1 /* 2 * Copyright 2001 MontaVista Software Inc. 3 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net 4 * Copyright (c) 2003, 2004 Maciej W. Rozycki 5 * 6 * Common time service routines for MIPS machines. See 7 * Documentation/mips/time.README. 8 * 9 * This program is free software; you can redistribute it and/or modify it 10 * under the terms of the GNU General Public License as published by the 11 * Free Software Foundation; either version 2 of the License, or (at your 12 * option) any later version. 13 */ 14 #include <linux/config.h> 15 #include <linux/types.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/sched.h> 19 #include <linux/param.h> 20 #include <linux/time.h> 21 #include <linux/timex.h> 22 #include <linux/smp.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/spinlock.h> 25 #include <linux/interrupt.h> 26 #include <linux/module.h> 27 28 #include <asm/bootinfo.h> 29 #include <asm/cache.h> 30 #include <asm/compiler.h> 31 #include <asm/cpu.h> 32 #include <asm/cpu-features.h> 33 #include <asm/div64.h> 34 #include <asm/sections.h> 35 #include <asm/time.h> 36 37 /* 38 * The integer part of the number of usecs per jiffy is taken from tick, 39 * but the fractional part is not recorded, so we calculate it using the 40 * initial value of HZ. This aids systems where tick isn't really an 41 * integer (e.g. for HZ = 128). 42 */ 43 #define USECS_PER_JIFFY TICK_SIZE 44 #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ)) 45 46 #define TICK_SIZE (tick_nsec / 1000) 47 48 /* 49 * forward reference 50 */ 51 extern volatile unsigned long wall_jiffies; 52 53 DEFINE_SPINLOCK(rtc_lock); 54 55 /* 56 * By default we provide the null RTC ops 57 */ 58 static unsigned long null_rtc_get_time(void) 59 { 60 return mktime(2000, 1, 1, 0, 0, 0); 61 } 62 63 static int null_rtc_set_time(unsigned long sec) 64 { 65 return 0; 66 } 67 68 unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time; 69 int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time; 70 int (*rtc_mips_set_mmss)(unsigned long); 71 72 73 /* usecs per counter cycle, shifted to left by 32 bits */ 74 static unsigned int sll32_usecs_per_cycle; 75 76 /* how many counter cycles in a jiffy */ 77 static unsigned long cycles_per_jiffy __read_mostly; 78 79 /* Cycle counter value at the previous timer interrupt.. */ 80 static unsigned int timerhi, timerlo; 81 82 /* expirelo is the count value for next CPU timer interrupt */ 83 static unsigned int expirelo; 84 85 86 /* 87 * Null timer ack for systems not needing one (e.g. i8254). 88 */ 89 static void null_timer_ack(void) { /* nothing */ } 90 91 /* 92 * Null high precision timer functions for systems lacking one. 93 */ 94 static unsigned int null_hpt_read(void) 95 { 96 return 0; 97 } 98 99 static void null_hpt_init(unsigned int count) 100 { 101 /* nothing */ 102 } 103 104 105 /* 106 * Timer ack for an R4k-compatible timer of a known frequency. 107 */ 108 static void c0_timer_ack(void) 109 { 110 unsigned int count; 111 112 #ifndef CONFIG_SOC_PNX8550 /* pnx8550 resets to zero */ 113 /* Ack this timer interrupt and set the next one. */ 114 expirelo += cycles_per_jiffy; 115 #endif 116 write_c0_compare(expirelo); 117 118 /* Check to see if we have missed any timer interrupts. */ 119 while (((count = read_c0_count()) - expirelo) < 0x7fffffff) { 120 /* missed_timer_count++; */ 121 expirelo = count + cycles_per_jiffy; 122 write_c0_compare(expirelo); 123 } 124 } 125 126 /* 127 * High precision timer functions for a R4k-compatible timer. 