xref: /linux/arch/mips/kernel/vpe.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * Copyright (C) 2004, 2005 MIPS Technologies, Inc.  All rights reserved.
3  *
4  *  This program is free software; you can distribute it and/or modify it
5  *  under the terms of the GNU General Public License (Version 2) as
6  *  published by the Free Software Foundation.
7  *
8  *  This program is distributed in the hope it will be useful, but WITHOUT
9  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  *  for more details.
12  *
13  *  You should have received a copy of the GNU General Public License along
14  *  with this program; if not, write to the Free Software Foundation, Inc.,
15  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
16  */
17 
18 /*
19  * VPE support module
20  *
21  * Provides support for loading a MIPS SP program on VPE1.
22  * The SP enviroment is rather simple, no tlb's.  It needs to be relocatable
23  * (or partially linked). You should initialise your stack in the startup
24  * code. This loader looks for the symbol __start and sets up
25  * execution to resume from there. The MIPS SDE kit contains suitable examples.
26  *
27  * To load and run, simply cat a SP 'program file' to /dev/vpe1.
28  * i.e cat spapp >/dev/vpe1.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/init.h>
35 #include <asm/uaccess.h>
36 #include <linux/slab.h>
37 #include <linux/list.h>
38 #include <linux/vmalloc.h>
39 #include <linux/elf.h>
40 #include <linux/seq_file.h>
41 #include <linux/syscalls.h>
42 #include <linux/moduleloader.h>
43 #include <linux/interrupt.h>
44 #include <linux/poll.h>
45 #include <linux/bootmem.h>
46 #include <asm/mipsregs.h>
47 #include <asm/mipsmtregs.h>
48 #include <asm/cacheflush.h>
49 #include <asm/atomic.h>
50 #include <asm/cpu.h>
51 #include <asm/processor.h>
52 #include <asm/system.h>
53 #include <asm/vpe.h>
54 #include <asm/kspd.h>
55 
56 typedef void *vpe_handle;
57 
58 #ifndef ARCH_SHF_SMALL
59 #define ARCH_SHF_SMALL 0
60 #endif
61 
62 /* If this is set, the section belongs in the init part of the module */
63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
64 
65 static char module_name[] = "vpe";
66 static int major;
67 
68 #ifdef CONFIG_MIPS_APSP_KSPD
69  static struct kspd_notifications kspd_events;
70 static int kspd_events_reqd = 0;
71 #endif
72 
73 /* grab the likely amount of memory we will need. */
74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
75 #define P_SIZE (2 * 1024 * 1024)
76 #else
77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
78 #define P_SIZE (256 * 1024)
79 #endif
80 
81 extern unsigned long physical_memsize;
82 
83 #define MAX_VPES 16
84 #define VPE_PATH_MAX 256
85 
86 enum vpe_state {
87 	VPE_STATE_UNUSED = 0,
88 	VPE_STATE_INUSE,
89 	VPE_STATE_RUNNING
90 };
91 
92 enum tc_state {
93 	TC_STATE_UNUSED = 0,
94 	TC_STATE_INUSE,
95 	TC_STATE_RUNNING,
96 	TC_STATE_DYNAMIC
97 };
98 
99 struct vpe {
100 	enum vpe_state state;
101 
102 	/* (device) minor associated with this vpe */
103 	int minor;
104 
105 	/* elfloader stuff */
106 	void *load_addr;
107 	unsigned long len;
108 	char *pbuffer;
109 	unsigned long plen;
110 	unsigned int uid, gid;
111 	char cwd[VPE_PATH_MAX];
112 
113 	unsigned long __start;
114 
115 	/* tc's associated with this vpe */
116 	struct list_head tc;
117 
118 	/* The list of vpe's */
119 	struct list_head list;
120 
121 	/* shared symbol address */
122 	void *shared_ptr;
123 
124 	/* the list of who wants to know when something major happens */
125 	struct list_head notify;
126 };
127 
128 struct tc {
129 	enum tc_state state;
130 	int index;
131 
132 	/* parent VPE */
133 	struct vpe *pvpe;
134 
135 	/* The list of TC's with this VPE */
136 	struct list_head tc;
137 
138 	/* The global list of tc's */
139 	struct list_head list;
140 };
141 
142 struct vpecontrol_ {
143 	/* Virtual processing elements */
144 	struct list_head vpe_list;
145 
146 	/* Thread contexts */
147 	struct list_head tc_list;
148 } vpecontrol;
149 
150 static void release_progmem(void *ptr);
151 /* static __attribute_used__ void dump_vpe(struct vpe * v); */
152 extern void save_gp_address(unsigned int secbase, unsigned int rel);
153 
154 /* get the vpe associated with this minor */
155 struct vpe *get_vpe(int minor)
156 {
157 	struct vpe *v;
158 
159 	if (!cpu_has_mipsmt)
160 		return NULL;
161 
162 	list_for_each_entry(v, &vpecontrol.vpe_list, list) {
163 		if (v->minor == minor)
164 			return v;
165 	}
166 
167 	return NULL;
168 }
169 
170 /* get the vpe associated with this minor */
171 struct tc *get_tc(int index)
172 {
173 	struct tc *t;
174 
175 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
176 		if (t->index == index)
177 			return t;
178 	}
179 
180 	return NULL;
181 }
182 
183 struct tc *get_tc_unused(void)
184 {
185 	struct tc *t;
186 
187 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
188 		if (t->state == TC_STATE_UNUSED)
189 			return t;
190 	}
191 
192 	return NULL;
193 }
194 
195 /* allocate a vpe and associate it with this minor (or index) */
196 struct vpe *alloc_vpe(int minor)
197 {
198 	struct vpe *v;
199 
200 	if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
201 		return NULL;
202 	}
203 
204 	INIT_LIST_HEAD(&v->tc);
205 	list_add_tail(&v->list, &vpecontrol.vpe_list);
206 
207 	INIT_LIST_HEAD(&v->notify);
208 	v->minor = minor;
209 	return v;
210 }
211 
212 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
213 struct tc *alloc_tc(int index)
214 {
215 	struct tc *t;
216 
217 	if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
