xref: /linux/arch/mips/kernel/vpe.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
55 
56 typedef void *vpe_handle;
57 
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
61 
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
64 
65 static char module_name[] = "vpe";
66 static int major;
67 
68 #ifdef CONFIG_MIPS_APSP_KSPD
69  static struct kspd_notifications kspd_events;
70 static int kspd_events_reqd = 0;
71 #endif
72 
73 /* grab the likely amount of memory we will need. */
74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
75 #define P_SIZE (2 * 1024 * 1024)
76 #else
77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
78 #define P_SIZE (256 * 1024)
79 #endif
80 
81 extern unsigned long physical_memsize;
82 
83 #define MAX_VPES 16
84 #define VPE_PATH_MAX 256
85 
86 enum vpe_state {
87 	VPE_STATE_UNUSED = 0,
88 	VPE_STATE_INUSE,
89 	VPE_STATE_RUNNING
90 };
91 
92 enum tc_state {
93 	TC_STATE_UNUSED = 0,
94 	TC_STATE_INUSE,
95 	TC_STATE_RUNNING,
96 	TC_STATE_DYNAMIC
97 };
98 
99 struct vpe {
100 	enum vpe_state state;
101 
102 	/* (device) minor associated with this vpe */
103 	int minor;
104 
105 	/* elfloader stuff */
106 	void *load_addr;
107 	unsigned long len;
108 	char *pbuffer;
109 	unsigned long plen;
110 	unsigned int uid, gid;
111 	char cwd[VPE_PATH_MAX];
112 
113 	unsigned long __start;
114 
115 	/* tc's associated with this vpe */
116 	struct list_head tc;
117 
118 	/* The list of vpe's */
119 	struct list_head list;
120 
121 	/* shared symbol address */
122 	void *shared_ptr;
123 
124 	/* the list of who wants to know when something major happens */
125 	struct list_head notify;
126 };
127 
128 struct tc {
129 	enum tc_state state;
130 	int index;
131 
132 	/* parent VPE */
133 	struct vpe *pvpe;
134 
135 	/* The list of TC's with this VPE */
136 	struct list_head tc;
137 
138 	/* The global list of tc's */
139 	struct list_head list;
140 };
141 
142 struct vpecontrol_ {
143 	/* Virtual processing elements */
144 	struct list_head vpe_list;
145 
146 	/* Thread contexts */
147 	struct list_head tc_list;
148 } vpecontrol;
149 
150 static void release_progmem(void *ptr);
151 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
152 extern void save_gp_address(unsigned int secbase, unsigned int rel);
153 
154 /* get the vpe associated with this minor */
155 struct vpe *get_vpe(int minor)
156 {
157 	struct vpe *v;
158 
159 	if (!cpu_has_mipsmt)
160 		return NULL;
161 
162 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
163 		if (v->minor == minor)
164 			return v;
165 	}
166 
167 	return NULL;
168 }
169 
170 /* get the vpe associated with this minor */
171 struct tc *get_tc(int index)
172 {
173 	struct tc *t;
174 
175 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
176 		if (t->index == index)
177 			return t;
178 	}
179 
180 	return NULL;
181 }
182 
183 struct tc *get_tc_unused(void)
184 {
185 	struct tc *t;
186 
187 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 		if (t->state == TC_STATE_UNUSED)
189 			return t;
190 	}
191 
192 	return NULL;
193 }
194 
195 /* allocate a vpe and associate it with this minor (or index) */
196 struct vpe *alloc_vpe(int minor)
197 {
198 	struct vpe *v;
199 
200 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
201 		return NULL;
202 	}
203 
204 	INIT_LIST_HEAD(&v->tc);
205 	list_add_tail(&v->list, &vpecontrol.vpe_list);
206 
207 	INIT_LIST_HEAD(&v->notify);
208 	v->minor = minor;
209 	return v;
210 }
211 
212 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
213 struct tc *alloc_tc(int index)
214 {
215 	struct tc *t;
216 
217 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
218 		return NULL;
219 	}
220 
221 	INIT_LIST_HEAD(&t->tc);
222 	list_add_tail(&t->list, &vpecontrol.tc_list);
223 
224 	t->index = index;
225 
226 	return t;
227 }
228 
229 /* clean up and free everything */
230 void release_vpe(struct vpe *v)
231 {
232 	list_del(&v->list);
233 	if (v->load_addr)
234 		release_progmem(v);
235 	kfree(v);
236 }
237 
238 void dump_mtregs(void)
239 {
240 	unsigned long val;
241 
242 	val = read_c0_config3();
243 	printk("config3 0x%lx MT %ld\n", val,
244 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
245 
246 	val = read_c0_mvpcontrol();
247 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
248 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
249 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
250 	       (val & MVPCONTROL_EVP));
251 
252 	val = read_c0_mvpconf0();
253 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
254 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
255 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
256 }
257 
258 /* Find some VPE program space  */
259 static void *alloc_progmem(unsigned long len)
260 {
261 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
262 	/* this means you must tell linux to use less memory than you physically have */
