE: re-initialising %d\n", minor);
973 
974 		release_progmem(v->load_addr);
975 
976 		t = get_tc(minor);
977 		settc(minor);
978 		tmp = read_tc_c0_tcstatus();
979 
980 		/* mark not allocated and not dynamically allocatable */
981 		tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
982 		tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
983 		write_tc_c0_tcstatus(tmp);
984 
985 		write_tc_c0_tchalt(TCHALT_H);
986 
987 	}
988 
989 	// allocate it so when we get write ops we know it's expected.
990 	v->state = VPE_STATE_INUSE;
991 
992 	/* this of-course trashes what was there before... */
993 	v->pbuffer = vmalloc(P_SIZE);
994 	v->plen = P_SIZE;
995 	v->load_addr = NULL;
996 	v->len = 0;
997 
998 	return 0;
999 }
1000 
1001 static int vpe_release(struct inode *inode, struct file *filp)
1002 {
1003 	int minor, ret = 0;
1004 	vpe_t *v;
1005 	Elf_Ehdr *hdr;
1006 
1007 	minor = MINOR(inode->i_rdev);
1008 	if ((v = get_vpe(minor)) == NULL)
1009 		return -ENODEV;
1010 
1011 	// simple case of fire and forget, so tell the VPE to run...
1012 
1013 	hdr = (Elf_Ehdr *) v->pbuffer;
1014 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1015 		if (vpe_elfload(v) >= 0)
1016 			vpe_run(v);
1017 		else {
1018 			printk(KERN_WARNING "VPE: ELF load failed.\n");
1019 			ret = -ENOEXEC;
1020 		}
1021 	} else {
1022 		printk(KERN_WARNING "VPE: only elf files are supported\n");
1023 		ret = -ENOEXEC;
1024 	}
1025 
1026 	// cleanup any temp buffers
1027 	if (v->pbuffer)
1028 		vfree(v->pbuffer);
1029 	v->plen = 0;
1030 	return ret;
1031 }
1032 
1033 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1034 			 size_t count, loff_t * ppos)
1035 {
1036 	int minor;
1037 	size_t ret = count;
1038 	vpe_t *v;
1039 
1040 	minor = MINOR(file->f_dentry->d_inode->i_rdev);
1041 	if ((v = get_vpe(minor)) == NULL)
1042 		return -ENODEV;
1043 
1044 	if (v->pbuffer == NULL) {
1045 		printk(KERN_ERR "vpe_write: no pbuffer\n");
1046 		return -ENOMEM;
1047 	}
1048 
1049 	if ((count + v->len) > v->plen) {
1050 		printk(KERN_WARNING
1051 		       "VPE Loader: elf size too big. Perhaps strip uneeded symbols\n");
1052 		return -ENOMEM;
1053 	}
1054 
1055 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1056 	if (!count) {
1057 		printk("vpe_write: copy_to_user failed\n");
1058 		return -EFAULT;
1059 	}
1060 
1061 	v->len += count;
1062 	return ret;
1063 }
1064 
1065 static struct file_operations vpe_fops = {
1066 	.owner = THIS_MODULE,
1067 	.open = vpe_open,
1068 	.release = vpe_release,
1069 	.write = vpe_write
1070 };
1071 
1072 /* module wrapper entry points */
1073 /* give me a vpe */
1074 vpe_handle vpe_alloc(void)
1075 {
1076 	int i;
1077 	struct vpe *v;
1078 
1079 	/* find a vpe */
1080 	for (i = 1; i < MAX_VPES; i++) {
1081 		if ((v = get_vpe(i)) != NULL) {
1082 			v->state = VPE_STATE_INUSE;
1083 			return v;
1084 		}
1085 	}
1086 	return NULL;
1087 }
1088 
1089 EXPORT_SYMBOL(vpe_alloc);
1090 
1091 /* start running from here */
1092 int vpe_start(vpe_handle vpe, unsigned long start)
1093 {
1094 	struct vpe *v = vpe;
1095 
1096 	v->__start = start;
1097 	return vpe_run(v);
1098 }
1099 
1100 EXPORT_SYMBOL(vpe_start);
1101 
1102 /* halt it for now */
1103 int vpe_stop(vpe_handle vpe)
1104 {
1105 	struct vpe *v = vpe;
1106 	struct tc *t;
1107 	unsigned int evpe_flags;
1108 
1109 	evpe_flags = dvpe();
1110 
1111 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1112 
1113 		settc(t->index);
1114 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1115 	}
1116 
1117 	evpe(evpe_flags);
1118 
1119 	return 0;
1120 }
1121 
1122 EXPORT_SYMBOL(vpe_stop);
1123 
1124 /* I've done with it thank you */
1125 int vpe_free(vpe_handle vpe)
1126 {
1127 	struct vpe *v = vpe;
1128 	struct tc *t;
1129 	unsigned int evpe_flags;
1130 
1131 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1132 		return -ENOEXEC;
1133 	}
1134 
1135 	evpe_flags = dvpe();
1136 
1137 	/* Put MVPE's into 'configuration state' */
1138 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1139 
1140 	settc(t->index);
1141 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1142 
1143 	/* mark the TC unallocated and halt'ed */