218 		return NULL;
219 	}
220 
221 	INIT_LIST_HEAD(&t->tc);
222 	list_add_tail(&t->list, &vpecontrol.tc_list);
223 
224 	t->index = index;
225 
226 	return t;
227 }
228 
229 /* clean up and free everything */
230 void release_vpe(struct vpe *v)
231 {
232 	list_del(&v->list);
233 	if (v->load_addr)
234 		release_progmem(v);
235 	kfree(v);
236 }
237 
238 void dump_mtregs(void)
239 {
240 	unsigned long val;
241 
242 	val = read_c0_config3();
243 	printk("config3 0x%lx MT %ld\n", val,
244 	       (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
245 
246 	val = read_c0_mvpcontrol();
247 	printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
248 	       (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
249 	       (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
250 	       (val & MVPCONTROL_EVP));
251 
252 	val = read_c0_mvpconf0();
253 	printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
254 	       (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
255 	       val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
256 }
257 
258 /* Find some VPE program space  */
259 static void *alloc_progmem(unsigned long len)
260 {
261 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
262 	/* this means you must tell linux to use less memory than you physically have */
263 	return pfn_to_kaddr(max_pfn);
264 #else
265 	// simple grab some mem for now
266 	return kmalloc(len, GFP_KERNEL);
267 #endif
268 }
269 
270 static void release_progmem(void *ptr)
271 {
272 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
273 	kfree(ptr);
274 #endif
275 }
276 
277 /* Update size with this section: return offset. */
278 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
279 {
280 	long ret;
281 
282 	ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
283 	*size = ret + sechdr->sh_size;
284 	return ret;
285 }
286 
287 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
288    might -- code, read-only data, read-write data, small data.  Tally
289    sizes, and place the offsets into sh_entsize fields: high bit means it
290    belongs in init. */
291 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
292 			    Elf_Shdr * sechdrs, const char *secstrings)
293 {
294 	static unsigned long const masks[][2] = {
295 		/* NOTE: all executable code must be the first section
296 		 * in this array; otherwise modify the text_size
297 		 * finder in the two loops below */
298 		{SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
299 		{SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
300 		{SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
301 		{ARCH_SHF_SMALL | SHF_ALLOC, 0}
302 	};
303 	unsigned int m, i;
304 
305 	for (i = 0; i < hdr->e_shnum; i++)
306 		sechdrs[i].sh_entsize = ~0UL;
307 
308 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
309 		for (i = 0; i < hdr->e_shnum; ++i) {
310 			Elf_Shdr *s = &sechdrs[i];
311 
312 			//  || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
313 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
314 			    || (s->sh_flags & masks[m][1])
315 			    || s->sh_entsize != ~0UL)
316 				continue;
317 			s->sh_entsize = get_offset(&mod->core_size, s);
318 		}
319 
320 		if (m == 0)
321 			mod->core_text_size = mod->core_size;
322 
323 	}
324 }
325 
326 
327 /* from module-elf32.c, but subverted a little */
328 
329 struct mips_hi16 {
330 	struct mips_hi16 *next;
331 	Elf32_Addr *addr;
332 	Elf32_Addr value;
333 };
334 
335 static struct mips_hi16 *mips_hi16_list;
336 static unsigned int gp_offs, gp_addr;
337 
338 static int apply_r_mips_none(struct module *me, uint32_t *location,
339 			     Elf32_Addr v)
340 {
341 	return 0;
342 }
343 
344 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
345 				Elf32_Addr v)
346 {
347 	int rel;
348 
349 	if( !(*location & 0xffff) ) {
350 		rel = (int)v - gp_addr;
351 	}
352 	else {
353 		/* .sbss + gp(relative) + offset */
354 		/* kludge! */
355 		rel =  (int)(short)((int)v + gp_offs +
356 				    (int)(short)(*location & 0xffff) - gp_addr);
357 	}
358 
359 	if( (rel > 32768) || (rel < -32768) ) {
360 		printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: "
361 		       "relative address 0x%x out of range of gp register\n",
362 		       rel);
363 		return -ENOEXEC;
364 	}
365 
366 	*location = (*location & 0xffff0000) | (rel & 0xffff);
367 
368 	return 0;
369 }
370 
371 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
372 			     Elf32_Addr v)
373 {
374 	int rel;
375 	rel = (((unsigned int)v - (unsigned int)location));
376 	rel >>= 2;		// because the offset is in _instructions_ not bytes.
377 	rel -= 1;		// and one instruction less due to the branch delay slot.
378 
379 	if( (rel > 32768) || (rel < -32768) ) {
380 		printk(KERN_DEBUG "VPE loader: "
381  		       "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
382 		return -ENOEXEC;
383 	}
384 
385 	*location = (*location & 0xffff0000) | (rel & 0xffff);
386 
387 	return 0;
388 }
389 
390 static int apply_r_mips_32(struct module *me, uint32_t *location,
391 			   Elf32_Addr v)
392 {
393 	*location += v;
394 
395 	return 0;
396 }
397 
398 static int apply_r_mips_26(struct module *me, uint32_t *location,
399 			   Elf32_Addr v)
400 {
401 	if (v % 4) {
402 		printk(KERN_DEBUG "VPE loader: apply_r_mips_26 "
403 		       " unaligned relocation\n");
404 		return -ENOEXEC;
405 	}
406 
407 /*
408  * Not desperately convinced this is a good check of an overflow condition
409  * anyway. But it gets in the way of handling undefined weak symbols which
410  * we want to set to zero.