263 	return pfn_to_kaddr(max_pfn);
264 #else
265 	// simple grab some mem for now
266 	return kmalloc(len, GFP_KERNEL);
267 #endif
268 }
269 
270 static void release_progmem(void *ptr)
271 {
272 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
273 	kfree(ptr);
274 #endif
275 }
276 
277 /* Update size with this section: return offset. */
278 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
279 {
280 	long ret;
281 
282 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
283 	*size = ret + sechdr->sh_size;
284 	return ret;
285 }
286 
287 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
288    might -- code, read-only data, read-write data, small data.  Tally
289    sizes, and place the offsets into sh_entsize fields: high bit means it
290    belongs in init. */
291 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
292 			    Elf_Shdr * sechdrs, const char *secstrings)
293 {
294 	static unsigned long const masks[][2] = {
295 		/* NOTE: all executable code must be the first section
296 		 * in this array; otherwise modify the text_size
297 		 * finder in the two loops below */
298 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
299 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
300 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
301 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
302 	};
303 	unsigned int m, i;
304 
305 	for (i = 0; i < hdr->e_shnum; i++)
306 		sechdrs[i].sh_entsize = ~0UL;
307 
308 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
309 		for (i = 0; i < hdr->e_shnum; ++i) {
310 			Elf_Shdr *s = &sechdrs[i];
311 
312 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
313 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
314 			    || (s->sh_flags & masks[m][1])
315 			    || s->sh_entsize != ~0UL)
316 				continue;
317 			s->sh_entsize = get_offset(&mod->core_size, s);
318 		}
319 
320 		if (m == 0)
321 			mod->core_text_size = mod->core_size;
322 
323 	}
324 }
325 
326 
327 /* from module-elf32.c, but subverted a little */
328 
329 struct mips_hi16 {
330 	struct mips_hi16 *next;
331 	Elf32_Addr *addr;
332 	Elf32_Addr value;
333 };
334 
335 static struct mips_hi16 *mips_hi16_list;
336 static unsigned int gp_offs, gp_addr;
337 
338 static int apply_r_mips_none(struct module *me, uint32_t *location,
339 			     Elf32_Addr v)
340 {
341 	return 0;
342 }
343 
344 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
345 				Elf32_Addr v)
346 {
347 	int rel;
348 
349 	if( !(*location & 0xffff) ) {
350 		rel = (int)v - gp_addr;
351 	}
352 	else {
353 		/* .sbss + gp(relative) + offset */
354 		/* kludge! */
355 		rel =  (int)(short)((int)v + gp_offs +
356 				    (int)(short)(*location & 0xffff) - gp_addr);
357 	}
358 
359 	if( (rel > 32768) || (rel < -32768) ) {
360 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
361 		       "relative address 0x%x out of range of gp register\n",
362 		       rel);
363 		return -ENOEXEC;
364 	}
365 
366 	*location = (*location & 0xffff0000) | (rel & 0xffff);
367 
368 	return 0;
369 }
370 
371 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
372 			     Elf32_Addr v)
373 {
374 	int rel;
375 	rel = (((unsigned int)v - (unsigned int)location));
376 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
377 	rel -= 1;		// and one instruction less due to the branch delay slot.
378 
379 	if( (rel > 32768) || (rel < -32768) ) {
380 		printk(KERN_DEBUG "VPE loader: "
381  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
382 		return -ENOEXEC;
383 	}
384 
385 	*location = (*location & 0xffff0000) | (rel & 0xffff);
386 
387 	return 0;
388 }
389 
390 static int apply_r_mips_32(struct module *me, uint32_t *location,
391 			   Elf32_Addr v)
392 {
393 	*location += v;
394 
395 	return 0;
396 }
397 
398 static int apply_r_mips_26(struct module *me, uint32_t *location,
399 			   Elf32_Addr v)
400 {
401 	if (v % 4) {
402 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
403 		       " unaligned relocation\n");
404 		return -ENOEXEC;
405 	}
406 
407 /*
408  * Not desperately convinced this is a good check of an overflow condition
409  * anyway. But it gets in the way of handling undefined weak symbols which
410  * we want to set to zero.
411  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
412  * printk(KERN_ERR
413  * "module %s: relocation overflow\n",
414  * me->name);
415  * return -ENOEXEC;
416  * }
417  */
418 
419 	*location = (*location & ~0x03ffffff) |
420 		((*location + (v >> 2)) & 0x03ffffff);
421 	return 0;
422 }
423 
424 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
425 			     Elf32_Addr v)
426 {
427 	struct mips_hi16 *n;
428 
429 	/*
430 	 * We cannot relocate this one now because we don't know the value of
431 	 * the carry we need to add.  Save the information, and let LO16 do the
432 	 * actual relocation.
