xref: /linux/arch/mips/kernel/time.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * Copyright 2001 MontaVista Software Inc.
3  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
4  * Copyright (c) 2003, 2004  Maciej W. Rozycki
5  *
6  * Common time service routines for MIPS machines. See
7  * Documentation/mips/time.README.
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  */
14 #include <linux/config.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/param.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/smp.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 
28 #include <asm/bootinfo.h>
29 #include <asm/cache.h>
30 #include <asm/compiler.h>
31 #include <asm/cpu.h>
32 #include <asm/cpu-features.h>
33 #include <asm/div64.h>
34 #include <asm/sections.h>
35 #include <asm/time.h>
36 
37 /*
38  * The integer part of the number of usecs per jiffy is taken from tick,
39  * but the fractional part is not recorded, so we calculate it using the
40  * initial value of HZ.  This aids systems where tick isn't really an
41  * integer (e.g. for HZ = 128).
42  */
43 #define USECS_PER_JIFFY		TICK_SIZE
44 #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))
45 
46 #define TICK_SIZE	(tick_nsec / 1000)
47 
48 /*
49  * forward reference
50  */
51 extern volatile unsigned long wall_jiffies;
52 
53 DEFINE_SPINLOCK(rtc_lock);
54 
55 /*
56  * By default we provide the null RTC ops
57  */
58 static unsigned long null_rtc_get_time(void)
59 {
60 	return mktime(2000, 1, 1, 0, 0, 0);
61 }
62 
63 static int null_rtc_set_time(unsigned long sec)
64 {
65 	return 0;
66 }
67 
68 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
69 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
70 int (*rtc_mips_set_mmss)(unsigned long);
71 
72 
73 /* usecs per counter cycle, shifted to left by 32 bits */
74 static unsigned int sll32_usecs_per_cycle;
75 
76 /* how many counter cycles in a jiffy */
77 static unsigned long cycles_per_jiffy __read_mostly;
78 
79 /* Cycle counter value at the previous timer interrupt.. */
80 static unsigned int timerhi, timerlo;
81 
82 /* expirelo is the count value for next CPU timer interrupt */
83 static unsigned int expirelo;
84 
85 
86 /*
87  * Null timer ack for systems not needing one (e.g. i8254).
88  */
89 static void null_timer_ack(void) { /* nothing */ }
90 
91 /*
92  * Null high precision timer functions for systems lacking one.
93  */
94 static unsigned int null_hpt_read(void)
95 {
96 	return 0;
97 }
98 
99 static void null_hpt_init(unsigned int count)
100 {
101 	/* nothing */
102 }
103 
104 
105 /*
106  * Timer ack for an R4k-compatible timer of a known frequency.
107  */
108 static void c0_timer_ack(void)
109 {
110 	unsigned int count;
111 
112 #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */
113 	/* Ack this timer interrupt and set the next one.  */
114 	expirelo += cycles_per_jiffy;
115 #endif
116 	write_c0_compare(expirelo);
117 
118 	/* Check to see if we have missed any timer interrupts.  */
119 	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
120 		/* missed_timer_count++; */
121 		expirelo = count + cycles_per_jiffy;
122 		write_c0_compare(expirelo);
123 	}
124 }
125 
126 /*
127  * High precision timer functions for a R4k-compatible timer.
128  */
129 static unsigned int c0_hpt_read(void)
130 {
131 	return read_c0_count();
132 }
133 
134 /* For use solely as a high precision timer.  */
135 static void c0_hpt_init(unsigned int count)
136 {
137 	write_c0_count(read_c0_count() - count);
138 }
139 
140 /* For use both as a high precision timer and an interrupt source.  */
141 static void c0_hpt_timer_init(unsigned int count)
142 {
143 	count = read_c0_count() - count;
144 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
145 	write_c0_count(expirelo - cycles_per_jiffy);
146 	write_c0_compare(expirelo);
147 	write_c0_count(count);
148 }
149 
150 int (*mips_timer_state)(void);
151 void (*mips_timer_ack)(void);
152 unsigned int (*mips_hpt_read)(void);
153 void (*mips_hpt_init)(unsigned int);
154 
155 
156 /*
157  * This version of gettimeofday has microsecond resolution and better than
158  * microsecond precision on fast machines with cycle counter.
