1 /* 2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. 3 * 4 * This program is free software; you can distribute it and/or modify it 5 * under the terms of the GNU General Public License (Version 2) as 6 * published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 11 * for more details. 12 * 13 * You should have received a copy of the GNU General Public License along 14 * with this program; if not, write to the Free Software Foundation, Inc., 15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. 16 */ 17 18 /* 19 * VPE support module 20 * 21 * Provides support for loading a MIPS SP program on VPE1. 22 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable 23 * (or partially linked). You should initialise your stack in the startup 24 * code. This loader looks for the symbol __start and sets up 25 * execution to resume from there. The MIPS SDE kit contains suitable examples. 26 * 27 * To load and run, simply cat a SP 'program file' to /dev/vpe1. 28 * i.e cat spapp >/dev/vpe1. 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/module.h> 33 #include <linux/fs.h> 34 #include <linux/init.h> 35 #include <asm/uaccess.h> 36 #include <linux/slab.h> 37 #include <linux/list.h> 38 #include <linux/vmalloc.h> 39 #include <linux/elf.h> 40 #include <linux/seq_file.h> 41 #include <linux/syscalls.h> 42 #include <linux/moduleloader.h> 43 #include <linux/interrupt.h> 44 #include <linux/poll.h> 45 #include <linux/bootmem.h> 46 #include <asm/mipsregs.h> 47 #include <asm/mipsmtregs.h> 48 #include <asm/cacheflush.h> 49 #include <asm/atomic.h> 50 #include <asm/cpu.h> 51 #include <asm/processor.h> 52 #include <asm/system.h> 53 #include <asm/vpe.h> 54 #include <asm/kspd.h> 55 56 typedef void *vpe_handle; 57 58 #ifndef ARCH_SHF_SMALL 59 #define ARCH_SHF_SMALL 0 60 #endif 61 62 /* If this is set, the section belongs in the init part of the module */ 63 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1)) 64 65 static char module_name[] = "vpe"; 66 static int major; 67 68 #ifdef CONFIG_MIPS_APSP_KSPD 69 static struct kspd_notifications kspd_events; 70 static int kspd_events_reqd = 0; 71 #endif 72 73 /* grab the likely amount of memory we will need. */ 74 #ifdef CONFIG_MIPS_VPE_LOADER_TOM 75 #define P_SIZE (2 * 1024 * 1024) 76 #else 77 /* add an overhead to the max kmalloc size for non-striped symbols/etc */ 78 #define P_SIZE (256 * 1024) 79 #endif 80 81 extern unsigned long physical_memsize; 82 83 #define MAX_VPES 16 84 #define VPE_PATH_MAX 256 85 86 enum vpe_state { 87 VPE_STATE_UNUSED = 0, 88 VPE_STATE_INUSE, 89 VPE_STATE_RUNNING 90 }; 91 92 enum tc_state { 93 TC_STATE_UNUSED = 0, 94 TC_STATE_INUSE, 95 TC_STATE_RUNNING, 96 TC_STATE_DYNAMIC 97 }; 98 99 struct vpe { 100 enum vpe_state state; 101 102 /* (device) minor associated with this vpe */ 103 int minor; 104 105 /* elfloader stuff */ 106 void *load_addr; 107 unsigned long len; 108 char *pbuffer; 109 unsigned long plen; 110 unsigned int uid, gid; 111 char cwd[VPE_PATH_MAX]; 112 113 unsigned long __start; 114 115 /* tc's associated with this vpe */ 116 struct list_head tc; 117 118 /* The list of vpe's */ 119 struct list_head list; 120 121 /* shared symbol address */ 122 void *shared_ptr; 123 124 /* the list of who wants to know when something major happens */ 125 struct list_head notify; 126 }; 127 128 struct tc { 129 enum tc_state state; 130 int index; 131 132 /* parent VPE */ 133 struct vpe *pvpe; 134 135 /* The list of TC's with this VPE */ 136 struct list_head tc; 137 138 /* The global list of tc's */ 139 struct list_head list; 140 }; 141 142 struct vpecontrol_ { 143 /* Virtual processing elements */ 144 struct list_head vpe_list; 145 146 /* Thread contexts */ 147 struct list_head tc_list; 148 } vpecontrol; 149 150 static void release_progmem(void *ptr); 151 /* static __attribute_used__ void dump_vpe(struct vpe * v); */ 152 extern void save_gp_address(unsigned int secbase, unsigned int rel); 153 154 /* get the vpe associated with this minor */ 155 struct vpe *get_vpe(int minor) 156 { 157 struct vpe *v; 158 159 if (!cpu_has_mipsmt) 160 return NULL; 161 162 list_for_each_entry(v, &vpecontrol.vpe_list, list) { 163 if (v->minor == minor) 164 return v; 165 } 166 167 return NULL; 168 } 169 170 /* get the vpe associated with this minor */ 171 struct tc *get_tc(int index) 172 { 173 struct tc *t; 174 175 list_for_each_entry(t, &vpecontrol.tc_list, list) { 176 if (t->index == index) 177 return t; 178 } 179 180 return NULL; 181 } 182 183 struct tc *get_tc_unused(void) 184 { 185 struct tc *t; 186 187 list_for_each_entry(t, &vpecontrol.tc_list, list) { 188 if (t->state == TC_STATE_UNUSED) 189 return t; 190 } 191 192 return NULL; 193 } 194 195 /* allocate a vpe and associate it with this minor (or index) */ 196 struct vpe *alloc_vpe(int minor) 197 { 198 struct vpe *v; 199 200 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) { 201 return