433 	 */
434 	n = kmalloc(sizeof *n, GFP_KERNEL);
435 	if (!n)
436 		return -ENOMEM;
437 
438 	n->addr = location;
439 	n->value = v;
440 	n->next = mips_hi16_list;
441 	mips_hi16_list = n;
442 
443 	return 0;
444 }
445 
446 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
447 			     Elf32_Addr v)
448 {
449 	unsigned long insnlo = *location;
450 	Elf32_Addr val, vallo;
451 
452 	/* Sign extend the addend we extract from the lo insn.  */
453 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
454 
455 	if (mips_hi16_list != NULL) {
456 		struct mips_hi16 *l;
457 
458 		l = mips_hi16_list;
459 		while (l != NULL) {
460 			struct mips_hi16 *next;
461 			unsigned long insn;
462 
463 			/*
464 			 * The value for the HI16 had best be the same.
465 			 */
466  			if (v != l->value) {
467 				printk(KERN_DEBUG "VPE loader: "
468 				       "apply_r_mips_lo16/hi16: 	"
469 				       "inconsistent value information\n");
470 				return -ENOEXEC;
471 			}
472 
473 			/*
474 			 * Do the HI16 relocation.  Note that we actually don't
475 			 * need to know anything about the LO16 itself, except
476 			 * where to find the low 16 bits of the addend needed
477 			 * by the LO16.
478 			 */
479 			insn = *l->addr;
480 			val = ((insn & 0xffff) << 16) + vallo;
481 			val += v;
482 
483 			/*
484 			 * Account for the sign extension that will happen in
485 			 * the low bits.
486 			 */
487 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
488 
489 			insn = (insn & ~0xffff) | val;
490 			*l->addr = insn;
491 
492 			next = l->next;
493 			kfree(l);
494 			l = next;
495 		}
496 
497 		mips_hi16_list = NULL;
498 	}
499 
500 	/*
501 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
502 	 */
503 	val = v + vallo;
504 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
505 	*location = insnlo;
506 
507 	return 0;
508 }
509 
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 				Elf32_Addr v) = {
512 	[R_MIPS_NONE]	= apply_r_mips_none,
513 	[R_MIPS_32]	= apply_r_mips_32,
514 	[R_MIPS_26]	= apply_r_mips_26,
515 	[R_MIPS_HI16]	= apply_r_mips_hi16,
516 	[R_MIPS_LO16]	= apply_r_mips_lo16,
517 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 	[R_MIPS_PC16] = apply_r_mips_pc16
519 };
520 
521 static char *rstrs[] = {
522     	[R_MIPS_NONE]	= "MIPS_NONE",
523 	[R_MIPS_32]	= "MIPS_32",
524 	[R_MIPS_26]	= "MIPS_26",
525 	[R_MIPS_HI16]	= "MIPS_HI16",
526 	[R_MIPS_LO16]	= "MIPS_LO16",
527 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
528 	[R_MIPS_PC16] = "MIPS_PC16"
529 };
530 
531 int apply_relocations(Elf32_Shdr *sechdrs,
532 		      const char *strtab,
533 		      unsigned int symindex,
534 		      unsigned int relsec,
535 		      struct module *me)
536 {
537 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
538 	Elf32_Sym *sym;
539 	uint32_t *location;
540 	unsigned int i;
541 	Elf32_Addr v;
542 	int res;
543 
544 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
545 		Elf32_Word r_info = rel[i].r_info;
546 
547 		/* This is where to make the change */
548 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
549 			+ rel[i].r_offset;
550 		/* This is the symbol it is referring to */
551 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
552 			+ ELF32_R_SYM(r_info);
553 
554 		if (!sym->st_value) {
555 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
556 			       me->name, strtab + sym->st_name);
557 			/* just print the warning, dont barf */
558 		}
559 
560 		v = sym->st_value;
561 
562 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
563 		if( res ) {
564 			char *r = rstrs[ELF32_R_TYPE(r_info)];
565 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
566 			       "relocation type %s for symbol \"%s\" failed\n",
567 			       rel[i].r_offset, r ? r : "UNKNOWN",
568 			       strtab + sym->st_name);
569 			return res;
570 		}
571 	}
572 
573 	return 0;
574 }
575 
576 void save_gp_address(unsigned int secbase, unsigned int rel)
577 {
578 	gp_addr = secbase + rel;
579 	gp_offs = gp_addr - (secbase & 0xffff0000);
580 }
581 /* end module-elf32.c */
582 
583 
584 
585 /* Change all symbols so that sh_value encodes the pointer directly. */
586 static void simplify_symbols(Elf_Shdr * sechdrs,
587 			    unsigned int symindex,
588 			    const char *strtab,
589 			    const char *secstrings,
590 			    unsigned int nsecs, struct module *mod)
591 {
592 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
593 	unsigned long secbase, bssbase = 0;
594 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
595 	int size;
596 
597 	/* find the .bss section for COMMON symbols */
598 	for (i = 0; i < nsecs; i++) {
599 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
600 			bssbase = sechdrs[i].sh_addr;
601 			break;
602 		}
603 	}
604 
605 	for (i = 1; i < n; i++) {
606 		switch (sym[i].st_shndx) {
607 		case SHN_COMMON:
608 			/* Allocate space for the symbol in the .bss section.