128 */ 129 static unsigned int c0_hpt_read(void) 130 { 131 return read_c0_count(); 132 } 133 134 /* For use solely as a high precision timer. */ 135 static void c0_hpt_init(unsigned int count) 136 { 137 write_c0_count(read_c0_count() - count); 138 } 139 140 /* For use both as a high precision timer and an interrupt source. */ 141 static void c0_hpt_timer_init(unsigned int count) 142 { 143 count = read_c0_count() - count; 144 expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; 145 write_c0_count(expirelo - cycles_per_jiffy); 146 write_c0_compare(expirelo); 147 write_c0_count(count); 148 } 149 150 int (*mips_timer_state)(void); 151 void (*mips_timer_ack)(void); 152 unsigned int (*mips_hpt_read)(void); 153 void (*mips_hpt_init)(unsigned int); 154 155 156 /* 157 * This version of gettimeofday has microsecond resolution and better than 158 * microsecond precision on fast machines with cycle counter. 159 */ 160 void do_gettimeofday(struct timeval *tv) 161 { 162 unsigned long seq; 163 unsigned long lost; 164 unsigned long usec, sec; 165 unsigned long max_ntp_tick; 166 167 do { 168 seq = read_seqbegin(&xtime_lock); 169 170 usec = do_gettimeoffset(); 171 172 lost = jiffies - wall_jiffies; 173 174 /* 175 * If time_adjust is negative then NTP is slowing the clock 176 * so make sure not to go into next possible interval. 177 * Better to lose some accuracy than have time go backwards.. 178 */ 179 if (unlikely(time_adjust < 0)) { 180 max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj; 181 usec = min(usec, max_ntp_tick); 182 183 if (lost) 184 usec += lost * max_ntp_tick; 185 } else if (unlikely(lost)) 186 usec += lost * (USEC_PER_SEC / HZ); 187 188 sec = xtime.tv_sec; 189 usec += (xtime.tv_nsec / 1000); 190 191 } while (read_seqretry(&xtime_lock, seq)); 192 193 while (usec >= 1000000) { 194 usec -= 1000000; 195 sec++; 196 } 197 198 tv->tv_sec = sec; 199 tv->tv_usec = usec; 200 } 201 202 EXPORT_SYMBOL(do_gettimeofday); 203 204 int do_settimeofday(struct timespec *tv) 205 { 206 time_t wtm_sec, sec = tv->tv_sec; 207 long wtm_nsec, nsec = tv->tv_nsec; 208 209 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) 210 return -EINVAL; 211 212 write_seqlock_irq(&xtime_lock); 213 214 /* 215 * This is revolting. We need to set "xtime" correctly. However, 216 * the value in this location is the value at the most recent update 217 * of wall time. Discover what correction gettimeofday() would have 218 * made, and then undo it! 219 */ 220 nsec -= do_gettimeoffset() * NSEC_PER_USEC; 221 nsec -= (jiffies - wall_jiffies) * tick_nsec; 222 223 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); 224 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); 225 226 set_normalized_timespec(&xtime, sec, nsec); 227 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); 228 229 ntp_clear(); 230 write_sequnlock_irq(&xtime_lock); 231 clock_was_set(); 232 return 0; 233 } 234 235 EXPORT_SYMBOL(do_settimeofday); 236 237 /* 238 * Gettimeoffset routines. These routines returns the time duration 239 * since last timer interrupt in usecs. 240 * 241 * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. 