411  * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
412  * printk(KERN_ERR
413  * "module %s: relocation overflow\n",
414  * me->name);
415  * return -ENOEXEC;
416  * }
417  */
418 
419 	*location = (*location & ~0x03ffffff) |
420 		((*location + (v >> 2)) & 0x03ffffff);
421 	return 0;
422 }
423 
424 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
425 			     Elf32_Addr v)
426 {
427 	struct mips_hi16 *n;
428 
429 	/*
430 	 * We cannot relocate this one now because we don't know the value of
431 	 * the carry we need to add.  Save the information, and let LO16 do the
432 	 * actual relocation.
433 	 */
434 	n = kmalloc(sizeof *n, GFP_KERNEL);
435 	if (!n)
436 		return -ENOMEM;
437 
438 	n->addr = location;
439 	n->value = v;
440 	n->next = mips_hi16_list;
441 	mips_hi16_list = n;
442 
443 	return 0;
444 }
445 
446 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
447 			     Elf32_Addr v)
448 {
449 	unsigned long insnlo = *location;
450 	Elf32_Addr val, vallo;
451 
452 	/* Sign extend the addend we extract from the lo insn.  */
453 	vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
454 
455 	if (mips_hi16_list != NULL) {
456 		struct mips_hi16 *l;
457 
458 		l = mips_hi16_list;
459 		while (l != NULL) {
460 			struct mips_hi16 *next;
461 			unsigned long insn;
462 
463 			/*
464 			 * The value for the HI16 had best be the same.
465 			 */
466  			if (v != l->value) {
467 				printk(KERN_DEBUG "VPE loader: "
468 				       "apply_r_mips_lo16/hi16: 	"
469 				       "inconsistent value information\n");
470 				return -ENOEXEC;
471 			}
472 
473 			/*
474 			 * Do the HI16 relocation.  Note that we actually don't
475 			 * need to know anything about the LO16 itself, except
476 			 * where to find the low 16 bits of the addend needed
477 			 * by the LO16.
478 			 */
479 			insn = *l->addr;
480 			val = ((insn & 0xffff) << 16) + vallo;
481 			val += v;
482 
483 			/*
484 			 * Account for the sign extension that will happen in
485 			 * the low bits.
486 			 */
487 			val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
488 
489 			insn = (insn & ~0xffff) | val;
490 			*l->addr = insn;
491 
492 			next = l->next;
493 			kfree(l);
494 			l = next;
495 		}
496 
497 		mips_hi16_list = NULL;
498 	}
499 
500 	/*
501 	 * Ok, we're done with the HI16 relocs.  Now deal with the LO16.
502 	 */
503 	val = v + vallo;
504 	insnlo = (insnlo & ~0xffff) | (val & 0xffff);
505 	*location = insnlo;
506 
507 	return 0;
508 }
509 
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 				Elf32_Addr v) = {
512 	[R_MIPS_NONE]	= apply_r_mips_none,
513 	[R_MIPS_32]	= apply_r_mips_32,
514 	[R_MIPS_26]	= apply_r_mips_26,
515 	[R_MIPS_HI16]	= apply_r_mips_hi16,
516 	[R_MIPS_LO16]	= apply_r_mips_lo16,
517 	[R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 	[R_MIPS_PC16] = apply_r_mips_pc16
519 };
520 
521 static char *rstrs[] = {
522     	[R_MIPS_NONE]	= "MIPS_NONE",
523 	[R_MIPS_32]	= "MIPS_32",
524 	[R_MIPS_26]	= "MIPS_26",
525 	[R_MIPS_HI16]	= "MIPS_HI16",
526 	[R_MIPS_LO16]	= "MIPS_LO16",
527 	[R_MIPS_GPREL16] = "MIPS_GPREL16",
528 	[R_MIPS_PC16] = "MIPS_PC16"
529 };
530 
531 int apply_relocations(Elf32_Shdr *sechdrs,
532 		      const char *strtab,
533 		      unsigned int symindex,
534 		      unsigned int relsec,
535 		      struct module *me)
536 {
537 	Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
538 	Elf32_Sym *sym;
539 	uint32_t *location;
540 	unsigned int i;
541 	Elf32_Addr v;
542 	int res;
543 
544 	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
545 		Elf32_Word r_info = rel[i].r_info;
546 
547 		/* This is where to make the change */
548 		location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
549 			+ rel[i].r_offset;
550 		/* This is the symbol it is referring to */
551 		sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
552 			+ ELF32_R_SYM(r_info);
553 
554 		if (!sym->st_value) {
555 			printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
556 			       me->name, strtab + sym->st_name);
557 			/* just print the warning, dont barf */
558 		}
559 
560 		v = sym->st_value;
561 
562 		res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
563 		if( res ) {
564 			char *r = rstrs[ELF32_R_TYPE(r_info)];
565 		    	printk(KERN_WARNING "VPE loader: .text+0x%x "
566 			       "relocation type %s for symbol \"%s\" failed\n",
567 			       rel[i].r_offset, r ? r : "UNKNOWN",
568 			       strtab + sym->st_name);
569 			return res;
570 		}
571 	}
572 
573 	return 0;
574 }
575 
576 void save_gp_address(unsigned int secbase, unsigned int rel)
577 {
578 	gp_addr = secbase + rel;
579 	gp_offs = gp_addr - (secbase & 0xffff0000);
580 }
581 /* end module-elf32.c */
582 
583 
584 
585 /* Change all symbols so that sh_value encodes the pointer directly. */
586 static void simplify_symbols(Elf_Shdr * sechdrs,
587 			    unsigned int symindex,
588 			    const char *strtab,
589 			    const char *secstrings,
590 			    unsigned int nsecs, struct module *mod)
591 {
592 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
593 	unsigned long secbase, bssbase = 0;
594 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
595 	int size;
596 
597 	/* find the .bss section for COMMON symbols */
598 	for (i = 0; i < nsecs; i++) {
599 		if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) {
600 			bssbase = sechdrs[i].sh_addr;
601 			break;
602 		}
603 	}
604 
605 	for (i = 1; i < n; i++) {
606 		switch (sym[i].st_shndx) {
607 		case SHN_COMMON:
608 			/* Allocate space for the symbol in the .bss section.