609 			   st_value is currently size.
610 			   We want it to have the address of the symbol. */
611 
612 			size = sym[i].st_value;
613 			sym[i].st_value = bssbase;
614 
615 			bssbase += size;
616 			break;
617 
618 		case SHN_ABS:
619 			/* Don't need to do anything */
620 			break;
621 
622 		case SHN_UNDEF:
623 			/* ret = -ENOENT; */
624 			break;
625 
626 		case SHN_MIPS_SCOMMON:
627 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
628 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
629 			       sym[i].st_shndx);
630 			// .sbss section
631 			break;
632 
633 		default:
634 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
635 
636 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
637 				save_gp_address(secbase, sym[i].st_value);
638 			}
639 
640 			sym[i].st_value += secbase;
641 			break;
642 		}
643 	}
644 }
645 
646 #ifdef DEBUG_ELFLOADER
647 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
648 			    const char *strtab, struct module *mod)
649 {
650 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
651 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
652 
653 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
654 	for (i = 1; i < n; i++) {
655 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
656 		       strtab + sym[i].st_name, sym[i].st_value);
657 	}
658 }
659 #endif
660 
661 static void dump_tc(struct tc *t)
662 {
663   	unsigned long val;
664 
665   	settc(t->index);
666  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
667  	       "TCStatus 0x%lx halt 0x%lx\n",
668   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
669   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
670 
671  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
672  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
673 
674   	val = read_c0_vpeconf0();
675  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
676   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
677 
678  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
679  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
680 
681  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
682  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
683 }
684 
685 static void dump_tclist(void)
686 {
687 	struct tc *t;
688 
689 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
690 		dump_tc(t);
691 	}
692 }
693 
694 /* We are prepared so configure and start the VPE... */
695 int vpe_run(struct vpe * v)
696 {
697 	struct vpe_notifications *n;
698 	unsigned long val, dmt_flag;
699 	struct tc *t;
700 
701 	/* check we are the Master VPE */
702 	val = read_c0_vpeconf0();
703 	if (!(val & VPECONF0_MVP)) {
704 		printk(KERN_WARNING
705 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
706 		return -1;
707 	}
708 
709 	/* disable MT (using dvpe) */
710 	dvpe();
711 
712 	if (!list_empty(&v->tc)) {
713                 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
714                         printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
715                                t->index);
716                         return -ENOEXEC;
717                 }
718         } else {
719                 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
720                        v->minor);
721                 return -ENOEXEC;
722         }
723 
724 	/* Put MVPE's into 'configuration state' */
725 	set_c0_mvpcontrol(MVPCONTROL_VPC);
726 
727 	settc(t->index);
728 
729 	/* should check it is halted, and not activated */
730 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
731 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
732 		       t->index);
733 		dump_tclist();
734 		return -ENOEXEC;
735 	}
736 
737 	/*
738 	 * Disable multi-threaded execution whilst we activate, clear the
739 	 * halt bit and bound the tc to the other VPE...
740 	 */
741 	dmt_flag = dmt();
742 
743 	/* Write the address we want it to start running from in the TCPC register. */
744 	write_tc_c0_tcrestart((unsigned long)v->__start);
745 	write_tc_c0_tccontext((unsigned long)0);
746 	/*
747 	 * Mark the TC as activated, not interrupt exempt and not dynamically
748 	 * allocatable
749 	 */
750 	val = read_tc_c0_tcstatus();
751 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
752 	write_tc_c0_tcstatus(val);
753 
754 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
755 
756 	/*
757 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
758 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
759 	 * DFLT_HEAP_SIZE when you compile your program
760 	 */
761  	mttgpr(7, physical_memsize);
762 
763 
764 	/* set up VPE1 */
765 	/*
766 	 * bind the TC to VPE 1 as late as possible so we only have the final
767 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
768 	 */
769  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
770 
771         /* Set up the XTC bit in vpeconf0 to point at our tc */
772         write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
773                                | (t->index << VPECONF0_XTC_SHIFT));
774 
775         /* enable this VPE */
776         write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
777 
778 	/* clear out any left overs from a previous program */
779 	write_vpe_c0_status(0);
780 	write_vpe_c0_cause(0);
781 
782 	/* take system out of configuration state */
783 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
784 
785 	/* now safe to re-enable multi-threading */
786 	emt(dmt_flag);
787 
788 	/* set it running */
789 	evpe(EVPE_ENABLE);
790 
791 	list_for_each_entry(n, &v->notify, list) {
792 		n->start(v->minor);
793 	}
794 
795 	return 0;
796 }
797 
798 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
799 				      unsigned int symindex, const char *strtab,
800 				      struct module *mod)
801 {
802 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
803 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
804 
805 	for (i = 1; i < n; i++) {
806 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
807 			v->__start = sym[i].st_value;
808 		}
809 
810 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
811 			v->shared_ptr = (void *)sym[i].st_value;
812 		}
813 	}
814 
815 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
816 		return -1;
817 
818 	return 0;
819 }
820 
821 /*
822  * Allocates a VPE with some program code space(the load address), copies the
823  * contents of the program (p)buffer performing relocatations/etc, free's it
824  * when finished.