NULL; 202 } 203 204 INIT_LIST_HEAD(&v->tc); 205 list_add_tail(&v->list, &vpecontrol.vpe_list); 206 207 INIT_LIST_HEAD(&v->notify); 208 v->minor = minor; 209 return v; 210 } 211 212 /* allocate a tc. At startup only tc0 is running, all other can be halted. */ 213 struct tc *alloc_tc(int index) 214 { 215 struct tc *t; 216 217 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) { 218 return NULL; 219 } 220 221 INIT_LIST_HEAD(&t->tc); 222 list_add_tail(&t->list, &vpecontrol.tc_list); 223 224 t->index = index; 225 226 return t; 227 } 228 229 /* clean up and free everything */ 230 void release_vpe(struct vpe *v) 231 { 232 list_del(&v->list); 233 if (v->load_addr) 234 release_progmem(v); 235 kfree(v); 236 } 237 238 void dump_mtregs(void) 239 { 240 unsigned long val; 241 242 val = read_c0_config3(); 243 printk("config3 0x%lx MT %ld\n", val, 244 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT); 245 246 val = read_c0_mvpcontrol(); 247 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val, 248 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT, 249 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT, 250 (val & MVPCONTROL_EVP)); 251 252 val = read_c0_mvpconf0(); 253 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val, 254 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT, 255 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT); 256 } 257 258 /* Find some VPE program space */ 259 static void *alloc_progmem(unsigned long len) 260 { 261 #ifdef CONFIG_MIPS_VPE_LOADER_TOM 262 /* this means you must tell linux to use less memory than you physically have */ 263 return pfn_to_kaddr(max_pfn); 264 #else 265 // simple grab some mem for now 266 return kmalloc(len, GFP_KERNEL); 267 #endif 268 } 269 270 static void release_progmem(void *ptr) 271 { 272 #ifndef CONFIG_MIPS_VPE_LOADER_TOM 273 kfree(ptr); 274 #endif 275 } 276 277 /* Update size with this section: return offset. */ 278 static long get_offset(unsigned long *size, Elf_Shdr * sechdr) 279 { 280 long ret; 281 282 ret = ALIGN(*size, sechdr->sh_addralign ? : 1); 283 *size = ret + sechdr->sh_size; 284 return ret; 285 } 286 287 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 288 might -- code, read-only data, read-write data, small data. Tally 289 sizes, and place the offsets into sh_entsize fields: high bit means it 290 belongs in init. */ 291 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr, 292 Elf_Shdr * sechdrs, const char *secstrings) 293 { 294 static unsigned long const masks[][2] = { 295 /* NOTE: all executable code must be the first section 296 * in this array; otherwise modify the text_size 297 * finder in the two loops below */ 298 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL}, 299 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL}, 300 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL}, 301 {ARCH_SHF_SMALL | SHF_ALLOC, 0} 302 }; 303 unsigned int m, i; 304 305 for (i = 0; i < hdr->e_shnum; i++) 306 sechdrs[i].sh_entsize = ~0UL; 307 308 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 309 for (i = 0; i < hdr->e_shnum; ++i) { 310 Elf_Shdr *s = &sechdrs[i]; 311 312 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0) 313 if ((s->sh_flags & masks[m][0]) != masks[m][0] 314 || (s->sh_flags & masks[m][1]) 315 || s->sh_entsize != ~0UL) 316 continue; 317 s->sh_entsize = get_offset(&mod->core_size, s); 318 } 319 320 if (m == 0) 321 mod->core_text_size = mod->core_size; 322 323 } 324 } 325 326 327 /* from module-elf32.c, but subverted a little */ 328 329 struct mips_hi16 { 330 struct mips_hi16 *next; 331 Elf32_Addr *addr; 332 Elf32_Addr value; 333 }; 334 335 static struct mips_hi16 *mips_hi16_list; 336 static unsigned int gp_offs, gp_addr; 337 338 static int apply_r_mips_none(struct module *me, uint32_t *location, 339 Elf32_Addr v) 340 { 341 return 0; 342 } 343 344 static int apply_r_mips_gprel16(struct module *me, uint32_t *location, 345 Elf32_Addr v) 346 { 347 int rel; 348 349 if( !(*location & 0xffff) ) { 350 rel = (int)v - gp_addr; 351 } 352 else { 353 /* .sbss + gp(relative) + offset */ 354 /* kludge! */ 355 rel = (int)(short)((int)v + gp_offs + 356 (int)(short)(*location & 0xffff) - gp_addr); 357 } 358 359 if( (rel > 32768) || (rel < -32768) ) { 360 printk(KERN_DEBUG "VPE loader: apply_r_mips_gprel16: " 361 "relative address 0x%x out of range of gp register\n", 362 rel); 363 return -ENOEXEC; 364 } 365 366 *location = (*location & 0xffff0000) | (rel & 0xffff); 367 368 return 0; 369 } 370 371 static int apply_r_mips_pc16(struct module *me, uint32_t *location, 372 Elf32_Addr v) 373 { 374 int rel; 375 rel = (((unsigned int)v - (unsigned int)location)); 376 rel >>= 2; // because the offset is in _instructions_ not bytes. 