609 			   st_value is currently size.
610 			   We want it to have the address of the symbol. */
611 
612 			size = sym[i].st_value;
613 			sym[i].st_value = bssbase;
614 
615 			bssbase += size;
616 			break;
617 
618 		case SHN_ABS:
619 			/* Don't need to do anything */
620 			break;
621 
622 		case SHN_UNDEF:
623 			/* ret = -ENOENT; */
624 			break;
625 
626 		case SHN_MIPS_SCOMMON:
627 			printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON"
628 			       "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name,
629 			       sym[i].st_shndx);
630 			// .sbss section
631 			break;
632 
633 		default:
634 			secbase = sechdrs[sym[i].st_shndx].sh_addr;
635 
636 			if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
637 				save_gp_address(secbase, sym[i].st_value);
638 			}
639 
640 			sym[i].st_value += secbase;
641 			break;
642 		}
643 	}
644 }
645 
646 #ifdef DEBUG_ELFLOADER
647 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
648 			    const char *strtab, struct module *mod)
649 {
650 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
651 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
652 
653 	printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
654 	for (i = 1; i < n; i++) {
655 		printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
656 		       strtab + sym[i].st_name, sym[i].st_value);
657 	}
658 }
659 #endif
660 
661 static void dump_tc(struct tc *t)
662 {
663   	unsigned long val;
664 
665   	settc(t->index);
666  	printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld "
667  	       "TCStatus 0x%lx halt 0x%lx\n",
668   	       t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC,
669   	       read_tc_c0_tcstatus(), read_tc_c0_tchalt());
670 
671  	printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart());
672  	printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind());
673 
674   	val = read_c0_vpeconf0();
675  	printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val,
676   	       (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
677 
678  	printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status());
679  	printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause());
680 
681  	printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr());
682  	printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc());
683 }
684 
685 static void dump_tclist(void)
686 {
687 	struct tc *t;
688 
689 	list_for_each_entry(t, &vpecontrol.tc_list, list) {
690 		dump_tc(t);
691 	}
692 }
693 
694 /* We are prepared so configure and start the VPE... */
695 int vpe_run(struct vpe * v)
696 {
697 	struct vpe_notifications *n;
698 	unsigned long val, dmt_flag;
699 	struct tc *t;
700 
701 	/* check we are the Master VPE */
702 	val = read_c0_vpeconf0();
703 	if (!(val & VPECONF0_MVP)) {
704 		printk(KERN_WARNING
705 		       "VPE loader: only Master VPE's are allowed to configure MT\n");
706 		return -1;
707 	}
708 
709 	/* disable MT (using dvpe) */
710 	dvpe();
711 
712 	if (!list_empty(&v->tc)) {
713                 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
714                         printk(KERN_WARNING "VPE loader: TC %d is already in use.\n",
715                                t->index);
716                         return -ENOEXEC;
717                 }
718         } else {
719                 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n",
720                        v->minor);
721                 return -ENOEXEC;
722         }
723 
724 	/* Put MVPE's into 'configuration state' */
725 	set_c0_mvpcontrol(MVPCONTROL_VPC);
726 
727 	settc(t->index);
728 
729 	/* should check it is halted, and not activated */
730 	if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
731 		printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n",
732 		       t->index);
733 		dump_tclist();
734 		return -ENOEXEC;
735 	}
736 
737 	/*
738 	 * Disable multi-threaded execution whilst we activate, clear the
739 	 * halt bit and bound the tc to the other VPE...
740 	 */
741 	dmt_flag = dmt();
742 
743 	/* Write the address we want it to start running from in the TCPC register. */
744 	write_tc_c0_tcrestart((unsigned long)v->__start);
745 	write_tc_c0_tccontext((unsigned long)0);
746 	/*
747 	 * Mark the TC as activated, not interrupt exempt and not dynamically
748 	 * allocatable
749 	 */
750 	val = read_tc_c0_tcstatus();
751 	val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
752 	write_tc_c0_tcstatus(val);
753 
754 	write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
755 
756 	/*
757 	 * The sde-kit passes 'memsize' to __start in $a3, so set something
758 	 * here...  Or set $a3 to zero and define DFLT_STACK_SIZE and
759 	 * DFLT_HEAP_SIZE when you compile your program
760 	 */
761  	mttgpr(7, physical_memsize);
762 
763 
764 	/* set up VPE1 */
765 	/*
766 	 * bind the TC to VPE 1 as late as possible so we only have the final
767 	 * VPE registers to set up, and so an EJTAG probe can trigger on it
768 	 */
769  	write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor);
770 
771 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA));
772 
773 	back_to_back_c0_hazard();
774 
775         /* Set up the XTC bit in vpeconf0 to point at our tc */
776         write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC))
777                                | (t->index << VPECONF0_XTC_SHIFT));
778 
779 	back_to_back_c0_hazard();
780 
781         /* enable this VPE */
782         write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
783 
784 	/* clear out any left overs from a previous program */
785 	write_vpe_c0_status(0);
786 	write_vpe_c0_cause(0);
787 
788 	/* take system out of configuration state */
789 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
790 
791 	/* now safe to re-enable multi-threading */
792 	emt(dmt_flag);
793 
794 	/* set it running */
795 	evpe(EVPE_ENABLE);
796 
797 	list_for_each_entry(n, &v->notify, list) {
798 		n->start(v->minor);
799 	}
800 
801 	return 0;
802 }
803 
804 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
805 				      unsigned int symindex, const char *strtab,
806 				      struct module *mod)
807 {
808 	Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
809 	unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
810 
811 	for (i = 1; i < n; i++) {
812 		if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
813 			v->__start = sym[i].st_value;
814 		}
815 
816 		if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
817 			v->shared_ptr = (void *)sym[i].st_value;
818 		}
819 	}
820 
821 	if ( (v->__start == 0) || (v->shared_ptr == NULL))
822 		return -1;
823 
824 	return 0;
825 }
826 
827 /*
828  * Allocates a VPE with some program code space(the load address), copies the
829  * contents of the program (p)buffer performing relocatations/etc, free's it
830  * when finished.