825  */
826 int vpe_elfload(struct vpe * v)
827 {
828 	Elf_Ehdr *hdr;
829 	Elf_Shdr *sechdrs;
830 	long err = 0;
831 	char *secstrings, *strtab = NULL;
832 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
833 	struct module mod;	// so we can re-use the relocations code
834 
835 	memset(&mod, 0, sizeof(struct module));
836 	strcpy(mod.name, "VPE loader");
837 
838 	hdr = (Elf_Ehdr *) v->pbuffer;
839 	len = v->plen;
840 
841 	/* Sanity checks against insmoding binaries or wrong arch,
842 	   weird elf version */
843 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
844 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
845 	    || !elf_check_arch(hdr)
846 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
847 		printk(KERN_WARNING
848 		       "VPE loader: program wrong arch or weird elf version\n");
849 
850 		return -ENOEXEC;
851 	}
852 
853 	if (hdr->e_type == ET_REL)
854 		relocate = 1;
855 
856 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
857 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
858 		       len);
859 
860 		return -ENOEXEC;
861 	}
862 
863 	/* Convenience variables */
864 	sechdrs = (void *)hdr + hdr->e_shoff;
865 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
866 	sechdrs[0].sh_addr = 0;
867 
868 	/* And these should exist, but gcc whinges if we don't init them */
869 	symindex = strindex = 0;
870 
871 	if (relocate) {
872 		for (i = 1; i < hdr->e_shnum; i++) {
873 			if (sechdrs[i].sh_type != SHT_NOBITS
874 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
875 				printk(KERN_ERR "VPE program length %u truncated\n",
876 				       len);
877 				return -ENOEXEC;
878 			}
879 
880 			/* Mark all sections sh_addr with their address in the
881 			   temporary image. */
882 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
883 
884 			/* Internal symbols and strings. */
885 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
886 				symindex = i;
887 				strindex = sechdrs[i].sh_link;
888 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
889 			}
890 		}
891 		layout_sections(&mod, hdr, sechdrs, secstrings);
892 	}
893 
894 	v->load_addr = alloc_progmem(mod.core_size);
895 	memset(v->load_addr, 0, mod.core_size);
896 
897 	printk("VPE loader: loading to %p\n", v->load_addr);
898 
899 	if (relocate) {
900 		for (i = 0; i < hdr->e_shnum; i++) {
901 			void *dest;
902 
903 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
904 				continue;
905 
906 			dest = v->load_addr + sechdrs[i].sh_entsize;
907 
908 			if (sechdrs[i].sh_type != SHT_NOBITS)
909 				memcpy(dest, (void *)sechdrs[i].sh_addr,
910 				       sechdrs[i].sh_size);
911 			/* Update sh_addr to point to copy in image. */
912 			sechdrs[i].sh_addr = (unsigned long)dest;
913 
914 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
915 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
916 		}
917 
918  		/* Fix up syms, so that st_value is a pointer to location. */
919  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
920  				 hdr->e_shnum, &mod);
921 
922  		/* Now do relocations. */
923  		for (i = 1; i < hdr->e_shnum; i++) {
924  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
925  			unsigned int info = sechdrs[i].sh_info;
926 
927  			/* Not a valid relocation section? */
928  			if (info >= hdr->e_shnum)
929  				continue;
930 
931  			/* Don't bother with non-allocated sections */
932  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
933  				continue;
934 
935  			if (sechdrs[i].sh_type == SHT_REL)
936  				err = apply_relocations(sechdrs, strtab, symindex, i,
937  							&mod);
938  			else if (sechdrs[i].sh_type == SHT_RELA)
939  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
940  							 &mod);
941  			if (err < 0)
942  				return err;
943 
944   		}
945   	} else {
946   		for (i = 0; i < hdr->e_shnum; i++) {
947 
948  			/* Internal symbols and strings. */
949  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
950  				symindex = i;
951  				strindex = sechdrs[i].sh_link;
952  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
953 
954  				/* mark the symtab's address for when we try to find the
955  				   magic symbols */
956  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
957  			}
958 
959  			/* filter sections we dont want in the final image */
960  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
961  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
962  				printk( KERN_DEBUG " ignoring section, "
963  					"name %s type %x address 0x%x \n",
964  					secstrings + sechdrs[i].sh_name,
965  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
966  				continue;
967  			}
968 
969   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
970  				printk( KERN_WARNING "VPE loader: "