242 * Otherwise use calibrate_gettimeoffset() 243 * 244 * If the CPU does not have the counter register, you can either supply 245 * your own gettimeoffset() routine, or use null_gettimeoffset(), which 246 * gives the same resolution as HZ. 247 */ 248 249 static unsigned long null_gettimeoffset(void) 250 { 251 return 0; 252 } 253 254 255 /* The function pointer to one of the gettimeoffset funcs. */ 256 unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; 257 258 259 static unsigned long fixed_rate_gettimeoffset(void) 260 { 261 u32 count; 262 unsigned long res; 263 264 /* Get last timer tick in absolute kernel time */ 265 count = mips_hpt_read(); 266 267 /* .. relative to previous jiffy (32 bits is enough) */ 268 count -= timerlo; 269 270 __asm__("multu %1,%2" 271 : "=h" (res) 272 : "r" (count), "r" (sll32_usecs_per_cycle) 273 : "lo", GCC_REG_ACCUM); 274 275 /* 276 * Due to possible jiffies inconsistencies, we need to check 277 * the result so that we'll get a timer that is monotonic. 278 */ 279 if (res >= USECS_PER_JIFFY) 280 res = USECS_PER_JIFFY - 1; 281 282 return res; 283 } 284 285 286 /* 287 * Cached "1/(clocks per usec) * 2^32" value. 288 * It has to be recalculated once each jiffy. 289 */ 290 static unsigned long cached_quotient; 291 292 /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ 293 static unsigned long last_jiffies; 294 295 /* 296 * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. 297 */ 298 static unsigned long calibrate_div32_gettimeoffset(void) 299 { 300 u32 count; 301 unsigned long res, tmp; 302 unsigned long quotient; 303 304 tmp = jiffies; 305 306 quotient = cached_quotient; 307 308 if (last_jiffies != tmp) { 309 last_jiffies = tmp; 310 if (last_jiffies != 0) { 311 unsigned long r0; 312 do_div64_32(r0, timerhi, timerlo, tmp); 313 do_div64_32(quotient, USECS_PER_JIFFY, 314 USECS_PER_JIFFY_FRAC, r0); 315 cached_quotient = quotient; 316 } 317 } 318 319 /* Get last timer tick in absolute kernel time */ 320 count = mips_hpt_read(); 321 322 /* .. relative to previous jiffy (32 bits is enough) */ 323 count -= timerlo; 324 325 __asm__("multu %1,%2" 326 : "=h" (res) 327 : "r" (count), "r" (quotient) 328 : "lo", GCC_REG_ACCUM); 329 330 /* 331 * Due to possible jiffies inconsistencies, we need to check 332 * the result so that we'll get a timer that is monotonic. 333 */ 334 if (res >= USECS_PER_JIFFY) 335 res = USECS_PER_JIFFY - 1; 336 337 return res; 338 } 339 340 static unsigned long calibrate_div64_gettimeoffset(void) 341 { 342 u32 count; 343 unsigned long res, tmp; 344 unsigned long quotient; 345 346 tmp = jiffies; 347 348 quotient = cached_quotient; 349 350 if (last_jiffies != tmp) { 351 last_jiffies = tmp; 352 if (last_jiffies) { 353 unsigned long r0; 354 __asm__(".set push\n\t" 355 ".set mips3\n\t" 356 "lwu %0,%3\n\t" 357 "dsll32 %1,%2,0\n\t" 358 "or %1,%1,%0\n\t" 359 "ddivu $0,%1,%4\n\t" 360 "mflo %1\n\t" 361 "dsll32 %0,%5,0\n\t" 362 "or %0,%0,%6\n\t" 363 "ddivu $0,%0,%1\n\t" 364 "mflo %0\n\t" 365 ".set pop" 366 : "=&r" (quotient), "=&r" (r0) 367 : "r" (timerhi), "m" (timerlo), 368 "r" (tmp), "r" (USECS_PER_JIFFY), 369 "r" (USECS_PER_JIFFY_FRAC) 370 : "hi", "lo", GCC_REG_ACCUM); 371 cached_quotient = quotient; 372 } 373 } 374 375 /* Get last timer tick in absolute kernel time */ 376 count = mips_hpt_read(); 377 378 /* .. relative to previous jiffy (32 bits is enough) */ 379 count -= timerlo; 380 381 __asm__("multu %1,%2" 382 : "=h" (res) 383 : "r" (count), "r" (quotient) 384 : "lo", GCC_REG_ACCUM); 385 386 /* 387 * Due to possible jiffies inconsistencies, we need to check 388 * the result so that we'll get a timer that is monotonic. 389 */ 390 if (res >= USECS_PER_JIFFY) 391 res = USECS_PER_JIFFY - 1; 392 393 return res; 394 } 395 396 397 /* last time when xtime and rtc are sync'ed up */ 398 static long last_rtc_update; 399 400 /* 401 * local_timer_interrupt() does profiling and process accounting 402 * on a per-CPU basis. 403 * 404 * In UP mode, it is invoked from the (global) timer_interrupt. 