377 rel -= 1; // and one instruction less due to the branch delay slot. 378 379 if( (rel > 32768) || (rel < -32768) ) { 380 printk(KERN_DEBUG "VPE loader: " 381 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel); 382 return -ENOEXEC; 383 } 384 385 *location = (*location & 0xffff0000) | (rel & 0xffff); 386 387 return 0; 388 } 389 390 static int apply_r_mips_32(struct module *me, uint32_t *location, 391 Elf32_Addr v) 392 { 393 *location += v; 394 395 return 0; 396 } 397 398 static int apply_r_mips_26(struct module *me, uint32_t *location, 399 Elf32_Addr v) 400 { 401 if (v % 4) { 402 printk(KERN_DEBUG "VPE loader: apply_r_mips_26 " 403 " unaligned relocation\n"); 404 return -ENOEXEC; 405 } 406 407 /* 408 * Not desperately convinced this is a good check of an overflow condition 409 * anyway. But it gets in the way of handling undefined weak symbols which 410 * we want to set to zero. 411 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) { 412 * printk(KERN_ERR 413 * "module %s: relocation overflow\n", 414 * me->name); 415 * return -ENOEXEC; 416 * } 417 */ 418 419 *location = (*location & ~0x03ffffff) | 420 ((*location + (v >> 2)) & 0x03ffffff); 421 return 0; 422 } 423 424 static int apply_r_mips_hi16(struct module *me, uint32_t *location, 425 Elf32_Addr v) 426 { 427 struct mips_hi16 *n; 428 429 /* 430 * We cannot relocate this one now because we don't know the value of 431 * the carry we need to add. Save the information, and let LO16 do the 432 * actual relocation. 433 */ 434 n = kmalloc(sizeof *n, GFP_KERNEL); 435 if (!n) 436 return -ENOMEM; 437 438 n->addr = location; 439 n->value = v; 440 n->next = mips_hi16_list; 441 mips_hi16_list = n; 442 443 return 0; 444 } 445 446 static int apply_r_mips_lo16(struct module *me, uint32_t *location, 447 Elf32_Addr v) 448 { 449 unsigned long insnlo = *location; 450 Elf32_Addr val, vallo; 451 452 /* Sign extend the addend we extract from the lo insn. */ 453 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000; 454 455 if (mips_hi16_list != NULL) { 456 struct mips_hi16 *l; 457 458 l = mips_hi16_list; 459 while (l != NULL) { 460 struct mips_hi16 *next; 461 unsigned long insn; 462 463 /* 464 * The value for the HI16 had best be the same. 465 */ 466 if (v != l->value) { 467 printk(KERN_DEBUG "VPE loader: " 468 "apply_r_mips_lo16/hi16: " 469 "inconsistent value information\n"); 470 return -ENOEXEC; 471 } 472 473 /* 474 * Do the HI16 relocation. Note that we actually don't 475 * need to know anything about the LO16 itself, except 476 * where to find the low 16 bits of the addend needed 477 * by the LO16. 478 */ 479 insn = *l->addr; 480 val = ((insn & 0xffff) << 16) + vallo; 481 val += v; 482 483 /* 484 * Account for the sign extension that will happen in 485 * the low bits. 486 */ 487 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff; 488 489 insn = (insn & ~0xffff) | val; 490 *l->addr = insn; 491 492 next = l->next; 493 kfree(l); 494 l = next; 495 } 496 497 mips_hi16_list = NULL; 498 } 499 500 /* 501 * Ok, we're done with the HI16 relocs. Now deal with the LO16. 502 */ 503 val = v + vallo; 504 insnlo = (insnlo & ~0xffff) | (val & 0xffff); 505 *location = insnlo; 506 507 return 0; 508 } 509 510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location, 511 Elf32_Addr v) = { 512 [R_MIPS_NONE] = apply_r_mips_none, 513 [R_MIPS_32] = apply_r_mips_32, 514 [R_MIPS_26] = apply_r_mips_26, 515 [R_MIPS_HI16] = apply_r_mips_hi16, 516 [R_MIPS_LO16] = apply_r_mips_lo16, 517 [R_MIPS_GPREL16] = apply_r_mips_gprel16, 518 [R_MIPS_PC16] = apply_r_mips_pc16 519 }; 520 521 static char *rstrs[] = { 522 [R_MIPS_NONE] = "MIPS_NONE", 523 [R_MIPS_32] = "MIPS_32", 524 [R_MIPS_26] = "MIPS_26", 525 [R_MIPS_HI16] = "MIPS_HI16", 526 [R_MIPS_LO16] = "MIPS_LO16", 527 [R_MIPS_GPREL16] = "MIPS_GPREL16", 528 [R_MIPS_PC16] = "MIPS_PC16" 529 }; 530 531 int apply_relocations(Elf32_Shdr *sechdrs, 532 const char *strtab, 533 unsigned int symindex, 534 unsigned int relsec, 535 struct module *me) 536 { 537 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr; 538 Elf32_Sym *sym; 539 uint32_t *location; 540 unsigned int i; 541 Elf32_Addr v; 542 int res; 543 544 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) { 545 Elf32_Word r_info = rel[i].r_info; 546 547 /* This is where to make the change */ 548 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr 549 + rel[i].r_offset; 550 /* This is the symbol it is referring to */ 551 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr 552 + ELF32_R_SYM(r_info); 553 554 if (!sym->st_value) { 555 printk(KERN_DEBUG "%s: undefined weak symbol %s\n", 556 me->name, strtab + sym->st_name); 557 /* just print the warning, dont barf */ 558 } 559 560 v = sym->st_value; 561 562 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v); 563 if( res ) { 564 char *r = rstrs[ELF32_R_TYPE(r_info)]; 565 printk(KERN_WARNING "VPE loader: .text+0x%x " 566 "relocation type %s for symbol \"%s\" failed\n", 567 rel[i].r_offset, r ? r : "UNKNOWN", 568 strtab + sym->st_name); 569 return res; 570 } 571 } 