971  					"fully linked image has invalid section, "
972  					"name %s type %x address 0x%x, before load "
973  					"address of 0x%x\n",
974  					secstrings + sechdrs[i].sh_name,
975  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
976  					(unsigned int)v->load_addr);
977   				return -ENOEXEC;
978   			}
979 
980  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
981 			       "size 0x%x0 from x%p\n",
982 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
983 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
984 
985   			if (sechdrs[i].sh_type != SHT_NOBITS)
986 				memcpy((void *)sechdrs[i].sh_addr,
987 				       (char *)hdr + sechdrs[i].sh_offset,
988  				       sechdrs[i].sh_size);
989 			else
990 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
991 		}
992 	}
993 
994 	/* make sure it's physically written out */
995 	flush_icache_range((unsigned long)v->load_addr,
996 			   (unsigned long)v->load_addr + v->len);
997 
998 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
999 		if (v->__start == 0) {
1000 			printk(KERN_WARNING "VPE loader: program does not contain "
1001 			       "a __start symbol\n");
1002 			return -ENOEXEC;
1003 		}
1004 
1005 		if (v->shared_ptr == NULL)
1006 			printk(KERN_WARNING "VPE loader: "
1007 			       "program does not contain vpe_shared symbol.\n"
1008 			       " Unable to use AMVP (AP/SP) facilities.\n");
1009 	}
1010 
1011 	printk(" elf loaded\n");
1012 	return 0;
1013 }
1014 
1015 __attribute_used__ void dump_vpe(struct vpe * v)
1016 {
1017 	struct tc *t;
1018 
1019 	settc(v->minor);
1020 
1021 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1022 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1023 
1024 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1025 		dump_tc(t);
1026 }
1027 
1028 static void cleanup_tc(struct tc *tc)
1029 {
1030 	int tmp;
1031 
1032 	/* Put MVPE's into 'configuration state' */
1033 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1034 
1035 	settc(tc->index);
1036 	tmp = read_tc_c0_tcstatus();
1037 
1038 	/* mark not allocated and not dynamically allocatable */
1039 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1040 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1041 	write_tc_c0_tcstatus(tmp);
1042 
1043 	write_tc_c0_tchalt(TCHALT_H);
1044 
1045 	/* bind it to anything other than VPE1 */
1046 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1047 
1048 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1049 }
1050 
1051 static int getcwd(char *buff, int size)
1052 {
1053 	mm_segment_t old_fs;
1054 	int ret;
1055 
1056 	old_fs = get_fs();
1057 	set_fs(KERNEL_DS);
1058 
1059 	ret = sys_getcwd(buff,size);
1060 
1061 	set_fs(old_fs);
1062 
1063 	return ret;
1064 }
1065 
1066 /* checks VPE is unused and gets ready to load program  */
1067 static int vpe_open(struct inode *inode, struct file *filp)
1068 {
1069 	int minor, ret;
1070 	struct vpe *v;
1071 	struct vpe_notifications *not;
1072 
1073 	/* assume only 1 device at the mo. */
1074 	if ((minor = iminor(inode)) != 1) {
1075 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1076 		return -ENODEV;
1077 	}
1078 
1079 	if ((v = get_vpe(minor)) == NULL) {
1080 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1081 		return -ENODEV;
1082 	}
1083 
1084 	if (v->state != VPE_STATE_UNUSED) {
1085 		dvpe();
1086 
1087 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1088 
1089 		dump_tc(get_tc(minor));
1090 
1091 		list_for_each_entry(not, &v->notify, list) {
1092 			not->stop(minor);
1093 		}
1094 
1095 		release_progmem(v->load_addr);
1096 		cleanup_tc(get_tc(minor));
1097 	}
1098 
1099 	// allocate it so when we get write ops we know it's expected.
1100 	v->state = VPE_STATE_INUSE;
1101 
1102 	/* this of-course trashes what was there before... */
1103 	v->pbuffer = vmalloc(P_SIZE);
1104 	v->plen = P_SIZE;
1105 	v->load_addr = NULL;
1106 	v->len = 0;
1107 
1108 	v->uid = filp->f_uid;
1109 	v->gid = filp->f_gid;
1110 
1111 #ifdef CONFIG_MIPS_APSP_KSPD
1112 	/* get kspd to tell us when a syscall_exit happens */
1113 	if (!kspd_events_reqd) {
1114 		kspd_notify(&kspd_events);
1115 		kspd_events_reqd++;
1116 	}
1117 #endif
1118 
1119 	v->cwd[0] = 0;
1120 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1121 	if (ret < 0)
1122 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1123 
1124 	v->shared_ptr = NULL;
1125 	v->__start = 0;
1126 	return 0;
1127 }
1128 
1129 static int vpe_release(struct inode *inode, struct file *filp)
1130 {
1131 	int minor, ret = 0;
1132 	struct vpe *v;
1133 	Elf_Ehdr *hdr;
1134 
1135 	minor = iminor(inode);
1136 	if ((v = get_vpe(minor)) == NULL)
1137 		return -ENODEV;
1138 
1139 	// simple case of fire and forget, so tell the VPE to run...