405 * 406 * In SMP mode, it might invoked by per-CPU timer interrupt, or 407 * a broadcasted inter-processor interrupt which itself is triggered 408 * by the global timer interrupt. 409 */ 410 void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 411 { 412 if (current->pid) 413 profile_tick(CPU_PROFILING, regs); 414 update_process_times(user_mode(regs)); 415 } 416 417 /* 418 * High-level timer interrupt service routines. This function 419 * is set as irqaction->handler and is invoked through do_IRQ. 420 */ 421 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) 422 { 423 unsigned long j; 424 unsigned int count; 425 426 write_seqlock(&xtime_lock); 427 428 count = mips_hpt_read(); 429 mips_timer_ack(); 430 431 /* Update timerhi/timerlo for intra-jiffy calibration. */ 432 timerhi += count < timerlo; /* Wrap around */ 433 timerlo = count; 434 435 /* 436 * call the generic timer interrupt handling 437 */ 438 do_timer(regs); 439 440 /* 441 * If we have an externally synchronized Linux clock, then update 442 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be 443 * called as close as possible to 500 ms before the new second starts. 444 */ 445 if (ntp_synced() && 446 xtime.tv_sec > last_rtc_update + 660 && 447 (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && 448 (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { 449 if (rtc_mips_set_mmss(xtime.tv_sec) == 0) { 450 last_rtc_update = xtime.tv_sec; 451 } else { 452 /* do it again in 60 s */ 453 last_rtc_update = xtime.tv_sec - 600; 454 } 455 } 456 457 /* 458 * If jiffies has overflown in this timer_interrupt, we must 459 * update the timer[hi]/[lo] to make fast gettimeoffset funcs 460 * quotient calc still valid. -arca 461 * 462 * The first timer interrupt comes late as interrupts are 463 * enabled long after timers are initialized. Therefore the 464 * high precision timer is fast, leading to wrong gettimeoffset() 465 * calculations. We deal with it by setting it based on the 466 * number of its ticks between the second and the third interrupt. 467 * That is still somewhat imprecise, but it's a good estimate. 468 * --macro 469 */ 470 j = jiffies; 471 if (j < 4) { 472 static unsigned int prev_count; 473 static int hpt_initialized; 474 475 switch (j) { 476 case 0: 477 timerhi = timerlo = 0; 478 mips_hpt_init(count); 479 break; 480 case 2: 481 prev_count = count; 482 break; 483 case 3: 484 if (!hpt_initialized) { 485 unsigned int c3 = 3 * (count - prev_count); 486 487 timerhi = 0; 488 timerlo = c3; 489 mips_hpt_init(count - c3); 490 hpt_initialized = 1; 491 } 492 break; 493 default: 494 break; 495 } 496 } 497 498 write_sequnlock(&xtime_lock); 499 500 /* 501 * In UP mode, we call local_timer_interrupt() to do profiling 502 * and process accouting. 503 * 504 * In SMP mode, local_timer_interrupt() is invoked by appropriate 505 * low-level local timer interrupt handler. 506 */ 507 local_timer_interrupt(irq, dev_id, regs); 508 509 return IRQ_HANDLED; 510 } 511 512 int null_perf_irq(struct pt_regs *regs) 513 { 514 return 0; 515 } 516 517 int (*perf_irq)(struct pt_regs *regs) = null_perf_irq; 518 519 EXPORT_SYMBOL(null_perf_irq); 520 EXPORT_SYMBOL(perf_irq); 521 522 asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) 523 { 524 int r2 = cpu_has_mips_r2; 525 526 irq_enter(); 527 kstat_this_cpu.irqs[irq]++; 528 529 /* 530 * Suckage alert: 531 * Before R2 of the architecture there was no way to see if a 532 * performance counter interrupt was pending, so we have to run the 533 * performance counter interrupt handler anyway. 