572 573 return 0; 574 } 575 576 void save_gp_address(unsigned int secbase, unsigned int rel) 577 { 578 gp_addr = secbase + rel; 579 gp_offs = gp_addr - (secbase & 0xffff0000); 580 } 581 /* end module-elf32.c */ 582 583 584 585 /* Change all symbols so that sh_value encodes the pointer directly. */ 586 static void simplify_symbols(Elf_Shdr * sechdrs, 587 unsigned int symindex, 588 const char *strtab, 589 const char *secstrings, 590 unsigned int nsecs, struct module *mod) 591 { 592 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 593 unsigned long secbase, bssbase = 0; 594 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 595 int size; 596 597 /* find the .bss section for COMMON symbols */ 598 for (i = 0; i < nsecs; i++) { 599 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0) { 600 bssbase = sechdrs[i].sh_addr; 601 break; 602 } 603 } 604 605 for (i = 1; i < n; i++) { 606 switch (sym[i].st_shndx) { 607 case SHN_COMMON: 608 /* Allocate space for the symbol in the .bss section. 609 st_value is currently size. 610 We want it to have the address of the symbol. */ 611 612 size = sym[i].st_value; 613 sym[i].st_value = bssbase; 614 615 bssbase += size; 616 break; 617 618 case SHN_ABS: 619 /* Don't need to do anything */ 620 break; 621 622 case SHN_UNDEF: 623 /* ret = -ENOENT; */ 624 break; 625 626 case SHN_MIPS_SCOMMON: 627 printk(KERN_DEBUG "simplify_symbols: ignoring SHN_MIPS_SCOMMON" 628 "symbol <%s> st_shndx %d\n", strtab + sym[i].st_name, 629 sym[i].st_shndx); 630 // .sbss section 631 break; 632 633 default: 634 secbase = sechdrs[sym[i].st_shndx].sh_addr; 635 636 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) { 637 save_gp_address(secbase, sym[i].st_value); 638 } 639 640 sym[i].st_value += secbase; 641 break; 642 } 643 } 644 } 645 646 #ifdef DEBUG_ELFLOADER 647 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex, 648 const char *strtab, struct module *mod) 649 { 650 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 651 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 652 653 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n); 654 for (i = 1; i < n; i++) { 655 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i, 656 strtab + sym[i].st_name, sym[i].st_value); 657 } 658 } 659 #endif 660 661 static void dump_tc(struct tc *t) 662 { 663 unsigned long val; 664 665 settc(t->index); 666 printk(KERN_DEBUG "VPE loader: TC index %d targtc %ld " 667 "TCStatus 0x%lx halt 0x%lx\n", 668 t->index, read_c0_vpecontrol() & VPECONTROL_TARGTC, 669 read_tc_c0_tcstatus(), read_tc_c0_tchalt()); 670 671 printk(KERN_DEBUG " tcrestart 0x%lx\n", read_tc_c0_tcrestart()); 672 printk(KERN_DEBUG " tcbind 0x%lx\n", read_tc_c0_tcbind()); 673 674 val = read_c0_vpeconf0(); 675 printk(KERN_DEBUG " VPEConf0 0x%lx MVP %ld\n", val, 676 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT); 677 678 printk(KERN_DEBUG " c0 status 0x%lx\n", read_vpe_c0_status()); 679 printk(KERN_DEBUG " c0 cause 0x%lx\n", read_vpe_c0_cause()); 680 681 printk(KERN_DEBUG " c0 badvaddr 0x%lx\n", read_vpe_c0_badvaddr()); 682 printk(KERN_DEBUG " c0 epc 0x%lx\n", read_vpe_c0_epc()); 683 } 684 685 static void dump_tclist(void) 686 { 687 struct tc *t; 688 689 list_for_each_entry(t, &vpecontrol.tc_list, list) { 690 dump_tc(t); 691 } 692 } 693 694 /* We are prepared so configure and start the VPE... */ 695 int vpe_run(struct vpe * v) 696 { 697 struct vpe_notifications *n; 698 unsigned long val, dmt_flag; 699 struct tc *t; 700 701 /* check we are the Master VPE */ 702 val = read_c0_vpeconf0(); 703 if (!(val & VPECONF0_MVP)) { 704 printk(KERN_WARNING 705 "VPE loader: only Master VPE's are allowed to configure MT\n"); 706 return -1; 707 } 708 709 /* disable MT (using dvpe) */ 710 dvpe(); 711 712 if (!list_empty(&v->tc)) { 713 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { 714 printk(KERN_WARNING "VPE loader: TC %d is already in use.\n", 715 t->index); 716 return -ENOEXEC; 717 } 718 } else { 719 printk(KERN_WARNING "VPE loader: No TC's associated with VPE %d\n", 720 v->minor); 721 return -ENOEXEC; 722 } 723 724 /* Put MVPE's into 'configuration state' */ 725 set_c0_mvpcontrol(MVPCONTROL_VPC); 726 727 settc(t->index); 728 729 /* should check it is halted, and not activated */ 730 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) { 731 printk(KERN_WARNING "VPE loader: TC %d is already doing something!