831  */
832 int vpe_elfload(struct vpe * v)
833 {
834 	Elf_Ehdr *hdr;
835 	Elf_Shdr *sechdrs;
836 	long err = 0;
837 	char *secstrings, *strtab = NULL;
838 	unsigned int len, i, symindex = 0, strindex = 0, relocate = 0;
839 	struct module mod;	// so we can re-use the relocations code
840 
841 	memset(&mod, 0, sizeof(struct module));
842 	strcpy(mod.name, "VPE loader");
843 
844 	hdr = (Elf_Ehdr *) v->pbuffer;
845 	len = v->plen;
846 
847 	/* Sanity checks against insmoding binaries or wrong arch,
848 	   weird elf version */
849 	if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
850 	    || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC)
851 	    || !elf_check_arch(hdr)
852 	    || hdr->e_shentsize != sizeof(*sechdrs)) {
853 		printk(KERN_WARNING
854 		       "VPE loader: program wrong arch or weird elf version\n");
855 
856 		return -ENOEXEC;
857 	}
858 
859 	if (hdr->e_type == ET_REL)
860 		relocate = 1;
861 
862 	if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
863 		printk(KERN_ERR "VPE loader: program length %u truncated\n",
864 		       len);
865 
866 		return -ENOEXEC;
867 	}
868 
869 	/* Convenience variables */
870 	sechdrs = (void *)hdr + hdr->e_shoff;
871 	secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
872 	sechdrs[0].sh_addr = 0;
873 
874 	/* And these should exist, but gcc whinges if we don't init them */
875 	symindex = strindex = 0;
876 
877 	if (relocate) {
878 		for (i = 1; i < hdr->e_shnum; i++) {
879 			if (sechdrs[i].sh_type != SHT_NOBITS
880 			    && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
881 				printk(KERN_ERR "VPE program length %u truncated\n",
882 				       len);
883 				return -ENOEXEC;
884 			}
885 
886 			/* Mark all sections sh_addr with their address in the
887 			   temporary image. */
888 			sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
889 
890 			/* Internal symbols and strings. */
891 			if (sechdrs[i].sh_type == SHT_SYMTAB) {
892 				symindex = i;
893 				strindex = sechdrs[i].sh_link;
894 				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
895 			}
896 		}
897 		layout_sections(&mod, hdr, sechdrs, secstrings);
898 	}
899 
900 	v->load_addr = alloc_progmem(mod.core_size);
901 	memset(v->load_addr, 0, mod.core_size);
902 
903 	printk("VPE loader: loading to %p\n", v->load_addr);
904 
905 	if (relocate) {
906 		for (i = 0; i < hdr->e_shnum; i++) {
907 			void *dest;
908 
909 			if (!(sechdrs[i].sh_flags & SHF_ALLOC))
910 				continue;
911 
912 			dest = v->load_addr + sechdrs[i].sh_entsize;
913 
914 			if (sechdrs[i].sh_type != SHT_NOBITS)
915 				memcpy(dest, (void *)sechdrs[i].sh_addr,
916 				       sechdrs[i].sh_size);
917 			/* Update sh_addr to point to copy in image. */
918 			sechdrs[i].sh_addr = (unsigned long)dest;
919 
920 			printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n",
921 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr);
922 		}
923 
924  		/* Fix up syms, so that st_value is a pointer to location. */
925  		simplify_symbols(sechdrs, symindex, strtab, secstrings,
926  				 hdr->e_shnum, &mod);
927 
928  		/* Now do relocations. */
929  		for (i = 1; i < hdr->e_shnum; i++) {
930  			const char *strtab = (char *)sechdrs[strindex].sh_addr;
931  			unsigned int info = sechdrs[i].sh_info;
932 
933  			/* Not a valid relocation section? */
934  			if (info >= hdr->e_shnum)
935  				continue;
936 
937  			/* Don't bother with non-allocated sections */
938  			if (!(sechdrs[info].sh_flags & SHF_ALLOC))
939  				continue;
940 
941  			if (sechdrs[i].sh_type == SHT_REL)
942  				err = apply_relocations(sechdrs, strtab, symindex, i,
943  							&mod);
944  			else if (sechdrs[i].sh_type == SHT_RELA)
945  				err = apply_relocate_add(sechdrs, strtab, symindex, i,
946  							 &mod);
947  			if (err < 0)
948  				return err;
949 
950   		}
951   	} else {
952   		for (i = 0; i < hdr->e_shnum; i++) {
953 
954  			/* Internal symbols and strings. */
955  			if (sechdrs[i].sh_type == SHT_SYMTAB) {
956  				symindex = i;
957  				strindex = sechdrs[i].sh_link;
958  				strtab = (char *)hdr + sechdrs[strindex].sh_offset;
959 
960  				/* mark the symtab's address for when we try to find the
961  				   magic symbols */
962  				sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
963  			}
964 
965  			/* filter sections we dont want in the final image */
966  			if (!(sechdrs[i].sh_flags & SHF_ALLOC) ||
967  			    (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) {
968  				printk( KERN_DEBUG " ignoring section, "
969  					"name %s type %x address 0x%x \n",
970  					secstrings + sechdrs[i].sh_name,
971  					sechdrs[i].sh_type, sechdrs[i].sh_addr);
972  				continue;
973  			}
974 
975   			if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) {
976  				printk( KERN_WARNING "VPE loader: "