534 */ 535 if (!r2 || (read_c0_cause() & (1 << 26))) 536 if (perf_irq(regs)) 537 goto out; 538 539 /* we keep interrupt disabled all the time */ 540 if (!r2 || (read_c0_cause() & (1 << 30))) 541 timer_interrupt(irq, NULL, regs); 542 543 out: 544 irq_exit(); 545 } 546 547 asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) 548 { 549 irq_enter(); 550 if (smp_processor_id() != 0) 551 kstat_this_cpu.irqs[irq]++; 552 553 /* we keep interrupt disabled all the time */ 554 local_timer_interrupt(irq, NULL, regs); 555 556 irq_exit(); 557 } 558 559 /* 560 * time_init() - it does the following things. 561 * 562 * 1) board_time_init() - 563 * a) (optional) set up RTC routines, 564 * b) (optional) calibrate and set the mips_hpt_frequency 565 * (only needed if you intended to use fixed_rate_gettimeoffset 566 * or use cpu counter as timer interrupt source) 567 * 2) setup xtime based on rtc_mips_get_time(). 568 * 3) choose a appropriate gettimeoffset routine. 569 * 4) calculate a couple of cached variables for later usage 570 * 5) board_timer_setup() - 571 * a) (optional) over-write any choices made above by time_init(). 572 * b) machine specific code should setup the timer irqaction. 573 * c) enable the timer interrupt 574 */ 575 576 void (*board_time_init)(void); 577 void (*board_timer_setup)(struct irqaction *irq); 578 579 unsigned int mips_hpt_frequency; 580 581 static struct irqaction timer_irqaction = { 582 .handler = timer_interrupt, 583 .flags = SA_INTERRUPT, 584 .name = "timer", 585 }; 586 587 static unsigned int __init calibrate_hpt(void) 588 { 589 u64 frequency; 590 u32 hpt_start, hpt_end, hpt_count, hz; 591 592 const int loops = HZ / 10; 593 int log_2_loops = 0; 594 int i; 595 596 /* 597 * We want to calibrate for 0.1s, but to avoid a 64-bit 598 * division we round the number of loops up to the nearest 599 * power of 2. 600 */ 601 while (loops > 1 << log_2_loops) 602 log_2_loops++; 603 i = 1 << log_2_loops; 604 605 /* 606 * Wait for a rising edge of the timer interrupt. 607 */ 608 while (mips_timer_state()); 609 while (!mips_timer_state()); 610 611 /* 612 * Now see how many high precision timer ticks happen 613 * during the calculated number of periods between timer 614 * interrupts. 615 */ 616 hpt_start = mips_hpt_read(); 617 do { 618 while (mips_timer_state()); 619 while (!mips_timer_state()); 620 } while (--i); 621 hpt_end = mips_hpt_read(); 622 623 hpt_count = hpt_end - hpt_start; 624 hz = HZ; 625 frequency = (u64)hpt_count * (u64)hz; 626 627 return frequency >> log_2_loops; 628 } 629 630 void __init time_init(void) 631 { 632 if (board_time_init) 633 board_time_init(); 634 635 if (!rtc_mips_set_mmss) 636 rtc_mips_set_mmss = rtc_mips_set_time; 637 638 xtime.tv_sec = rtc_mips_get_time(); 639 xtime.tv_nsec = 0; 640 641 set_normalized_timespec(&wall_to_monotonic, 642 -xtime.tv_sec, -xtime.tv_nsec); 643 644 /* Choose appropriate high precision timer routines. */ 645 if (!cpu_has_counter && !mips_hpt_read) { 646 /* No high precision timer -- sorry. */ 647 mips_hpt_read = null_hpt_read; 648 mips_hpt_init = null_hpt_init; 649 } else if (!mips_hpt_frequency && !mips_timer_state) { 650 /* A high precision timer of unknown frequency. */ 651 if (!mips_hpt_read) { 652 /* No external high precision timer -- use R4k. */ 653 mips_hpt_read = c0_hpt_read; 654 mips_hpt_init = c0_hpt_init; 655 } 656 657 if (cpu_has_mips32r1 || cpu_has_mips32r2 || 658 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || 659 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) 660 /* 661 * We need to calibrate the counter but we don't have 662 * 64-bit division. 