\n", 732 t->index); 733 dump_tclist(); 734 return -ENOEXEC; 735 } 736 737 /* 738 * Disable multi-threaded execution whilst we activate, clear the 739 * halt bit and bound the tc to the other VPE... 740 */ 741 dmt_flag = dmt(); 742 743 /* Write the address we want it to start running from in the TCPC register. */ 744 write_tc_c0_tcrestart((unsigned long)v->__start); 745 write_tc_c0_tccontext((unsigned long)0); 746 /* 747 * Mark the TC as activated, not interrupt exempt and not dynamically 748 * allocatable 749 */ 750 val = read_tc_c0_tcstatus(); 751 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A; 752 write_tc_c0_tcstatus(val); 753 754 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H); 755 756 /* 757 * The sde-kit passes 'memsize' to __start in $a3, so set something 758 * here... Or set $a3 to zero and define DFLT_STACK_SIZE and 759 * DFLT_HEAP_SIZE when you compile your program 760 */ 761 mttgpr(7, physical_memsize); 762 763 764 /* set up VPE1 */ 765 /* 766 * bind the TC to VPE 1 as late as possible so we only have the final 767 * VPE registers to set up, and so an EJTAG probe can trigger on it 768 */ 769 write_tc_c0_tcbind((read_tc_c0_tcbind() & ~TCBIND_CURVPE) | v->minor); 770 771 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~(VPECONF0_VPA)); 772 773 back_to_back_c0_hazard(); 774 775 /* Set up the XTC bit in vpeconf0 to point at our tc */ 776 write_vpe_c0_vpeconf0( (read_vpe_c0_vpeconf0() & ~(VPECONF0_XTC)) 777 | (t->index << VPECONF0_XTC_SHIFT)); 778 779 back_to_back_c0_hazard(); 780 781 /* enable this VPE */ 782 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); 783 784 /* clear out any left overs from a previous program */ 785 write_vpe_c0_status(0); 786 write_vpe_c0_cause(0); 787 788 /* take system out of configuration state */ 789 clear_c0_mvpcontrol(MVPCONTROL_VPC); 790 791 /* now safe to re-enable multi-threading */ 792 emt(dmt_flag); 793 794 /* set it running */ 795 evpe(EVPE_ENABLE); 796 797 list_for_each_entry(n, &v->notify, list) { 798 n->start(v->minor); 799 } 800 801 return 0; 802 } 803 804 static int find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs, 805 unsigned int symindex, const char *strtab, 806 struct module *mod) 807 { 808 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr; 809 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym); 810 811 for (i = 1; i < n; i++) { 812 if (strcmp(strtab + sym[i].st_name, "__start") == 0) { 813 v->__start = sym[i].st_value; 814 } 815 816 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) { 817 v->shared_ptr = (void *)sym[i].st_value; 818 } 819 } 820 821 if ( (v->__start == 0) || (v->shared_ptr == NULL)) 822 return -1; 823 824 return 0; 825 } 826 827 /* 828 * Allocates a VPE with some program code space(the load address), copies the 829 * contents of the program (p)buffer performing relocatations/etc, free's it 830 * when finished. 831 */ 832 int vpe_elfload(struct vpe * v) 833 { 834 Elf_Ehdr *hdr; 835 Elf_Shdr *sechdrs; 836 long err = 0; 837 char *secstrings, *strtab = NULL; 838 unsigned int len, i, symindex = 0, strindex = 0, relocate = 0; 839 struct module mod; // so we can re-use the relocations code 840 841 memset(&mod, 0, sizeof(struct module)); 842 strcpy(mod.name, "VPE loader"); 843 844 hdr = (Elf_Ehdr *) v->pbuffer; 845 len = v->plen; 846 847 /* Sanity checks against insmoding binaries or wrong arch, 848 weird elf version */ 849 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0 850 || (hdr->e_type != ET_REL && hdr->e_type != ET_EXEC) 851 || !elf_check_arch(hdr) 852 || hdr->e_shentsize != sizeof(*sechdrs)) { 853 printk(KERN_WARNING 854 "VPE loader: program wrong arch or weird elf version\n"); 855 856 return -ENOEXEC; 857 } 858 859 if (hdr->e_type == ET_REL) 860 relocate = 1; 861 862 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) { 863 printk(KERN_ERR "VPE loader: program length %u truncated\n", 864 len); 865 866 return -ENOEXEC; 867 } 868 869 /* Convenience variables */ 870 sechdrs = (void *)hdr + hdr->e_shoff; 871 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset; 872 sechdrs[0].sh_addr = 0; 873 874 /* And these should exist, but gcc whinges if we don't init them */ 875 symindex = strindex = 0; 876 877 if (relocate) { 878 for (i = 1; i < hdr->e_shnum; i++) { 879 if (sechdrs[i].sh_type != SHT_NOBITS 880 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) { 881 printk(KERN_ERR "VPE program length %u truncated\n", 882 len); 883 return -ENOEXEC; 884 } 885 886 /* Mark all sections sh_addr with their address in the 887 temporary image. */ 888 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; 889 890 /* Internal symbols and strings. */ 891 if (sechdrs[i].sh_type == SHT_SYMTAB) { 892 symindex = i; 893 strindex = sechdrs[i].sh_link; 894 strtab = (char *)hdr + sechdrs[strindex].sh_offset; 895 } 896 } 897 layout_sections(&mod, hdr, sechdrs, secstrings); 898 } 899 900 v->load_addr = alloc_progmem(mod.core_size); 901 memset(v->load_addr, 0, mod.core_size); 902 903 printk("VPE loader: loading to %p\n", v->load_addr); 904 905 if (relocate) { 906 for (i = 0; i < hdr->e_shnum; i++) { 907 void *dest; 908 909 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 910 continue; 911 912 dest = v->load_addr + sechdrs[i].sh_entsize; 913 914 if (sechdrs[i].sh_type != SHT_NOBITS) 915 memcpy(dest, (void *)sechdrs[i].sh_addr, 916 sechdrs[i].sh_size); 917 /* Update sh_addr to point to copy in image. */ 918 sechdrs[i].sh_addr = (unsigned long)dest; 919 920 printk(KERN_DEBUG " section sh_name %s sh_addr 0x%x\n", 921 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr); 922 } 923 924 /* Fix up syms, so that st_value is a pointer to location. */ 925 simplify_symbols(sechdrs, symindex, strtab, secstrings, 926 hdr->e_shnum, &mod); 927 928 /* Now do relocations. */ 929 for (i = 1; i < hdr->e_shnum; i++) { 930 const char *strtab = (char *)sechdrs[strindex].sh_addr; 931 unsigned int info = sechdrs[i].sh_info; 932 933 /* Not a valid relocation section? */ 934 if (info >= hdr->e_shnum) 935 continue; 936 937 /* Don't bother with non-allocated sections */ 938 if (!