159  */
160 void do_gettimeofday(struct timeval *tv)
161 {
162 	unsigned long seq;
163 	unsigned long lost;
164 	unsigned long usec, sec;
165 	unsigned long max_ntp_tick;
166 
167 	do {
168 		seq = read_seqbegin(&xtime_lock);
169 
170 		usec = do_gettimeoffset();
171 
172 		lost = jiffies - wall_jiffies;
173 
174 		/*
175 		 * If time_adjust is negative then NTP is slowing the clock
176 		 * so make sure not to go into next possible interval.
177 		 * Better to lose some accuracy than have time go backwards..
178 		 */
179 		if (unlikely(time_adjust < 0)) {
180 			max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj;
181 			usec = min(usec, max_ntp_tick);
182 
183 			if (lost)
184 				usec += lost * max_ntp_tick;
185 		} else if (unlikely(lost))
186 			usec += lost * (USEC_PER_SEC / HZ);
187 
188 		sec = xtime.tv_sec;
189 		usec += (xtime.tv_nsec / 1000);
190 
191 	} while (read_seqretry(&xtime_lock, seq));
192 
193 	while (usec >= 1000000) {
194 		usec -= 1000000;
195 		sec++;
196 	}
197 
198 	tv->tv_sec = sec;
199 	tv->tv_usec = usec;
200 }
201 
202 EXPORT_SYMBOL(do_gettimeofday);
203 
204 int do_settimeofday(struct timespec *tv)
205 {
206 	time_t wtm_sec, sec = tv->tv_sec;
207 	long wtm_nsec, nsec = tv->tv_nsec;
208 
209 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
210 		return -EINVAL;
211 
212 	write_seqlock_irq(&xtime_lock);
213 
214 	/*
215 	 * This is revolting.  We need to set "xtime" correctly.  However,
216 	 * the value in this location is the value at the most recent update
217 	 * of wall time.  Discover what correction gettimeofday() would have
218 	 * made, and then undo it!
219 	 */
220 	nsec -= do_gettimeoffset() * NSEC_PER_USEC;
221 	nsec -= (jiffies - wall_jiffies) * tick_nsec;
222 
223 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
224 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
225 
226 	set_normalized_timespec(&xtime, sec, nsec);
227 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
228 
229 	ntp_clear();
230 	write_sequnlock_irq(&xtime_lock);
231 	clock_was_set();
232 	return 0;
233 }
234 
235 EXPORT_SYMBOL(do_settimeofday);
236 
237 /*
238  * Gettimeoffset routines.  These routines returns the time duration
239  * since last timer interrupt in usecs.
240  *
241  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
242  * Otherwise use calibrate_gettimeoffset()
243  *
244  * If the CPU does not have the counter register, you can either supply
245  * your own gettimeoffset() routine, or use null_gettimeoffset(), which
246  * gives the same resolution as HZ.
247  */
248 
249 static unsigned long null_gettimeoffset(void)
250 {
251 	return 0;
252 }
253 
254 
255 /* The function pointer to one of the gettimeoffset funcs.  */
256 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
257 
258 
259 static unsigned long fixed_rate_gettimeoffset(void)
260 {
261 	u32 count;
262 	unsigned long res;
263 
264 	/* Get last timer tick in absolute kernel time */
265 	count = mips_hpt_read();
266 
267 	/* .. relative to previous jiffy (32 bits is enough) */
268 	count -= timerlo;
269 
270 	__asm__("multu	%1,%2"
271 		: "=h" (res)
272 		: "r" (count), "r" (sll32_usecs_per_cycle)
273 		: "lo", GCC_REG_ACCUM);
274 
275 	/*
276 	 * Due to possible jiffies inconsistencies, we need to check
277 	 * the result so that we'll get a timer that is monotonic.
278 	 */
279 	if (res >= USECS_PER_JIFFY)
280 		res = USECS_PER_JIFFY - 1;
281 
282 	return res;
283 }
284 
285 
286 /*
287  * Cached "1/(clocks per usec) * 2^32" value.