1140 
1141 	hdr = (Elf_Ehdr *) v->pbuffer;
1142 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1143 		if (vpe_elfload(v) >= 0)
1144 			vpe_run(v);
1145 		else {
1146  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1147 			ret = -ENOEXEC;
1148 		}
1149 	} else {
1150  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1151 		ret = -ENOEXEC;
1152 	}
1153 
1154 	/* It's good to be able to run the SP and if it chokes have a look at
1155 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1156 	   loose what has happened. So perhaps if garbage is sent to the vpe
1157 	   device, use it as a trigger for the reset. Hopefully a nice
1158 	   executable will be along shortly. */
1159 	if (ret < 0)
1160 		v->shared_ptr = NULL;
1161 
1162 	// cleanup any temp buffers
1163 	if (v->pbuffer)
1164 		vfree(v->pbuffer);
1165 	v->plen = 0;
1166 	return ret;
1167 }
1168 
1169 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1170 			 size_t count, loff_t * ppos)
1171 {
1172 	int minor;
1173 	size_t ret = count;
1174 	struct vpe *v;
1175 
1176 	minor = iminor(file->f_dentry->d_inode);
1177 	if ((v = get_vpe(minor)) == NULL)
1178 		return -ENODEV;
1179 
1180 	if (v->pbuffer == NULL) {
1181 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1182 		return -ENOMEM;
1183 	}
1184 
1185 	if ((count + v->len) > v->plen) {
1186 		printk(KERN_WARNING
1187 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1188 		return -ENOMEM;
1189 	}
1190 
1191 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1192 	if (!count)
1193 		return -EFAULT;
1194 
1195 	v->len += count;
1196 	return ret;
1197 }
1198 
1199 static struct file_operations vpe_fops = {
1200 	.owner = THIS_MODULE,
1201 	.open = vpe_open,
1202 	.release = vpe_release,
1203 	.write = vpe_write
1204 };
1205 
1206 /* module wrapper entry points */
1207 /* give me a vpe */
1208 vpe_handle vpe_alloc(void)
1209 {
1210 	int i;
1211 	struct vpe *v;
1212 
1213 	/* find a vpe */
1214 	for (i = 1; i < MAX_VPES; i++) {
1215 		if ((v = get_vpe(i)) != NULL) {
1216 			v->state = VPE_STATE_INUSE;
1217 			return v;
1218 		}
1219 	}
1220 	return NULL;
1221 }
1222 
1223 EXPORT_SYMBOL(vpe_alloc);
1224 
1225 /* start running from here */
1226 int vpe_start(vpe_handle vpe, unsigned long start)
1227 {
1228 	struct vpe *v = vpe;
1229 
1230 	v->__start = start;
1231 	return vpe_run(v);
1232 }
1233 
1234 EXPORT_SYMBOL(vpe_start);
1235 
1236 /* halt it for now */
1237 int vpe_stop(vpe_handle vpe)
1238 {
1239 	struct vpe *v = vpe;
1240 	struct tc *t;
1241 	unsigned int evpe_flags;
1242 
1243 	evpe_flags = dvpe();
1244 
1245 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1246 
1247 		settc(t->index);
1248 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1249 	}
1250 
1251 	evpe(evpe_flags);
1252 
1253 	return 0;
1254 }
1255 
1256 EXPORT_SYMBOL(vpe_stop);
1257 
1258 /* I've done with it thank you */
1259 int vpe_free(vpe_handle vpe)
1260 {
1261 	struct vpe *v = vpe;
1262 	struct tc *t;
1263 	unsigned int evpe_flags;
1264 
1265 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1266 		return -ENOEXEC;
1267 	}
1268 
1269 	evpe_flags = dvpe();
1270 
1271 	/* Put MVPE's into 'configuration state' */
1272 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1273 
1274 	settc(t->index);
1275 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1276 
1277 	/* mark the TC unallocated and halt'ed */
1278 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1279 	write_tc_c0_tchalt(TCHALT_H);
1280 
1281 	v->state = VPE_STATE_UNUSED;
1282 
1283 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1284 	evpe(evpe_flags);
1285 
1286 	return 0;
1287 }
1288 
1289 EXPORT_SYMBOL(vpe_free);
1290 
1291 void *vpe_get_shared(int index)
1292 {
1293 	struct vpe *v;
1294 
1295 	if ((v = get_vpe(index)) == NULL)
1296 		return NULL;
1297 
1298 	return v->shared_ptr;
1299 }
1300 
1301 EXPORT_SYMBOL(vpe_get_shared);
1302 
1303 int vpe_getuid(int index)
1304 {
1305 	struct vpe *v;
1306 
1307 	if ((v = get_vpe(index)) == NULL)
1308 		return -1;
1309 
1310 	return v->uid;
1311 }
1312 
1313 EXPORT_SYMBOL(vpe_getuid);
1314 
1315 int vpe_getgid(int index)
1316 {
1317 	struct vpe *v;
1318 
1319 	if ((v = get_vpe(index)) == NULL)
1320 		return -1;
1321 
1322 	return v->gid;
1323 }
1324 
1325 EXPORT_SYMBOL(vpe_getgid);
1326 
1327 int vpe_notify(int index, struct vpe_notifications *notify)