(sechdrs[info].sh_flags & SHF_ALLOC)) 939 continue; 940 941 if (sechdrs[i].sh_type == SHT_REL) 942 err = apply_relocations(sechdrs, strtab, symindex, i, 943 &mod); 944 else if (sechdrs[i].sh_type == SHT_RELA) 945 err = apply_relocate_add(sechdrs, strtab, symindex, i, 946 &mod); 947 if (err < 0) 948 return err; 949 950 } 951 } else { 952 for (i = 0; i < hdr->e_shnum; i++) { 953 954 /* Internal symbols and strings. */ 955 if (sechdrs[i].sh_type == SHT_SYMTAB) { 956 symindex = i; 957 strindex = sechdrs[i].sh_link; 958 strtab = (char *)hdr + sechdrs[strindex].sh_offset; 959 960 /* mark the symtab's address for when we try to find the 961 magic symbols */ 962 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset; 963 } 964 965 /* filter sections we dont want in the final image */ 966 if (!(sechdrs[i].sh_flags & SHF_ALLOC) || 967 (sechdrs[i].sh_type == SHT_MIPS_REGINFO)) { 968 printk( KERN_DEBUG " ignoring section, " 969 "name %s type %x address 0x%x \n", 970 secstrings + sechdrs[i].sh_name, 971 sechdrs[i].sh_type, sechdrs[i].sh_addr); 972 continue; 973 } 974 975 if (sechdrs[i].sh_addr < (unsigned int)v->load_addr) { 976 printk( KERN_WARNING "VPE loader: " 977 "fully linked image has invalid section, " 978 "name %s type %x address 0x%x, before load " 979 "address of 0x%x\n", 980 secstrings + sechdrs[i].sh_name, 981 sechdrs[i].sh_type, sechdrs[i].sh_addr, 982 (unsigned int)v->load_addr); 983 return -ENOEXEC; 984 } 985 986 printk(KERN_DEBUG " copying section sh_name %s, sh_addr 0x%x " 987 "size 0x%x0 from x%p\n", 988 secstrings + sechdrs[i].sh_name, sechdrs[i].sh_addr, 989 sechdrs[i].sh_size, hdr + sechdrs[i].sh_offset); 990 991 if (sechdrs[i].sh_type != SHT_NOBITS) 992 memcpy((void *)sechdrs[i].sh_addr, 993 (char *)hdr + sechdrs[i].sh_offset, 994 sechdrs[i].sh_size); 995 else 996 memset((void *)sechdrs[i].sh_addr, 0, sechdrs[i].sh_size); 997 } 998 } 999 1000 /* make sure it's physically written out */ 1001 flush_icache_range((unsigned long)v->load_addr, 1002 (unsigned long)v->load_addr + v->len); 1003 1004 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) { 1005 if (v->__start == 0) { 1006 printk(KERN_WARNING "VPE loader: program does not contain " 1007 "a __start symbol\n"); 1008 return -ENOEXEC; 1009 } 1010 1011 if (v->shared_ptr == NULL) 1012 printk(KERN_WARNING "VPE loader: " 1013 "program does not contain vpe_shared symbol.\n" 1014 " Unable to use AMVP (AP/SP) facilities.\n"); 1015 } 1016 1017 printk(" elf loaded\n"); 1018 return 0; 1019 } 1020 1021 __attribute_used__ void dump_vpe(struct vpe * v) 1022 { 1023 struct tc *t; 1024 1025 settc(v->minor); 1026 1027 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol()); 1028 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0()); 1029 1030 list_for_each_entry(t, &vpecontrol.tc_list, list) 1031 dump_tc(t); 1032 } 1033 1034 static void cleanup_tc(struct tc *tc) 1035 { 1036 int tmp; 1037 1038 /* Put MVPE's into 'configuration state' */ 1039 set_c0_mvpcontrol(MVPCONTROL_VPC); 1040 1041 settc(tc->index); 1042 tmp = read_tc_c0_tcstatus(); 1043 1044 /* mark not allocated and not dynamically allocatable */ 1045 tmp &= ~(TCSTATUS_A | TCSTATUS_DA); 1046 tmp |= TCSTATUS_IXMT; /* interrupt exempt */ 1047 write_tc_c0_tcstatus(tmp); 1048 1049 write_tc_c0_tchalt(TCHALT_H); 1050 1051 /* bind it to anything other than VPE1 */ 1052 write_tc_c0_tcbind(read_tc_c0_tcbind() & ~TCBIND_CURVPE); // | TCBIND_CURVPE 1053 1054 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1055 } 1056 1057 static int getcwd(char *buff, int size) 1058 { 1059 mm_segment_t old_fs; 1060 int ret; 1061 1062 old_fs = get_fs(); 1063 set_fs(KERNEL_DS); 1064 1065 ret = sys_getcwd(buff,size); 1066 1067 set_fs(old_fs); 1068 1069 return ret; 1070 } 1071 1072 /* checks VPE is unused and gets ready to load program */ 1073 static int vpe_open(struct inode *inode, struct file *filp) 1074 { 1075 int minor, ret; 1076 struct vpe *v; 1077 struct vpe_notifications *not; 1078 1079 /* assume only 1 device at the mo. */ 1080 if ((minor = iminor(inode)) != 1) { 1081 printk(KERN_WARNING "VPE loader: only vpe1 is supported\n"); 1082 return -ENODEV; 1083 } 1084 1085 if ((v = get_vpe(minor)) == NULL) { 1086 printk(KERN_WARNING "VPE loader: unable to get vpe\n"); 1087 return -ENODEV; 1088 } 1089 1090 if (v->state != VPE_STATE_UNUSED) { 1091 dvpe(); 1092 1093 printk(KERN_DEBUG "VPE loader: tc in use dumping regs\n"); 1094 1095 dump_tc(get_tc(minor)); 1096 1097 list_for_each_entry(not, &v->notify, list) { 1098 not->stop(minor); 1099 } 1100 1101 release_progmem(v->load_addr); 1102 cleanup_tc(get_tc(minor)); 1103 } 1104 1105 // allocate it so when we get write ops we know it's expected. 