288  * It has to be recalculated once each jiffy.
289  */
290 static unsigned long cached_quotient;
291 
292 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
293 static unsigned long last_jiffies;
294 
295 /*
296  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
297  */
298 static unsigned long calibrate_div32_gettimeoffset(void)
299 {
300 	u32 count;
301 	unsigned long res, tmp;
302 	unsigned long quotient;
303 
304 	tmp = jiffies;
305 
306 	quotient = cached_quotient;
307 
308 	if (last_jiffies != tmp) {
309 		last_jiffies = tmp;
310 		if (last_jiffies != 0) {
311 			unsigned long r0;
312 			do_div64_32(r0, timerhi, timerlo, tmp);
313 			do_div64_32(quotient, USECS_PER_JIFFY,
314 				    USECS_PER_JIFFY_FRAC, r0);
315 			cached_quotient = quotient;
316 		}
317 	}
318 
319 	/* Get last timer tick in absolute kernel time */
320 	count = mips_hpt_read();
321 
322 	/* .. relative to previous jiffy (32 bits is enough) */
323 	count -= timerlo;
324 
325 	__asm__("multu  %1,%2"
326 		: "=h" (res)
327 		: "r" (count), "r" (quotient)
328 		: "lo", GCC_REG_ACCUM);
329 
330 	/*
331 	 * Due to possible jiffies inconsistencies, we need to check
332 	 * the result so that we'll get a timer that is monotonic.
333 	 */
334 	if (res >= USECS_PER_JIFFY)
335 		res = USECS_PER_JIFFY - 1;
336 
337 	return res;
338 }
339 
340 static unsigned long calibrate_div64_gettimeoffset(void)
341 {
342 	u32 count;
343 	unsigned long res, tmp;
344 	unsigned long quotient;
345 
346 	tmp = jiffies;
347 
348 	quotient = cached_quotient;
349 
350 	if (last_jiffies != tmp) {
351 		last_jiffies = tmp;
352 		if (last_jiffies) {
353 			unsigned long r0;
354 			__asm__(".set	push\n\t"
355 				".set	mips3\n\t"
356 				"lwu	%0,%3\n\t"
357 				"dsll32	%1,%2,0\n\t"
358 				"or	%1,%1,%0\n\t"
359 				"ddivu	$0,%1,%4\n\t"
360 				"mflo	%1\n\t"
361 				"dsll32	%0,%5,0\n\t"
362 				"or	%0,%0,%6\n\t"
363 				"ddivu	$0,%0,%1\n\t"
364 				"mflo	%0\n\t"
365 				".set	pop"
366 				: "=&r" (quotient), "=&r" (r0)
367 				: "r" (timerhi), "m" (timerlo),
368 				  "r" (tmp), "r" (USECS_PER_JIFFY),
369 				  "r" (USECS_PER_JIFFY_FRAC)
370 				: "hi", "lo", GCC_REG_ACCUM);
371 			cached_quotient = quotient;
372 		}
373 	}
374 
375 	/* Get last timer tick in absolute kernel time */
376 	count = mips_hpt_read();
377 
378 	/* .. relative to previous jiffy (32 bits is enough) */
379 	count -= timerlo;
380 
381 	__asm__("multu	%1,%2"
382 		: "=h" (res)
383 		: "r" (count), "r" (quotient)
384 		: "lo", GCC_REG_ACCUM);
385 
386 	/*
387 	 * Due to possible jiffies inconsistencies, we need to check
388 	 * the result so that we'll get a timer that is monotonic.
389 	 */
390 	if (res >= USECS_PER_JIFFY)
391 		res = USECS_PER_JIFFY - 1;
392 
393 	return res;
394 }
395 
396 
397 /* last time when xtime and rtc are sync'ed up */
398 static long last_rtc_update;
399 
400 /*
401  * local_timer_interrupt() does profiling and process accounting
402  * on a per-CPU basis.
403  *
404  * In UP mode, it is invoked from the (global) timer_interrupt.
405  *
406  * In SMP mode, it might invoked by per-CPU timer interrupt, or
407  * a broadcasted inter-processor interrupt which itself is triggered
408  * by the global timer interrupt.