977  					"fully linked image has invalid section, "
978  					"name %s type %x address 0x%x, before load "
979  					"address of 0x%x\n",
980  					secstrings + sechdrs[i].sh_name,
981  					sechdrs[i].sh_type, sechdrs[i].sh_addr,
982  					(unsigned int)v->load_addr);
983   				return -ENOEXEC;
984   			}
985 
986  			printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x "
987 			       "size 0x%x0 from x%p\n",
988 			       secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr,
989 			       sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset);
990 
991   			if (sechdrs[i].sh_type != SHT_NOBITS)
992 				memcpy((void *)sechdrs[i].sh_addr,
993 				       (char *)hdr + sechdrs[i].sh_offset,
994  				       sechdrs[i].sh_size);
995 			else
996 				memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size);
997 		}
998 	}
999 
1000 	/* make sure it's physically written out */
1001 	flush_icache_range((unsigned long)v->load_addr,
1002 			   (unsigned long)v->load_addr + v->len);
1003 
1004 	if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
1005 		if (v->__start == 0) {
1006 			printk(KERN_WARNING "VPE loader: program does not contain "
1007 			       "a __start symbol\n");
1008 			return -ENOEXEC;
1009 		}
1010 
1011 		if (v->shared_ptr == NULL)
1012 			printk(KERN_WARNING "VPE loader: "
1013 			       "program does not contain vpe_shared symbol.\n"
1014 			       " Unable to use AMVP (AP/SP) facilities.\n");
1015 	}
1016 
1017 	printk(" elf loaded\n");
1018 	return 0;
1019 }
1020 
1021 __attribute_used__ void dump_vpe(struct vpe * v)
1022 {
1023 	struct tc *t;
1024 
1025 	settc(v->minor);
1026 
1027 	printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
1028 	printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
1029 
1030 	list_for_each_entry(t, &vpecontrol.tc_list, list)
1031 		dump_tc(t);
1032 }
1033 
1034 static void cleanup_tc(struct tc *tc)
1035 {
1036 	int tmp;
1037 
1038 	/* Put MVPE's into 'configuration state' */
1039 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1040 
1041 	settc(tc->index);
1042 	tmp = read_tc_c0_tcstatus();
1043 
1044 	/* mark not allocated and not dynamically allocatable */
1045 	tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1046 	tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1047 	write_tc_c0_tcstatus(tmp);
1048 
1049 	write_tc_c0_tchalt(TCHALT_H);
1050 
1051 	/* bind it to anything other than VPE1 */
1052 	write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE
1053 
1054 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1055 }
1056 
1057 static int getcwd(char *buff, int size)
1058 {
1059 	mm_segment_t old_fs;
1060 	int ret;
1061 
1062 	old_fs = get_fs();
1063 	set_fs(KERNEL_DS);
1064 
1065 	ret = sys_getcwd(buff,size);
1066 
1067 	set_fs(old_fs);
1068 
1069 	return ret;
1070 }
1071 
1072 /* checks VPE is unused and gets ready to load program  */
1073 static int vpe_open(struct inode *inode, struct file *filp)
1074 {
1075 	int minor, ret;
1076 	struct vpe *v;
1077 	struct vpe_notifications *not;
1078 
1079 	/* assume only 1 device at the mo. */
1080 	if ((minor = iminor(inode)) != 1) {
1081 		printk(KERN_WARNING "VPE loader: only vpe1 is supported\n");
1082 		return -ENODEV;
1083 	}
1084 
1085 	if ((v = get_vpe(minor)) == NULL) {
1086 		printk(KERN_WARNING "VPE loader: unable to get vpe\n");
1087 		return -ENODEV;
1088 	}
1089 
1090 	if (v->state != VPE_STATE_UNUSED) {
1091 		dvpe();
1092 
1093 		printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n");
1094 
1095 		dump_tc(get_tc(minor));
1096 
1097 		list_for_each_entry(not, &v->notify, list) {
1098 			not->stop(minor);
1099 		}
1100 
1101 		release_progmem(v->load_addr);
1102 		cleanup_tc(get_tc(minor));
1103 	}
1104 
1105 	// allocate it so when we get write ops we know it's expected.
1106 	v->state = VPE_STATE_INUSE;
1107 
1108 	/* this of-course trashes what was there before... */
1109 	v->pbuffer = vmalloc(P_SIZE);
1110 	v->plen = P_SIZE;
1111 	v->load_addr = NULL;
1112 	v->len = 0;
1113 
1114 	v->uid = filp->f_uid;
1115 	v->gid = filp->f_gid;
1116 
1117 #ifdef CONFIG_MIPS_APSP_KSPD
1118 	/* get kspd to tell us when a syscall_exit happens */
1119 	if (!kspd_events_reqd) {
1120 		kspd_notify(&kspd_events);
1121 		kspd_events_reqd++;
1122 	}
1123 #endif
1124 
1125 	v->cwd[0] = 0;
1126 	ret = getcwd(v->cwd, VPE_PATH_MAX);
1127 	if (ret < 0)
1128 		printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret);
1129 
1130 	v->shared_ptr = NULL;
1131 	v->__start = 0;
1132 	return 0;
1133 }
1134 
1135 static int vpe_release(struct inode *inode, struct file *filp)
1136 {
1137 	int minor, ret = 0;
1138 	struct vpe *v;
1139 	Elf_Ehdr *hdr;
1140 
1141 	minor = iminor(inode);
1142 	if ((v = get_vpe(minor)) == NULL)
1143 		return -ENODEV;
1144 
1145 	// simple case of fire and forget, so tell the VPE to run...