1106 v->state = VPE_STATE_INUSE; 1107 1108 /* this of-course trashes what was there before... */ 1109 v->pbuffer = vmalloc(P_SIZE); 1110 v->plen = P_SIZE; 1111 v->load_addr = NULL; 1112 v->len = 0; 1113 1114 v->uid = filp->f_uid; 1115 v->gid = filp->f_gid; 1116 1117 #ifdef CONFIG_MIPS_APSP_KSPD 1118 /* get kspd to tell us when a syscall_exit happens */ 1119 if (!kspd_events_reqd) { 1120 kspd_notify(&kspd_events); 1121 kspd_events_reqd++; 1122 } 1123 #endif 1124 1125 v->cwd[0] = 0; 1126 ret = getcwd(v->cwd, VPE_PATH_MAX); 1127 if (ret < 0) 1128 printk(KERN_WARNING "VPE loader: open, getcwd returned %d\n", ret); 1129 1130 v->shared_ptr = NULL; 1131 v->__start = 0; 1132 return 0; 1133 } 1134 1135 static int vpe_release(struct inode *inode, struct file *filp) 1136 { 1137 int minor, ret = 0; 1138 struct vpe *v; 1139 Elf_Ehdr *hdr; 1140 1141 minor = iminor(inode); 1142 if ((v = get_vpe(minor)) == NULL) 1143 return -ENODEV; 1144 1145 // simple case of fire and forget, so tell the VPE to run... 1146 1147 hdr = (Elf_Ehdr *) v->pbuffer; 1148 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) { 1149 if (vpe_elfload(v) >= 0) 1150 vpe_run(v); 1151 else { 1152 printk(KERN_WARNING "VPE loader: ELF load failed.\n"); 1153 ret = -ENOEXEC; 1154 } 1155 } else { 1156 printk(KERN_WARNING "VPE loader: only elf files are supported\n"); 1157 ret = -ENOEXEC; 1158 } 1159 1160 /* It's good to be able to run the SP and if it chokes have a look at 1161 the /dev/rt?. But if we reset the pointer to the shared struct we 1162 loose what has happened. So perhaps if garbage is sent to the vpe 1163 device, use it as a trigger for the reset. Hopefully a nice 1164 executable will be along shortly. */ 1165 if (ret < 0) 1166 v->shared_ptr = NULL; 1167 1168 // cleanup any temp buffers 1169 if (v->pbuffer) 1170 vfree(v->pbuffer); 1171 v->plen = 0; 1172 return ret; 1173 } 1174 1175 static ssize_t vpe_write(struct file *file, const char __user * buffer, 1176 size_t count, loff_t * ppos) 1177 { 1178 int minor; 1179 size_t ret = count; 1180 struct vpe *v; 1181 1182 minor = iminor(file->f_path.dentry->d_inode); 1183 if ((v = get_vpe(minor)) == NULL) 1184 return -ENODEV; 1185 1186 if (v->pbuffer == NULL) { 1187 printk(KERN_ERR "VPE loader: no buffer for program\n"); 1188 return -ENOMEM; 1189 } 1190 1191 if ((count + v->len) > v->plen) { 1192 printk(KERN_WARNING 1193 "VPE loader: elf size too big. Perhaps strip uneeded symbols\n"); 1194 return -ENOMEM; 1195 } 1196 1197 count -= copy_from_user(v->pbuffer + v->len, buffer, count); 1198 if (!count) 1199 return -EFAULT; 1200 1201 v->len += count; 1202 return ret; 1203 } 1204 1205 static struct file_operations vpe_fops = { 1206 .owner = THIS_MODULE, 1207 .open = vpe_open, 1208 .release = vpe_release, 1209 .write = vpe_write 1210 }; 1211 1212 /* module wrapper entry points */ 1213 /* give me a vpe */ 1214 vpe_handle vpe_alloc(void) 1215 { 1216 int i; 1217 struct vpe *v; 1218 1219 /* find a vpe */ 1220 for (i = 1; i < MAX_VPES; i++) { 1221 if ((v = get_vpe(i)) != NULL) { 1222 v->state = VPE_STATE_INUSE; 1223 return v; 1224 } 1225 } 1226 return NULL; 1227 } 1228 1229 EXPORT_SYMBOL(vpe_alloc); 1230 1231 /* start running from here */ 1232 int vpe_start(vpe_handle vpe, unsigned long start) 1233 { 1234 struct vpe *v = vpe; 1235 1236 v->__start = start; 1237 return vpe_run(v); 1238 } 1239 1240 EXPORT_SYMBOL(vpe_start); 1241 1242 /* halt it for now */ 1243 int vpe_stop(vpe_handle vpe) 1244 { 1245 struct vpe *v = vpe; 1246 struct tc *t; 1247 unsigned int evpe_flags; 1248 1249 evpe_flags = dvpe(); 1250 1251 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) { 1252 1253 settc(t->index); 1254 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); 1255 } 1256 1257 evpe(evpe_flags); 1258 1259 return 0; 1260 } 1261 1262 EXPORT_SYMBOL(vpe_stop); 1263 1264 /* I've done with it thank you */ 1265 int vpe_free(vpe_handle vpe) 1266 { 1267 struct vpe *v = vpe; 1268 struct tc *t; 1269 unsigned int evpe_flags; 1270 1271 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) { 1272 return -ENOEXEC; 1273 } 1274 1275 evpe_flags = dvpe(); 1276 1277 /* Put MVPE's into 'configuration state' */ 1278 set_c0_mvpcontrol(MVPCONTROL_VPC); 1279 1280 settc(t->index); 1281 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA); 1282 1283 /* mark the TC unallocated and halt'ed */ 1284 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A); 