409  */
410 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
411 {
412 	if (current->pid)
413 		profile_tick(CPU_PROFILING, regs);
414 	update_process_times(user_mode(regs));
415 }
416 
417 /*
418  * High-level timer interrupt service routines.  This function
419  * is set as irqaction->handler and is invoked through do_IRQ.
420  */
421 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
422 {
423 	unsigned long j;
424 	unsigned int count;
425 
426 	write_seqlock(&xtime_lock);
427 
428 	count = mips_hpt_read();
429 	mips_timer_ack();
430 
431 	/* Update timerhi/timerlo for intra-jiffy calibration. */
432 	timerhi += count < timerlo;			/* Wrap around */
433 	timerlo = count;
434 
435 	/*
436 	 * call the generic timer interrupt handling
437 	 */
438 	do_timer(regs);
439 
440 	/*
441 	 * If we have an externally synchronized Linux clock, then update
442 	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
443 	 * called as close as possible to 500 ms before the new second starts.
444 	 */
445 	if (ntp_synced() &&
446 	    xtime.tv_sec > last_rtc_update + 660 &&
447 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
448 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
449 		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
450 			last_rtc_update = xtime.tv_sec;
451 		} else {
452 			/* do it again in 60 s */
453 			last_rtc_update = xtime.tv_sec - 600;
454 		}
455 	}
456 
457 	/*
458 	 * If jiffies has overflown in this timer_interrupt, we must
459 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs
460 	 * quotient calc still valid. -arca
461 	 *
462 	 * The first timer interrupt comes late as interrupts are
463 	 * enabled long after timers are initialized.  Therefore the
464 	 * high precision timer is fast, leading to wrong gettimeoffset()
465 	 * calculations.  We deal with it by setting it based on the
466 	 * number of its ticks between the second and the third interrupt.
467 	 * That is still somewhat imprecise, but it's a good estimate.
468 	 * --macro
469 	 */
470 	j = jiffies;
471 	if (j < 4) {
472 		static unsigned int prev_count;
473 		static int hpt_initialized;
474 
475 		switch (j) {
476 		case 0:
477 			timerhi = timerlo = 0;
478 			mips_hpt_init(count);
479 			break;
480 		case 2:
481 			prev_count = count;
482 			break;
483 		case 3:
484 			if (!hpt_initialized) {
485 				unsigned int c3 = 3 * (count - prev_count);
486 
487 				timerhi = 0;
488 				timerlo = c3;
489 				mips_hpt_init(count - c3);
490 				hpt_initialized = 1;
491 			}
492 			break;
493 		default:
494 			break;
495 		}
496 	}
497 
498 	write_sequnlock(&xtime_lock);
499 
500 	/*
501 	 * In UP mode, we call local_timer_interrupt() to do profiling
502 	 * and process accouting.
503 	 *
504 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
505 	 * low-level local timer interrupt handler.
506 	 */
507 	local_timer_interrupt(irq, dev_id, regs);
508 
509 	return IRQ_HANDLED;
510 }
511 
512 int null_perf_irq(struct pt_regs *regs)
513 {
514 	return 0;
515 }
516 
517 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq;
518 
519 EXPORT_SYMBOL(null_perf_irq);
520 EXPORT_SYMBOL(perf_irq);
521 
522 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs)
523 {
524 	int r2 = cpu_has_mips_r2;
525 
526 	irq_enter();
527 	kstat_this_cpu.irqs[irq]++;
528 
529 	/*
530 	 * Suckage alert:
531 	 * Before R2 of the architecture there was no way to see if a
532 	 * performance counter interrupt was pending, so we have to run the
533 	 * performance counter interrupt handler anyway.
534 	 */
535 	if (!r2 || (read_c0_cause() & (1 << 26)))
536 		if (perf_irq(regs))
537 			goto out;
538 
539 	/* we keep interrupt disabled all the time */
540 	if (!r2 || (read_c0_cause() & (1 << 30)))
541 		timer_interrupt(irq, NULL, regs);
542 
543 out:
544 	irq_exit();
545 }
546 
547 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs)
548 {
549 	irq_enter();
550 	if (smp_processor_id() != 0)
551 		kstat_this_cpu.irqs[irq]++;
552 
553 	/* we keep interrupt disabled all the time */
554 	local_timer_interrupt(irq, NULL, regs);
555 
556 	irq_exit();
557 }
558 
559 /*
560  * time_init() - it does the following things.