1146 
1147 	hdr = (Elf_Ehdr *) v->pbuffer;
1148 	if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1149 		if (vpe_elfload(v) >= 0)
1150 			vpe_run(v);
1151 		else {
1152  			printk(KERN_WARNING "VPE loader: ELF load failed.\n");
1153 			ret = -ENOEXEC;
1154 		}
1155 	} else {
1156  		printk(KERN_WARNING "VPE loader: only elf files are supported\n");
1157 		ret = -ENOEXEC;
1158 	}
1159 
1160 	/* It's good to be able to run the SP and if it chokes have a look at
1161 	   the /dev/rt?. But if we reset the pointer to the shared struct we
1162 	   loose what has happened. So perhaps if garbage is sent to the vpe
1163 	   device, use it as a trigger for the reset. Hopefully a nice
1164 	   executable will be along shortly. */
1165 	if (ret < 0)
1166 		v->shared_ptr = NULL;
1167 
1168 	// cleanup any temp buffers
1169 	if (v->pbuffer)
1170 		vfree(v->pbuffer);
1171 	v->plen = 0;
1172 	return ret;
1173 }
1174 
1175 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1176 			 size_t count, loff_t * ppos)
1177 {
1178 	int minor;
1179 	size_t ret = count;
1180 	struct vpe *v;
1181 
1182 	minor = iminor(file->f_path.dentry->d_inode);
1183 	if ((v = get_vpe(minor)) == NULL)
1184 		return -ENODEV;
1185 
1186 	if (v->pbuffer == NULL) {
1187 		printk(KERN_ERR "VPE loader: no buffer for program\n");
1188 		return -ENOMEM;
1189 	}
1190 
1191 	if ((count + v->len) > v->plen) {
1192 		printk(KERN_WARNING
1193 		       "VPE loader: elf size too big. Perhaps strip uneeded symbols\n");
1194 		return -ENOMEM;
1195 	}
1196 
1197 	count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1198 	if (!count)
1199 		return -EFAULT;
1200 
1201 	v->len += count;
1202 	return ret;
1203 }
1204 
1205 static struct file_operations vpe_fops = {
1206 	.owner = THIS_MODULE,
1207 	.open = vpe_open,
1208 	.release = vpe_release,
1209 	.write = vpe_write
1210 };
1211 
1212 /* module wrapper entry points */
1213 /* give me a vpe */
1214 vpe_handle vpe_alloc(void)
1215 {
1216 	int i;
1217 	struct vpe *v;
1218 
1219 	/* find a vpe */
1220 	for (i = 1; i < MAX_VPES; i++) {
1221 		if ((v = get_vpe(i)) != NULL) {
1222 			v->state = VPE_STATE_INUSE;
1223 			return v;
1224 		}
1225 	}
1226 	return NULL;
1227 }
1228 
1229 EXPORT_SYMBOL(vpe_alloc);
1230 
1231 /* start running from here */
1232 int vpe_start(vpe_handle vpe, unsigned long start)
1233 {
1234 	struct vpe *v = vpe;
1235 
1236 	v->__start = start;
1237 	return vpe_run(v);
1238 }
1239 
1240 EXPORT_SYMBOL(vpe_start);
1241 
1242 /* halt it for now */
1243 int vpe_stop(vpe_handle vpe)
1244 {
1245 	struct vpe *v = vpe;
1246 	struct tc *t;
1247 	unsigned int evpe_flags;
1248 
1249 	evpe_flags = dvpe();
1250 
1251 	if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1252 
1253 		settc(t->index);
1254 		write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1255 	}
1256 
1257 	evpe(evpe_flags);
1258 
1259 	return 0;
1260 }
1261 
1262 EXPORT_SYMBOL(vpe_stop);
1263 
1264 /* I've done with it thank you */
1265 int vpe_free(vpe_handle vpe)
1266 {
1267 	struct vpe *v = vpe;
1268 	struct tc *t;
1269 	unsigned int evpe_flags;
1270 
1271 	if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1272 		return -ENOEXEC;
1273 	}
1274 
1275 	evpe_flags = dvpe();
1276 
1277 	/* Put MVPE's into 'configuration state' */
1278 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1279 
1280 	settc(t->index);
1281 	write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1282 
1283 	/* mark the TC unallocated and halt'ed */
1284 	write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1285 	write_tc_c0_tchalt(TCHALT_H);
1286 
1287 	v->state = VPE_STATE_UNUSED;
1288 
1289 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1290 	evpe(evpe_flags);
1291 
1292 	return 0;
1293 }
1294 
1295 EXPORT_SYMBOL(vpe_free);
1296 
1297 void *vpe_get_shared(int index)
1298 {
1299 	struct vpe *v;
1300 
1301 	if ((v = get_vpe(index)) == NULL)
1302 		return NULL;
1303 
1304 	return v->shared_ptr;
1305 }
1306 
1307 EXPORT_SYMBOL(vpe_get_shared);
1308 
1309 int vpe_getuid(int index)
1310 {
1311 	struct vpe *v;
1312 
1313 	if ((v = get_vpe(index)) == NULL)
1314 		return -1;
1315 
1316 	return v->uid;
1317 }
1318 
1319 EXPORT_SYMBOL(vpe_getuid);
1320 
1321 int vpe_getgid(int index)
1322 {
1323 	struct vpe *v;
1324 
1325 	if ((v = get_vpe(index)) == NULL)
1326 		return -1;
1327 
1328 	return v->gid;
1329 }
1330 
1331 EXPORT_SYMBOL(vpe_getgid);
1332 