1285 write_tc_c0_tchalt(TCHALT_H); 1286 1287 v->state = VPE_STATE_UNUSED; 1288 1289 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1290 evpe(evpe_flags); 1291 1292 return 0; 1293 } 1294 1295 EXPORT_SYMBOL(vpe_free); 1296 1297 void *vpe_get_shared(int index) 1298 { 1299 struct vpe *v; 1300 1301 if ((v = get_vpe(index)) == NULL) 1302 return NULL; 1303 1304 return v->shared_ptr; 1305 } 1306 1307 EXPORT_SYMBOL(vpe_get_shared); 1308 1309 int vpe_getuid(int index) 1310 { 1311 struct vpe *v; 1312 1313 if ((v = get_vpe(index)) == NULL) 1314 return -1; 1315 1316 return v->uid; 1317 } 1318 1319 EXPORT_SYMBOL(vpe_getuid); 1320 1321 int vpe_getgid(int index) 1322 { 1323 struct vpe *v; 1324 1325 if ((v = get_vpe(index)) == NULL) 1326 return -1; 1327 1328 return v->gid; 1329 } 1330 1331 EXPORT_SYMBOL(vpe_getgid); 1332 1333 int vpe_notify(int index, struct vpe_notifications *notify) 1334 { 1335 struct vpe *v; 1336 1337 if ((v = get_vpe(index)) == NULL) 1338 return -1; 1339 1340 list_add(¬ify->list, &v->notify); 1341 return 0; 1342 } 1343 1344 EXPORT_SYMBOL(vpe_notify); 1345 1346 char *vpe_getcwd(int index) 1347 { 1348 struct vpe *v; 1349 1350 if ((v = get_vpe(index)) == NULL) 1351 return NULL; 1352 1353 return v->cwd; 1354 } 1355 1356 EXPORT_SYMBOL(vpe_getcwd); 1357 1358 #ifdef CONFIG_MIPS_APSP_KSPD 1359 static void kspd_sp_exit( int sp_id) 1360 { 1361 cleanup_tc(get_tc(sp_id)); 1362 } 1363 #endif 1364 1365 static int __init vpe_module_init(void) 1366 { 1367 struct vpe *v = NULL; 1368 struct tc *t; 1369 unsigned long val; 1370 int i; 1371 1372 if (!cpu_has_mipsmt) { 1373 printk("VPE loader: not a MIPS MT capable processor\n"); 1374 return -ENODEV; 1375 } 1376 1377 major = register_chrdev(0, module_name, &vpe_fops); 1378 if (major < 0) { 1379 printk("VPE loader: unable to register character device\n"); 1380 return major; 1381 } 1382 1383 dmt(); 1384 dvpe(); 1385 1386 /* Put MVPE's into 'configuration state' */ 1387 set_c0_mvpcontrol(MVPCONTROL_VPC); 1388 1389 /* dump_mtregs(); */ 1390 1391 INIT_LIST_HEAD(&vpecontrol.vpe_list); 1392 INIT_LIST_HEAD(&vpecontrol.tc_list); 1393 1394 val = read_c0_mvpconf0(); 1395 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) { 1396 t = alloc_tc(i); 1397 1398 /* VPE's */ 1399 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) { 1400 settc(i); 1401 1402 if ((v = alloc_vpe(i)) == NULL) { 1403 printk(KERN_WARNING "VPE: unable to allocate VPE\n"); 1404 return -ENODEV; 1405 } 1406 1407 /* add the tc to the list of this vpe's tc's. */ 1408 list_add(&t->tc, &v->tc); 1409 1410 /* deactivate all but vpe0 */ 1411 if (i != 0) { 1412 unsigned long tmp = read_vpe_c0_vpeconf0(); 1413 1414 tmp &= ~VPECONF0_VPA; 1415 1416 /* master VPE */ 1417 tmp |= VPECONF0_MVP; 1418 write_vpe_c0_vpeconf0(tmp); 1419 } 1420 1421 /* disable multi-threading with TC's */ 1422 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); 1423 1424 if (i != 0) { 1425 write_vpe_c0_status((read_c0_status() & 1426 ~(ST0_IM | ST0_IE | ST0_KSU)) 1427 | ST0_CU0); 1428 1429 /* 1430 * Set config to be the same as vpe0, 1431 * particularly kseg0 coherency alg 1432 */ 1433 write_vpe_c0_config(read_c0_config()); 1434 } 1435 } 1436 1437 /* TC's */ 1438 t->pvpe = v; /* set the parent vpe */ 1439 1440 if (i != 0) { 1441 unsigned long tmp; 1442 1443 settc(i); 1444 1445 /* Any TC that is bound to VPE0 gets left as is - in case 1446 we are running SMTC on VPE0. A TC that is bound to any 1447 other VPE gets bound to VPE0, ideally I'd like to make 1448 it homeless but it doesn't appear to let me bind a TC 1449 to a non-existent VPE. Which is perfectly reasonable. 1450 1451 The (un)bound state is visible to an EJTAG probe so may 1452 notify GDB... 1453 */ 1454 1455 if (((tmp = read_tc_c0_tcbind()) & TCBIND_CURVPE)) { 1456 /* tc is bound >vpe0 */ 1457 write_tc_c0_tcbind(tmp & ~TCBIND_CURVPE); 1458 1459 t->pvpe = get_vpe(0); /* set the parent vpe */ 1460 } 1461 1462 tmp = read_tc_c0_tcstatus(); 1463 1464 /* mark not activated and not dynamically allocatable */ 1465 tmp &= ~(TCSTATUS_A | TCSTATUS_DA); 1466 tmp |= TCSTATUS_IXMT; /* interrupt exempt */ 1467 write_tc_c0_tcstatus(tmp); 1468 1469 write_tc_c0_tchalt(TCHALT_H); 1470 } 1471 } 1472 1473 /* release config state */ 1474 clear_c0_mvpcontrol(MVPCONTROL_VPC); 1475 1476 #ifdef CONFIG_MIPS_APSP_KSPD 1477 kspd_events.kspd_sp_exit = kspd_sp_exit; 1478 #endif 1479 return 0; 1480 } 1481 1482 static void __exit vpe_module_exit(void) 1483 { 1484 struct vpe *v, *n; 1485 1486 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) { 1487 if (v->state != VPE_STATE_UNUSED) { 1488 release_vpe(v); 1489 } 1490 } 1491 1492 unregister_chrdev(major, module_name); 1493 } 1494 1495 module_init(vpe_module_init); 1496 module_exit(vpe_module_exit); 1497 MODULE_DESCRIPTION("MIPS VPE Loader"); 1498 MODULE_AUTHOR("Elizabeth Oldham, MIPS Technologies, Inc."); 1499 MODULE_LICENSE("GPL"); 1500