561  *
562  * 1) board_time_init() -
563  * 	a) (optional) set up RTC routines,
564  *      b) (optional) calibrate and set the mips_hpt_frequency
565  *	    (only needed if you intended to use fixed_rate_gettimeoffset
566  *	     or use cpu counter as timer interrupt source)
567  * 2) setup xtime based on rtc_mips_get_time().
568  * 3) choose a appropriate gettimeoffset routine.
569  * 4) calculate a couple of cached variables for later usage
570  * 5) board_timer_setup() -
571  *	a) (optional) over-write any choices made above by time_init().
572  *	b) machine specific code should setup the timer irqaction.
573  *	c) enable the timer interrupt
574  */
575 
576 void (*board_time_init)(void);
577 void (*board_timer_setup)(struct irqaction *irq);
578 
579 unsigned int mips_hpt_frequency;
580 
581 static struct irqaction timer_irqaction = {
582 	.handler = timer_interrupt,
583 	.flags = SA_INTERRUPT,
584 	.name = "timer",
585 };
586 
587 static unsigned int __init calibrate_hpt(void)
588 {
589 	u64 frequency;
590 	u32 hpt_start, hpt_end, hpt_count, hz;
591 
592 	const int loops = HZ / 10;
593 	int log_2_loops = 0;
594 	int i;
595 
596 	/*
597 	 * We want to calibrate for 0.1s, but to avoid a 64-bit
598 	 * division we round the number of loops up to the nearest
599 	 * power of 2.
600 	 */
601 	while (loops > 1 << log_2_loops)
602 		log_2_loops++;
603 	i = 1 << log_2_loops;
604 
605 	/*
606 	 * Wait for a rising edge of the timer interrupt.
607 	 */
608 	while (mips_timer_state());
609 	while (!mips_timer_state());
610 
611 	/*
612 	 * Now see how many high precision timer ticks happen
613 	 * during the calculated number of periods between timer
614 	 * interrupts.
615 	 */
616 	hpt_start = mips_hpt_read();
617 	do {
618 		while (mips_timer_state());
619 		while (!mips_timer_state());
620 	} while (--i);
621 	hpt_end = mips_hpt_read();
622 
623 	hpt_count = hpt_end - hpt_start;
624 	hz = HZ;
625 	frequency = (u64)hpt_count * (u64)hz;
626 
627 	return frequency >> log_2_loops;
628 }
629 
630 void __init time_init(void)
631 {
632 	if (board_time_init)
633 		board_time_init();
634 
635 	if (!rtc_mips_set_mmss)
636 		rtc_mips_set_mmss = rtc_mips_set_time;
637 
638 	xtime.tv_sec = rtc_mips_get_time();
639 	xtime.tv_nsec = 0;
640 
641 	set_normalized_timespec(&wall_to_monotonic,
642 	                        -xtime.tv_sec, -xtime.tv_nsec);
643 
644 	/* Choose appropriate high precision timer routines.  */
645 	if (!cpu_has_counter && !mips_hpt_read) {
646 		/* No high precision timer -- sorry.  */
647 		mips_hpt_read = null_hpt_read;
648 		mips_hpt_init = null_hpt_init;
649 	} else if (!mips_hpt_frequency && !mips_timer_state) {
650 		/* A high precision timer of unknown frequency.  */
651 		if (!mips_hpt_read) {
652 			/* No external high precision timer -- use R4k.  */
653 			mips_hpt_read = c0_hpt_read;
654 			mips_hpt_init = c0_hpt_init;
655 		}
656 
657 		if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
658 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
659 		    (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
660 			/*
661 			 * We need to calibrate the counter but we don't have
662 			 * 64-bit division.
663 			 */
664 			do_gettimeoffset = calibrate_div32_gettimeoffset;
665 		else
666 			/*
667 			 * We need to calibrate the counter but we *do* have
668 			 * 64-bit division.