663 */ 664 do_gettimeoffset = calibrate_div32_gettimeoffset; 665 else 666 /* 667 * We need to calibrate the counter but we *do* have 668 * 64-bit division. 669 */ 670 do_gettimeoffset = calibrate_div64_gettimeoffset; 671 } else { 672 /* We know counter frequency. Or we can get it. */ 673 if (!mips_hpt_read) { 674 /* No external high precision timer -- use R4k. */ 675 mips_hpt_read = c0_hpt_read; 676 677 if (mips_timer_state) 678 mips_hpt_init = c0_hpt_init; 679 else { 680 /* No external timer interrupt -- use R4k. */ 681 mips_hpt_init = c0_hpt_timer_init; 682 mips_timer_ack = c0_timer_ack; 683 } 684 } 685 if (!mips_hpt_frequency) 686 mips_hpt_frequency = calibrate_hpt(); 687 688 do_gettimeoffset = fixed_rate_gettimeoffset; 689 690 /* Calculate cache parameters. */ 691 cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; 692 693 /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */ 694 do_div64_32(sll32_usecs_per_cycle, 695 1000000, mips_hpt_frequency / 2, 696 mips_hpt_frequency); 697 698 /* Report the high precision timer rate for a reference. */ 699 printk("Using %u.%03u MHz high precision timer.\n", 700 ((mips_hpt_frequency + 500) / 1000) / 1000, 701 ((mips_hpt_frequency + 500) / 1000) % 1000); 702 } 703 704 if (!mips_timer_ack) 705 /* No timer interrupt ack (e.g. i8254). */ 706 mips_timer_ack = null_timer_ack; 707 708 /* This sets up the high precision timer for the first interrupt. */ 709 mips_hpt_init(mips_hpt_read()); 710 711 /* 712 * Call board specific timer interrupt setup. 713 * 714 * this pointer must be setup in machine setup routine. 715 * 716 * Even if a machine chooses to use a low-level timer interrupt, 717 * it still needs to setup the timer_irqaction. 718 * In that case, it might be better to set timer_irqaction.handler 719 * to be NULL function so that we are sure the high-level code 720 * is not invoked accidentally. 721 */ 722 board_timer_setup(&timer_irqaction); 723 } 724 725 #define FEBRUARY 2 726 #define STARTOFTIME 1970 727 #define SECDAY 86400L 728 #define SECYR (SECDAY * 365) 729 #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400)) 730 #define days_in_year(y) (leapyear(y) ? 366 : 365) 731 #define days_in_month(m) (month_days[(m) - 1]) 732 733 static int month_days[12] = { 734 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 735 }; 736 737 void to_tm(unsigned long tim, struct rtc_time *tm) 738 { 739 long hms, day, gday; 740 int i; 741 742 gday = day = tim / SECDAY; 743 hms = tim % SECDAY; 744 745 /* Hours, minutes, seconds are easy */ 746 tm->tm_hour = hms / 3600; 747 tm->tm_min = (hms % 3600) / 60; 748 tm->tm_sec = (hms % 3600) % 60; 749 750 /* Number of years in days */ 751 for (i = STARTOFTIME; day >= days_in_year(i); i++) 752 day -= days_in_year(i); 753 tm->tm_year = i; 754 755 /* Number of months in days left */ 756 if (leapyear(tm->tm_year)) 757 days_in_month(FEBRUARY) = 29; 758 for (i = 1; day >= days_in_month(i); i++) 759 day -= days_in_month(i); 760 days_in_month(FEBRUARY) = 28; 761 tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */ 762 763 /* Days are what is left over (+1) from all that. */ 764 tm->tm_mday = day + 1; 765 766 /* 767 * Determine the day of week 768 */ 769 tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */ 770 } 771 772 EXPORT_SYMBOL(rtc_lock); 773 EXPORT_SYMBOL(to_tm); 774 EXPORT_SYMBOL(rtc_mips_set_time); 775 EXPORT_SYMBOL(rtc_mips_get_time); 776 777 unsigned long long sched_clock(void) 778 { 779 return (unsigned long long)jiffies*(1000000000/HZ); 780 } 781