1333 int vpe_notify(int index, struct vpe_notifications *notify)
1334 {
1335 	struct vpe *v;
1336 
1337 	if ((v = get_vpe(index)) == NULL)
1338 		return -1;
1339 
1340 	list_add(&notify->list, &v->notify);
1341 	return 0;
1342 }
1343 
1344 EXPORT_SYMBOL(vpe_notify);
1345 
1346 char *vpe_getcwd(int index)
1347 {
1348 	struct vpe *v;
1349 
1350 	if ((v = get_vpe(index)) == NULL)
1351 		return NULL;
1352 
1353 	return v->cwd;
1354 }
1355 
1356 EXPORT_SYMBOL(vpe_getcwd);
1357 
1358 #ifdef CONFIG_MIPS_APSP_KSPD
1359 static void kspd_sp_exit( int sp_id)
1360 {
1361 	cleanup_tc(get_tc(sp_id));
1362 }
1363 #endif
1364 
1365 static int __init vpe_module_init(void)
1366 {
1367 	struct vpe *v = NULL;
1368 	struct tc *t;
1369 	unsigned long val;
1370 	int i;
1371 
1372 	if (!cpu_has_mipsmt) {
1373 		printk("VPE loader: not a MIPS MT capable processor\n");
1374 		return -ENODEV;
1375 	}
1376 
1377 	major = register_chrdev(0, module_name, &vpe_fops);
1378 	if (major < 0) {
1379 		printk("VPE loader: unable to register character device\n");
1380 		return major;
1381 	}
1382 
1383 	dmt();
1384 	dvpe();
1385 
1386 	/* Put MVPE's into 'configuration state' */
1387 	set_c0_mvpcontrol(MVPCONTROL_VPC);
1388 
1389 	/* dump_mtregs(); */
1390 
1391 	INIT_LIST_HEAD(&vpecontrol.vpe_list);
1392 	INIT_LIST_HEAD(&vpecontrol.tc_list);
1393 
1394 	val = read_c0_mvpconf0();
1395 	for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1396 		t = alloc_tc(i);
1397 
1398 		/* VPE's */
1399 		if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1400 			settc(i);
1401 
1402 			if ((v = alloc_vpe(i)) == NULL) {
1403 				printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1404 				return -ENODEV;
1405 			}
1406 
1407 			/* add the tc to the list of this vpe's tc's. */
1408 			list_add(&t->tc, &v->tc);
1409 
1410 			/* deactivate all but vpe0 */
1411 			if (i != 0) {
1412 				unsigned long tmp = read_vpe_c0_vpeconf0();
1413 
1414 				tmp &= ~VPECONF0_VPA;
1415 
1416 				/* master VPE */
1417 				tmp |= VPECONF0_MVP;
1418 				write_vpe_c0_vpeconf0(tmp);
1419 			}
1420 
1421 			/* disable multi-threading with TC's */
1422 			write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1423 
1424 			if (i != 0) {
1425 				write_vpe_c0_status((read_c0_status() &
1426 						     ~(ST0_IM | ST0_IE | ST0_KSU))
1427 						    | ST0_CU0);
1428 
1429 				/*
1430 				 * Set config to be the same as vpe0,
1431 				 * particularly kseg0 coherency alg
1432 				 */
1433 				write_vpe_c0_config(read_c0_config());
1434 			}
1435 		}
1436 
1437 		/* TC's */
1438 		t->pvpe = v;	/* set the parent vpe */
1439 
1440 		if (i != 0) {
1441 			unsigned long tmp;
1442 
1443 			settc(i);
1444 
1445 			/* Any TC that is bound to VPE0 gets left as is - in case
1446 			   we are running SMTC on VPE0. A TC that is bound to any
1447 			   other VPE gets bound to VPE0, ideally I'd like to make
1448 			   it homeless but it doesn't appear to let me bind a TC
1449 			   to a non-existent VPE. Which is perfectly reasonable.
1450 
1451 			   The (un)bound state is visible to an EJTAG probe so may
1452 			   notify GDB...
1453 			*/
1454 
1455 			if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) {
1456 				/* tc is bound >vpe0 */
1457 				write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE);
1458 
1459 				t->pvpe = get_vpe(0);	/* set the parent vpe */
1460 			}
1461 
1462 			tmp = read_tc_c0_tcstatus();
1463 
1464 			/* mark not activated and not dynamically allocatable */
1465 			tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1466 			tmp |= TCSTATUS_IXMT;	/* interrupt exempt */
1467 			write_tc_c0_tcstatus(tmp);
1468 
1469 			write_tc_c0_tchalt(TCHALT_H);
1470 		}
1471 	}
1472 
1473 	/* release config state */
1474 	clear_c0_mvpcontrol(MVPCONTROL_VPC);
1475 
1476 #ifdef CONFIG_MIPS_APSP_KSPD
1477 	kspd_events.kspd_sp_exit = kspd_sp_exit;
1478 #endif
1479 	return 0;
1480 }
1481 
1482 static void __exit vpe_module_exit(void)
1483 {
1484 	struct vpe *v, *n;
1485 
1486 	list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1487 		if (v->state != VPE_STATE_UNUSED) {
1488 			release_vpe(v);
1489 		}
1490 	}
1491 
1492 	unregister_chrdev(major, module_name);
1493 }
1494 
1495 module_init(vpe_module_init);
1496 module_exit(vpe_module_exit);
1497 MODULE_DESCRIPTION("MIPS VPE Loader");
1498 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc.");
1499 MODULE_LICENSE("GPL");
1500