669 			 */
670 			do_gettimeoffset = calibrate_div64_gettimeoffset;
671 	} else {
672 		/* We know counter frequency.  Or we can get it.  */
673 		if (!mips_hpt_read) {
674 			/* No external high precision timer -- use R4k.  */
675 			mips_hpt_read = c0_hpt_read;
676 
677 			if (mips_timer_state)
678 				mips_hpt_init = c0_hpt_init;
679 			else {
680 				/* No external timer interrupt -- use R4k.  */
681 				mips_hpt_init = c0_hpt_timer_init;
682 				mips_timer_ack = c0_timer_ack;
683 			}
684 		}
685 		if (!mips_hpt_frequency)
686 			mips_hpt_frequency = calibrate_hpt();
687 
688 		do_gettimeoffset = fixed_rate_gettimeoffset;
689 
690 		/* Calculate cache parameters.  */
691 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
692 
693 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */
694 		do_div64_32(sll32_usecs_per_cycle,
695 			    1000000, mips_hpt_frequency / 2,
696 			    mips_hpt_frequency);
697 
698 		/* Report the high precision timer rate for a reference.  */
699 		printk("Using %u.%03u MHz high precision timer.\n",
700 		       ((mips_hpt_frequency + 500) / 1000) / 1000,
701 		       ((mips_hpt_frequency + 500) / 1000) % 1000);
702 	}
703 
704 	if (!mips_timer_ack)
705 		/* No timer interrupt ack (e.g. i8254).  */
706 		mips_timer_ack = null_timer_ack;
707 
708 	/* This sets up the high precision timer for the first interrupt.  */
709 	mips_hpt_init(mips_hpt_read());
710 
711 	/*
712 	 * Call board specific timer interrupt setup.
713 	 *
714 	 * this pointer must be setup in machine setup routine.
715 	 *
716 	 * Even if a machine chooses to use a low-level timer interrupt,
717 	 * it still needs to setup the timer_irqaction.
718 	 * In that case, it might be better to set timer_irqaction.handler
719 	 * to be NULL function so that we are sure the high-level code
720 	 * is not invoked accidentally.
721 	 */
722 	board_timer_setup(&timer_irqaction);
723 }
724 
725 #define FEBRUARY		2
726 #define STARTOFTIME		1970
727 #define SECDAY			86400L
728 #define SECYR			(SECDAY * 365)
729 #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
730 #define days_in_year(y)		(leapyear(y) ? 366 : 365)
731 #define days_in_month(m)	(month_days[(m) - 1])
732 
733 static int month_days[12] = {
734 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
735 };
736 
737 void to_tm(unsigned long tim, struct rtc_time *tm)
738 {
739 	long hms, day, gday;
740 	int i;
741 
742 	gday = day = tim / SECDAY;
743 	hms = tim % SECDAY;
744 
745 	/* Hours, minutes, seconds are easy */
746 	tm->tm_hour = hms / 3600;
747 	tm->tm_min = (hms % 3600) / 60;
748 	tm->tm_sec = (hms % 3600) % 60;
749 
750 	/* Number of years in days */
751 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
752 		day -= days_in_year(i);
753 	tm->tm_year = i;
754 
755 	/* Number of months in days left */
756 	if (leapyear(tm->tm_year))
757 		days_in_month(FEBRUARY) = 29;
758 	for (i = 1; day >= days_in_month(i); i++)
759 		day -= days_in_month(i);
760 	days_in_month(FEBRUARY) = 28;
761 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */
762 
763 	/* Days are what is left over (+1) from all that. */
764 	tm->tm_mday = day + 1;
765 
766 	/*
767 	 * Determine the day of week
768 	 */
769 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
770 }
771 
772 EXPORT_SYMBOL(rtc_lock);
773 EXPORT_SYMBOL(to_tm);
774 EXPORT_SYMBOL(rtc_mips_set_time);
775 EXPORT_SYMBOL(rtc_mips_get_time);
776 
777 unsigned long long sched_clock(void)
778 {
779 	return (unsigned long long)jiffies*(1000000000/HZ);
780 }
781