1144 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1145 	write_tc_c0_tchalt(TCHALT_H);
1146 
1147 	v->state = VPE_STATE_UNUSED;
1148 
1149 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1150 	evpe(evpe_flags);
1151 
1152 	return 0;
1153 }
1154 
1155 EXPORT_SYMBOL(vpe_free);
1156 
1157 void *vpe_get_shared(int index)
1158 {
1159 	struct vpe *v;
1160 
1161 	if ((v = get_vpe(index)) == NULL) {
1162 		printk(KERN_WARNING "vpe: invalid vpe index %d\n", index);
1163 		return NULL;
1164 	}
1165 
1166 	return v->shared_ptr;
1167 }
1168 
1169 EXPORT_SYMBOL(vpe_get_shared);
1170 
1171 static int __init vpe_module_init(void)
1172 {
1173 	struct vpe *v = NULL;
1174 	struct tc *t;
1175 	unsigned long val;
1176 	int i;
1177 
1178 	if (!cpu_has_mipsmt) {
1179 		printk("VPE loader: not a MIPS MT capable processor\n");
1180 		return -ENODEV;
1181 	}
1182 
1183 	if ((major = register_chrdev(VPE_MAJOR, module_name, &vpe_fops) < 0)) {
1184 		printk("VPE loader: unable to register character device\n");
1185 		return -EBUSY;
1186 	}
1187 
1188 	if (major == 0)
1189 		major = VPE_MAJOR;
1190 
1191 	dmt();
1192 	dvpe();
1193 
1194 	/* Put MVPE's into 'configuration state' */
1195 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1196 
1197 	/* dump_mtregs(); */
1198 
1199 	INIT_LIST_HEAD(&vpecontrol.vpe_list);
1200 	INIT_LIST_HEAD(&vpecontrol.tc_list);
1201 
1202 	val = read_c0_mvpconf0();
1203 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1204 		t = alloc_tc(i);
1205 
1206 		/* VPE's */
1207 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1208 			settc(i);
1209 
1210 			if ((v = alloc_vpe(i)) == NULL) {
1211 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1212 				return -ENODEV;
1213 			}
1214 
1215 			list_add(&t->tc, &v->tc);	/* add the tc to the list of this vpe's tc's. */
1216 
1217 			/* deactivate all but vpe0 */
1218 			if (i != 0) {
1219 				unsigned long tmp = read_vpe_c0_vpeconf0();
1220 
1221 				tmp &= ~VPECONF0_VPA;
1222 
1223 				/* master VPE */
1224 				tmp |= VPECONF0_MVP;
1225 				write_vpe_c0_vpeconf0(tmp);
1226 			}
1227 
1228 			/* disable multi-threading with TC's */
1229 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1230 
1231 			if (i != 0) {
1232 				write_vpe_c0_status((read_c0_status() &
1233 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1234 						    | ST0_CU0);
1235 
1236 				/* set config to be the same as vpe0, particularly kseg0 coherency alg */
1237 				write_vpe_c0_config(read_c0_config());
1238 			}
1239 
1240 		}
1241 
1242 		/* TC's */
1243 		t->pvpe = v;	/* set the parent vpe */
1244 
1245 		if (i != 0) {
1246 			unsigned long tmp;
1247 
1248 			/* tc 0 will of course be running.... */
1249 			if (i == 0)
1250 				t->state = TC_STATE_RUNNING;
1251 
1252 			settc(i);
1253 
1254 			/* bind a TC to each VPE, May as well put all excess TC's
1255 			   on the last VPE */
1256 			if (i >= (((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1))
1257 				write_tc_c0_tcbind(read_tc_c0_tcbind() |
1258 						   ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT));
1259 			else
1260 				write_tc_c0_tcbind(read_tc_c0_tcbind() | i);
1261 
1262 			tmp = read_tc_c0_tcstatus();
1263 
1264 			/* mark not allocated and not dynamically allocatable */
1265 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1266 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1267 			write_tc_c0_tcstatus(tmp);
1268 
1269 			write_tc_c0_tchalt(TCHALT_H);
1270 		}
1271 	}
1272 
1273 	/* release config state */
1274 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1275 
1276 	return 0;
1277 }
1278 
1279 static void __exit vpe_module_exit(void)
1280 {
1281 	struct vpe *v, *n;
1282 
1283 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1284 		if (v->state != VPE_STATE_UNUSED) {
1285 			release_vpe(v);
1286 		}
1287 	}
1288 
1289 	unregister_chrdev(major, module_name);
1290 }
1291 
1292 module_init(vpe_module_init);
1293 module_exit(vpe_module_exit);
1294 MODULE_DESCRIPTION("MIPS VPE Loader");
1295 MODULE_AUTHOR("Elizabeth Clarke, MIPS Technologies, Inc");
1296 MODULE_LICENSE("GPL");
1297