1328 {
1329 	struct vpe *v;
1330 
1331 	if ((v = get_vpe(index)) == NULL)
1332 		return -1;
1333 
1334 	list_add(&notify->list, &v->notify);
1335 	return 0;
1336 }
1337 
1338 EXPORT_SYMBOL(vpe_notify);
1339 
1340 char *vpe_getcwd(int index)
1341 {
1342 	struct vpe *v;
1343 
1344 	if ((v = get_vpe(index)) == NULL)
1345 		return NULL;
1346 
1347 	return v->cwd;
1348 }
1349 
1350 EXPORT_SYMBOL(vpe_getcwd);
1351 
1352 #ifdef CONFIG_MIPS_APSP_KSPD
1353 static void kspd_sp_exit( int sp_id)
1354 {
1355 	cleanup_tc(get_tc(sp_id));
1356 }
1357 #endif
1358 
1359 static int __init vpe_module_init(void)
1360 {
1361 	struct vpe *v = NULL;
1362 	struct tc *t;
1363 	unsigned long val;
1364 	int i;
1365 
1366 	if (!cpu_has_mipsmt) {
1367 		printk("VPE loader: not a MIPS MT capable processor\n");
1368 		return -ENODEV;
1369 	}
1370 
1371 	major = register_chrdev(0, module_name, &vpe_fops);
1372 	if (major < 0) {
1373 		printk("VPE loader: unable to register character device\n");
1374 		return major;
1375 	}
1376 
1377 	dmt();
1378 	dvpe();
1379 
1380 	/* Put MVPE's into 'configuration state' */
1381 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1382 
1383 	/* dump_mtregs(); */
1384 
1385 	INIT_LIST_HEAD(&vpecontrol.vpe_list);
1386 	INIT_LIST_HEAD(&vpecontrol.tc_list);
1387 
1388 	val = read_c0_mvpconf0();
1389 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1390 		t = alloc_tc(i);
1391 
1392 		/* VPE's */
1393 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1394 			settc(i);
1395 
1396 			if ((v = alloc_vpe(i)) == NULL) {
1397 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1398 				return -ENODEV;
1399 			}
1400 
1401 			/* add the tc to the list of this vpe's tc's. */
1402 			list_add(&t->tc, &v->tc);
1403 
1404 			/* deactivate all but vpe0 */
1405 			if (i != 0) {
1406 				unsigned long tmp = read_vpe_c0_vpeconf0();
1407 
1408 				tmp &= ~VPECONF0_VPA;
1409 
1410 				/* master VPE */
1411 				tmp |= VPECONF0_MVP;
1412 				write_vpe_c0_vpeconf0(tmp);
1413 			}
1414 
1415 			/* disable multi-threading with TC's */
1416 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1417 
1418 			if (i != 0) {
1419 				write_vpe_c0_status((read_c0_status() &
1420 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1421 						    | ST0_CU0);
1422 
1423 				/*
1424 				 * Set config to be the same as vpe0,
1425 				 * particularly kseg0 coherency alg
1426 				 */
1427 				write_vpe_c0_config(read_c0_config());
1428 			}
1429 		}
1430 
1431 		/* TC's */
1432 		t->pvpe = v;	/* set the parent vpe */
1433 
1434 		if (i != 0) {
1435 			unsigned long tmp;
1436 
1437 			settc(i);
1438 
1439 			/* Any TC that is bound to VPE0 gets left as is - in case
1440 			   we are running SMTC on VPE0. A TC that is bound to any
1441 			   other VPE gets bound to VPE0, ideally I'd like to make
1442 			   it homeless but it doesn't appear to let me bind a TC
1443 			   to a non-existent VPE. Which is perfectly reasonable.
1444 
1445 			   The (un)bound state is visible to an EJTAG probe so may
1446 			   notify GDB...
1447 			*/
1448 
1449 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1450 				/* tc is bound >vpe0 */
1451 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1452 
1453 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1454 			}
1455 
1456 			tmp = read_tc_c0_tcstatus();
1457 
1458 			/* mark not activated and not dynamically allocatable */
1459 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1460 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1461 			write_tc_c0_tcstatus(tmp);
1462 
1463 			write_tc_c0_tchalt(TCHALT_H);
1464 		}
1465 	}
1466 
1467 	/* release config state */
1468 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1469 
1470 #ifdef CONFIG_MIPS_APSP_KSPD
1471 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1472 #endif
1473 	return 0;
1474 }
1475 
1476 static void __exit vpe_module_exit(void)
1477 {
1478 	struct vpe *v, *n;
1479 
1480 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1481 		if (v->state != VPE_STATE_UNUSED) {
1482 			release_vpe(v);
1483 		}
1484 	}
1485 
1486 	unregister_chrdev(major, module_name);
1487 }
1488 
1489 module_init(vpe_module_init);
1490 module_exit(vpe_module_exit);
1491 MODULE_DESCRIPTION("MIPS VPE Loader");
1492 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1493 MODULE_LICENSE("GPL");
1494